
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 16, 2017

Vital Signs Monitoring and Interpretation for Critically Ill Patients

Vilic, Adnan; Sørensen, Helge Bjarup Dissing; Kjaer, Troels Wesenberg; Petersen, John Asger

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Vilic, A., Sørensen, H. B. D., Kjaer, T. W., & Petersen, J. A. (2017). Vital Signs Monitoring and Interpretation for
Critically Ill Patients. Technical University of Denmark, Department of Electrical Engineering.

http://orbit.dtu.dk/en/publications/vital-signs-monitoring-and-interpretation-for-critically-ill-patients(bc1c5df4-cbf6-49b3-bc9e-4483005870b0).html


 
 

 

 

 

 

 

 

VITAL SIGNS MONITORING AND INTERPRETATION FOR 

CRITICALLY ILL PATIENTS  

 

 

By Adnan Vilic 

PhD Thesis, June 2017 

 

In collaboration with:  

Technical University of Denmark, Lyngby  

Zealand University Hospital, Roskilde  

Bispebjerg University Hospital, Copenhagen 

 

 

 

  

https://www.bispebjerghospital.dk/
http://www.regionsjaelland.dk/


 
 

 
 
PhD dissertation by:   Adnan Vilic 
 
 
 
Main supervisor:    Associate Professor MSK, MSc.EE, PhD, Helge B. D. Sørensen  
         Department of Electrical Engineering 
         Technical University of Denmark, Lyngby 
 
 
 
Clinical supervisors:   Professor, MD, PhD, Troels Wesenberg Kjær 
         Department of Neurology  
         Zealand University Hospital, Roskilde 
 
 
 
         Clinical Associate Professor, MD, PhD, John Asger Petersen 
         Intensive Care Unit Z  
         Bispebjerg University Hospital, Copenhagen  
 

 

 

 

 

 

© Adnan Vilic, 2017 

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, 

without permission.  

Technical University of Denmark  
Department of Electrical Engineering  
DK-2800 Kgs. Lyngby Denmark 
  
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Technical 

University of Denmark. 



 
 

 

 

PREFACE 
This dissertation is prepared at the Department of Electrical Engineering, at Technical University of 

Denmark (DTU). It is a partial requirement for obtaining the degree of Doctor of Philosophy. The 

research has been carried out in a close cooperation between Technical University of Denmark (DTU), 

Bispebjerg Hospital and Zealand University Hospital in Roskilde (ZUH). The dissertation is written in 

a form that can be read independently of the related composed articles, hence textual and graphical 

parts are occasionally repeated.  

The presented research was carried out in the period between March 2013 and June 2017. Within 

this were two timespans with leave of absence which, when combined, accounted for one year.  

Besides conducting the research, other activities included supervising bachelor- and master degree 

students, teaching, participating in conferences, and upgrade and maintenance of laboratory 

equipment. All applications and approvals for data collection and management were written and 

obtained during the studies. In terms of publications, the research resulted in two journal papers 

and three conference papers.   

The projected was internally funded.  
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ABSTRACT 
In current clinical practice, vital signs such as heart rate, blood pressure, oxygen saturation level, 

respiratory rate and temperature are continuously measured for critically ill patients. Monitored by 

medical devices, each vital sign provides information about basic body functions and allows medical 

staff to intervene if health deteriorates. It has been documented that most of the alarms provided 

by the devices do not require actions, and that this occurs mainly because the signals are treated 

individually without context. The overload in alarms forces medical staff to make priority decisions, 

and can cause critical scenarios leading to a patient’s death be overseen. The focus of this project 

was investigating clinical applicability of combining vital signs for critically ill patients. Several 

approaches were developed and tested with increasingly homogeneous patient groups.  

The first study presents a data-driven approach to representation of a patient’s physiological 

condition by combining vital signs into Early Warning Scores (EWS). Data were collected for 57 

critically ill patients who had each been admitted to the intensive care unit at Bispebjerg Hospital 

for several days. To evaluate the estimation of physiological condition, text-based electronic health 

records (EHR) were collected, and time-labeled entries were extracted through algorithms from 

Natural Language Processing (NLP). The combination of EWS and NLP enabled the development of 

a system which could present and quantify a physiological condition timeline for patients. Promising 

results were obtained with EWS as measure, in which patients with EWS ≥ 8.5 passed away while all 

patients who were admitted for over 53 hours with EWS < 6.5 survived. 

The second study focused on ischemic stroke patients at Zealand University Hospital. Since all 

patients had same cause of admission and similar comorbidities, they were a more homogeneous 

critical patient group than in the first study. To predict the degree of disability after one day of 

admission, features based on vital signs and medical history were used in two prediction models. An 

introduced queue-based multiple linear regression (qMLR) model achieved best results with a root 

mean square error (RMSE) of RMSE = 3.11 on a Scandinavian Stroke Scale (SSS) where degree of 

disability ranged from 0 - 46. Worse outcomes were observed in patients who had pulse > 80 and a 

negative correlation between systolic and diastolic blood pressures during the first two hours of 

admission.  

The final study dealt with classification of diabetes mellitus (DM) in ischemic stroke patients, where 

current findings indicate that one third of patients have unrecognized DM. A support vector machine 

was trained using vital signs and medical history, and correctly classified whether patients had DM 

with an accuracy of 87.5%. 

The overall conclusion is that vital signs have high potential in applications for critically ill patients. 

Context-awareness through grouping with existing admission data is a prerequisite, unless vital signs 

are used to detect a specifically defined pathological events. 



 
 

 

  



 
 

 

 

RESUME 
I nuværende klinisk praksis bliver vitale parametre som hjerterytme, blodtryk, blodets iltmætning, 

vejrtrækning og temperatur målt kontinuert for kritisk syge patienter. Hver vital parameter giver 

information om basale kropsfunktioner og måles ved hjælp af medicinsk udstyr, som muliggør, at 

personale griber ind hvis patients helbred forværres. De fleste af alarmerne som sendes fra udstyret 

kræver ikke handlinger, og forekomsten skyldes, at parametre betragtes enkeltvis og uden kontekst. 

De mange alarmer tvinger medicinsk personale til selv at prioritere situationer, hvilket i værste fald 

kan medføre at kritiske tilstande overses og en patient dør. Projektets fokus har været at undersøge 

den klinisk anvendelse og kombinationer af vitale parametre i forbindelse med kritisk syge patienter.  

Det første studie introducerer en datastyret tilgang til at repræsentere en patients fysiologiske 

tilstand ved at kombinere vitale parametre i Early Warning Scores (EWS). Data blev indsamlet for 57 

kritisk syge patienter som har været indlagt på intensivafdelingen på Bispebjerg Hospital i flere dage. 

For at vurdere estimatet af fysiologisk tilstand, blev tekstbaserede sundhedsjournaler indsamlet for 

alle patienter, og tidsmarkerede registreringer blev udtrukket ved brug af algoritmer fra Natural 

Language Processing (NLP) feltet. Kombinationen af EWS og NLP gjorde det muligt at udvikle et 

system som kunne vise og vurdere en patients fysiologiske tilstand på en tidslinje. Lovende 

resultater blev opnået med EWS som enhed, hvor patienter med en endelig EWS ≥ 8.5 døde, mens 

alle patienter som var indlagt i over 53 timer med EWS < 6.5 overlevede. 

Et andet studie fokuserede på patienter med iskæmiskslagtilfælde som var blevet indlagt på 

Sjællands Universitetshospital i Roskilde. Her havde alle patienter samme indlæggelsesårsag, samt 

lignende komorbiditeter, som gjorde dem til en mere homogen gruppe af kritisk syge patienter end 

i det første studie. For at forudse graden af handicap efter den første indlæggelsesdag, blev 

deskriptorer baseret på vitale parametre og medicinsk historik, anvendt i to prædiktionsmodeller. 

Bedste resultatet med opnået med en introduceret kø-baseret multipel lineær regressionsmodel 

(qMLR) som opnående en RMSE = 3.11 (kvadratroden af middelværdien af de kvadrerede fejlskøn), 

på Scandinavian Scale hvori graden af handicap kunne gå fra 0-46.  Dårligere udfald blev observeret 

i patienter med en puls > 80, og en negativ korrelation mellem systolisk og diastolisk blodtryk i løbet 

af de første to timer af indlæggelsen.   

Det sidste studie beskæftigede sig med klassifikation af diabetes mellitus (DM) hos patienter som 

var indlagt grundet iskæmiskslagtilfælde, hvor nuværende fund indikerer at en tredjedel af patienter 

med iskæmiskslagtilfælde har DM uden at vide det. En support vector machine blev trænet, og 

kunne ved brug af vitale parametre samt medicinsk historik korrekt finde om en patient havde DM 

i 87.5% af tilfælde. 

Den overordnede konklusion er, at vitale parametre har stort potentiale til anvendelse i forbindelse 

med kritisk syge patienter. Det er en forudsætning at parametrene bruges i kontekst-baseret 

sammenhæng hvori øvrig indlæggelsesrelevant data bør indgå, medmindre man ønsker at detektere 

specifikke patologiskdefinerede begivenheder. 
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CHAPTER 1 

 

MOTIVATION 
With an increasingly older population and a shrinking workforce due to declining birthrates, there will 

be a period in which resources need to be streamlined. By the year 2040, the Danish population will 

have half as much workforce while there will be more than twice as many people older than 65 years 

[1]. In addition, the prevalence of chronic diseases is increasing due to unhealthy lifestyle. E.g. in the 

US, 86.9% of people older than sixty-five had at least one chronic disease in 1998. By 2008 prevalence 

increased to 92.2% [2]. Especially cardiovascular complications such as heart failure, hypertension, 

and diabetes mellitus (DM) are expected to be more prominent [3]. DM alone is expected to rise by 

at least 60% depending on country by the year 2030 [4] [5] [6] [7]. 

Cardiovascular and other medical problems can be revealed through vital sign measurements. The 

measurements are usually performed unobtrusively without invasive equipment. The most common 

vital signs are pulse, blood pressure, temperature and respiratory rate. Depending on geographical 

location, the list is further expanded to include oxygen saturation level, consciousness level and urine 

output over time [8]. In developed countries, most of these vital signs are in measured manually by 

nurses as part of the routine by nurses, to prevent sudden mortality. Since the process is resource 

costly, the measurement schedule is currently optimized so that measurements are done only as 

frequently as necessary depending on how sick the patient is [9] [10]. For bedridden patients, bedside 

vital sign monitors are available in hospitals since the nineteen-sixties, and the modern screens that 

display vital signs of a lying patient were deployed in 1977 [11]. Since then, the main advancements 

in technology are better sensors, interfacing with other hospital equipment, and easier interpretable 

graphics. Recent advancements in wearable technologies have enabled vital signs monitors to be 

portable. Once wearable devices become widely available at hospitals, essential surveillance tasks 

will become automated and medical staff efficiency can potentially improve. 

Regardless which type of vital sign monitoring device is used, built-in alarming only notifies staff when 

a single vital sign reaches an abnormal value. This occurs so often in emergency settings, that only 

one in twenty audible alarms per bed turns out to be false – with the main contributor being abnormal 

heart rhythms [12]. This simple classification of abnormality persists because decisions need to be 

taken rapidly, and it is impossible for medical staff to take all available information about the patient 

into account. Nearly all decisions are therefore based on single parameter measurements, and less 

evident patterns and interactions between parameters are often overlooked.  
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1.1 PROJECT DESCRIPTION  
This project investigated the feasibility of combining multiple vital signs and other patient information 

to evaluate the progress of critically ill patients throughout their hospital admission. Other medical 

information such as health records, medical history and medication were also included to supply 

additional information which may improve evaluation Three retrospective studies were conducted in 

which automatic methods and algorithms were developed and implemented to objectively evaluate 

usefulness of vital signs monitoring in critical settings.  

The first study involved uniting recorded vital signs with electronic health records (EHR) from the 

Intensive Care Unit (ICU) at Bispebjerg Hospital. A timeline over each patient’s health throughout the 

admission was modeled by combining vital signs into a single value for any given time. Natural 

language processing (NLP) methods were implemented for relevant data extraction and analysis from 

textual EHR. This allowed direct mapping of EHR entries over the health condition timeline, and 

enabled evaluation of the health condition timeline model. Chapter 4 describes the study in detail.  

The population of the first study was highly diverse, with patients having varied reasons for admission 

and receiving different treatments. The second study was therefore conducted on a more 

homogeneous population of critically ill patients, namely the ones treated for ischemic stroke at the 

Stroke Unit (SU) at Zealand University Hospital (ZUH) in Roskilde. All patients from the population 

were admitted for same reasons and received the same treatment, but were initially different in 

terms of background and severity of stroke. Sudden health deteriorations rarely occur in SU settings, 

for which reason the focus of the study was on modelling the outcome as function of a disability score, 

which was continuously assessed by medical staff. Chapter 5 elaborates on the study. 

The third study continues with the ischemic stroke population. The available data is combined to 

identify which patients are diagnosed with diabetes mellitus (DM). It aimed at demonstrating an 

application of how the combination of vital signs with other data can contribute to detecting patterns 

in critically ill patients. Significant differences between DM and non-DM patients could furthermore 

contribute to improving detection of unrecognized DM, allowing for earlier medication and improved 

life quality. Chapter 6 explains the study in detail. 

Objectives 
The primary objective of this thesis was to investigate feasibility of using vital signs monitoring in 

critical settings to investigate patient outcome in critical settings. Overall objectives are: 

• Investigating clinical usability of combining multiple vital signs in critical settings to estimate 

the health condition of a patient at any given time. 

 

• Determining how vital signs are related to degree of disability in a homogenous patient group 

such as patients treated for ischemic stroke.  

 

• Examining feasibility of using vital signs and personalized data as identifiers for diabetes 

mellitus in stroke unit patients.  
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CHAPTER 2 
 

PHYSIOLOGY 
With the focus of the dissertation being on vital signs monitoring of critically ill patients, this section 

starts by introducing vital signs, how they are monitored, and what measurements one can expect. 

The section also briefly describes stroke and diabetes mellitus which were the two primary diseases 

dealt with throughout the project.  

2.1 VITAL SIGNS 
Vital signs are physiological measurements of body functions that can be measured non-invasively. 

The most common vital signs are heart rate or pulse, blood pressure (BP), temperature and 

respiratory rate (RR). Depending on the medical settings and geographical location, other vital signs 

may include consciousness or pain, oxygen saturation level, urine output and glucose level [9] [13] 

[14] [15] [16] [17] [18].  

Most vital signs are regulated by the hypothalamus, which is a small structure within the brain, and is 

controlling the autonomic nervous system (ANS). ANS controls autonomic organ functions such as 

heart rate and subconscious respiratory rate [19]. Aside health condition, vital signs are dependent 

on many factors, including age and physical condition and gender. One example being the heart rate 

of a newborn child of 0-3 months is 100 – 150 at rest, while it is 60 – 100 for a people older than ten 

years [20]. In trained athletes, the heart is enlarged and can consequently pump more blood, leading 

to a heart rate of 30 – 60 [21]. There is also a strong intervariable relationship between vital signs in 

healthy people. Exercising increases breathing (respiratory rate), because oxygen is required by 

muscles during cellular respiration. The necessary oxygen is acquired through breathing, and enters 

the blood stream through tiny sacks in lungs and finally goes to the heart. From there it is transported 

with blood around the body at a rate that is partly decided by how fast blood is pumped by the heart 

(pulse). When muscles contract, their metabolic rate increases which causes heat production and 

consequently a rise in body temperature. 

Hospitals located in the capital region of Denmark monitor five objectively measurable vital signs in 

all wards, along with state of consciousness, which is evaluated subjectively by medical staff: Pulse, 

BP, Temperature, RR and Oxygen Saturation Level. The vital signs to monitor were chosen based on a 

study by Prytherch et al. The study observed nearly two hundred thousand patients and defined a 

mortality prediction model for patients in general, named Vipac Early Warning Scores (ViEWS) [10] 

[15] – Chapter 4 describes this model in detail. 
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Figure 1: Philips SureSigns VM6 is an example of a commonly used bedside monitor in hospital 
settings, allowing hospital staff to be alert of abnormal development in vital signs. The type is 
commonly used after certain surgeries and in emergency departments such as the intensive care 
unit or stroke unit [22].  

Each vital sign subsection includes a table that is aligned to the right of the textual description, and 

defines what is considered as a normal range of the vital sign in hospital settings. The scores are 

targeted towards adults and defined by the previously mentioned study [15], where a lower score 

represents a healthier patient.  

2.1.1: HEART RATE AND PULSE 
Heart rate is typically measured on the chest in beats per 

minute (bpm), and signifies at which rate the heart makes 

contractions and pumps blood throughout the system. Pulse is 

also measured in bpm, but is measured over large arteries such 

as the radial artery at the wrist or carotid artery at neck. In 

addition to heart rhythm it can also indicate the strength of 

blood flow, because arteries expand at each pulse.  

Pulse can reach up to 270 bpm, in which case the occurrence is 

caused by supraventricular tachycardia due to a rare structural 

abnormality of the heart [23].  

2.1.2: BLOOD PRESSURE 
When the heart contracts during systole, blood is released into 

arteries causing them to expand due to a pressure that is 

measured in millimeter of mercury (mmHg). This is called 

systolic blood pressure (SBP). Diastolic blood pressure (DBP) 

measures pressure when blood returns to the heart as it relaxes 

during diastole. When a person has hypertension, it can be due 

to several reasons. Arterial stiffness or arteriosclerosis for 

instance can cause arteries to lose elasticity and a hardening of 

arterial walls, therefore requiring greater pressure for arteries 

to expand and blood to get around [24]. DBP is not included in 

Table 1: Pulse abnormality ranges 
according to ViEWS [15] 

Pulse vs abnormality score 

Pulse Score  

< 41 3 

41 – 50 1 

51 – 90 0 

91 – 110 1 

111 – 130 2 

> 130 3 

Table 2: SBP abnormality ranges 
according to ViEWS [15] 

Abnormality score vs SBP 

Systolic BP Score  

< 91 3 

91 – 100 2 

101 – 110 1 

111 – 219 0 

> 219 3 

Pulse (beats per minute) 

Systolic-/diastolic BP (mmHg) 

Oxygen saturation level (%) 

Breathing (breaths per minute) 

Temperature (oC) 
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the ViEWS model and is therefore not scored, although the relationship between SBP and DBP may 

be relevant for patient outcome [25]. 

The gold standard for measuring BP continuously and precise is a cannula that is inserted into an 

artery, while the non-invasive method is an inflatable cuff that is placed on the upper arm. The 

cannula is connected to a disposable system that also delivers a saline solution to prevent thrombosis 

(blood clotting) and thereby occlusion during measurements.  

2.1.3: TEMPERATURE 
The hypothalamus is also responsible for regulation of body 

temperature and ensuring homeostasis. It is responsible for 

causing shivering when the body is cold or sweating in heat. To 

make the body unhospitable for invading pathogens, it can also 

elevate the core body temperature to the state of fever. 

Temperature is the vital sign with least agreement on standard 

measurement site. A literature review found that studies use at 

least eleven different sites for monitoring temperature with 

one of eight different devices. The device list includes internal probes, catheters and thermometers. 

The most popular sites were oral, axillary, tympanic and rectal. Oral measurements were found to be 

most unreliable (error of 0.3oC) and affected by food consumption unless monitored twenty-minutes 

after consumption. Tympanic measurements using Infrared thermometers have become the standard 

due to the simplicity and speed of the device even though they are less accurate than rectal 

measurements (error between 0.1oC – 0.3oC depending on occlusion of ear).  

Body temperatures lower than 24oC or greater than 44oC result in either death or serious conditions 

such as cardiorespiratory collapse and brain damage [18]. 

 

2.1.4: RESPIRATORY RATE 
Respiratory rate (RR) is measured as the number of breaths that 

a person takes within a minute. The most common approach to 

measuring it is by looking at a patient for about fifteen seconds, 

seeing how often the chest rises, and multiplying by four. 

Continuous RR monitoring is done with capnography where CO2 

exhales are traced through nasal airways. The approach is 

somewhat obtrusive, and less invasive alternatives have been 

tested for decades such as deriving RR based on ECG signals. 

Results are promising in healthy subjects, but the technology is 

still immature for real patient admissions where arrhythmia 

and other cardiovascular complications exist [26] [27] [28]. 

A person is assisted by a respirator machine in hospital settings if they are unable to breathe by 

themselves, so that breathing becomes normal and constant.  

Table 3: Temp. abnormality 
ranges according to ViEWS [15] 

Abnormality score vs Temp. 

Temperature Score  

< 35.1 3 

31.2 – 36.0 1 

36.1 – 38.0   0 

38.1 – 39.0  1 

> 39 2 

Table 4: RR abnormality ranges 
according to ViEWS [15] 

Abnormality score vs RR 

RR Score  

< 9 3 

9 – 11 1 

12 – 20 0 

21 – 24 2 

  > 24 3 
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2.1.5: OXYGEN SATURATION LEVEL 
Oxygen is carried in the blood by being attached to hemoglobin 

molecules. Each hemoglobin molecule can carry up to four 

oxygen molecules. Oxygen saturation level is a measure of how 

much oxygen the blood is carrying as a percentage of the 

maximum it can carry. It is measured with a pulse oximeter that 

is most often attached to the index finger. It works through 

measuring intensity of the color of blood which conveys how 

much oxygen is carried. There is no specific boundary for which 

level is fatal as the body can adapt to a slow decrease while a 

sudden drop from for example over 90% to 70% can result in death. Circumstances need to be kept 

in mind when measuring with pulse oximeters though, because inaccurate readings are common 

depending on the person’s skin pigmentation, limb temperature or strength of the pulse [29]. 

Oxygen support is given when diseases or other conditions prevent the lungs in receiving sufficient 

air. This is done either through a nasal cannula, a facemask or tube that is placed into the windpipe 

after an incision.  

2.2 STROKE 
Stroke occurs when brain blood flow is compromised. The disturbance in blood supply to the brain 

frequently causes irreversible damage, making stroke the leading cause of disabilities in adults. 

Although stroke primarily affects elder people, it is a disease of all age groups depending on factors 

such as lifestyle, medical history and genetics. There are approximately twelve thousand incidents of 

stroke in Denmark on an annual basis of which one third are reoccurrences. Of all successfully treated 

patients, one third have no permanent injuries. According to chief physicians at ZUH, half of the 

remaining patients have mild disabilities, while the other half are dependent on help from others for 

basic daily functions such as movement, eating or clothing. Up to 3,000 people die annually in 

Denmark due to the disease, and there are up to 40,000 annually living with disabilities because of it 

[30]. Symptoms of stroke may be language difficulties, visual loss, loss of motoric functions and 

numbness. The symptoms heavily depend on where the stroke occurs and are noticeable in seconds 

to hours after onset. Untreated, two million neurons die every minute until brain blood flow is 

restored [31]. 

There are two main categories of stroke.  

• The most common type is ischemic and occurs in at least 80% of all stroke incidents. It 

happens because blood vessels are clogged due to a formed blood clot (thrombus) that 

prevents blood supply to tissue (see Figure 2). The cause is often atherosclerosis which is a 

specific type of the previously mentioned arteriosclerosis, that is related to increase in BP. 

The lack of blood supply results in tissue death (infarction) in the part of the brain that is no 

longer receiving necessary blood. A subtype of ischemic stroke is a transient ischemic attack 

(TIA) that passes by itself within minutes to hours without any treatment, but is important 

to be aware of, because 40% of TIA patients eventually have an ischemic stroke requiring 

treatment [32]. Treatment is done with injection of intravenous recombinant tissue 

plasminogen (rt-PA), also known as alteplase, to dissolve the thrombus. The dosage guideline 

is based on the patient’s weight, and is generally 0.9 mg/kg administered over an hour [33]. 

Table 5: O2 sat. level abnormality 
ranges according to ViEWS [15]  

Abnormality score vs O2 sat. % 

O2 Satur. (%) Score  

< 92 3 

92 – 93 2 

94 – 95  1 

> 95 0 
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It must be administered within a time span of 4.5 hours after onset. Reducing the dosage to 

0.6 mg/kg can insignificantly decrease mortality but in exchange for increased disability [34] 

[35]. A method called “drip and ship” is commonly used If the hospital lacks capacity, or the 

patient needs surgical removal of the thrombus through thrombectomy. The purpose of this 

method is to ensure that alteplase is administered timely in a nearby hospital before the 

patient is moved to the hospital with capacity for treatment [36]. This also applies to ZUH, 

which is why data was not available for some patients that were initially randomly selected 

to be included in the study.   

 
Figure 2: Ischemic stroke and hemorrhagic stroke. Ischemic stroke (left figure) occurs when 
thrombus prevents supply to brain tissue. Hemorrhagic stroke (right side) is caused by  leaking or 
ruptured blood vessels that cause blood to flow freely in spaces within the brain [37].    

• The other type is hemorrhage, and it is caused by blood uncontrollably filling space 

surrounding the brain due to rupture in arteries or damage to the innermost layers of the 

skull. Once the blood has left the circulatory system, it clots and brain tissue will be damaged 

because of increased pressure on the tissue. Although there is no treatment yet for 

hemorrhagic stroke, it is important to do a brain scan using computed tomography (CT) scan 

or magnetic resonance imaging (MRI) to know which type of stroke a patient has. 

Administering alteplase to a hemorrhage patient would prevent ruptured arteries from 

clotting again, and bleeding would continue. 

Figure 3 shows the procedure diagram for stroke treatment at hospitals in Denmark. While the 

ambulance transports the patient to the hospital, the stroke unit (SU) is informed about who the 

patient is and which symptoms they exhibit. The SU prepares staff for arrival and reviews available 

medical history about the patient. After arrival, lab results are collected for important indicators such 

as blood glucose level, and a neurological examination is performed to estimate the extent of the 

stroke. Throughout the examination, the patient is also prepared for a CT scan during which the exact 

location and size of infarction/hemorrhage become visible. Sedatives may need to be administered if 

the patient is unable to lie still due to for instance shivering. Depending on CT findings, treatment is 

started according to previously mentioned procedures. In the first twenty-four hours of admission, 

the patient’s vital signs and neurological functions are closely monitored, and the patient is 

afterwards transferred to a ward. Three months after discharge, independence of the patient is 

evaluated to assess the degree of disability. The assessment of disability, progress and neurological 

functions throughout and after admission are assessed on different scales that are all described in 

detail in Appendix A.  
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Symptoms onset
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Figure 3: Admission diagram for stroke treatment in Danish hospitals. Going from left to right, 
the patient or relatives will first emergency dial the health authorities for help, and await an 
ambulance. The paramedics will do on spot treatment and transport the  patient to an emergency 
department of stroke unit (SU). At the SU, the patient is examined  and treatment is started 
accordingly. The patient is followed up on three months after treatment. Red marks in the 
diagram indicate quantifiable information that is  stored as part of the treatment.    

Stroke disrupts the ANS and affects vital signs. Atherosclerosis is the main cause for hypertension in 

stroke and is caused by the damage to blood vessels that eventually led to the incident. Body 

temperature in the acute phase also changes. A rise in temperature is often observed following stroke, 

but the cause is unclear, except for 25-35 % of cases where infection occurs. Normally temperature 

rises during daytime and declines at the night, as part of a process called circadian rhythm that is 

controlled by the hypothalamus. Because of affected consciousness and physical inactivity, this 

rhythm is disrupted and the temperature pattern is changed. The blockage in arteries also deprives 

tissue of necessary oxygen, and oxygen saturation below 90% has been observed for over 10% of 

admission time in 20% of patients [38].  
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2.3 DIABETES MELLITUS 
Diabetes mellitus (DM) is a chronic metabolic disease that over time leads to many comorbidities 

which decrease life quality and increase risk of mortality. The number of diabetics in Denmark almost 

tripled from 114.000 in 1996 to 320.000 people in 2012. As life expectancy is increasing, so is the 

prevalence of the disease due to lifestyle factors such as unhealthy diets and lack of exercise, along 

with better management of comorbidities [3] [4] [5] [6] [7] [39]. 

In the process of digestion, carbohydrates are transformed into glucose which circulates the blood 

stream and is absorbed by cells in the body. For cells to absorb glucose efficiently, the pancreas needs 

to create insulin hormones. In DM, the glucose is not absorbed by cells, it accumulates in the blood 

stream causing a state of hyperglycemia, that eventually leads to complications of which the most 

severe are damage of the cardiovascular system, kidneys and nerves. Due to slow progression, the 

disease may go unnoticed for several years and immediate glucose tests may not reveal it. A 

potentially more accurate acute estimate of DM status is glycated hemoglobin in the blood (HbA1c), 

which reflects blood glucose over several prior weeks [40] [41]. There are two different types of DM. 

In the first type, the pancreas is unable to produce sufficient insulin. In the second type, the produced 

insulin is ineffective due to less sensitivity of the insulin receptors on the cell surface [42]. The second 

type, Type 2, accounts for about ninety percent of cases, and is to some extend preventable through 

a healthy lifestyle. Patients with this type are also more prone to peripheral arterial disease, large-

artery atherosclerosis and stroke [40] [43] [44] [45] [46] [47]. People with DM are 2.27 more likely to 

suffer from ischemic stroke and 1.56 more likely to suffer hemorrhagic stroke [48]. 

 

Insulin receptor

Insulin

Glucose

Ineffective InsulinInsufficient insulin

Normal

Type 1 Type 2

 
Figure 4: In the normal state (top), pancreas produces sufficient effective insulin for cells to be 
able to absorb glucose. Diabetes Mellitus Type 1 (left) occurs when the pancreas is unable to 
produce sufficient insulin to absorb glucose. In Type 2 (right), pancreas produces  sufficient insulin, 
but it is ineffective. When glucose is not absorbed by cells, it accumulates in the blood stream 
and eventually leads to damage of the cardiovascular system, kidneys and nerves.  
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Vital signs are also affected in people with DM as they are with stroke when it comes to the 

cardiovascular system. Diabetic neuropathy adds to the problem by being a common disorder that 

impairs ANS functions, and can cause vital signs to change slower during for example change in body 

position [49] [50]. A study found that the oxygen saturation of DM patients need to be monitored 

through blood gas analysis, as standard pulse oximetry becomes more unreliable the greater HbA1c 

is [51]. Respiratory rate is also affected because lung functions are reduced, requiring more breaths 

to supply the body with sufficient oxygen [52]. 
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CHAPTER 3 
 

TECHNICAL ASPECTS 
This chapter briefly introduces theory of the two very basic but essential mathematical methods that 

reoccur throughout the dissertation. This first method, correlation coefficient, is commonly applied 

to determine relationship or similarity between two signals. The second method, cross-validation, is 

used to partition data in classification and prediction problems. it increases the likelihood of the final 

model working on unknown data, and not only the data it was trained on. The theory behind all other 

models and methods are described only in the relevant chapters where they are applied. 

3.1 CORRELATION COEFFICIENT 
The similarity or dependence relationship between two signals was estimated through Pearson’s 

correlation coefficient. If two signals are equally long, the correlation coefficient is defined as: 

 𝑟(𝑆1, 𝑆2) =
∑(𝑆1 − 𝑆1̅)(𝑆2 − 𝑆2̅)

√(∑ 𝑆1 − 𝑆1̅)
2√(∑𝑆2 − 𝑆2̅)

2
 (3.1) 

 

S1 and S2 are the two respective signals, and the overline represents the given signal’s mean value. 

The figure below illustrates four signals where the blue signal is original and the remaining ones are 

alterations of it in amplitude and shape. If the signal is correlated with itself and thereby identical, 

the correlation coefficient is r = 1. Comparing it with its inverse (orange) results in r = -1 regardless of 

the amplitude. The two remaining signals are fully random (purple), and semi-random in which every 

second sample follows the shape of the original (yellow), with respective correlation coefficients of r 

= 0 and r = 0.5. In the semi-random case, the coefficient will vary depending on which samples are 

replaced.

 
Figure 5: Signal resemblance illustration. Computing the correlation coefficient of the original 
signal (blue) with itself will result in r = 1. Comparing it to the inverse (red), the correlation is r = 
-1. 
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3.2 K-FOLD CROSS-VALIDATION 
Models that predict and classify data are often at risk of being overfitted. The condition occurs when 

the underlying model is fitted to an extent where it performs with high accuracy on the existing data 

that it was trained on, but fails on unknown data. Figure 6 illustrates this in a two-dimensional space 

where samples belong to two different classes and arranged according to two features (p1, p2). Each 

of the subfigures has a different separation model outlined in green. The left figure illustrates 

overfitting through a model that separates the data points perfectly during training, whereas the 

linear model in the right figure has lower accuracy because it ignores outliers. When the models are 

tested with new data, it is likely that new X-points are misclassified in the overfitted model because 

they are likely to appear in the void belonging to class ‘O’ due to outliers during training.    

X X 

X 

X 

X 

X 

X 

X 
X 

X 
X 

X 

X X 

X 

X 

X 
X 

X 

X O

O

O

O
O

O

O

O

O
O

O

OO
O
O

O

O

O

O

X 

X 

p1

p2

OO

OO

O

OO

O

X 

p1

p2

Overfitted Generalized

X X 

X 

X 

X 

X 

X 

X 
X 

X 
X 

X 

X X 

X 

X 

X 
X 

X 

X O

O

O

O
O

O

O

O

O
O

O

OO
O
O

O

O

O

O

X 

X 

OO

OO

O

OO

O

X 

 
Figure 6: Overfitting (left) shows a polynomial approach where all points are correctly separated . 
The simpler model (right) has lower accuracy because it does not take outliers into account . If the 
overfitted model is tested with new data, X-points that resemble the outliers in class O are likely 
to be misclassified.  

One way of avoiding overfitting is through a k-fold cross-validation. It is a data partitioning technique, 

where the entire data set is subsampled into k-number of folds. The desired fitting model is then 

trained as many times as there are folds. In each iteration, the subsample is used for validation while 

the remaining data from the entire set is used for training (see Figure 7). This results in k-number of 

fitted models where the true accuracy is the average of all models. The advantage of splitting the data 

in this manner is that every sample from the data set is used exactly once for validation.  
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Figure 7: k-fold cross-validation. The dataset is first partitioned into random folds of equal size. 
A different fold is then used in each iteration as test set to validate the fitting model, until all 
samples from the dataset have been validated.  

The number of folds can be from k = {2 ... n}, where n is the number of samples in the dataset. For 

fitting models in this project, 5-fold cross-validation was applied to avoid overfitting because of a 

small dataset. In the third study (Chapter 6), the cross-validation was stratified, meaning that the 

randomness of fold generation was reduced in exchange for ensuring that all classes are well 

represented in each fold.  
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CHAPTER 4 

 

AUTOMATIZED PHYSIOLOGICAL CONDITION 
ASSESSMENT OF CRITICALLY ILL PATIENTS  
Objective: Patients in the intensive care unit (ICU) are in severe and life-threatening conditions. 

They are more staff-demanding, require continuous monitoring of all body functions, and the most 

advanced equipment available. The patient is discharged once they are no longer in a physiologically 

critical condition. Condition is evaluated by physicians and the means for quantitative assessment 

have yet to be developed. A quantitative assessment exists outside the ICU in most wards through an 

Early Warning Score (EWS) model, which has contributed to more efficient monitoring and reduced 

mortality [53]. The model has yet to be investigated as for how well it is in represents a patient’s 

condition. This study makes use of the high-quality data that is recorded in ICU settings to evaluate 

EWS at any given time and thereby create a physiological condition timeline. The EWS timeline can 

then be validated by being combined with the patient’s electronic health record (EHR) through natural 

language processing (NLP) methods. Two scientific contributions have been published on this topic 

(Appendices B and C). 

4.1 BACKGROUND 
Intensive care unit (ICU) patients are constantly monitored with electronic devices, so any parameter 

changes that are sudden or deviate from healthy ranges will always alarm staff, allowing appropriate 

actions to be taken swiftly. These data are typically processed and stored in clinical information 

systems (CIS), which have proven effective for optimization of resources and decision making [54] 

[55] [56] [57]. The monitoring procedure however leads to hundreds of daily alarms per patient of 

which most a false and require no actions. Drew et al observed 72 beds at a hospital, of which 32 

were at an ICU, over the period of a month to see why important deteriorations are sometimes not 

acted upon. Each patient generated 187 audible events per day in average of which 89% were false 

alarms [12]. Frequency or significance of these alarms could be reduced if multiple parameters are 

considered. This has been proven through telehealth projects where mortality in intensive care units 

was reduced by streaming data from the hospitals to outside facilities. Experienced employees at 

remote locations were then responsible for alarming staff whenever a patient deteriorated in several 

parameters [58] [59]. 

Automatized algorithms for alarming medical staff initially need to be similar to existing decision-

making models that the staff is familiar with. A study aiming to detect patient deterioration employed 

logistic regression and included 36 variables, but performance or impact could not be verified because 
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staff did not act on alerts [60]. The first step towards quantitative assessment of a patient’s 

physiological condition therefore needed to be a retrospective tool in which the output is based on 

existing models [14]. 

The main challenge in the development of algorithms for estimation of physiological condition is the 

feedback on performance. Unless patient condition scoring is standard practice, or more staff are 

employed during a project, it is unlikely that sufficient surplus in mental resources will be available to 

attend to critically ill patients and to remember scoring.   

Since scoring is not part of standard practice in the ICU, the next best thing is to extract text from 

electronic health records (EHR), which are continuously being updated by medical staff throughout 

admission. Developed countries have strict regulations and laws to ensure that every institution 

creates, documents and stores all medically relevant information regarding a patient in form of an 

EHR [61]. The EHR consists of scans, test results, schemes, medication subscriptions, and a textual 

part containing details about the medical history, circumstances, events and so on. The textual parts 

are especially long for critically ill patients who are were admitted for multiple days, because their 

condition is often unstable and all changes need to be documented.  

An average of four pages of pure text are generated per patient every day at the ICU at Bispebjerg 

Hospital, Denmark. EHR of patients who have been admitted for longer periods can therefore become 

almost overwhelming. Irrelevant and redundant information will be present in respect to automated 

condition assessment, but it is also later burdensome for medical staff to follow up on, if they for 

instances want to know how a patient responded to treatments during admission. A common way of 

dealing with this is to quantify textual data by applying Natural Language Processing (NLP) to do a text 

summarization. The overall aim is to reduce the presented information to a minimum by, for example 

removal of redundancy, or applying statistics to rank sentences [62] [63] [64].  

This study approached the problem of quantifying physiological condition through the development 

of a data-driven tool, where vital sign measurements were combined with textual information from 

the EHR. The automatized tool displays a visual representation of a patient’s physiological condition 

over time and maps it against time-labelled entries in their EHR. It enabled an alternative approach 

to navigate in the EHR, and quality checking documentation against assumptions of the patient’s 

condition. Finally, once the model for evaluating a patient’s condition is validated, it becomes possible 

to find EHR entries related to deterioration, causes and resolution.  

Immediate changes in parameters are already handled by built-in alarm systems in medical devices. 

It was therefore of greater interest for the collaborating physicians at Bispebjerg Hospital to inspect 

progress in physiological changes over hours rather than instantaneously. A motivating factor for 

them was to detect sepsis which may be overseen by devices because it occurs more slowly; unless 

it’s a septic shock [65]. The tool therefore focuses on progress of a patient’s condition over hours and 

days.   

4.1.1 RESEARCH HYPOTHESIS 
Increased monitoring has effectively reduced mortality in hospital settings. The effect is either 

achieved because the models act as an insurance so that patients are not neglected, or because the 

models can approximately evaluate physiological condition. The objectives were therefore related to 
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quantitative assessment of physiological condition through Early Warning Scores (EWS) [9] [15] [66]. 

Our hypotheses were: 

1. Early Warning Scores can evaluate development in physiological condition of a patient over 
time if vital signs are measured continuously. Higher mortality is expected for patients who 
score high in the model.  

 
2. An overview of admission related topics, such as medication, complications, and cause of 

admission can be derived from individual electronic health records. This can be achieved by 
applying text summarization through natural language processing. 
 

3. All physiological condition changes throughout an admission are registered in electronic 
health records (EHR). The EHR will therefore have data listed in the hour, or hours, when 
condition changes. 
 
 

4.1.2 APPROACH OVERVIEW 
The hypotheses were tested through an approach that consists of two parallel modules that are 

merged at the end, as illustrated in Figure 8. The top branch extracted and separated entries from the 

EHR after locating timestamps using NLP. The branch below was dedicated to estimating the patient’s 

condition over time through processing of vital signs measurements. Lastly, an interactive timeline 

was created which showed physiological condition of patients along with markers of entries.  
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Filter text with 
stop words

Word frequency 
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Match time entries

EHR Split by 
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Filtered text
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Interactive Physiological Condition timeline

 

Figure 8: The physiological condition timeline for a patient is created by parallelly processing  vital 
signs and the electronic health records (EHR). The textual EHR parts are converted to a text file, 
and filtered for names and insignificant words. Meanwhile, vital signs are converted into Early 
Warning Scores which are then combined with the EHR by matching timelines.  
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In addition, a word frequency count was done on the EHR part to get an overview of the challenges 

that were reoccurring throughout the admission.  

4.2 DATA 
The population consists of ICU patients whose primary admission cause was cardiac arrest, sepsis or 

respiration insufficiency. These patients have a high risk for complications/events during admission, 

and were considered as common by the clinical physicians at site. In the period from February 2013 

to May 2013, Bispebjerg Hospital had 184 ICU admissions with an average length of stay of 4.5 days. 

Inclusion criteria were that patients needed to be admitted for at least two days because clinical 

physicians expected events to be unlikely in short term patients. This reduced patient of interest to 

84. Not all patients had recordings of the vital signs described in Chapter 2 so the final population was 

reduced to 57 patients.  

Table 6: Overview of patient info for patients who were admitted to Bispebjerg Hospital’s ICU  
between February 2013 – May 2013, and met the inclusion criteria.   

Age 66.70 ± 11.48 years 

Length of stay 9.87 ± 8.34 days 

Surgery related admission 17 patients 

Admitted for other reasons  40 patients 

Released to ward 29 patients 

Deceased in ICU 18 patients 

Transferred to another ICU 2 patients  

Unique diagnoses and events 78 

Total diagnoses and events 310 

Unique treatment types during admission 45 

Total treatments, scans and surgeries performed 474 

 

Data management and storage for the ICU was handled by a company, Daintel, who were unreachable 

regarding exporting data. Medical staff were also unware of data management, so it was not possible 

to confirm whether all actions during admission were stored in the same system. Collection of data 

for this project was performed by inspecting each patient’s file and exporting EHR, codes and all raw 

measurements. The codes included diagnosis types, treatments, scans and surgeries, that were 

decoded using a database provided by the Health Data Board [67]. Raw measurements included vital 

signs, drug dosages, equipment settings, and potentially more. Table 6 shows an overview of the 

collected data about patients, other than vital signs, drug dosages and EHR for the entire admission.  

Table 7: Ranges for vital signs that by Bispebjerg Hospital’s ICU were considered reli able. 

 Cut-off ranges 

Type (T) Low High 

Pulse (bmp) - 200 
Respiratory Rate (bmp) - 45 
Temperature (oC) 27 45 
Systolic Blood Pressure (mmHg) - 310 
Oxygen Saturation Level (%) 70 100 
Inspired O2 - - 
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The measured vital signs were furthermore filtered prior use. Highly improbable measurements 

according to clinical physicians have been removed. One example is oxygen saturation below 70%, 

because they were likely caused by electrodes falling off. Table 7 consists of the list of ranges that 

were allowed for each vital sign. It was not possible to get error rates and inspect what could go wrong 

with specific devices at site because equipment was not standardized and sometimes interchanged. 

The boundaries were therefore defined by a chief physician at the ICU staff as the values they regard 

as reliable.  

4.3 METHODS 

4.3.1 EARLY WARNING SCORES 
Hospitals in developed countries optimize staff resources by using scoring models in wards to assess 

patient condition and monitoring needs. One such model is Early Warning Scores (EWS), that was 

introduced by Morgan et al [10] [66]. Each vital sign is assigned a sub-score based on how abnormal 

the value is compared to a healthy person, and an overall score is then estimated through summation 

of all sub-scores. Surveillance frequency, form and who is responsible are then adjusted based on 

overall score. The model is widely applied, but it is not even standardized on national plans [14] [68]. 

Table 8: EWS Table used in Capital Region of Denmark  

 Sub score 

Type (T) 3 2 1 0 1 2 3 

Pulse (bmp) <41  41-50 51-90 91-110 111-130 >130 

Respiratory Rate 
(bmp) 

<9  9-11 12-20  21-24 >24 

Temperature (oC) <35.1  35.1-36.0 35.1-36.0 36.1-38.0 38.1-39 >39 

Systolic Blood 
Pressure (mmHg) 

<91 91-100 101-110 111-219   >219 

Oxygen Saturation 
Level (%) 

>92 93-94 94-95 >95    

Inspired O2    Air  Any O2  

Central Nervous 
System    Alert   

Voice/Pain 
Unresponsive 

 

Table 8 presents the full ViEWS table of which parts were presented throughout Chapter 2. Vital signs 

have a sub-score of 0 in the model if they are normal, and a nearly healthy person would therefore 

have an EWS of 0. Abnormality increases surveillance times significantly (Table 9), and ranges from 

follow-ups every 12 hours by nurses to follow-ups every thirty minutes by on-call physicians if a score 

above 8 is reached. The model is not used in ICUs, because staff is always close to the patient and 

ready to react. Evaluation of the central nervous system (CNS) is part of the model, but it was omitted 

in this study, because it was evaluated inconsistently and subjectively. 
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Table 9: Early Warning Score action table. The ABCDE optimization approach ensures that the 
patient breathes (Airway and Breathing), Circulation is fine, Disability such as coma or convulsion 
is avoided, and that patient is inspected for rashes, bleedings and other marks (Exposure)  [69].     

EWS 
Observation 

interval 
Action procedure 

0-1 
Every 12 hours 

(+/- 1 hour) 
Continue scoring every 12 hours. 

2 
Every 6 hours 

(+/- 30 min.) 

Caregiver ABCDE* optimizes. 

Parameter with score of 2 must be reported to nurses.  

Nurse becomes in charge of ABCDE optimization. 

3-5 Every 4 hours 

Nurse ABCDE* optimizes 

Physician evaluates and adjusts observation intervals. 

Physician is immediately called if any parameter has score of 3.  

6 Every 4 hours 

Nurse ABCDE* optimizes. 

On-call physician is summoned.  

Physician checks on patient and adjusts treatment plan. 

7-8 Every hour 

Nurse ABCDE* optimizes. 

On-call physician is summoned.  

Physician checks on patient and adjusts treatment plan. 

Consider mobile acute team or ICU admission 

9+ Every 30 minutes 

Nurse ABCDE* optimizes. 

On-call physician is summoned.  

Physician checks on patient and adjusts treatment plan. 

On-call physician discusses issue with medical specialist, ICU or mobile 

acute team.   

 
 

4.3.1.1 Estimating Early Warning Scores 
The raw vital sign measurements were down sampled to one value per hour, because progress over 

time was of interest, and the clinical physicians at site were confident that changes in minutes and 

seconds would be irrelevant because sudden incidents are detected by staff and built-in equipment 

alarms. This section demonstrates how EWS were estimated, by going through a real patient example.  

Figure 9 shows hourly average vital sign values of patient who was in surgery for peritonitis and was 

admitted in the ICU due to septic shock – The most unusual development in vital signs throughout 

the admission happened around fifty hours after admission, where pulse significantly increased and 

systolic blood pressure began to rise. The sudden rise in pulse was described in the EHR, but the cause 

was unknown. It was however likely related to the patient receiving noradrenaline from beginning of 

the admission until about the hour where pulse starts increasing. The assumption is valid because 

pulse decreased continuously after reintroducing noradrenaline with amiodarone. Likewise, the 

increase of pulse around ninety hours was reduced with amiodarone. 

Next, a quality check was performed to ensure that vital signs had sufficient data points to represent 

the hour. Respiratory rate, as an example, had sufficient data points if at least two breaths per minute 

were recorded. Temperature on the other hand changes much slower, so one value per five minutes 

was sufficient.  
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Figure 9: Hourly average vital sign values of a patient . Three of the vital signs were monitored 
throughout the entire admission. On two occasions, oxygen saturation monitoring was ceased, 
and there were some periods where slow breathing motivated staff to inspire oxygen.  

Each hour of admission was then denoted by one of four classes (1-white, 2- orange, 3-yellow, 4-

green) ranging from respectively “non-existent” to “ideal or above”. Figure 10 shows quality check 

measurements for the same patient. Oxygen saturation was measured with a non-invasive ventilation 

device (NIV), and was removed in the two periods where measurements are absent. This was done 

because the equipment was obtrusive, and staff wanted to test if the patient is improving. From the 

vital signs in Figure 9 it is visible that respiratory rate slowly drops both times after the equipment is 

removed.  

 

Figure 10: Quality control of recorded vital signs for a patient.  Each box represents an hour and 
the color represents whether sufficient data is available.  White indicates that no measurements 
exist. Orange that there are recordings, but less than half of ideal. Hal f to ideal number is yellow. 
Idea number of measurements is green.  

With data validated and present, the EWS timeline could be created. vh(VS) describes the average 

value of all measurements for a vital sign, VS, throughout an hour, h – each hour starting at hstart and 

ending 60 minutes later at hend. In addition, the number of measurements per hour, ch,VS, was stored 

for the previously mentioned quality control, since sampling rates varied among medical devices. The 

down sampling is expressed by equation (4.1), where XVS is a collection of all measurements for a 

given vital sign, and i is the index at a given time. 

 

       𝑐ℎ,𝑉𝑆 = ℎ𝑒𝑛𝑑 − ℎ𝑠𝑡𝑎𝑟𝑡  

𝑣ℎ(𝑉𝑆) =
1

𝑐ℎ,𝑉𝑆
∑ 𝑋𝑉𝑆(𝑖)

ℎ𝑒𝑛𝑑

𝑖=ℎ𝑠𝑡𝑎𝑟𝑡

, (4.1) 
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Once the hourly average for a vital sign is calculated, vh(VS), the value can be directly translated into 

a vital sign sub-score, SSVS, through lookup in Table 8. I.e. a systolic blood pressure of 95 results in SSVS 

being 2. The hourly EWS, EWSh, is then estimated by equation (2) as the sum of SSVS for all vital signs.   

 
𝐸𝑊𝑆ℎ = ∑ 𝑆𝑆𝑉𝑆(𝑣ℎ(𝑉𝑆))

𝑉𝑆=6

𝑉𝑆=1

 
(4.2) 

Figure 11 illustrates EWS timeline for the same patient as in previous examples. Every hour is 

represented by a rectangle. Rectangles are green if there were sufficient measurements for all vital 

signs, and are otherwise orange with the EWS value zero. The areas with missing data were kept in 

the graph to emphasize missing surveillance, which in many cases could be explained through tests, 

examinations and surgeries – in this case, staff tested whether the ventilation device was necessary.  

 
Figure 11: EWS timeline for patient. Based on measurements alone, the patient appeared to 
slowly but gradually deteriorate until about the 45th hour. This became a turning point and 
improvement was seen until the 120th hour, after which it again fluctuated.     

4.3.2 NATURAL LANGUAGE PROCESSING 
Natural texts can also be considered as signals, in which words are perceived as measurement points.  

Words can be quantified based on how frequently and in which context they appear, and even be 

assigned a sentimental value representing how positively or negatively they are perceived. Natural 

Language Processing (NLP) is a scientific field related to dealing with these and more complex tasks 

when processing natural text. There are even freely available tools and open source projects that can 

save implementation time [70] [71]. Poor support of Danish language, lack of interfacing with the EWS 

part, and the necessary conversion of EHR documents to other file formats were drawbacks of these 

existing tools, and NLP methods were therefore built from scratch for this project.  

The following two subsections both deal with NLP. The first section is related to hypothesis 2, of 

applying text summarization to test create an overview of important admission related topics, such 

as medication, cause of admission and complications. The second subsection is related to hypothesis 

3 of determining whether major physiological changes were registered in EHR around the same time 

the events occurred. 

4.3.2.1 Admission Overview Through Text Filtering 
As indicated in the approach overview, in Figure 8, the NLP part was not only developed for extracting 

and finding event.  It also featured the necessary implementation of text summarization and word 

ranking to provide an overview of what the main concerns were during admission.  
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The first step in analyzing a text is filtering irrelevant information, commonly referred to as stop words. 

They may vary on application, but most often include words that are important for the flow and sense 

of a sentence and are meaningless by themselves. These words are highly frequent in all natural 

languages, making them easy to detect because they follow Zipf’s Law. The law explains that words 

in a corpus (natural language text) will appear inversely proportional to their rank if they are sorted 

by frequency. This means that the most common word in a corpus will appear twice as often as the 

second most common word, and so on [72]. In descending order, the most common words in English 

are: “the”, “be”, “and”, “of” and “a” [73]. Knowing that stop words can be found by their frequency, 

a collection of fifty-six million Danish words was obtained from the Danish Language- and Literature 

Society (DSL) and subsequently sorted by occurrence [74]. The two-hundred most frequent unique 

words were selected as stop words. Names were filtered out manually as it was not possible to obtain 

a database containing these – on the bright side, no eponymously named diseases were removed.   

EHR 
Text

EHR

Filter
common words

EHR

Filter 
names

EHR

Stem words

 

Figure 12: Filtering textual electronic health record (EHR) of a patient. Box size indicates relative 
size of document after each iteration. Most frequent words in the Danish language and names are 
filtered from the original text. Stemming would further reduce the size, but the tradeoff between 
implementation and benefit ruled it out.  

The filtering procedure is illustrated in Figure 12. Ideally, it would include the last part of so-called 

stemming, so that words do not reoccur in different variations. As an example, applying stemming to 

the three words: “describe”, “described”, and “describing”, would result in a single word “describ” 

that then occurs three times. Stemming was not implemented as it requires implementation of 

language rules, and the tradeoff between implementation and gain would have been miniscule.  

4.3.2.2 Entry Search in Electronic Health Records 
Whenever hospital staff update an EHR, the software that they are using will autogenerate a 

timestamp indicating current date, time, and location. It safe to assume that abnormal changes are 

documented after incidents, because the law requires all events to be documented. Therefore, finding 

when the EHR is updated, results in finding approximately when an event occurs. Figure 13 is an 

example of an autogenerated timestamp and shows how it can be broken down. The department can 

change just like time and date, because ICU patient may require surgery or scanning elsewhere –  it 

is also possible that no department is indicated.  

 

Figure 13: Autogenerated timestamp in ICU settings. Time and date only change in numeric values 
whereas department may or may not be present and may consist of multiple words.  

To find these timestamps and extract the information within, regular expressions were used. A regular 

expression is a pattern formed as a sequence of characters and symbols. The search pattern is applied 

to text and responds when a match it found. Two everyday examples are listed below. The first one 
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is used when one wants to find all files of a specific format, like PDF, on the computer. The asterisk 

indicates any text fits the criteria if it with “.PDF”. The second example is common whenever online 

purchases or registrations are made; It verifies that an email address is valid. It specifies that only one 

“at” sign is allowed and that characters, numbers and a dash can be on either side. After the final 

period character, the email can only end with two to four characters in the range A-Z.  

• File searches:     *.pdf 

• Email confirmations:  \b[A-Z0-9.%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b 

The same idea was used to make the regular expression for finding entries in EHR. The following 

pattern combined into one sequence (excluding text after the hashtag), matches all autogenerated 

timestamps for the software used at Bispebjerg Hospital (Figure 13): 

^([0][1-9]|[1-2][2-9]|[3][0-1]   # Day of month 

.([0][1-9]|[1][0-2]).13       # Month and Year 

[a-zA-ZæøåÆØÅ\s.]*          # Department 

([0-1][0-9]|[2][0-3]):[0-5][0-9] # Hour of entry 

A timestamp starts at the beginning of text line with a number between 01-31 (day) followed by a 

period character, a number from 01-12 (month), another period character, and last two digits of the 

year (13 for this project). Department name may or may not be present and consists only of letters; 

the asterisk here indicates department can contain zero to many words. Each timestamp ends with a 

time ranging from 00:00 to 23:59.  

 

Figure 14: Overall number of EHR entries per hour at Bispebjerg Hospital’s ICU. Most entries occur 
during shift changes (every eight hours after 06:00). Entries during evenings and night are mostly 
incident related while planned treatments are scheduled in mornings.  

For all patients combined, there were in total 5093 mentions of time, date, or a combination of these. 

Individually each patient had 116 ± 84 mentions. Autogenerated timestamps accounted for 3077 of 

these, with 70 ± 51 mentions per patient. There were no misclassifications in detecting autogenerated 
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timestamps because they differed in format from how staff referred to time. The differences between 

autogenerated timestamps and manual entries by staff were that, (1) staff omits the year when 

referring to dates, and (2) manual entries rarely began a line with a date. Figure 14 shows how many 

timestamps were generated in each hour of the day, which is of interest for understanding how 

documentation was conducted. The figure shows an overrepresentation in the hour marks at 06:00, 

14:00 and 22:00 when shift changes are scheduled and staff write their summary. It is safe to assume 

that entries throughout the night are related to incidents while morning and partly afternoon are 

related to planned treatments. 

For the patient from the previous examples, the regular expression found 40 EHR entries after the 

above regular expression was applied. Entries made within 30 minutes of each other in the same hour 

were merged into the same entry (Figure 15).  

 

 

Figure 15: Identified timestamps of all entries in a patient's EHR. The distances between entries 
show that the EHR was being updated irregularly, and mo stly without updates between the hours 
20:00 and 06:00.  

 

4.3.3 COMBINING EHR AND EWS 
The physiological condition timeline from Figure 11 was then ready to be merged with the EHR based 

on timestamps illustrated in Figure 15. All extracted entries were merged with the ones registered in 

the same hour. Next, for every hour on the timeline, a contour border was created around the EWS 

and the square became interactive, so that it can open the corresponding entry, when selected. 

Redundant information would ideally be reduced by extracting all entries and categorizing them 

based on type (e.g. diagnosis, event, follow-up, procedure, visit, etc.).  This was not possible as text 

often contained spelling errors and was phrased in keyword format with non-standard abbreviations 

that were only familiar to internal staff members. 

The interactive physiological condition timeline for the patient example throughout this chapter is 

demonstrated in Figure 16. A graphical representation in form of expanding lines has been added to 

illustrate the selected entry point. The afternoon entry categorically explains the admission situation 

in very short phrasing even without text filtering. The last two lines of the entry are the important 

ones, because they address progress, which in this case was continuously slow improvement– this 

improvement is also visible by the EWS scores.  



29 
 

 

 

 

 

 

 

 

 

 

 
Figure 16: Early Warning Score timeline combined with EHR. If there were entries in the EHR for 
a given hour in the admission, the EWS value has a black box around it. On selection, the box 
opens the corresponding EHR entry. For convenience of the reader, the text in  the example was 
translated work by word into English.   

4.4 RESULTS 

4.4.1 PATIENT CONDITION TIMELINE 
Single vital signs values can highlight local changes but they fail to assess the overall condition. Figure 

17 shows this, and demonstrates the output of the developed tool for viewing a patient’s physiological 

condition throughout an admission using EWS. The vital signs show that the patient received induced 

oxygen support from 26 - 42 hours into the admission (top figure), but do not show that during this 

period, the patient’s condition gradually and significantly worsened at 28 hours before improving. A 

nearby EHR entry revealed that the deterioration was caused by exhausting exercises with a positive 

expiratory pressure device.   

Similarly, it is more difficult from the vital signals to see that the overall health condition is generally 

improving over time especially after about 100 hours into the admission. This was the entry stating 

that infection parameters started decreasing for the first time since the admission, and that the 

patient was improving. The patient was discharged and moved to another department with a stable 

condition and an EWS of 0. It is however important to note that the patient at discharge was still 

overhydrated, had an infection, had atrial fibrillation, and was fed through a feeding tube. The fact 

that all vital signs were normal was therefore heavily due to medication and electrical devices. 

17.02.13 Intensive ZIT kl. 12:18  
Central Nervous system: Unchanged, was very messy tonight, made little sense, but not 
delirious. No sedative given.  
Circulatory: Cordarone. Appears warm, dry and well and perfused.  
Gastrointestinal: Enteral nutrition without aspirants. Still diffuse tender abdomen during 
palpation. Still no stool despite Klyx yesterday. Normal abdomen sounds though.  
Normal electrolytes.  
Coagulation: Standard Innohep treatment. TRC 59/INR 1.1  
Microbiologically: Nu decreasing infection parameters after three days of rising. Afebrile 
CRP 211 (327) /leu 10.2 (10.3). Cont. 4 -treat.  
Assessment/plan:  
Continuously slow progress. Decreasing infection values, Continuing NIV treatment to 
avoid intubation. Need to get full mask for NIV because of appearing pressure ulcer.  
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Figure 17: Output of developed tool for displaying a patient’s physiological condition  throughout 
admission. Top figure shows vital sign values. Middle figure shows quality of sampling frequency 
of the vital signs. The bottom figure shows the EWS timeline representation has selectable boxes 
containing EHR entry content, for the hours where documentation exists.  

The EWS timelines for other patients were similar in shape and data, but not useful for patients who 

were discharged shortly after admission, because their condition tended to remain at a fixed EWS. 

This also raised questions whether the outcome could be deduced based on the timeline without 

reading entries. Another fully detailed example was covered in one of our previous studies [75].  

4.4.2 RELATIONSHIP BETWEEN MORTALITY AND EWS 
Thirty-eight of the ICU patients survived admission. Figure 18 shows the relationships between EWS 

when each patient was admitted, released and how stable they were – defined by standard deviation. 

The circle color represents whether they survived, and the size is the length of stay (LOS). EWS on the 

other hand was a better indicator, especially when the condition was stable. The EWS standard 

deviation for survivors was lower (1.85 ± 0.37) than for deceased patients (2.19 ± 0.45) which is also 

documented in other studies [76] [77].  
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Figure 18: Patient outcome based on EWS and duration of admission . Each patient is represented 
by a circle, that is colored depending on mortality outcome. The right-side figures are different 
axis projections of the left larger figure.  The best outcome separation is apparent when comparing 
final EWS with standard deviation.       

4.4.3 MORTALITY AS FUNCTION OF OTHER PARAMETERS 
Relationships between parameters were further investigated through a computed regression tree for 

the parameters: admission EWS, discharge EWS, EWS standard deviation, Age, total diagnosis codes, 

action codes and length of stay.  

A regression tree has the same but inverted structure as trees observed in nature. The root is on top, 

and with every new condition it branches out, until no further branching can be done, and the end 

nodes become leaves. It was a useful in this case because it recursively partitions data in a non-linear 

way based on binary conditions. It could for instance be the case that all patients older than eighty 

with an EWS of over five deceased during admission. The tree was computed with MATLAB’s version 

of the Classification and Regression Trees (CART) algorithm [78]:   

1. Examine all binary splits on every predictor in the available data in the node. 

2. Select the split predictor that yields maximal separation between classes. 

3. Impose the split. 

4. Repeat recursively for the two child nodes. 
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The recursive algorithm can have different stopping criteria based on desired output. The splitting of 

a node in this project was stopped if any of the two conditions below were met. The second criterium 

was set to avoid a too deep tree which becomes case specific rather than general.    

1. The node consists of only one class and is therefore pure. 

2. The node’s parent has less than 10 observations.  

The regression tree revealed two pure groups. Most patients belonged to the first pure group (1), 

who were admitted for more than three days but ended the admission with EWS under 7. The second 

pure group were patients who patient died if their final EWS score was 9 or above. In half of the cases 

where final EWS was between 7 and 8, the patient died.  

Final EWS 

       .5   < 6.5      

Final EWS

Deceased: 6
Survived: 5

Deceased: 10

Length of 
stay

Deceased: 3
Survived: 4

Survived: 29

(2)(1)

 

Figure 19: Regression tree for outcome of ICU patients. Based on criteria, it was possible to 
determine two pure classification sets, which are marked with colored numbers.  

These findings slightly contradict our previous study which featured 44 patients (one fifth less than 

this study) [79]. The regression tree was previously constructed with fewer parameters in which both 

age and LOS were included, but age was more dominant. Unless EWS was over 7, older patients (over 

seventy-five years) had lower mortality than younger patients. A contributor was that younger 

patients had long history of illness and high alcohol consumption while the older patients were 

healthier prior ICU admission. LOS became a better branching parameter in this study because the 

75+ group is in this study had three deceased patients in that age group. The mortality for patients 

with EWS under 7 is ratio-wise still higher for patients under 75 (43% vs 27%).  

4.4.4 SUMMARIZING EHR THROUGH WORD FREQUENCY DISTRIBUTION  
The first three result-related subsections focused on the first hypothesis and whether EWS can be 

used for modelling physiological condition. From this subsection on, the focus shifts to assessment of 

EHR documentation quality and whether EHR entries are reliable source of condition evaluations.  

The frequency distribution for words was calculated through individual summations of words that 

remained after filtering (section 4.3.2.1). Figure 20 shows the thirty most frequent remaining words 

in the previously introduced patient’s EHR. The words in the figure have been translated from Danish 

for convenience of readers. Several groups of words stand out.  
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When reading the EHR thoroughly, many different drugs were found to have been administered 

throughout the admission. After counting words, only five stood out in the EHR: Cordarone, Furix, 

Klyx, Ultiva and Innohep.  

• Cordarone prevents and treats a serious type of irregular fast heartbeats (ventricular 

tachycardia) that can cause cardiac arrest. It appeared so often because dosage needs to be 

carefully monitored. In terms of vital signs, this explained the abnormally high pulse.  

• Furix forces diuresis (increased urine production) which could be linked to an overhydration 

problem.  

• Klyx is a laxative used for gastrointestinal obstruction.  

• Ultiva is a pain reliever, which given the prevalence of the word pain, it was not surprising  

• Innohep is an anticoagulant reoccurring often, but even a manual inspection of the EHR did 

not clarify its purpose in the admission. 

Another group of dominant words was related to stoma (stoma, stomas, gut sounds, abdomen, Klyx). 

This was the actual cause of admission, because an intestinal surgery did not go as planned and Klyx 

was used together with a temporary stoma to help with a gastrointestinal obstruction.  

The last group of words was related to overhydration (overhydrated, diuresis and Furix). 

 
Figure 20: Distribution of the thirty most frequent of a patient's EHR after filtering. Words related 
to stoma and overhydration reoccur throughout the entire EHR in different variants.  

More specific information could be derived from the EHR if neighboring words were extracted based 

on the context in which they appear. Through implementation of a mechanism known as N-grams, 

words could be linked together so that word pairs “abdomen” and “pain” would for instance be linked 

[80]. Similarly, PiCCO is a cardiac output monitor that can have multiple purposes, but it was only 

mentioned in the EHR as measurement tool for overhydration. 
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4.4.5 EVENT DETECTION USING EWS 
Finally, the last hypothesis is addressed regarding whether physiological changes are registered in the 

EHR shortly after they occur. This hypothesis was tested by comparing all timestamps for actions and 

diagnoses timestamps and EHR entry timestamps, and comparing them to the estimated physiological 

changes using the EWS.  

For each patient’s EWS timeline, the derivative function was computed, and then compared with 

respect to diagnoses and treatments. Figure 21 shows the change in EWS in the hour of diagnosis and 

treatment registrations. Both types follow normal distributions, but the diagnosis distribution is left 

skewed whereas the treatment is slightly right skewed. Most diagnoses were registered when EWS 

fell by two points, and the patient’s condition presumably improved. This also makes sense as an 

improvement following treatment would confirm an assumed condition.  

 
Figure 21: Overview of EWS changes in the hour when a diagnosis or other action is registered 
within the action codes.  

It was expected that the treatment curve would be more right skewed as a deteriorating condition 

requires action. This was not the case, as all interventions are registered and tasks like catheter 

switching made up almost half of the treatments during improving EWS (n=34). No entries in the EHR 

stood out even after filtering shift switches (Figure 14). 

4.5 DISCUSSION 
The developed tool is in its current state useful for retrospective purposes, and does not feature 

decision boundaries that can improve treatment during admission. It can be applied for reviewing 

specific patient admissions or trend analysis of progress for either general patients or across patient 

groups. It is currently suitable within ICU settings where vital signs are monitored with precise 

electronic devices that are connected to patients spending most time in bed. Once unobtrusive 



35 
 

wearable monitoring devices become more available in other departments, the modelling will require 

more sophisticated processing that takes movement and body position into account, since both have 

influence on vital signs. It could function as an individual application, but implementing it as module 

in an existing CIS is also an option, since all data from this study was available in a CIS. It would be an 

improvement of the existing system at Bispebjerg Hospital because the CIS at site only had one review 

option, namely to look at vital signs individually over short intervals at a time. 

Modelling of physiological condition in this study addressed all patients and therefore used the EWS 

approach. The benefit of using EWS in this study was, that the model is already verified and widely 

applied by staff. This theoretically also solves the previously mentioned problem of staff being 

unresponsive towards output [60]. Once unobtrusive wearable devices are deployed in other wards 

where EWS is already standard procedure, they will enable automatic monitoring of patients. This will 

reduce manual surveillance and allow staff to focus on more demanding tasks. Missing data due loose 

electrodes will be a concern since EWS can only be estimated if all values are present. In this study, 

the issue was addressed by the quality control measure in which EWS were considered objects with 

a score value and class for how much data was available. Further adjustments for missing data were 

not considered in this study because the absence of data could mostly be traced to ongoing 

interventions by staff.  

Comparing the EWS timeline with individual EHR revealed that the model could be improved if data 

about medication, disease history and electronic devices in use were included. A common occurrence 

within the dataset was that vital signs at times appeared normal, but only because medication or a 

medical device, such as a respirator, supported the body. The existing EWS model was still a promising 

starting point, as the regression tree in Figure 19 showed. Looking back at national guidelines from 

Table 9, an EWS score of six and above is considered critical, and hence the physician takes over the 

surveillance; Similarly, the automatically generated regression tree for the study population starts by 

separating patients at an EWS of 6.  

Due to the complexity of the content in action codes, it was not possible automatically detect specific 

events in the EHR and map them against the timeline.  It was nevertheless still possible to use NLP to 

extract full entries and map them against the EWS timeline, allowing manual inspection of what 

caused physiological changes at any given time. In many cases this was sufficient to find cause and 

resolution to development around events. The text summarization method through word ranking 

proved useful because it from EHRs could identify the cause of admission, reoccurring difficulties and 

administered drugs.  

From the hospital’s point of view, the selected population had increased risk for complications and 

deterioration. It is therefore safe to assume that their condition would fluctuate more than for 

average patients. Deteriorations were therefore more prominent and hence easier to detect. On the 

other hand, it is still visible through standard deviation in Figure 18, that deceased patients were more 

unstable than discharged patients. Since the gathered data was from an ICU where surroundings were 

well controlled, staff may have been a major contributor to fluctuations in their efforts to improve 

continuously deteriorating patients.    

Although the dataset was rather smaller, results reveal that it is possible to make an automatized tool 

for quality control of past admissions. On individual level, an example of this was demonstrated 

through Figure 16, where EWS were steadily decreasing and the condition was improving prior the 
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first staff entry related to certain improvement. On the whole population, sections 4.4.2 and 4.4.2 

demonstrated that the deceased and surviving patients could be identified primarily based on EWS. 

The dataset also confirmed that the ICU was fully in control, but also overwhelmed and unaware by 

the amount of data available per patient. Thus, it is necessary to develop tools that combine the data 

in ways that are more intuitive.  

There were some limitations throughout the study that need to be addressed in future extensions.  

Physiological condition is based on vital signs, but it is currently not possible to detect events which 

are dependent on modalities fulfilling certain circumstances, as it is the case with sepsis [81] [82] [83]. 

Since the original EWS model was designed to detect significant abnormalities, it may be insensitive 

for smaller changes – one example being that all SBP values in the range 111-219 are treated equally. 

Context awareness as to which medication and medical devices the patient is dependent on reveal 

which vital signs are affected, and make it possible to alter the model. This could be done by penalizing 

sub-scores further based on type of aid. If aids in the current model only provide a temporary 

improvement, the developed system serves more as an assessment tool for how well staff is managing 

the patient, rather than evaluating the patient’s actual physiological condition. Since the model is 

incomplete in this regard, EWS cannot in its current form be used to determine when patients can 

safely be discharged. While the data for comorbidities and medication were available, they were 

omitted due to population size. The patients were admitted for similar reasons, but had hundreds of 

different co-morbidities, diagnoses and treatments (see Table 6). Understanding how patient 

outcome was affected by the various factors was out of scope for the study.  

4.6 CONCLUSIONS 
The developed tool demonstrated a novel approach to combining EHR with vital signs measurements 

to automatically generate an overall overview of a patient’s development throughout an admission. 

A real-life scenario was covered to give the reader an applied example of the patterns revealed with 

the combination of EHR and vital signs. Another example can be found in our previous study [75]. The 

EWS model proved viable for detecting changes in physiological condition, making it possible to 

evaluate whether health is improving, stable or deteriorating.  

The first hypothesis was that EWS can evaluate development in physiological condition of a patient 

over time, and that higher mortality would occur in patients who scored high in the model. The first 

part of the hypothesis was confirmed through the example up to section 4.4.1 and previous papers 

on the subject [75] [79]. The second part was addressed in sections 4.4.2 – 4.4.3, where it was 

determined that that patients who were unstable and whose standard deviation fluctuated more, 

were at higher risk of mortality. Finally, mortality was greatest among patients with EWS > 6.  

The second hypothesis concerned whether it was possible to generate an overview of a patient’s 

admission through quantitative measures, to obtain information about the admission. Through 

natural language processing and text summarization, section 4.4.4 demonstrated how word ranking 

can outline topics such as medication and complications throughout an admission. Words describing 

a reoccurring problem in the EHR mainly do so because staff continuously reflects and monitors 

changes in respect to the problem. Filtering stop words reduced noise in the textual signal, but further 

improvements can be made through implementation of n-grams and stemming.  
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The third hypothesis investigated if physiological condition changes throughout an admission were 

really registered in electronic health records (EHR). Even after filtering out textual entries related to 

shift summaries, the textual EHR had detailed entries throughout the entire admission, and the 

entries did not particularly focus on events. The codes related to treatment and diagnoses on the 

other hand showed that diagnoses are typically registered in the hour following an EWS improvement 

of 1-2 scores. Treatment was slightly more prevalent when the patient’s condition started to decline 

by 1 EWS.  

The study achieved promising results, and demonstrated how vital signs primarily on individual level 

can be used to model physiological condition of critically ill patients over time. Further investigation 

of individual vital signs roles requires more focused patient sub-groups where patients have similar 

backgrounds and co-morbidities. The next chapter and study therefore focus on a more homogenous 

critically ill patient group, namely ischemic stroke patients.  
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CHAPTER 5 

 

DETECTION OF PARAMETERS INVOLVED IN ISCHEMIC 
STROKE OUTCOME  
 

Objective:  When ischemic stroke patients are admitted to a Stroke Unit (SU), medical forms are 

filled out, containing information about the admission itself, along with the patient’s medical history, 

medication etc. Throughout the admission, vital signs are measured and neurological disability is 

assessed to monitor progress. Although it is known from literature and experience that all registered 

parameters are of relevance, few studies have looked at quantifying how and which parameters are 

of greatest importance for stroke outcome. In this study, an automatic algorithm has been designed 

to determine which parameters are of highest importance through regression models that 

approximate the degree of disability following the first day of admission. A paper on this study has 

been accepted for publication and is attached as Appendix D.  

5.1 BACKGROUND 
The study on intensive care unit (ICU) patients, described in the previous chapter, focuses on health 

deterioration where patients had high risk of mortality. Health deterioration could be overlooked if 

multiple parameters were slowly, and simultaneously, deteriorating. Stroke patients are also in the 

category of critically ill patients, but the disease is reflected by neurological functions, where health 

deterioration is evaluated through assessment of the degree of disability.  

To investigate the role of vital signs in respect to disability outcome in stroke patients, a collaboration 

was made with the department of neurology at Zealand University Hospital in Roskilde (ZUH). The 

hospital has been involved in treatment of 792 ischemic stroke patients in the years 2013 – 2015, and 

treatment follows national guidelines where intravenous recombinant tissue plasminogen (rt-PA) is 

used to dissolve the ischemia [33]. In severe cases, such as large vessel occlusions, patients were 

relocated to other hospitals, meaning that patients treated at ZUH are more likely to have better 

outcomes than at larger hospitals. This makes early warning scores (EWS) unsuitable to analyze the 

data due to fewer critical cases.  

Previous studies have investigated the effects of individual parameters, such as individual vital signs, 

treatment time and glucose levels [38] [84] [85] [86]. As an example, elevated blood pressure (BP) at 

admission, is observed in 80% of ischemic stroke cases. Better outcomes in terms of lower mortality 

are observed for patients who have SBP at 120 – 140 mmHg. The relationship between mortality and 

SBP is furthermore U-shaped, where the presented ideal range is the nadir and values outside the 
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range increasingly worsen outcome [87]. The phenomenon is still poorly understood, but lowering BP 

should therefore be carefully considered. Suggestions to causes range from mental stress related to 

admission, to the fact that elevation of BP increases the perfusion pressure in the ischemic penumbra 

[88] [89] [90] [91] [92] [93] [94]. The fact that elevated BP is of advantage for stroke patients also 

means, that the EWS model needs adjustment before being used as a tool for stroke patients, because 

elevated BP is not accounted for (see Table 8). 

Few papers were identified that investigate stroke outcome as function of multiple parameters. The 

most wholesome study was conducted throughout the years 2002 – 2006 by the Safe Implementation 

of Thrombolysis in Stroke MOnitoring STudy (SITS-MOST) on 6136 international patients, and 

processed through multivariable analysis [95]. It examined parameters involved in different types of 

outcomes of which functional independence was the only relevant one for this study, because it 

addressed whether disability was so severe that they needed help with simple daily tasks. Data was 

analyzed through multivariable logistic regression where outcome was a binary category representing 

independence and dependence. Parameters were only included if their individual correlation to 

output had p ≤ 0.25. The remaining variables were subjected to stepwise exclusion, and in some cases 

removed, but the exclusion criteria are undefined. Identified parameters involved in outcome were 

antihypertensive treatment, heart failure, diabetes, diastolic blood pressure (DBP), gender, NIHSS at 

onset, mRS prior stroke, systolic BP (SBP) and weight. A study by Johnston et al [96] developed a risk 

model to predict outcome after three months based on infarct volume from imaging, medical history 

and NIHSS at admission. The study also used logistic regression and determined age, NIHSS at 

admission, history of diabetes and infarct volume to be of significance for positive outcome, while 

only infarct volume was related to poor outcome. One study investigated EWS in respect to mortality 

in stroke patients, where based on twenty-four patients, mortality was lowest for EWS 0-1 (2%) and 

highest for EWS ≥ 5 (63%) [97]. 

Although the patients in this study were connected to bedside vital signs monitors, all admission 

related information including treatment progress were stored in printed forms that were eventually 

scanned and uploaded onto secured servers. The manual registration of data also meant that the 

available sampling frequency of vital signs was low. 

5.1.1 RESEARCH HYPOTHESIS 
The main hypothesis was that due to the homogeneity of the patient population, it is possible to 

predict the degree of disability after 24 hours based on vital signs monitoring along with neurological 

assessment. Data about the medical history, admission and treatment initialization were included to 

determine which parameters contribute most towards this outcome. Our hypotheses were: 

1. It is possible to predict the degree of disability for ischemic stroke patients for the first day 
of admission based on available patient data that is recoded until alteplase dosage is fully 
administered. 

 
2. The degree of disability after the first day of admission is dependent on development in vital 

signs during the period.  
 

3. All registered parameters are relevant for ischemic stroke patients, but their impact on 
degree of disability differs. The most significant parameters in predicting degree of disability 
after stroke can be determined through automatized algorithms.  
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5.1.2 APPROACH OVERVIEW 
To address the hypotheses above, paper-based medical forms for ischemic stroke patients have been 

acquired and digitized. Section 5.2 addresses the data acquisition process involving digitization and 

validation of forms. Section 5.3 addresses the features and models involved in prediction of disability 

scores. Reflection on the hypotheses are presented in sections 5.5 and 5.6. The approach itself is 

outlined in Figure 22. 
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Figure 22: Approach used for prediction of disability scores for ischemic stroke patients for the 
first day of admission. Prediction was tested with LASSO and a designed variant of multiple linear 
regression. 

5.2 DATA  
Data including vital signs, medical history and neurological assessment were obtained from the 

standard medical forms of sixty-four randomly selected ischemic stroke patients from ZUH. Seven of 

these were excluded due to missing data, or due to transfers to other hospitals, as part of the drip 

and ship method (section 2.2) which at ZUH happens within 6 hours after admission. The final 

population included 57 patients.  

The forms were filled out manually by nurses and physicians throughout the admission by following 

national guidelines for intravenous thrombolysis treatment during ischemic stroke [33]. Throughout 

the admission, medical history and admission information were registered once, while vital signs and 

neurological scores were registered more frequently. In the first two hours of treatment, neurological 

disability is assessed using Scandinavian Stroke Scale (SSS) scores, which examine eight parameters 
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explaining the patient’s status. In addition, the vital signs: SBP, DBP, pulse, temperature, oxygen 

saturation level are also monitored. All parameters are registered every fifteen minutes. Afterwards, 

frequency is reduced to once every thirty minutes until the eighth treatment hour, and once per hour 

for the remaining sixteen hours. Temperature, oxygen saturation level and SSS are only registered 

every second time after the first two hours except for the hours between second to fourth, fourth to 

sixth and sixth to eighth – see figure below. 
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Figure 23: Vital signs and neurological assessment frequency during the first 24h of ischemic 
stroke treatment. Green dots represent that the parameter is measured at the specific time.  

Since all data were in paper form, the first step was digitization, where data were split and stored into 

comma-separated value (CSV) files based on type of recording. Values that were only recorded once 

were stored into one file, periodic monitoring of vital signs and SSS into second file. A third file was 

dedicated to scores from another neurological functionality scale, National Institutes of Health Stroke 

Scale (NIHSS), because NIHSS is the only type that is measured once at admission and once after 24 

hours. An implemented MATLAB script generated the database, where it first combined CSV files of 

each patient, and then combined all patients into a searchable object. The advantage of the procedure 

was that it was dynamic and allowed new data to be added at any point if expansion of parameters 

or patients became necessary. The database is illustrated in Figure 24. 

 

Figure 24: Digitization from paper forms to single file database . Going from left, information from 
collected forms for each patient were written into respective comma-separated files, after which 
they were loaded into a .MAT file. Once the database was created, all values and parameters of 
each patient could be retrieved from the same location.  
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Table 10 shows all parameters included in the study along with mean, prevalence or distribution 

where applicable. The SITS-MOST column refers to the population of the study with identical name 

and serves as a reference [95]. It is important to note that the two groups cannot be directly compared 

as the SITS-MOST population contains all cases of stroke, including severe ones (such as large vessel 

occlusion) which are not present in ZUH. The study was furthermore conducted in a time where 

alteplase was only administered if the age of the patient was below eighty years, and during the first 

three hours after onset.  

All parameters from SITS-MOST are included in this study. Onset to treatment start is in this study 

split into two separate parameters, because the specific onset time is, unlike arrival to treatment, not 

always well known. Similarly, the type of antiplatelet is specified. The profile of patients in terms of 

age, gender and weight shows that the populations are similar. Vascular risk factors show the same 

patterns except for hyperlipidemia, which is present in 34% of the SITS-MOST population, compared 

to 78% in our population. Our study had five times more previous stroke incidents, which can be 

attributed to earlier interventions in risk groups like DM patients [98]. 

5.2.1 VALIDATION 
Data for each patient were visualized, validated and corrected in cases where errors had occurred 

during digitization. While most errors for numeric values were found through outlier detection and 

manual inspection, binary and categorical values typically only had one measurement. Validation of 

these was supplemented through investigation of intervariable relationships, as e.g. if a patient 

previously had apoplexy, they were expected to be on antiplatelet medication such as Clopidogrel. 

After combining data for all patients, the correlation coefficient was computed for each combination 

of two variables, and the results were inspected in collaboration with chief physicians.  

 
Figure 25: Intervariable relationships shown through correlation coefficients 
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Figure 25 shows the intervariable relationships after correction of found errors. Unsurprisingly in 

regards to profile the height, weight, gender and BMI were very strongly correlated. Taller people 

were in fact thinner which the BMI and height relationship show. Dosage of alteplase was negatively 

correlated with age, because older patients were lighter. Other examples of obvious correlations are  

Table 10: Digitized parameters which are registered as part of national guidelines for treatment 
of ischemic stroke patients. SITS-MOST column shows all available data from a study with same 
name [95]. Grey shading for a parameter means that it was recorded  

Type Parameter Population 
(n=57) 

SITS-
MOST 

(n=6136) 

Type 

Profile Age (years) 68.21 ± 11.92 67.80 Numeric 

 Weight (kg) 78.16 ± 17.84 75.55 Numeric 

 Height (cm) 170.79 ± 9.30  Numeric 

 BMI (kg/m2) 26.65 ± 5.25  Numeric 

 Gender (female) 44 % 40 % Ordinal Binary  

Imaging (CT scans) Local bleeding  -  Categorical 

 Remote bleeding  -  Categorical 

 Cerebral edema -  Categorical 

Treatment at hospital mRS onset  0.42 ± 1.02  Ordinal (0-5) 

 Onset to arrival (min) 108.12 ± 47.3 
140  

Numeric 

 Arrival to treat. (min) 30.63 ± 14.24 Numeric 

 Dosage rt-PA (mg) 69.91 ± 13.40 68 Numeric 

 Glucose (mmol/L) 7.04 ± 2.18 6.47  Numeric 

Vascular risk factors Arterial fibrillation 18 % 24 % Ordinal Binary 

 Diabetes  16 % 16 % Ordinal Binary 

 Heart insufficiency 8 % 8% Ordinal Binary 

 Hypertension 61 % 60 % Ordinal Binary 

 Hyperlipidemia 79 %  34 % Ordinal Binary 

 Periph. arterial disease 4 %  Ordinal Binary 

Previous events Acute myocard. infarc. 11 %  Ordinal Binary 

 Prev. apoplexy (ever) 50 % 10 % Ordinal (1-3) 

 Transient ische. attack 11 %  Ordinal Binary 

Relevant drugs Acetylsalicylic acid 23 % 30 % Ordinal Binary 

 Clopidogrel 11 % 
7% 

Ordinal Binary 

 Dipyridamole 2 %  Ordinal Binary 

 Anti-hypertensive 37 % 47 % Ordinal Binary 

Habits Alcohol (>recommend)  11 %  Categorical 

 Smoking (prev./curr.) 51 % 23 % Ordinal (1-4) 

Outcomes Bleeding present  2 %  Ordinal Binary 

 mRS (after 3 months) 2.32 ± 1.75  Ordinal (0-6) 

 Outcome 24h -   Ordinal (1-5) 

 Outcome at discharge -   Ordinal (1-5) 

Neurological 
assessment (24H 
monitoring) 

Scandinavian Stroke 
Scale, NIH Stroke Scale 

  
Numeric 

Vital signs  
(24H monitoring) 

pulse, temperature, 
blood pressure, 
oxygen saturation 
level 

  

Numeric 
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visible, such as that patients having a history of hypertension were on anti-hypertensive medication 

(r =0.60, p<0.01). Similarly, the antiplatelet Clopidogrel, was in this population used by patients with 

previous incidents of transient ischemia attack (TIA) (r = 0.63, p < 0.01). The time from hospital arrival 

to treatment was slightly shorter for females (r = -0.35, p < 0.01), and for patients who arrived quicker 

to the hospital (r = -0.31, p < 0.02). An explanation for the phenomenon was not found. 

5.3 METHODS 
This section describes how stroke outcome was defined and compares the different types of outcome 

measures assessed by the stroke unit at ZUH. It then describes the features that were included and 

omitted in the study, and ends with a detailed description of an automatic outcome modelling 

algorithm.  

5.3.1 CHOOSING STROKE OUTCOME  
Stroke units often monitor and evaluate outcome on multiple different and independent scales for 

documentation and research purposes. To address the first hypothesis of predicting degree of 

disability, it is sufficient to work with one outcome scale. All outcome related scales used by ZUH are 

described and shown in Table 11 and a full description of each scale is attached as Appendix A.  

Table 11: Outcome assessment scales at the stroke unit in ZUH. Lower scores represent positive 
outcome, and lower degree of disability,  in all cases except SSS. Detailed description of scales is 
attached as Appendix A. 

Name Description Scale/Classes 

Modified Ranking 
Score (mRS) 

Severity assessment after three months (to what degree 
is assistance from others required in daily tasks) 

0 – 6 

National Institutes of 
Health Stroke Scale 
(NIHSS) 

Individual and combined assessment of all motoric 
abilities and consciousness. 

0 – 42 

Outcome 24h 
Assessment of progress from admission to 24 hours 
later, with 3 representing no change.  

0 – 5 

Outcome Discharge 
Assessment of progress until discharge, with 3 
representing no change. 

0 – 6 

*Scandinavian Stroke 
Scale (SSS) 

Continuous individual assessment of motoring abilities 
and consciousness during the first 24 hours 

///// 

*SSS does not have a combined score, and is the only scale where ascending scores represent 
positive outcome 

 

It could have been interesting to see if mRS is predictable because it was used for outcome in the 

SITS-MOST study, but since some mRS classes were underrepresented in the dataset, this was not 

possible. NIHSS and SSS were the first choices for prediction, because “Outcome 24h” and “Outcome 

Discharge” only quantify intra-patient progress. Studies have already proven that NIHSS and SSS are 

interchangeable, although it may require a conversion equation [99] [100]. In our findings, even 

negating NIHSS and scaling in respect to SSS was sufficient to have a high correlation with SSS (r = 
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0.96 at admission and r = 0.91 at discharge). Since SSS is also monitored as often as vital signs, it 

furthermore gave the option of testing an approach like the EWS system.  

Before moving on to feature extraction, the progress of SSS over time was examined. A patient’s, p, 

neurological function, N, was extracted at a given time, t. It was then normalized through division by 

the highest possible score for the given neurological ability. This was done for all patients and average 

was estimated so that the output is a representation of the combined functionality among all patients 

(equation 5.1).  

 𝑎𝑙𝑙(𝑡, 𝑁) =
1

𝑝
∑

𝑆𝑆𝑆(𝑝, 𝑁, 𝑡)

max(𝑆𝑆𝑆𝑁)

𝑝=57

𝑝=1

 (5.1) 

   

Figure 26 shows this for the first two hours followed by every sixth hour. The closer the value is to 

one (black), the fewer disabilities patients had. The consciousness level was always high, and most 

prominent disabilities were related to fine motor skills. The combined column shows the same 

representation but for the overall SSS score, demonstrating that the greatest change happened in the 

first two hours. Since the greatest change was observed over all categories combined, it was sufficient 

to only focus on how the overall SSS is influenced over time. 

 

Figure 26: Progress of neurological ability for individual motor ic areas of all patients (left), and 
combined SSS for all patients at specific hours during the first 24h of treatment (right). Higher 
scores represent lower the disability.  

It is evident from Figure 26 that there is little change in the overall SSS after two hours. An algorithm 

that attempts to predict final SSS based on initial SSS would therefore also be highly accurate. More 

interesting was therefore whether additional features could improve accuracy.  
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5.3.2 PREDICTING OUTCOME THROUGH REGRESSION 
To be able to address all three hypotheses, two regression approaches were tested as prediction 

models. One was a “least absolutes shrinkage and selection operator” (LASSO) regression model 

which incorporates variable/feature selection, and the other was a custom designed queue-based 

multiple linear regression model. Alternative methods, such as ridge regression were discarded, 

because they lack direct dimensionality reduction – which in this study was desirable. Before 

implementing the regression models, features needed to be defined.  

5.3.2.1 Features 
All parameters from Table 10 were included as features except for the ones describing outcome types. 

They were further supplemented with potential features derived from vital signs and SSS for the first 

two hours after treatment onset, to see if vital signs contribute to SSS and to address the second 

hypothesis of this study. The potential features were:  

Mean (µ) Standard deviation (σ) Other: 
–  SBP  
–  DBP 
–  Pulse 
–  Temperature 
–  Oxygen Saturation level 
–  SSS 
 

–  SBP 
–  DBP 
–  Pulse 
–  Temperature 
–  Oxygen Saturation level 
–  SSS 

–  Correlation between SBP and 
DBP 
–  SSSDISCHARGE-ADMISSION 

The correlation coefficient was included because previous studies have found that there is a positive 

linear relationship between SBP and DBP in healthy subjects, which can be influenced depending on 

diseases such as hypertension and DM. The expectation was that correlation coefficient is at first 

widely distributed, and later stabilizes around r = 0.74 for most patients [25]. If BP had been measured 

three times per hour throughout the entire admission, the change in SBP versus DBP could have been 

used to extract information about arterial stiffness [25] [101]. 

The scatter plots in Figure 27 show each patient’s SSS and BP correlation for respectively two first 

hours and after twenty-four hours. The bold markers represent the center of mass. The patients 

improve in SSS by an average of 4.08, and in terms of correlation a change is seen from r = 0.43 to r = 

0.52. The histograms furthermore show a uniform distribution after two hours which after twenty-

four hours is converging towards 0.6.  

5.3.2.2 Multiple Linear Regression 
Multiple Linear Regression (MLR) is a fitting or prediction model, where a dependent variable y, or 

response, can be estimated through a relationship of a set of variables x1 ... xn. As an example, one 

could model the response, heart rate, as a function of age, height, weight and history of hypertension. 

Mathematically, it is expressed as: 

 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽𝑛𝑥𝑛 (5.2) 

 

 

xi is substituted with the value of the i’th variable x, and 𝛽i is the i’th coefficient denoting the variable’s 

contribution in the relationship model. 𝛽0  is called the intercept and is the response when all 

predictors are zero. 
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Figure 27: Correlation between DBP and SBP after 2 hours and 24 hours after initialized treatment. 
It is assumed that BP correlation coefficient increases as patients get healthier [25]. Disability 
improves from SSS = 33.35 to SSS = 37.44, while BP correlation increases from r = 0.43 to r = 0.52. 

The same model applies when dealing with binary predictors. Ordinal/categorical predictors on the 

other hand need to be split into as many binary variables as there are categories, minus one. The 

predictor previous apoplexy in the dataset for example, has three categories: no previous events, yes, 

over 3 months ago and yes, recently. By splitting it into two variables, they can together represent all 

three states (Table 12). 

Table 12: History about previous apoplexy is registered as one of three categories. Two variables 
represent whether the patient had apoplexy within the past three months, and if both are 0, the 
patient belongs to the third category of no previous apoplexy events.  

 v1 (3+ months ago) v2 (recent) 

No previous event 0 0 

Yes, 3+ Months ago 1 0 

Yes, Recent 0 1 

 

The summation of intercept and each of the variables multiplied by their respective coefficients give 

an estimate for heart rate. This response will mostly deviate from the true value. Likely causes are 

that measurements of predictors are inaccurate, or the model incomplete because predictors are 

missing – such as whether the person is standing or sitting. The overall error by how much each 

response deviates from actual measurements is referred to as root mean squared error (RMSE). It is 

computed as the square root of the average sum of squares for predictions subtracted by actual 

measurements (equation 5.3).  
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𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑(𝒚𝒊 − �̂�𝒊)

𝟐

𝒏

𝒊=𝟏

 (5.3) 

Before creating a regression model, one needs to be aware of the sizes of samples and predictors. 

With 57 patients and 39 predictors prior splitting ordinal categories, a relationship model would be 

overfitted, and would represent the given data well, but poorly predict new observations (section 3.2). 

The minimum number of patients per sample depends on the complexity of the model, how well 

classes are separated and the application purpose. Using Monte Carlo simulation Knofczynski et al 

generated twenty-three million samples to create an overview of the number of necessary samples 

for prediction using MLR. They found that 35 samples were required for five predictors, and after that, 

additional five samples were required for each additional predictor. The study concluded with 

statements that sample size should always be found through a statistical power analysis where 

possible [102]. 

5.3.2.3 Least Absolute Shrinkage and Selection Operator (LASSO) 
The previous studies, which both approached the problem through logistic regression, either included 

few predictors or removed them by manually inspecting their individual correlation with outcome 

[95] [96]. Alternatively, the Least Absolute Shrinkage and Selection Operator (LASSO) could have been 

considered Initially, the same model is created as for MLR in equation (5.1), with all variables present, 

but some are then eliminated by having their coefficients shrunk to zero.  

 

min
𝛽0𝛽

(
1

2𝑝
∑ (𝑦𝑝 − 𝛽0 − 𝑥𝑝

𝑇𝛽)
2

𝑝=57

𝑝=1

+ 𝜆∑|𝛽𝑗|

𝑣

𝑗=1

) (5.4) 

 

The operator solves the minimization problem from (5.4), where p is the number of patients. y is the 

expected outcome, 𝛽 is coefficient that is being minimized, x is the variable vector, v is the number 

of variables, and T denotes the transpose operation.   

The LASSO approach furthermore requires that all variables are standardized prior use, so that 

variables are penalized in the same manner. Categorical variables are split before the standardization, 

which leads to the disadvantage that variables cannot directly be compared anymore [103]. 

5.3.2.4 Queue-based Multiple Linear Regression 
Alternatively, a queue-based regression multiple linear regression (qMLR) model was designed to 

determine the most significant variables related to SSS at discharge, and at the same time ensure that 

the model would not become too complex. It shares similarities with traditional forward stepwise 

regression, but differs by (1) not selecting the most correlated variable with SSS in each iteration, (2) 

including variables if their contribution is significant to SSS even if only through interaction, and (3) 

not including all variables in the final model.  

A queue is a data-structure where data is accessed like the real-world equivalent. In first-in-first-out 

queues, data is dequeued (removed from queues) in the order in which they were enqueued (inserted 

into the queue). Variables were stored in a circular queue where they were dequeued and tested in 

the MLR model. They were then either kept as part of the model or enqueued. Since categorical 



50 
 

predictors are represented by multiple variables, enqueuing and dequeuing occurred collectively (see 

Figure 28). 

vn v... v5-8 v4 v2-3 v1

Rear Front

 
Figure 28: Example of first-in-first-out queue. As multiple variables are needed to represent a 
categorical predictor, dequeuing and enqueuing can operate with multiple variables at a time. 

When predictor is introduced to the qMLR model during an iteration, its significance is tested and its 

variables are included in the model if p < 0.20. This threshold was empirically defined, but should in a 

future version be systemically determined. If the RMSE is furthermore lower than that of previous 

iterations, the current fitting model is stored as the best so far. If p > 0.20, the predictor is requeued. 

Since the entire regression model is updated in every iteration, the coefficients and p-values are also 

updated. Therefore, a correction step is necessary. When the entire queue was tested without any 

changes to the model, all predictors with p > 0.20 are requeued. This results in a continuously 

improving fitting model which includes predictors with p < 0.20. The process is illustrated in Figure 29. 

Q iikikiiiH vvvSSS   ,,,22,110,24 ...

v4

vk

v3

Front

Rear

p(vk) < pThresh  
Enqueue p(vk) > pThresh

lastImproved++
lastImproved < 

Q.length + 1

yes

yes

Dequeue vk
lastImproved=0
Add vk to model

no

RMSE < minRMSE
minRMSE = RMSE

bestModel = 
currentModel yes

no

 

Figure 29: Generation of outcome prediction model by adding or removing predictors iteratively 
and testing them in a qMLR model. It terminates when remaining possible combinations with the 
current model no longer improve RMSE. 
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Before inspecting which predictors were of greatest importance to SSS at discharge, the model’s 

robustness was verified. Depending on the order in which predictors were introduced to the MLR 

model, the final model may vary. This is because predictors are added and removed one by one, and 

interactions between variables may be overlooked.  

Data was split so that seventy percent of observations were trained on, and thirty percent were left 

for testing. In Figure 30, both lines show the training error during fitting. The blue line represents 

fitting when predictors were provided to the queue in random order. The orange line shows the same, 

but with predictors initially ordered by their significance from the previous model. In both cases, the 

best model included the same variables, and fitting did not improve after reaching RMSE = 1.18. The 

reason for RMSE being 2.6 from start was because the first random predictor was onset SSS – which 

is highly correlated with SSS at discharge (r = 0.86). The mean SSS in the first two hours was even 

more correlated with final SSS (r = 0.93). The SSS scores from the first two hours alone were enough 

to fit final SSS with RMSE = 2.01, but by including other variables, a more accurate fitting was achieved.  

 
Figure 30: Optimization of qMLR during training for SSS prediction. Blue model was fitted when 
predictors were added randomly to the model. Orange shows fitting with predictors from previous 
best-fit model. 

5.4 RESULTS 
The two approaches were compared with respect to RMSE to see which model approximates SSS at 

discharge the most; with the least complex model. LASSO had 10 predictors by the end of training 

whereas qMLR had 11 predictors. On the test set, qMLR performed with RMSE = 3.11, whereas LASSO 

performed worse and reached RMSE = 5.96.  One classification outlier in the qMLR model contributed 

to an RMSE increase of 0.55. 

Figure 31 shows the predicted SSS compared to actual outcome, revealing that LASSO always 

undervalued SSS values.   
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Figure 31: Prediction of SSS at discharge with qMLR and LASSO 

Both approaches included four of the same predictors in their final models: µPulse, BP correlation, 

µSSS, and mRS at onset. The remaining predictors in the LASSO were more focused on vital signs than 

it was the case with qMLR (see Table 13 and Table 14). An interesting observation was, that in the 

second to last step of qMLR training, it also included σSBP (p = 0.78), hyperlipidemia (p = 0.63), high 

alcohol intake (p = 0.34), and arrival to treatment (p = 0.31), which were all present in the final LASSO 

model. They were all automatically removed because p-values exceeded the threshold.  

Looking at the coefficients in the LASSO approach (Table 13), the greatest positive contributions 

towards a low disability was SSS during the first two hours, and the change in SSS during the period. 

Other positive contributors were an increased BP correlation and mRS at onset. The positive 

contribution of mRS was due to underrepresentation of other classes within the predictor. Even 

though a trend in data was visible where an increase of mRS overall reduced outcome by 10, several 

patients with mRS = 0 had very poor outcomes. Hyperlipidemia and high alcohol consumption were 

the strongest predictors for poor outcome. The influence of vital signs was significant enough to 

contribute to the model for SBP and pulse. Higher than average measurements for the population 

were unfavorable. 

Table 14 shows the predictors that were included in the determined qMLR model. The insignificant 

predictors, which are still within the predefined threshold, were not removed as they contributed 

through interaction. The t-statistics show the major contribution of SSS, whereas other parameters 

are closer to each other. Unlike LASSO, no penalization was involved and parameters did not need to 

be standardized to assure fairness, which also allows for more direct interpretation. As an example, 

being male increases SSS almost by one in the dataset, which related to how males improved more 

than females. They were however also admitted with higher SSS. Males improved from a mean of SSS 

= 35.96 to 39.12 while females moved from SSS = 30.00 to 33.72.  

Although alteplase treatment was expected to follow the guideline of 0.9mg/kg, and not become part 

of the final model because it should not vary, this was not the case, and in the qMLR it reduces SSS 

slightly. Closer investigation of administered alteplase revealed that six patients received a smaller 
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than recommended dosage and had an average outcome of SSS = 40 (38.5 at onset) while six other 

patients received a higher than recommended dosage and had average outcome SSS = 28.83 (23.83 

at onset). The decisions of administering more than 0.9mg/kg is therefore likely due to the critical 

condition of the patient at admission. The dosage guidelines were still followed with respect to 

maximum dosage.  

Table 13: Best-fit LASSO model for stroke outcome for dataset population, with RMSE = 5.96  

Variable Estimate 

(Intercept)  6.718 
Hyperlipidemia -0.694 

Arrival to treatment -0.004 
Alchohol_High -0.540 

σSystolic BP -0.002 
µSystolic BP -0.007 

µPulse -0.027 
µSSS 0.952 

mRS onset  0.001 
σSSS 1.577 

BP Correlation 0.076 

 

 
Table 14: Best-fit qMLR model for stroke outcome for dataset population with RMSE  = 3.11 

Variable Estimate SE t-Statistic p-Value 

(Intercept)  -1.66 4.66  -0.36 0.72 
Gender (Male) 0.94 0.64 -1.45 0.15 

Dosage -0.12 0.04 -3.32 <0.01 
µPulse -0.05 0.02  -2.76 <0.01 

SSS onset -0.49 0.07 -6.46 <0.01 
µSSS  1.61 0.09 17.46 <0.01 

mRS onset  1.29 0.34 3.82 <0.01 
Previous TIA  2.67 1.04 2.55 0.02 

Age -0.05 0.03 -1.21 0.07 
Peripheral Artery Disease -3.88 3.19 -1.21 0.24 

BMI   0.40 0.13  3.07 <0.01 
BP Correlation 3.76 0.79 4.73 <0.01 

 

 

Boundaries need to be considered when interpreting such results, as is seen from SSS at onset. The 

reason why a higher SSS at onset has negative impact on outcome is, because a good recovery is 

possible even in severe cases, allowing patients to even make recoveries from SSS = 28 to 46. Since 

SSS = 46 is the upper boundary, patients with a high SSS at onset can numerically not improve by 

much.  

The greatest contributor to poor outcome for the population at first appeared to be peripheral arterial 

disease, and although it could make sense, it is important to note that only two patients in the 

population had the diagnosis (see Table 10). From a medical point of view, the most unexpected 

results were increased BMI and previous TIA being linked to a more positive outcome in the dataset. 
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5.5 DISCUSSION 
The combination of circular queuing and MLR provided a better model for predicting disability 

outcome stroke patients than LASSO did. Both approaches reduced dimensionality so that they did 

not overfit, and it was possible to deduce predictors related to outcome. A shortcoming was that the 

few samples limit how many predictors could be included, and the final models were therefore likely 

to have a high RMSE in test compared to training. Another limitation of both approaches lies in the 

possibility of overseeing contributions of variables when combined. Predictors could be left out in the 

qMLR, if they together significantly contributed to the model but individually, in no combination, have 

a p < 20.   

Based on the results, disability after stroke (SSS at discharge) can primarily be derived by SSS during 

the first two hours. Contributions of other factors are much smaller and possibly overseen if they are 

well regulated. As an example, the arrival to treatment would be considered insignificant if all patients 

were treated at onset, because the dataset lacked representation on what happens when the patient 

is untreated for hours after onset. 

From the vital signs, pulse and BP correlation coefficient contributed to the model. Patients who had 

no symptoms at discharge (SSS = 46) had a BP correlation coefficient of r = 0.5, while patients with 

negative BP correlation ended their first twenty-four hours with average SSS = 33.3.  

In terms of treatment, dosage, modified ranking score (mRS) – and in the LASSO case, arrival at 

hospital to treatment start were the most important. It is interesting that onset to arrival at hospital 

was discarded in both scenarios, but arrival to treatment was not. A plausible explanation is that, once 

patients were admitted, treatment was initialized quickly unless difficulties occur. If the patient was 

restless, they needed a sedative before CT scan could be performed and the stroke type verified.  

From a medical point of view, the most unexpected results were increased BMI and previous TIA being 

linked to a more positive outcome in the dataset. Some classes were underrepresented in the dataset, 

such as peripheral arterial disease and heart insufficiency, making them unreliable. The next step 

would therefore be to expand the dataset to include more patients, allowing a more realistic 

determination of parameters involved in stroke outcome.  

5.6 CONCLUSION 
It was possible to determine stroke outcome for the first day based on the first two hours, given 10 – 

11 predictors that were selected by automatized respectively qMLR and LASSO. Two automatized 

models were implemented, which both could be improved through additional data. The advantage of 

qMLR over LASSO for this specific problem was not only the performance but also that it was easier 

to interpret results because variables were not standardized and penalized. With substantially more 

data and variables, LASSO may however be necessary because it is computationally faster and does 

not need to generate a new model in each iteration. The designed qMLR model combined with 

multiple linear regression shows promising results as an alternative to stepwise regression where 

significance and interpretability of coefficients are preferred over computational speed.  

The first hypothesis was that the degree of disability following a stroke is predictable after the first 

day of admission, based on available data from the first two hours. A RMSE = 1.18 was achieved during 
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training, which increased to RMSE = 3.11 at test. Aside from the outlier classification, the remaining 

estimates missed by the actual disability score by SSS = –0.41 ± 2.60. The hypothesis is therefore 

confirmed for ischemic stroke patients who do not require thrombectomy.  

The second hypothesis investigates if the degree of disability at discharge will have been affected by 

vital signs. BP correlation coefficient and pulse played a significant role in determining the outcome. 

Both predictors were in the final models. A higher pulse was in fact associated with worse outcome. 

For the entire population, patients with a mean pulse > 80 during the first two hours had at discharge 

SSS = 30 ± 13.72, whereas patients with pulse < 80 had SSS = 39 ± 8.23. Patients whose symptoms 

were no longer present after the first day of admission had a BP correlation coefficient of r = 0.5, 

whereas an observed negative BP correlation in average resulted in SSS = 33.30.  

The aim of the third hypothesis was to examine whether the degree of disability at discharge could 

be predicted with only the most significant parameters, and that these could be automatically 

detected. The presented qMLR algorithm narrowed down parameters of importance for stroke 

outcome from 39 to 11. LASSO even reduced them to 10. Both approaches agreed on four of the 

parameters. For qMLR, data about SSS from the first two hours alone lowered training RMSE to 2.01 

but the remaining variables further improved accuracy and lowered RMSE. All but three of the 

identified parameters had p < 0.05. In clinical settings, LASSO’s advantage would have been that it 

consistently predicted SSS to be lower, so medical staff would be more alert.  

Compared to the overall critically ill patient population, concentrating on a homogeneous sub-group 

simplifies to process of creating outcome prediction models. Same treatment, complications and 

progress during admission made the prediction fair accurate even for patients who scored poorly on 

the degree of disability scale. The next chapter and study segment ischemic stroke patients further to 

investigate the influence of the comorbidity diabetes mellitus.  
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CHAPTER 6 

 

AUTOMATIC IDENTIFICATION OF DIABETES MELLITUS 
IN ISCHEMIC STROKE PATIENTS 
 

Objective:  Diabetes mellitus (DM) prevalence is increasing because of obesity, increasing life span 

length and a growing population. It is a risk factor the for long-term development of complications 

because of damage to blood vessels. This leads to cardiovascular diseases and damage to tissue and 

nerves. Since the vessels are very affected by the disease, DM patients are at least twice as likely of 

suffering from a stroke. It is estimated that one-third of stroke patients have unrecognized DM. This 

study investigated whether parameters that were recorded as part of standard stroke treatment can 

be used to differentiate between recognized DM and non-DM patients. An accurate model that can 

separate between the two subgroups could contribute to revealing unrecognized DM patients and 

thereby ensure earlier treatment. Two scientific contributions have been submitted on this topic of 

which one was accepted, and the other is submitted for review (Appendices E and F). 

6.1 BACKGROUND 
Diabetes mellitus (DM) and hypoglycemia after stroke are associated with poor outcome weeks and 

months after ischemic stroke patients are discharged [45] [46] [47] [86] [88]. Studies found that while 

there was no difference in outcome for DM and non-DM during the first three months after admission, 

the worse outcome can be documented for DM patients after six months. Additionally, the mortality 

in DM patients increases one year after stroke in especially patients under 50 years [45] [46]. Kaarisalo 

et al found that twenty-eight days after admission, the recovery from stroke-related disabilities takes 

more than twice as long for patients with recognized DM [88]. 

Recognized DM patients are overrepresented in stroke units, but there are cases where patients have 

the disease unknowingly. Determining whether a patient has DM is challenging because the endocrine 

and cardiovascular systems behave abnormally for all ischemic stroke patients during the acute phase. 

While approximately 16% of all stroke patients have recognized DM (Table 10 and [40]), 

hyperglycemia, which is commonly associated with DM, is reported in 30-40% of all stroke patients 

[38] [43] [104].  Although HbA1c is a more accurate estimate in the acute case, it may not be sensitive 

enough. A group studied sixty-two post-stroke patients for twelve weeks, where HbA1c was 

compared to oral glucose tests, and found that potentially one third of stroke patients may have 

unrecognized DM [40]. In the most recent related study, Zahra et al collected data for ischemic stroke 

patients based on screening DM type 2 guidelines by the American Diabetes Association. They found 

that 20% of their population (n = 250) had the disease but were undiagnosed. Most common risk 
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factors were in descending order: Hypertension, smoking, hyperlipidemia atrial fibrillation, and 

myocardial infarction [105] [106].  

No previous studies were identified that look at differences between DM and non-DM patients in 

stroke settings. DM should ideally be detected before the stroke occurs, but evidence suggests that 

it is still an overlooked problem even after the stroke. Determining the disease timely would lead to 

better management of comorbidities and fewer stroke reoccurrences – e.g. through better control of 

glycemic levels and BP [48]. Since screening for DM in post-stroke settings appears to be neglected, 

this study focused on an automatic approach to separating the two groups: recognized DM and non-

DM stroke patients. Achieving high accuracy through automatic separation of the two groups would 

provide further insight into which markers to focus on when identifying DM patients, and is the first 

step towards finding unrecognized DM patients.  

6.1.1 RESEARCH HYPOTHESIS 
The affected cardiovascular system in DM patients contributes to vital signs behaving differently from 

non-DM patients. The differences between the two patient groups should, therefore, be evident even 

before stroke treatment is initialized. The differentiation can be achieved with data that is registered 

as part of standard stroke treatment, as they include the parameters which previous studies have 

found to be of importance [106].  

The hypotheses were: 
 

1. It is possible to differentiate patients with and without recognized diabetes mellitus (DM) 
within the first admission day following an ischemic stroke. The data that is registered as part 
of guidelines for ischemic stroke treatment are sufficient to achieve this. 

 
2. In addition to commonly associated parameters with DM (high glucose level and high BMI in 

western countries), vital signs associated with the cardiovascular system are decisive factors 
in distinguishing between recognized DM and non-DM ischemic stroke patients.  
 

3. Parameters registered according to the ischemic stroke treatment guidelines are all relevant 
for progress and treatment but are not all necessary for identifying patients with recognized 
DM. Registered parameters that are relevant for differentiating between recognized DM and 
non-DM patients can be determined through an automatized algorithm.  

 

6.1.2 APPROACH OVERVIEW 
The overall approach is illustrated in Figure 32 and followed the same procedure as in the previous 

stroke related study until the feature selection step. In the validation and correction step, data was 

furthermore statistically compared between the two patient groups for other potential features and 

differences. The significant features were determined through bidirectional feature selection and 

used as input for a two-class support vector machine (SVM) classifier, which was trained to distinguish 

the groups. The classification was tested with data from the two first hours of admission (until the 

alteplase is fully administered) and twenty-four hours of admission. The two-hour period was tested 

to see if differences were easier detectable prior treatment. 
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Figure 32: Approach for differentiating between recognized DM and non-DM patients. The dataset 
was different from the study in chapter 5, but included the same features. Bidirectional feature 
selection was applied in combination with a two-class support vector machine classifier  for class 
separation.   

6.2 DATA 
The study started with the same dataset as in Chapter 5, and was increased in population size because 

only nine patients had recognized DM (Table 10). After increasing the population to seventy-eight 

randomly selected patients, a bias was introduced to include additional thirteen randomly selected 

DM patients (Figure 33). Nineteen patients were in total excluded because they were relocated to 

another hospital within few hours after admission. A non-DM patient was excluded from the study 

due to the history of gestational diabetes. 
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Figure 33: The dataset from stroke outcome study in chapter four was expanded by 34 patients 
from ZUH. Thirteen of the patients were randomly selected with a bias towards DM to have a 
reasonable representation of the population. One patient was excluded because of a history of 
gestational diabetes.  
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The population for this study consequently consisted of 72 patients. A patient was considered having 

DM if the information was registered in the national patient database, any previous medical records 

or the evaluation form during stroke-related admission. 

Table 15 shows all parameters included in the study along with mean, prevalence or distribution 

where applicable. The ischemic stroke patients were separated in the third and fourth columns 

depending on whether they had recognized DM prior and throughout their admission. Both groups 

received the same treatment. Most differences between the two groups are in accordance with our 

findings and expectations about DM. Examples are greater hypertension, BMI, somewhat higher 

glucose and higher prevalence of cardiovascular diseases. Since the risk of apoplexy increases with 

DM, more cases of previous apoplexy were expected in the group. Consequently, DM patients have  

Table 15: Digitized parameters that were registered as part of national guidelines for treatment 
of ischemic stroke patients, and then split for DM and Non-DM patients.  

Type Parameter Diabetes 
(n=22) 

Non-Diabetes 
(n=50) 

Type 

Profile Age (years) 69.27 ± 9.91 68.12 ± 11.92 Numeric 
 Weight (kg) 90 ± 18.04 75.88 ± 14.56 Numeric 
 Height (cm) 171.09 ± 6.60 171.14 ± 9.62 Numeric 
 BMI (kg/m2) 30.80 ± 6.45 25.72 ± 3.39 Numeric 
 Gender (female) 50 % 56 % Ord. Binary 
Imaging (CT scans) Local bleeding – – Categorical 
 Remote bleeding – – Categorical 
 Cerebral edema – – Categorical 
Treatment at hospital mRS onset 0.55 ± 0.91 0.32 ± 0.96 Ordinal (0-5) 
 Onset to arrival (min) 124.68 ± 60.67 105.68 ± 43.71 Numeric 
 Arrival to treat. (min) 33.36 ± 21.15 31.04 ± 14.91 Numeric 
 Dosage rt-PA (mg) 78.27 ± 10.04 69.10 ± 13.32 Numeric 
 Glucose (mmol/L) 9.04 ± 2.96 6.47 ± 1.37 Numeric 
Vascular risk factors Arterial fibrillation 23 % 14 % Ord. Binary 
 Heart insufficiency 18 % 4 % Ord. Binary 
 Hypertension 86 % 58 % Ord. Binary 
 Hyperlipidemia 86 % 66 % Ord. Binary 
 Periph. arterial disease 18 % 0 % Ord. Binary 
Previous events Acute myocard. Infrac. 18 % 10 % Ord. Binary 
 Prev. apoplexy (ever) 50 % 24 % Ordinal (1-3) 

 Trans. ischemic attack 23 % 8 % Ord. Binary 
Relevant drugs Acetylsalicylic acid 41 % 21 % Ord. Binary 

 Clopidogrel 32 % 10 % Ord. Binary 
 Dipyridamole 9 % 2 % Ord. Binary 

 Anti-hypertensive 64 % 34 % Ord. Binary 
Habits Alcohol (> recommend) 4 % 2 % Categorical 

 Smoking (prev. / curr.) 77 % 46 % Ordinal (1-4) 
Outcomes Bleeding complications 4 % 0 % Ord. Binary 

 mRS (after 3 months) 2.36 ± 1.94 2.16 ± 1.69 Ordinal (0-6) 
 Outcome 24h – – Ordinal (1-5) 
 Outcome discharge – – Ordinal (1-5) 

Neurological 
assessment 
(24H monitoring) 

Scandinavian Stroke 
Scale,NIH Stroke Scale 

  
Numeric 

Vital signs  
(24H monitoring) 

Pulse, temperature, 
blood pressure, oxygen 
saturation level 

  
Numeric 
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greater disabilities prior reoccurred stroke – evaluated by modified Ranking Score (mRS). The time 

from arrival at hospital to treatment indicates that circumstances during treatment were similar, so 

it is interesting that the time from onset to arrival at hospital is longer for DM patients. A possible 

explanation is that reduced mobility (higher mRs), and heavy weight contribute to slower boarding of 

ambulance.  Although HbA1c may be a useful predictor when identifying DM, it is not part of national 

guidelines for stroke treatment yet, and therefore not measured in most cases [33]. It was possible 

to obtain most recent HbA1c measurements which were taken at different points unrelated to the 

ischemic stroke admission for all but three patients. The rest had values that were under 42 mmol/mol, 

meaning that both recognized and unrecognized DM patients were well regulated. 

6.2.1 INTERVARIABLE COMPARISON FOR DM AND NON-DM  
The data collection and digitization process followed the same procedure as the previous study and 

are described in detail in section 5.2. From a medical point of view, it was afterwards of interest to 

see intervariable relationships for DM versus non-DM patients. Figure 34 shows the intervariable 

relationships for each of the groups through computed and colorized correlation coefficients for each 

pair of parameters; as well as the difference between groups. By splitting the data into two 

populations, parameter relations were also influenced. As an example, an expectedly high correlation 

between height and weight was in the mixed population r = 0.53, but increased in non-DM (to r = 0.76, 

p < 0.01) compared to DM (r = 0.16, p < 0.01). 

Starting with the non-DM patients, a high correlation in the profile parameters was visible (Figure 34, 

top left) along with dosage which was primarily administered based on weight. As mRS rose, a higher 

proportion of patients had atrial fibrillation, with everyone with mRS > 2 having the condition. Note 

that only 12% of non-DM patients had mRS > 1. Previous stroke incidents (PrevApo) stand out 

together with Clopidogrel, but do so only because no patients received Clopidogrel without a previous 

event of stroke, while both patients who had stroke within three months were on the medication. 

Looking at patients who suffered from stroke more than three months ago, five of twelve were on 

the medication. There were furthermore correlations between antihypertensive medication and a 

history of hypertension, and previous stroke events were related to previous TIA events which was 

also unsurprising. Finally, there were no incidents of peripheral artery disease. 

Moving on to the DM group, smaller relationships were present in in profile parameters. Patients with 

previous cases of stroke (PrevApo) had lower glucose level at admission (n = 11, 7.54 ± 1.86 mmol/L) 

than patients without previous events (n = 11, 10.53 ± 3.01 mmol/L). This could indicate that DM 

patients with a history of stroke were more aware of their medication intake. While there were only 

four cases of transient ischemic attack, none of the affected DM patients were on anti-hypertensive 

medication. Similarly, hypertension and glucose were negatively related (r = -0.53, p < 0.01), because 

two of totally three DM patients without hypertension had the highest glucose levels of the entire 

population. Dipyridamole was positively correlated with arrival to treatment (r = 0.81, p< 0.01), but 

since only two patients received Dipyridamole it was not possible to reflect on the finding. The 

relationship between acetylsalicylic acid and Clopiodogrel did not stand out for non-DM patients, 

because the majority received neither of the two. It does however for DM patients (r = -0.57, p < 0.01), 

where most took one the medications, but never simultaneously. Further research revealed that the 

national DM treatment guidelines recommend patients to be on acetylsalicylic acid, unless the patient 

responds poorly, in which case Clopidogrel is used [107].  
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Between the two populations, there were four major differences (Figure 34, bottom figure). The most 

evident difference being absence of peripheral artery disease in non-DM patients. Next heart 

insufficiency was negatively correlated with weight in non-DM patients (r = -0.22, p < 0.01) whereas   

 

 

 

 

 

 

 

 

 

Figure 34: The top figures show Intervariable correlation coefficients for respectively non-DM and 
DM ischemic stroke patients. Peripheral artery disease was only present in the DM population. 
The highest and lowest correlating parameters are outline with red. The bottom figure illustrates 
the largest differences between the two other correlation matrices.  
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it was positively correlated for DM patients (r = 0.55, p < 0.01). The correlation was expected to be 

higher for DM, but positive for both populations; the cause for negative correlation likely being the 

underrepresentation of heart insufficiency in non-DM population. The arrival to treatment 

relationship with Dipyridamole was, as previously mentioned, caused by underrepresentation of data. 

Finally, most DM patients who suffered from heart insufficiency also suffered from acute myocardial 

infarction (AMI) in the diabetes population, while the same relationship was not observed in non-DM 

patients. The same association has been documented in literature [108] [109] [110]. 

6.3 METHODS 
This section describes the classification process used for differentiating between recognized DM and 

non-DM patients that were admitted at ZUH following an ischemic stroke. It describes how features 

were selected, and the considerations regarding classifier design. 

6.3.1 FEATURES  
The same features were used in this study as described in section 5.3.2 including the derived ones.  

The correlation between SBP and DBP was particularly interesting because it is expected to behave 

differently for DM patients, but it has not been tested in stroke settings [25]. The BP correlation along 

with Scandinavian Stroke Scale (SSS) are shown in Figure 35 after two hours of admission and again 

after twenty-four hours. As in chapter 5, the expectation was that was a stabilization around r = 0.74   

for non-DM patients. The bold markers represent the center of mass for each group. DM patients. 

 
Figure 35: Correlation between diastolic and systolic blood pressure, two and twenty -four hours 
after initialized treatment, with center of mass outlined. Center of mass for non-DM moves from 
{0.42, 34.58} to {0.53, 38.92}, whereas DM move from {0.47, 34.36} to {0.45, 38.1 4}. 
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improved in SSS by an average of 3.77 while non-DM improved by 4.34. In terms of correlation, a 

decrease was seen in DM patients from r = 0.47 to r = 0.45, while it increased in non-DM from r = 0.42 

to r = 0.53. The histograms show the correlation distribution with a convergence towards 0.6 for non-

DM over time, and slightly positive, yet widely distributed, correlation for DM patients. All 

correlations were significant (p < 0.01). 

After increasing the number of included patients from previous study, it was still not sufficient to deal 

with the low patient to parameter ratio.  Classifier would be overfitted and have poor generalization 

if all parameters were to be included as features. To reduce dimensionality, principal component 

analysis (PCA) was considered. The way it works is by placing data in an n-dimensional space of which 

the center is the mean value of each parameter. It then finds the direction with the greatest variance 

and projects all data onto the component. This is repeated to create other components under the 

condition that each variance computation must be orthogonal compared to its predecessors [111]. 

PCA was discarded, as it is not suited for nominal and binary parameters as it operates on variance 

which only makes sense to compute for continuous data.  

6.3.2 CLASSIFICATION THROUGH SUPPORT VECTOR MACHINES 
There are two types of automatic classification algorithms: supervised and unsupervised. The first 

category is trained on features, and is given information about which class given features represent, 

so that a pattern can be detected. Unsupervised classifiers on the other hand attempts to detect 

classes themselves, and may therefore detect fewer or more classes than exist. With sufficient 

samples per feature, an unsupervised classifier would be preferred for distinguishing between the 

patient groups because it is likely that some patients have unrecognized DM [40] [106]. Since 

supervised classifiers recognize provided patterns, they are in risk of being taught to classify a patient 

as non-DM who may have unrecognized DM. Still, supervised classification was chosen for this study 

because the low patient to parameter ratio would cause unsupervised classifiers to generate many 

classes based on few observations per class. This problem is dealt with in supervised learning by 

having a fixed set of output classes to which only a subset of features is provided.  

The supervised classifier chosen to distinguish the two classes was a support vector machine (SVM)  

(Figure 36) [112] [113] [114] [115]. It automatically detects decision boundaries based on provided 

features, but also introduces a “slack” parameter to account for noise and outliers – a likely scenario 

as some non-DM patients were suspected to have DM. Classes are separated through a hyperplane 

(black line in figure) which is created between them so that they are furthest possible apart. The 

support vectors are then the data points closest to the hyperplane and are located on the margin 

(orange lines) which is an area perpendicular with the hyperplane. They are the points that resemble 

the opposing class the most. After training, data points that lie within the margin belong to neither 

class unless a soft margin is introduced. 

The separating hyperplane and the margin area are defined in (equation 6.1), where w and w0 

respectively indicate its direction and position, and x is the input sample. All input vectors at are on 

either side of the margin (≥ +1 or ≤ -1) will be assigned to their corresponding class. 

 

ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒:𝑔(𝑥) = 𝒘𝑇𝒙 +𝒘0 = 0 

𝑚𝑎𝑟𝑔𝑖𝑛:𝒘𝑇𝑥 + 𝒘0 = ±1 (6.1) 
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x1

x2

m

 
Figure 36: Support Vector Machine example in two dimensions, separated by a line which becomes 
an n-dimensional hyperplane when n parameters are present. The area between orange lines is 
the margin and data points closest to the margin are the support vectors. 

While this works well in training and generation of the model, there is a risk that yet unknown samples 

to the classifier end up in the margin. It is for those cases necessary to have a soft margin, so that 

every sample gets assigned to a class, but with a penalty that increases with distance from boundary. 

If a sample is on the correct side of the hyperplane and outside the margin, its “slack variable” is zero, 

ξ = 0. If it is on the correct side of the hyperplane and within the margin is 0 < ξ ≤ 1, whereas samples 

with ξ > 1 indicates misclassification.     

The optimal hyperplane for distinguishing the two classes can then be found through solving the 

minimization problem in 6.2. C is a box constraint that controls the penalization so that misclassified 

samples are punished harder, and n is the sample number. 

 
min
𝜉𝑛∈ℝ

+
{
1

2
‖𝒘‖2 + 𝐶∑𝜉𝑛

𝑁

𝑛=1

} subjectto𝑦𝑛(𝒘𝑇𝒙𝒏 + 𝑤0) ≥ 1 − 𝜉𝑛 (6.2) 

Features may not always be linearly separable, but SVM are inherently linear. The problem can be 

dealt with by mapping the features into a higher dimension and then applying the linear classifier 

[116]. BY Applying the so-called kernel trick, achieves this while remaining in the linear feature space. 

This is done by applying a kernel function which differs based on application. Several kernels were 

tested for separating DM from non-DM patients, and the best results were achieved with a quadratic 

polynomial (q = 2) SVM, with its corresponding kernel function (6.3). x and z are input vectors.  

 
𝐾(𝒙, 𝒛) = (𝛾𝒙𝑇𝒛 + 1)𝑞𝑞 > 0 (6.3) 

The SVM kernel scale, 𝛾, was found through a heuristic subsampling procedure, which was empirically 

determined by built-in MATLAB functions.  

Features were selected by using bidirectional feature selection, where forward selection first included 

features that increased classification accuracy of the SVM. Features were then individually tested 

eliminated to see whether accuracy changed after their removal. From the parameters available in 

Table 15, the ones with no or few occurrences in either group were removed (bleeding related to 



66 
 

dosage, bleeding findings in CT/MR, cause of death), as well as irrelevant/redundant (discharge 

diagnosis, Outcome 24h, Outcome discharge, NIHSS). 

The data was split for training and testing using 5-fold cross validation, with at least four DM patients 

presented in each fold. Because of ratio differences in parameters, the data was standardized prior 

to training through estimation of z-scores.  

Two alternative classifiers were considered for implementation. The first being logistic regression 

which could have been approached similarly as in the previous chapter, and the second being feed-

forward backpropagation neural network. Logistic regression could provide approximately same 

results if the SVM had a linear kernel, and was discarded because SVM can solve more complex 

problem when using other kernels. The primary disadvantage of neural networks was the training 

time which is longer than for SVM, and would become worse in this problem because the features of 

the final model were unknown. Each time that features would change, the network structure would 

need to be changed several times, because it may contain too many or too few so-called hidden 

neurons.  

6.4 RESULTS 
The best performance was obtained when combining medical history with vital signs monitoring of 

the initial two hours of admission. For both two and twenty-four hours, the same features resulted in 

best performance (Table 16). 

Table 16: Features determined to give best separation between DM and non-DM patients based 
on both the first two and twenty-four hours of admission 

Profile + History Admission Vital signs 

BMI From onset to arrival time SBP Mean 

Previously had apoplexy From arrival to treatment time SBP Standard Deviation 

Previously had TIA Dosage DBP Mean 

History of hypertension Glucose at arrival DBP Standard Deviation 

 

Figure 37 shows confusion matrices that summarize which classes the SVM classifier determined that 

patients belonged to, compared their actual classes. The matrices are shown with respectively two 

hours and twenty-four hours of vital signs data. Most misclassifications happened with DM patients 

under both conditions. This was expected because the recognized DM class was underrepresented, 

and there were few samples from the DM group that could assist as support vectors. It is also possible 

that some non-DM patients had unrecognized DM and were so alike well-regulated DM patients that 

they were inseparable [40].  

The top performance, with an accuracy of 87.5%, was obtained with two hours of data. Increasing 

measurements of vital signs from two hours to twenty-four hours caused the accuracy to drop to 

80.6%. A plausible cause supports the assumption that patient groups have more differences at stroke 

onset, e.g. DM patient’s autonomic nervous system is more affected than it is for non-DM [44]. Both 

groups become more stable as time passes, thereby making them more similar and harder to 

distinguish. It is important to keep in mind that even though the performance is high, over two third 
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of the population belong to the same class. If a classifier had found all patients to be non-DM for this 

dataset, the accuracy would consequently be 69.4%. 
  Predicted class  

A
ct

u
al

 c
la

ss
 n=72 non-DM  DM  

non-DM  47 3 50 

DM 6 16 22 

  53 19  

 

  Predicted class  
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u
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 n=72 non-DM  DM  

non-DM  45 5 50 

DM 9 13 22 

  54 18  

 

Data with 2 hours of vital signs Data with 24 hours of vital signs 

Figure 37: Confusion matrices for SVM given medical history and respectively two hours and 
twenty-four hours of admission data. The classifier achieved an accuracy of 87.5% with two hours 
of data (left side), whereas accuracy dropped to 80.6% with 24 hours (right side).  

The optimal classifier was further examined to investigate causes for misclassifications, and the 

possibility of dealing with them. If the classifier was uncertain which of the two classes a sample 

belongs to, it may be improved through thresholding or adjusting the soft margin in the SVM. Figure 

38 shows scoring levels of the SVM classifier for each patient. Each patient is represented by a bar 

that is colored accordingly to the patient’s class. The scoring level was afterwards negated for 

misclassified cases. As an example, the seventeenth patient was registered as not having DM, but the 

classifier determined the patient to belong to the recognized DM population with classification score 

level = 0.75. The high classification score level in the misclassification cases revealed that either more 

samples or more/better features were required to improve classification.  Misclassified non-DM 

patients had a history of hypertension and received a higher than average dosage of rt-PA; one 

received the maximum allowed dosage, and another received 6% higher dosage than recommended 

for their weight, but still within the guidelines. Two of the three patients had glucose levels greater 

than one standard deviation above average. The last patient had glucose level slightly above average, 

but additionally also a history of TIA and apoplexy. The misclassified DM patients had no features that 

stood out. 

The twelve standardized features used in classification are shown in Figure 39. Line colors again 

represent the correct classes, misclassifications are represented through dashed lines. As in Table 15, 

increased mean and standard deviation in BMI and glucose for DM patients is visible. It also shows 

that misclassified non-DM patients had a history of hypertension whereas only one misclassification 

was unrelated to hypertension.  
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Figure 38: Classification score levels for Support Vector Machine classifier. Each patient is colored 
based on their expected class. The score level is negated for misclassifications.  

 
Figure 39: Concurrent standardized feature comparison. Line colors indicate the correct class, and 
are bold and dashed in case of misclassifications.  

6.5 DISCUSSION 
SVM identified, in combination with bidirectional feature selection, twelve features in the dataset for 

detecting whether ischemic post-stroke patients had recognized DM. Even though only four vital sign 

measurements per hour were registered during the first two hours of admission, BP measurements 

were among the most contributing features. It was also unsurprising that dosage was selected as one 
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of the primary features after BMI, as administration guidelines for rt-PA take weight into account. The 

intervariable dependency is not seen as problematic in the model, because dosage varies when 

considering other factors, such as age and degree of disability. From the most dominant features 

determined by Zahra et al, only a history of hypertension was in this study identified as decisive. All 

parameters mentioned in the previous research were included in this study. The previous research 

did not explicitly mention all included parameters, and it is therefore unknown if they also included 

the remaining eleven parameters that were included in the final model [106]. 

The SVM classifier demonstrated that the two patient groups were separable, by correctly identifying 

whether a patient was diagnosed with DM in 87.5% cases. Misclassifications were likely primarily 

caused by the differences in population sizes and presence of unrecognized DM. No unrecognized 

cases of DM were found while reading the patient’s textual EHR related to the admission. Most entries 

in the EHR did however suggest that there was suspicion of DM, and this was further investigated in 

the department of neurology, but finally left for the general practitioner to follow up on. 

Vital signs measurements were initially investigated for the first twenty-four hours of admission. As 

patients improve over time during admission (see Figure 35), their vital signs become more similar 

and they become harder to distinguish. One exception was pulse, where the groups were admitted 

with 81.72 ± 1.43 bpm, and were 3-5 bpm apart until the twelfth hour, after which DM patients remain 

around 75.38 bpm but non-DM slowly drop for three more hours and then stay at 67.61 bpm. Pulse 

could therefore still serve as a feature after twelve hours of admission, but it is first necessary to 

understand why the phenomenon occurred. A decrease in BP was observed for both patient groups 

from admission start until the fifth hour of admission after which it steadily increased for DM patients 

whereas it continued to decrease for non-DM patients until the twelfth hour. After reaching minima, 

a steady increase was observed for both groups. It would have been interesting to investigate how 

BP changes after ischemic stroke for the two patient groups since DM patients have increased risk of 

impaired cerebral autoregulation. This would however require measurements to be monitored at a 

resolution in seconds instead of every fifteen minutes [117]. The accuracy drop from that occurs when 

using twenty-four hours of data instead of two-hours, and the changes in development of vital signs 

over time illustrate the necessity of monitoring regularly so that small changes are traced.  

As in previous studies on this subject, a limitation was the lack of HbA1c as a potential feature, which 

is expected higher for patients with unrecognized DM [40] [106]. Although some physicians perform 

the measurement, it is currently not a guideline requirement to do so. It was possible to retrieve the 

most recent HbA1c sample measurements for most patients, but they were in almost all cases taken 

at times which no longer covered the period of ischemic stroke admission. All values were lower than 

42 mmol/mol which is lower than the national boundary of 48 mmol/mol for a DM diagnosis [39], and 

indication that even DM patients were well controlled.  

To further improve the current approach, vital signs should be monitored at a higher resolution to 

detect smaller changes, and Hb1Ac readings at time of admission, or within weeks after stroke need 

to be available. Follow-ups are necessary to identify and correct for unrecognized DM. 
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6.6 CONCLUSION 
Promising results have been achieved for automatically identifying DM in early hours after stroke, 

which, when combined with information from follow-ups after discharge, could detect patients with 

unrecognized DM. 

The first hypothesis was that it is possible to differentiate between DM and non-DM patients within 

the first day of admission following an ischemic stroke, given already registered data. This was 

confirmed through the developed classifier, which successfully identified which group patients belong 

to with an accuracy of 87.5%. The approach was only based on data that were already available and 

are registered as part of standard treatment.  

The second hypothesis assumes that vital signs are decisive for distinguishing between DM and non-

DM patients – especially the ones related to the cardiovascular system (pulse, BP and oxygen 

saturation level). The hypothesis was partially confirmed but requires data at a higher resolution to 

be conclusive. Oxygen saturation varies very little and would be addressed by staff if it falls below 90, 

which are reasons for the parameter not being present in the final model. Through bidirectional 

feature selection, BP parameters were automatically selected as being some of the greatest 

contributors. Significant changes in pulse were observed between the two patient groups twelve 

hours after admission, but the best model was determined by only using vital signs for the first two 

hours. While the classifier accuracy is likely to improve if pulse was included after twelve hours, the 

lack of physiological explanation for the phenomenon or a very large dataset are required before one 

can justify mixing data from different periods of admission.  

The third hypothesis was that not all registered parameters are necessary to differentiate the two 

patient groups, and that the relevant parameters could be automatically determined. This was 

confirmed through the approach of combining bidirectional feature selection together with a SVM. 

The feature selection narrowed down the number of necessary parameters to separate the patient 

groups to twelve.  

The first two studies demonstrated how vital signs in critically ill patients can be used to create models 

that explain current and future health based on progress. This study demonstrated that they can also 

be used to differentiate between different patient groups and thereby be used to detect missed 

diagnoses. In all three studies, vital signs were valuable for evaluation, prediction and classification, 

but they also demonstrated the necessity of context-awareness through additional supplemented 

data.     
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CHAPTER 7 

 

CONCLUSION 
The aim of the project was investigating feasibility and applicability of using vital signs for critically ill 

patients. This was conducted by starting with a broad population of all high-risk patients, and then 

moving on to the subgroup of ischemic stroke patients. Finally, ischemic stroke patients were 

segmented into DM and non-DM patients with the prospective applicability of reducing readmissions. 

Three overall objectives, that are also stated in the first chapter, were investigated. 

• Investigating clinical usability of combining multiple vital signs in critical settings to estimate 

the health condition of a patient at any given time. 

Previous studies have investigated EWS as a model for outcome prediction in terms of mortality, but 

have been unable to address how well it approximates current health status. The first study in this 

project resulted in the development of a prototype system that deals with the problem by combining 

EWS and EHR. The output is an interactable timeline of the patient’s health condition, that enabled 

for direct comparison between how staff perceive condition against model estimates. The research 

thus formed the basis for further improvement and development of models for estimation of current 

health condition.  

• Determining how vital signs are related to degree of disability in a homogenous patient group 

such as patients treated for ischemic stroke.  

Ischemic stroke is mainly treated with a two-hour administration of alteplase. Progress is evaluated 

through degree of disability in neurological functions, and vital signs are monitored as precaution for 

sudden decline in health. In this research, the degree of disability after twenty-four hours was 

predicted with an error of RMSE = 3.11, by using only two hours of vital signs measurements and 

medical history data. BP and pulse were the most important vital signs for outcome. The correlation 

coefficient between SBP and DBP was r = 0.5 for patients with no disabilities at discharge (SSS = 46), 

while patients with a negative correlation had an average SSS = 33.30. An average pulse > 80 resulted 

in a 23% worse outcome. 

• Examining feasibility of using vital signs and personalized data as identifiers for diabetes 

mellitus in stroke unit patients.  

An impaired ANS in DM patients suggests that vital signs may change differently in events such as 

ischemic stroke, making it an opportunity to detect presence of yet unrecognized DM. The third study 

in fact showed that recognized DM and non-DM patients are more diverse during the first two hours 
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of admission than later. An implemented SVM identified with an accuracy of 87.5% whether a patient 

had recognized DM. Four of the twelve contributing features derived from SBP and DBP. 

This research has overall provided novel approaches for interpretation and applicability of vital signs 

data for critically ill patients. It has demonstrated that interpretation of vital signs greatly benefits 

from synergy with admission related data to solve problems related to evaluation, prediction and 

classification. 

7.1 FUTURE PERSPECTIVE 
Our findings show the importance of context-awareness when dealing with vital signs monitoring 

through all three studies. Specific pathological events are detectable through uni- and multimodal 

combination of vital signs, but for overall condition assessment, it is necessary to include historical 

and current data about the patient. Fortunately, with increasingly more data being digitized, this will 

be possible in near future. 

The following future work can improve the applicability of developed models: 

1. Medication, medical history and data about current circumstances (e.g. connected medical 

devices) need to be included in models that estimate physiological condition based on 

multiple vital signs. This includes time of day, so that the temperature related circadian 

rhythm can be modelled and changes to the ANS be detected [38]. 

 

2. Vast untapped knowledge exists in EHR. Through word frequency counting, much could be 

derived about patient’s admission, complications and progress. Implementing sophisticated 

NLP algorithms such as semantic relatedness, n-grams and stemming will automatize the 

process of interpreting content. 

 

3. The second and third studies provided very promising results but had low observation to 

parameter ratio. The number of patients should be increased and parameter significance 

should be evaluated while all parameters are present in the model. The data already exist in 

paper form but need to be digitized. 

 

4. Most alarms in controlled ICU settings where the patient is lying in the bed most of the time 

do not require actions to be taken. Once vital signs monitoring is deployed outside the ICU, 

algorithms need to ensure that correct feedback (e.g. disconnected electrodes) is provided 

to staff to avoid even greater overloads in alarm rate.  

 

5. Vital signs need to be monitored continuously to allow for advanced time-series algorithms 

to be applied. Even with up to four measurements per hour, it was possible to see that BP 

correlation was more positive for non-DM patients that pulse stopped improving earlier in 

DM patients.  
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ISCHEMIC STROKE OUTCOME SCALES 

There are several outcome measure scales for stroke patients. The below listed ones are all assessed 

as part of the Danish national guidelines for ischemic stroke treatment [33]. They evaluate the same 

neurological functionalities, but do so through various internationally comparable scales. 

 

Modified Ranking Score 
The first assessment when an ischemic stroke patient is admitted, is a modified ranking score (mRS).  

The scale evaluates functional disability as dependence on assistance from others for daily tasks 

(Table 1). It is examined twice as part of each admission. The first time is when the patient is admitted, 

but addresses the patient’s independence prior the stroke. A follow-up is done three months later to 

address the long-term effects of the treatment.  

Table 1: Modified Ranking Score (mRS) scale for assessment of functional disability and 
the patient’s dependence on assistance 

At admission 3 months after 

admission 

Description 

  Unknown 

0 0 No symptoms 

1 1 No visible functional disability 

2 2 Some functional disability, requires no assistance 

3 3 Moderate functional disability, requires assistance with 

daily tasks 

4 4 Moderate/severe functional disability, requires assistance 

with daily tasks including hygiene  

5 5 Severe function disability, bedridden 

 6 Deceased 

 

Global Outcome 
Global outcome is evaluated twenty-four hours after treatment and when the patient is discharged 

from the hospital (or on the seventh day). It has no scores but is a subjective follow-up evaluation 

since last follow-up. It has six categories: major improvement, improvement, unchanged, worse, 

significantly worse, deceased.  

National Institutes of Health Stroke Scale 
The National Institutes of Health Stroke Scale (NIHSS) quantifies the degree of disability for eleven 

neurological functions. Each of these is scored based on individual scales for the given function (Table 

2), and then summarized into an overall score. The higher the scores are, the worse the disability – 

meaning that the patient has no disabilities if the overall score is 0.   
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Table 2: NIHSS Individual scoring parameters. Arms and legs are scored once for each extremity 
whereas the others are only scored once. The scoring is done at the beginning of admission and 
after twenty-four hours.  

1a Consciousness 
0 = Wide awake, reacting normally 

1 = Not awake, responding to minor stimuli 

2 = Not awake, can only be woken up through 

heavy/repetitive stimuli 

3 = Coma 

 

1b Questions (date and age) 
0 = Answers correctly on both 

1 = One answer is correct 

2 = Neither are correct 

 

1c Orders (Opening/closing eyes and 

clenching/opening fist) 
0 = Completes both correctly  

1 = Completes one correctly 

2 = Neither is correctly completed 

 

2 Gaze(only horizontal movements) 
0 = Normal movement 

1 = Partial palsy 

2 = Total palsy 

 

3 Vision  
0 = Normal field of view 

1 = Partial hemianopsia 

2 = Toal hemianopsia 

3 = Bilateral blindness 

 

4 Facial paralysis  (Ask patient to show teeth, 

move eyebrows, squeeze eyes) 
0 = Normal symmetric movements 

1 = Mild palsy 

2 = Partial palsy 

3 = Complete palsy  

 

5 Motoric function in arm (scored once for 

each arm) 
0 = No drift 

1 = Drift, but not all the way down 

2 = Some resistance to gravity 

3 = Drops all the way 

4 = No movement 

5 = Cannot be tested 

 

6 Motoric function in leg (scored once for 

each leg) 
0 = No drift 

1 = Drift, but not all the way down 

2 = Some resistance to gravity 

3 = Drops all the way 

4 = No movement 

5 = Cannot be tested 

 

7 Ataxia extremities (in limbs) 
0 = no ataxia 

1 = Ataxia in one extremity 

2 = Ataxia in both extremities  

 

8 Sensory 
0 = Normal sensitivity when pricked 

1 = Mild-Moderate sensitivity 

2 = No sensitivity  

 

9 Language (patient describes images, objects 

and reads sentences) 
0 = No aphasia 

1 = Mild/moderate aphasia 

2 = Severe aphasia 

3 = Global aphasia 

 

10 Dysarthria (Ask patient to read words)  
0 = Normal speech 

1 = Mild/Moderate Dysarthria 

2 = Not understandable 

3 = Unable to score because of physical barrier 

 

11 Extinction and inattention 
0 = No abnormality 

1 = Inattention and extinction 

2 = Hemi-inattention (for more than one modality 
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Scandinavian Stroke Scale 
Scandinavian stroke scale (SSS) is similar to NIHSS as it also addresses neurological abilities, but 

addresses nine parameters in exchange for more frequent evaluation. In the first two hours of 

treatment, SSS are registered every fifteen minutes. Afterwards, frequency is reduced to once every 

two hours. The scoring differs from NIHSS in that scores get higher the healthier a patient is – making 

0 the worst score.   

Table 17: Scandinavian stroke scale (SSS) sub-scores for each category. The higher the sub-score, 
the better the outcome 

1 Consciousness 
6 = Fully conscious 

4 = Somnolent, can be woken 

2 = Reacts on speech 

0 = Unconscious  

 

2 Gaze 
4 = No palsy 

2 = Palsy 

0 = Conjugate eye palsy 

 

3 Upper extremities (arm) 
6 = Lifting arm with normal force 

4 = Lifting arm with reduced force 

2 = Movable but cannot lift arm 

0 = No movement 

 

4 Hand 
6 = Normal force 

4 = Reduced force 

2 = Movable but cannot reach palm with fingertips 

0 = No movement 

 

5 Under extremities (leg) 
6 = Lifting leg with normal force 

4 = Lifting leg with reduced force 

2 = Movable but with flexion in knee 

0 = No movement 

6 Orientation 
6 = Correct month, place and birthday  

4 = Correct for Two of the above 

2 = Correct for one of the above 

0 = Disoriented (none of the above) 

  

7 Language 
10 = No aphasia 

6 = Anomie 

3 = Mainly yes/no answers 

0 = Only yes/no without language 

 

8 Facial palsy 
2 = No/doubtful palsy 

0 = Palsy 

 

9 Walking 

12 = Walks 5 meters without aid 

9 = Walks with aid 

6 = Walks with assisting person 

3 = Sitting without support 

0 = Bedridden 
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Abstract— This paper presents a data-driven approach to 

graphically presenting text-based patient journals while still 

maintaining all textual information. The system first creates a 

timeline representation of a patients’ physiological condition 

during an admission, which is assessed by electronically 

monitoring vital signs and then combining these into Early 

Warning Scores (EWS). Hereafter, techniques from Natural 

Language Processing (NLP) are applied on the existing patient 

journal to extract all entries. Finally, the two methods are 

combined into an interactive timeline featuring the ability to see 

drastic changes in the patients’ health, and thereby enabling 

staff to see where in the journal critical events have taken place. 

 

I. INTRODUCTION 

 
Majority of hospitals keep text-based patient records for 

each patient, and throughout the admission, the records are 
updated by medical staff. Patient journals contain information 
about the cause for admission, medical events, activities, 
family visits and drug consumption. All this information in a 
single document can become overwhelming for doctors who 
later need to verify whether the patient was treated 
appropriately. Particularly in cases where the patient has been 
admitted for a longer period. At the intensive care unit (ICU) 
at Bispebjerg Hospital in Denmark, each day of admission 
corresponds to approximately four pages of text per patient. 
Although difficult to computationally process, it is still 
possible to extract valuable information from journals using 
methods such as Natural Language Processing [1]. 

Due to the patient’s critical condition at ICU, patients are 
typically connected to electronic health monitoring devices. 
Electronic devices already alarm staff members when a 
patients’ health deteriorates, and have visual displays enabling 
staff to see the current condition of the patient. The devices can 
also be connected to servers, allowing data storage and 
analysis later on. Most public Danish ICU’s use Critical 
Information System (CIS), developed by Daintel, for storage 
and presentation of patient records throughout an admission. 

To make the overwhelming information in patient journals 
more manageable, an attempt is made of combining the stored 
patient data from Bispebjerg Hospitals’ databases together 
with their corresponding electronic patient journals. The 
purpose of the application is to be able to display a visual 
representation of the patient’s physiological condition over tie 
and map that against time-labeled entries in the patient’s 
journal. This gives staff a different approach to investigating 
journals. Instead of reading thoroughly through the entire 

 
 

 

document, staff can look at the time where changes happen in 
the patient’s condition and then investigate the patient journal 
locations prior- and post-event to see what causes the changes.  

II. METHODS AND MATERIALS 

A) Patients  

Data from ten selected patients from the ICU at Bispebjerg 

Hospital were inspected. All patients were admitted in the 

period February 2013 to May 2013. Their average age was in 

64.88 ± 11.08 years. The admission cause for included 

patients was respiration insufficiency, cardiac arrest or sepsis. 

Average admission time for these patients was 11.2 ± 8.44 

days. The inclusion criteria were that they have a journal, and 

vital sign parameters were recorded for:  

 

• Pulse 

• Respiration Rate 

• Systolic Blood pressure  

• Oxygen Saturation level 

• Oxygen inspired (if any) 

• Temperature 

 

B) System Design 
The system consists of two separate independent parts, 

which are synchronized once preprocessing is completed, as 
illustrated by the tree in Fig 1.  The left branch represents all 
handling of electronic vital signs measurements. Vital signs 
are combined to give an estimation of the patient’s condition 
over time. The right branch focuses on text handling. An 
electronic patient journal is segmented in time by using 
timestamps for when entries are made into the journal. 

 

 

 
 

 
 

 
 

Figure 1  System overview 
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The last step is synchronizing timestamps and creating the 

timeline over the physiological condition along with markers 

of journal entries. 

C) Evaluating Physiological Condition using Vital Signs 
It has become common practice in many developed 

countries for hospitals to evaluate the patients’ physiological 
condition using Early Warning Score (EWS). The Early 
Warning Score system was first introduced by Morgan RMJ et 
al [2], with the purpose of ensuring that patients who exhibit 
signs of critical illnesses are monitored frequently [3].  

An EWS is estimated by combining measurement readings 
from different vital signs and, giving sub scores to each 
individual reading. Finally, all sub scores are combined into a 
single value. Even though the EWS system is widely used in 
many hospitals, there is no standard for it. Bispebjerg Hospital 
is part of the capital region of Denmark, where all hospitals 
use a slightly modified version of the EWS system ViEWS, 
proposed by Prytherch et al [4]. The modified ViEWS is 
presented in Table I. 

EWS systems are generally targeted towards wards where 
patients are not under constant monitoring as a tool to help 
staff in decide how much attention the patient needs [1,5-6]. 
The higher the score, the more attention is dedicated to the 
patient. More specifically, it determines how frequently the 
patient is visited and by whom. E.g. if all vital signs are 
normal, the patient will have an EWS of 0, which translates 
into the patient being checked on every twelve hours. If their 
vital signs are very abnormal, and they have an EWS of over 
8, the patient will be observed every thirty minutes.  

At ICUs, electronic devices are constantly observing and 
monitoring the patient and it does therefore not make sense to 
use EWS specifically as a tool for assessing how frequently a 
patient should be observed. It can however still be useful 
measure by giving an indication of what the patients’ overall 
health condition is over time. 

Before analyzing the recorded measurements, data needs 
to be preprocessed. First, noisy measurements, that can be 
caused by electrodes falling off or being wrongly attached, are 
removed by only including physiologically likely values. This 
is done by for example removing measurements of systolic 
blood pressure above 250 mmHg. Similarly, oxygen 
saturation level measurements below 70% are removed 
because medical staff renders these readings are unreliable.   

The existing alarm systems built into electronic medical 
devices are sufficient for detecting sudden physiological 
changes. Therefore, the focus here is to see how the patient’s 
condition in general develops over several hours or days. The 

first step is to downsample so that for each hour, H, an average 
value of all measurements, 𝑣𝐻(𝑇),  describes a vital sign, T. 
In addition, as sampling rates are different for each device, the 
amount of samples made throughout an hour, c, are also 
registered for quality control. It is defined by  equation (1), 
where X is the collection of all measurements during an 
admission. 

 

𝑣𝐻(𝑇) =
1

𝑛
∑ 𝑋𝑇(𝑖)

𝑛=𝐻𝑒𝑛𝑑

𝑛=𝐻𝑠𝑡𝑎𝑟𝑡

,𝑐𝐻,𝑇 = 𝑖 (1) 

Following, the hourly EWS can be estimated as a 
summation of subscores, SS, retrieved by looking up in Table 
1 for the average value of each vital sign type, T.   

 

𝐸𝑊𝑆𝐻 = ∑𝑆𝑆𝑇(𝑣𝐻(𝑇))

𝑇=6

𝑇=1

 (2) 

It has been decided to omit the central nervous system 
(CNS) as vital sign, since it is not registered digitally and is 
evaluated by staff, resulting in a poor and inconsistent 
registration frequency. Since the model for EWS assumes that 
all measurements are present to estimate a single score, EWS 
for one hour is not calculated unless there is at least one value 
per ten minutes throughout the hour.  

Fig 2 shows the timeline for a patient who has been 
admitted for eight days. It shows how all vital signs develop 
over time. Looking at the individual parameters, the first thing 
noticed are spikes in heartrate, which can be explained by the 
fact that the patient receives adrenaline treatments which have 
short durations. 

 

Figure 2  Vital sign measurements for a patient  

We see that the patient did not receive any inspired oxygen 
throughout the first 125 days of admission, and was able to 
breathe by on their own. If a medical ventilator was helping, 

TABLE I.  EWS table used in Capital Region of Denmark. 

 Sub score 

Type (T) 3 2 1 0 1 2 3 

Pulse (bmp) <41  41-50 51-90 91-110 111-130 >130 

Respiration Rate (bmp) <9  9-11 12-20  21-24 >24 
Temperature (oC) <35.1  35.1-36.0 35.1-36.0 36.1-38.0 38.1-39 >39 

Systolic Blood Pressure (mmHg) <91 91-100 101-110 111-219   >219 

Oxygen Saturation Level (%) >92 93-94 94-95 >95    
Inspired O2    Air  Any O2  

Central Nervous System    Alert   Voice 

Pain 
Unresponsive 
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the breathing would have stable and resemble a flatline. The 
temperature is difficult to see in the figure, but is stable around 
37.3oC. The remaining parameters vary significantly 
throughout the stay and will be revisited later.  

Before looking at the EWS estimates, a simple quality 
check is performed, based on the previously mentioned hourly 
counts. For every hour, there have to be succifiently many 
measurements considering the type of vital sign. E.g. for 
respiration rate, it is sufficient if in average two breaths per 
minute are recorded, while temperature changes slower and 
requires fewer measurements. Four quality classes (1-4) are 
defined, ranging from non-existant to ideal measuring (1-
white, 2- orange, 3-yellow, 4-green). Fig 3 shows the quality 
of recorded information for the same patient as in Fig 2. 

 
Figure 3  Early Warning Score timeline for a patient. Color   

represents quality of signal (Green = good, yellow = ok, 
orange = poor, white = very poor/non-exsistant)  

It shows missing data about twenty hours after admission 

which is less noticable in Fig 2, and reveals inconsitencies in 

recording frequency for especially respiration rate.  

 
Figure 4  Early Warning Score timeline for a patient. Insufficient 

data results in orange labeling. 

Finally, EWS can be estimated for each hour as illustrated 
in the figure above. The x-axis is the time spent under 
surveilence, while the y-axis is the patients’ EWS. Each 
rectangle represents one hour, If enough measurements for 
each vital sign throughout an hour exist, the rectangle is the 
actual EWS value and colored green. Otherwise, it is orange 
with value 0. The points without sufficient measurements are 
still included, and not left blank, because it emphasizes that 
something was abnormal at this point – Either that electrodes 
fell off or that the patient was disconnected from monitoring 
for some reason.    

D) Natural Language Processing in Patient Journals 
The next step is linking the patient journal to the EWS 

timeline. Initially, the idea was to use language models such as 
n-grams to detect events in patient journals. Since patient 
journals however are updated by numerous medical employees 
who phrase things in very different ways, this was not an 
option. Especially since text was often phrased in keyword 
format, acronyms and many non-standard abbreviations are 
used which are only known to some employees.  

Since it is not possible to detect when and which events 
occurred based on measurements, the next best thing is to find 
when new entries are made into the patient journal and then 

manually inspect these entries for events. The assumption here 
is that shortly after any major change, staff will document what 
occurred, although there will be a time offset as staff has to 
attend to the patient before reporting. To extract entries, a 
regular expression is used. A regular expression is a sequence 
of characters and symbols which form a search pattern. This 
pattern can then be used to traverse through text and find 
content that matches this pattern. The regular expression 
below follows the date pattern of our patient journals where a 
line begins with a date, followed by department and hour of 
entry: 

 

  ^([0][1-9]|[1-2][2-9]|[3][0-1])   // Day of month 

  .([0][1-9]|[1][0-2]).    // Month 

  1[2-3]              // Year of interest 

  [a-zA-ZæøåÆØÅ\s.]*    // Department 

  ([0-1][0-9]|[2][0-3]):[0-5][0-9]   // Hour of entry 

Fig 5 shows an example where the above regular 
expression is applied on entries of the first three days, to 
extract information about how frequently reports are made in 
the patient journal. It shows that reports are done irregularly, 
but it is still possible that entries are made within an hour of 
each other. The lack of reporting can also be an indicator of a 
stable condition. A stable condition will be reflected in 
timeline for the given period, or through reading the journal. 

 

Figure 5  Extracted entry times from a patient journal. 

Each entry from the journal is either extracted alone or 
combined with other entries for the same hour and mapped into 
the patient’s EWS timeline. If there is a journal entry for an 
hour, the corresponding square gets a border and becomes 
interactive so that a click results in opening the entry. 

 

Figure 6  EWS timeline combined with patient journal.  

 

Figure 7  Journal entry 27 hours after admission 

III.   RESULTS 
All figures from the previous section have focused on a 

single patient. Going through this patient’s admission 
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chronically based on the figures, there are several interesting 
timespans to investigate. The first is an improvement 
beginning after missing data around 25 hours after admission. 
Next, there is sudden deteroiration after 45 hours followed by 
lack of measurements from 70 to 90 hours. Finally, there is a 
continous deteroiration after 165 hours.  

The journal entry for the first timespan (Fig 7), reveals the 
condition gradually worsened and after a surgery the condition 
stabilized as reported 27 hours after admission. The 
deteroiration around 45 hours is unexplained in the journal, but 
an investigation of individual measurements throughout the 
hour showed significant changes in pulse, oxygen saturation 
and blood pressure at different times during which the patient 
was sleeping. In the 70 to 90 hour period, the patient was 
moved into isolation where they might have been connected to 
a respiratory device not connected to the used database. 
Although the last span shows serious deteroiration after a 
stable healthy peroid, it does not entirely reflect the patients 
condition. In the final phase, the patient journal states that 
there is progress and the patient will be discharged soon. The 
data does not reflect this due to increase in breathing and 
hypotension caused by medication.   

 

Figure 8  Example of a 16-day admission  

Fig 8 shows another example with a much longer admission. 

Both the vital signs overview chart (Fig 8 top) and the EWS 

timeline (Fig 8 bottom) clearly show that the condition is 

overall swinging until around 120 hours where condition 

worsens and the patient becomes unresponsive to all contact. 

The patient regains consciousness several hours but status 

remains critical. Near the end of the admission where the 

EWS reach values above 9, it is decided to cease treatment 

and the patient passes away.  

 

IV. DISCUSSION 

Reading through the remaining patient journals, the EWS 

timelines reveal most critical changes, but do not always 

reflect the patient’s condition. According to the EWS 

timeline, in one case, a patient seemed to be improving and 

suddenly appeared to worsen severely. According to the 

patient journal however, the patient gradually got worse and 

had to be cooled down to avoid brain damage. The sudden 

decline in EWS was thus caused through necessary treatment. 

 

Although it is difficult to use Natural Language Processing 

(NLP) for extracting textual information from patient journals 

due to the nature in which they were written, still valuable 

information can be extracted as shown with Fig 5-7. While 

not included in this paper, simple methods like word 

frequency counts helped understand details about the 

admission such as which symptoms the staff paid most 

attention to and which drugs were mainly administered.  

 

The next step of development will include diagnosis 

information for when and which diagnosis/condition begins 

and ends to see if vital signs have significant changes related 

to the diagnosis. This will also reveal whether and for which 

diagnosis a higher sampling is required.  

 

V. CONCLUSION 

The study shows that data alone is insufficient for 

assessing the patient’s condition in ICU settings, especially if 

the patient is moving or medical staff is interfering. Ideally 

this model should be tested with a larger patient population 

outside the ICU who are in a less critical condition and need 

less care.  

 

The system provides a novel way of visualizing the patient 

journal, showing when events of interest occurred during the 

admission.  
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Abstract— This paper presents a novel data-driven approach to 

graphical presentation of text-based electronic health records 

(EHR) while maintaining all textual information. We have 

developed the Patient Condition Timeline (PCT) tool, which 

creates a timeline representation of a patients’ physiological 

condition during admission. PCT is based on electronical 

monitoring of vital signs and then combining these into Early 

Warning Scores (EWS). Hereafter, techniques from Natural 

Language Processing (NLP) are applied on existing EHR to 

extract all entries. Finally, the two methods are combined into an 

interactive timeline featuring the ability to see drastic changes in 

the patients’ health, and thereby enabling staff to see where in the 

EHR critical events have taken place.  

 
Index Terms— Electronic Medical Records, Natural Language 

Processing, Medical Information Systems.  

 

I. INTRODUCTION 

EVELOPED countries have strict regulations that ensure 

that every institution must create, document and store all 

medically relevant information regarding a patient in form of an 

electronic health record (EHR). Aside from scans, tests and 

schemes, EHR typically consist of a textual part which in details 

describes the patient’s history, circumstances, events, status and 

planned procedures. It is especially long for critically ill 

patients who are admitted for several days, because their 

condition may vary and all changes need to be documented. On 

average four pages of pure text are generated per patient per day 

at the intensive care unit (ICU) at Bispebjerg Hospital, 

Denmark. Therefore, EHR of patients who have been admitted 

for longer periods become almost overwhelming if medical 

staff later need to follow up on, for example, how the patient 

responded to different treatments during admission.  

A common way of dealing with this is to quantify textual data 

 
 

 

by applying Natural Language Processing (NLP) to do a text 

summarization. The overall aim is to reduce the presented 

information to a minimum by, for example removal of 

redundancy, or applying statistics to rank sentences [1-3].  

Unlike at other departments, all patients within ICU’s are 

furthermore monitored continuously with electronic devices, so 

that any health deterioration is immediately detected, allowing 

appropriate actions to be taken swiftly. This data is typically 

and processed with aid of clinical information systems (CIS), 

which have proven effective for optimization of resources and 

decision making [4-8]. To the best of the author’s knowledge, 

no previous study has however combined these recordings with 

content from the patient’s EHR to review previous admissions. 

This study approaches the problem of overwhelming data 

through the development of a data-driven tool, where vital signs 

monitoring is combined with textual information from the EHR. 

The automatized Patient Condition Timeline (PCT) tool 

displays a visual representation of a patient’s physiological 

condition over time and maps it against time-labelled entries in 

their EHR. It enables a different approach to investigate the 

EHR, and gives the possibility to quality check documentation 

against assumptions of the patient’s condition. Finally, 

assuming the model for evaluating a patient’s condition is 

accurate, it becomes possible to find EHR entries related to 

deterioration, causes and resolution.  

The PCT is in its current state useful for retrospective 

purposes, and does not feature decision boundaries that can 

improve treatment during the admission. It can instead be 

applied for reviewing a specific patient’s admission or trend 

analysis of progress for either general patients or across patient 

groups. Although not part of this study, a potential use is the 

comparison of intra-patient progress for patients who are 

readmitted into the ICU after e.g. cardiac surgery.    

This study is part of a larger initiative which is investigating 

the feasibility of continuous vital signs monitoring to increase 

staff efficiency and decrease mortality within hospitals. It is 

inspired by recent advances in non-obtrusive wearable devices 

[9-10], and the fact that the general population is aging but 

birthrates have declined, leading to an upcoming workforce 

shortage.   

A. Modelling Physiological Condition using Vital Signs 

    Hospitals in developed countries optimize resources by using 

scoring models to assess condition and needs of individual 
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patients. One such model uses Early Warning Scores (EWS) 

introduced by Morgan RMJ et al. [11-12]. It evaluates 

abnormality of vital signs that can be measured noninvasively. 

Each vital sign is assigned a sub-score based on how abnormal 

the measurement is, and an overall score is then estimated 

through summation of all sub-scores. Surveillance frequency 

and type is then adjusted based on the overall score. The model 

is widely applied, but it is yet to be standardized even on 

national plans [13-14]. 

 Bispebjerg Hospital, and the rest of the capital region of 

Denmark use a modified version of the model called ViEWS, 

which was introduced by Prytherch et al [15], and is presented 

in Table I.  Although present in the model, evaluation of the 

central nervous system (CNS) is omitted as a vital sign in this 

study, because it is registered inconsistently at varying time 

interval and evaluated subjectively by staff 

Assuming all vital signs are normal, each vital sign will have 

a sub-score of 0, resulting in EWS being 0, and nurses will 

check on the patient at least every twelve hours. Abnormality 

increases surveillance times significantly, and ranges from 

follow-ups every 12 hours by nurses to follow-ups every thirty 

minutes by on-call physicians if a score above 8 is reached, as 

illustrated in Fig 1. The on-call physician takes over 

surveillance once a score of 6 is reached.  

ICUs do not have models for scoring physiological 

conditions of patients, because staff is always present close to 

the patient and ready to react. In the context of following up 

previous admissions, ViEWS may however still be a useful 

measure by giving an indication of what the patients’ overall 

health condition was throughout the admission. 

 

 
Fig. 1. Surveillance based on Early Warning scores 

II. PATIENTS 

Data was extracted from the hospital’s database system for 

fifty randomly selected patients admitted to the ICU with 

primary cause of admission being respiration insufficiency, 

cardiac arrest or sepsis. These causes for admission were taken 

into consideration, because the patient groups they represent are 

frequently admitted into the ICU, and have a higher risk of 

complications and deterioration during admission. All patients 

were admitted and discharged in spring 2013. For patients to be 

included in the study, the duration of admission had to be at 

least one day, EHR needed to be available, and the following 

vital sign parameters had to be recorded: 

 

• Pulse 

• Respiration Rate 

• Systolic Blood pressure  

• Oxygen Saturation level 

• Oxygen inspired (optional) 

• Temperature 

 

Forty-four subjects fulfilled the inclusion criteria, while the 

remaining ones did not have recordings for two or more vital 

sign parameters. The admission time for included patients was 

10 ± 8 days. Their average age was in 65.68 ± 10.65 years. 

III.   METHODS 

A. System Overview 

The PCT is composed of two independent modules that are 

merged at the very end, as illustrated in Fig 2. The left branch 

is dedicated to estimating the patient’s condition over time 

through processing of vital signs measurements. The right 

branch extracts and separates entries from the EHR after 

locating timestamps using NLP.  

Lastly, a timeline is displayed which shows the patient’s 

physiological condition along with markers of entries. 
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TABLE I: EWS Table used in Capital Region of Denmark  
 Sub score 

Type (T) 3 2 1 0 1 2 3 

Pulse (bmp) <41  41-50 51-90 91-110 111-130 >130 

Respiration Rate (bmp) <9  9-11 12-20  21-24 >24 

Temperature (oC) <35.1  35.1-
36.0 

35.1-
36.0 

36.1-
38.0 

38.1-39 >39 

Systolic Blood Pressure 
(mmHg) 

<91 91-100 101-110 111-219   >219 

Oxygen Saturation Level (%) >92 93-94 94-95 >95    

Inspired O2    Air  Any O2  

Central Nervous System    Alert   Voice 
Pain 

Unresponsive 
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B. Early Warning Score Estimation 

Medical monitoring devices have built in alarm systems that 

will detect immediate physiological changes. The PCT tool 

therefore focuses on progress of a patient’s condition over hours 

and days.  

The first step is collecting data for vital signs listed in section 

2, and pre-processing them. Unreliable and highly improbable 

measurements, such as oxygen saturation below 70% are 

removed, because they are likely caused by electrodes falling 

off and medical staff renders them as unreliable. Table II 

consists of a list of ranges that are allowed for each vital sign. 

Since the hospital uses different devices, which are sometimes 

also switched, it was not possible to get boundaries based on 

equipment specifications. Instead, the boundaries were defined 

by ICU staff as the values they regard as reliable. Data is then 

further downsampled into hours because we are interested in 

trend over time.  

 
TABLE II: Included ranges for vital signs 

 Cut-off ranges 

Type (T) Low High 

Pulse (bmp) - 200 

Respiration Rate (bmp) - 45 

Temperature (oC) 27 45 

Systolic Blood Pressure (mmHg) - 310 

Oxygen Saturation Level (%) 70 100 

Inspired O2 - - 

 

Fig 3 shows hourly average vital sign measurements for a 

patient who was in surgery for peritonitis and was admitted in 

the ICU due to septic shock – The most unusual development 

in vital signs throughout the admission being around fifty hours 

after admission, where pulse significantly increases and systolic 

blood pressure begins to rise. The sudden rise in pulse is 

described in the EHR, but the cause for it is not clear. It is likely 

related to the patient receiving noradrenaline from beginning of 

the admission until about the hour where pulse starts increasing. 

Pulse successfully decreased continuously after reintroducing 

noradrenaline with amiodarone. Likewise, the increase of pulse 

around ninety hours is reduced with amiodarone. 

 

 
Fig. 3. Hourly average vital signs measurements for a patient 

Next, a quality check is performed to ensure that every vital 

sign has sufficient data points. E.g. for respiration rate, there are 

sufficiently many data points if in average two breaths per 

minute (bpm) are recorded, while temperature changes slower, 

so it is sufficient with a reading every five minutes. As a quality 

measure, each hour of admission is then denoted by one of four 

classes (1-white, 2- orange, 3-yellow, 4-green) ranging from 

respectively “non-existent” to “ideal or above”. 

 

 
Fig.4. Quality control for a patient (1-white=non/existent, 2-

orange=poor,3-yellow=ok, 4-green=ideal or above) 

Fig 4 shows quality control of vital signs measurements for 

the same patient. The two periods with lack of monitoring of 

oxygen saturation is due to the parameter being measured with 

a non-invasive ventilation (NIV) device. In both cases, NIV was 

temporarily removed because it was obtrusive, and staff wanted 

to test if the patient is improving. With data validated and 

present, the EWS timeline can now be created.  

vh(VS) describes the average value of all measurements for a 

vital sign, VS, throughout an hour, h – each hour starting at hstart 

and ending sixty minutes later at hend. In addition, the amount 

of samples made throughout an hour, ch,VS, are noted for the 

previously mentioned quality control, as sampling varies 

among medical devices used. The downsampling is expressed 

by equation (1), where XVS is a collection of all measurements 

for a given vital sign during an admission, and i is the index at 

a given time. 

 

            𝑐ℎ,𝑉𝑆 = ℎ𝑒𝑛𝑑 − ℎ𝑠𝑡𝑎𝑟𝑡          

𝑣ℎ(𝑉𝑆) =
1

𝑐ℎ,𝑉𝑆
∑ 𝑋𝑉𝑆(𝑖)

ℎ𝑒𝑛𝑑

𝑖=ℎ𝑠𝑡𝑎𝑟𝑡

, 

(1) 

 

Once the hourly average for a vital sign has been estimated, 

vh(VS), the value is directly translated into a vital sign sub-

score, SSVS, through lookup in Table 1. I.e. a systolic blood 

pressure of 95 results in SSVS being 2. The hourly EWS, EWSh, 

is then estimated by equation (2) as the sum of SSVS for all vital 

signs.   

𝐸𝑊𝑆ℎ = ∑ 𝑆𝑆𝑉𝑆(𝑣ℎ(𝑉𝑆))

𝑉𝑆=6

𝑉𝑆=1

 

 

(2) 

Fig 5 illustrates EWS timeline for the same patient as in 

previous examples. The x-axis is the time since admission, and 

the y-axis is the patients’ EWS. Each hour is represented by a 

rectangle. Green rectangles indicate that there are sufficient 

measurements for all vital signs; and are otherwise orange with 

the EWS value zero. The areas with missing data are kept in the 

graph to emphasize abnormality of missing surveillance, which 

in many cases was due to examinations, surgeries and tests.  

Fig. 2. Patient Condition Timeline (PCT) overview with 

section numbers under which methods are described in detail.  
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Fig. 5. EWS timeline for a patient 

C. Entry Extraction from Electronic Health Records 

Based on the study population, vital sign measurements alone 

are not enough to explain which and when events occur as there 

can be many reasons for abnormalities in vital signs. The next 

best thing is to extract text from EHR, which is continuously 

being updated by medical staff throughout admission whenever 

changes occur.  

With each change, the internal software automatically 

generates a timestamp (Fig 6). The updating policy makes it 

safe to assume that abnormal changes in vital signs are 

documented shortly after their occurrence. Consequently, the 

EWS timeline can be tied to the patient’s EHR. 

 

 
Fig. 6. Automatically generated timestamp example. Date and Time 

can only change in numbers while department may not be present, 

but if it is, it can consist of one or several words 

All entries are extracted using a regular expression that 

matches only timestamps assigned by internal hospital 

software. A regular expression is a search pattern that is formed 

from a sequence of characters and symbols. The pattern 

traverses through the desired text and responds only to content 

that matches it. The following expression combined into one 

sequence of characters and symbols (excluding text after the 

hashtag), matches all generated timestamps for the software 

used at Bispebjerg Hospital (Fig 7): 
 

^([0][1-9]|[1-2][2-9]|[3][0-1]  # Day of month 

.([0][1-9]|[1][0-2]).    # Month 

1[2-3]      # Year of interest 

[a-zA-ZæøåÆØÅ\s.]*    # Department 

([0-1][0-9]|[2][0-3]):[0-5][0-9]# Hour of entry 

The pattern requires a text line to start with a number between 

01-31 (day) followed by a period, then a number from 01-12 

(month), followed by another period, and finally either a 12 or 

13 (year, which is only denoted by two numbers). Next, there 

may or may not be a department name(s) listed which are 

unknown in both length and content, although they do not 

contain numbers. The timestamp always ends with a time 

ranging from 00:00 to 23:59. Applying above regular 

expression on the same patient’s EHR, confirms that entries are 

made irregularly, as it is seen from Fig 7. 

 

 

Fig.7: First part of timeline over extracted entry timestamps for a 

patient EHR 

    Each patient’s EHR contained 115.75 ± 84.64 (n=5093) 

mentions of date, time or a combination of these. From these, 

69.93 ± 50.72 (n=3077) were autogenerated timestamps of 

interest. Although it is common for staff to write dates and time 

inside the EHR, the regular expression correctly extracted all, 

and only, the autogenerated timestamps. Comparing manual 

time entries with the autogenerated ones, there were two 

primary causes for this performance. 

 

• Staff always omits the year when referring to dates.  

• No manual entries began a single line with a date and 

ended it with a timestamp. 

D. Combining EHR Entries with Estimated Physiological 

Condition 

The final step is making an overlay of EHR entries over the 

EWS timeline (Fig 8). After extracting all entries, the ones from 

same hour are merged. Next, for every hour on the timeline, a 

border is created around the EWS and the square becomes 

interactive, so that it opens the corresponding entry, when 

pressed on. 

 
Fig. 8. EWS timeline with entry overlays (top) with example of EHR 

opening an entry (bottom) 
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Ideally, one would extract all entries and categorize them 

based on type (e.g. diagnosis, event, follow-up, procedure, visit, 

etc.), and thereby reduce redundant information.  This was not 

possible with the current dataset as text often contained spelling 

errors and was phrased in keyword format with non-standard 

abbreviations that were only familiar to internal staff members. 

 

IV.   RESULTS 

The raw vital signs highlight local changes in a single 

parameter but fail to assess the overall condition, as it can be 

seen in Fig 9. It is clear from the raw signals that the patient 

receives induced oxygen support from 26 to 42 hours into the 

admission, but they do not show that during this period, the 

patient’s condition gradually and significantly worsened at 28 

hours before slowly improving. A nearby entry reveals that the 

deterioration was caused by exhausting exercises with a 

positive expiratory pressure (PEP) device.   

 
Fig. 9. Raw vital signs (top) vs EWS (bottom) for the same patient 

Similarly, it is more difficult from the raw signals to see that 

the overall health condition is generally improving over time 

especially after about 100 hours into the admission. At this 

point an entry states that infection parameters have started 

decreasing for the first time since the admission, and that the 

patient appears to be improving. The patient is discharged and 

moved to another department with a stable condition and an 

EWS of 0. It is however important to note that the patient is 

overhydrated, still shows measurable signs of infection, has 

atrial fibrillation and is fed through a feeding tube. The fact that 

all vital signs are normal is therefore heavily due to medication 

and electrical devices.  

The EWS timelines for other patients are similar in shape and 

data, but not useful for patients who are discharged shortly after 

being admitted, because their condition tends to be stable 

around the same EWS. This also raises questions whether the 

outcome can be deduced based on the timeline without reading 

entries. From the dataset, 29 patients survived and the 

remaining 15 died. 

 

 
Fig.10. Patient outcome based on EWS and duration of admission 

Fig 10 shows the relationships between EWS when the 

patient is admitted (x-axis), released (y-axis) and stability 

(standard deviation) during admission (z-axis). Length of stay 

is represented by size of circle. 

The length of admission is insignificant to outcome, which is 

in accordance to our related literature findings [16]. EWS on 

the other hand appears to be a better indicator, especially when 

the condition is stable. The standard deviation of EWS for 

survivors was lower (1.96 ± 0.37) than for deceased patients 

(2.19 ± 0.31) which is also documented in other studies [17-18].  

 To investigate relationships between parameters further, a 

regression tree is computed for the parameters {EWS at 

admission, EWS at discharge, standard deviation in EWS, 

Age}. Length of admission was originally included, but is 

discarded because it quickly causes overfitting. 

 
 
Fig. 11: Regression tree model for outcomes of ICU patients in study 

The regression tree reveals three pure groups. If the person at 

discharge had a final EWS above 7 and is older than 61, the 

person died. If the person on the other hand had a final score of 

7 or lower and were younger than 66, they survived.  

The last branching are patients with final EWS lower than 8 

but older than 68. Interestingly, these patients are split into two 

age groups where the older group has higher survival rate – The 

reason for this is unknown, but one assumption is that the 

younger of the two groups appears to have a long history of 
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illnesses and high alcohol consumption while the older patients 

are healthier prior to ICU admission. 

 

V.   DISCUSSION 

In its present state, the PCT is a retrospective review tool that 

graphically enables staff to see changes in the patient’s 

condition. It can work as an independent tool, but could also be 

implemented as module in an existing CIS, since CIS already 

contain much of the data mentioned in this study. In the used 

setup, the existing CIS contained all data, but the only review 

option is to look at vital signs individually over short intervals 

at a time. The model is currently suitable in the ICU where vital 

signs are monitored with precise electronic devices that are 

connected to patients spending most time in bed. Once 

unobtrusive wearable monitoring devices become more 

available in other departments, the modelling will require more 

sophisticated processing that takes movement and body 

position into account, since both have influence on vital signs.  

Modelling of physiological condition in this study addresses 

all patients and therefore uses the EWS approach. Other models 

should be applied when detecting events and dealing with 

specific groups where it makes sense to combine multiple 

modalities as it is the case with sepsis [19-21]. Since the EWS 

model is designed to detect significant abnormalities, it may be 

too insensitive for smaller changes and pattern behavior. The 

main reason for choosing EWS in this study is, that the model 

is already widely applied, and with help of wearable 

technologies, the long-term aim is to monitor patients outside 

the ICU. This enables automatic monitoring of patients, reduces 

manual surveillance by medical staff and allows staff to focus 

on more demanding tasks. Missing data is serious concern since 

EWS can only be estimated if all values are present. This is 

currently addressed through the quality control measure. 

Further adjustments were not considered because the absence 

of data could often be traced to ongoing interventions by staff. 

It is furthermore expected that within few years, unobtrusive 

wearable devices, that can measure most vital signs, will be 

available for continuous monitoring – leading to either all or no 

data being available simultaneously depending on connection. 

Comparing the EWS timeline with individual EHR reveals 

that the PCT model can be improved if data about medication, 

disease history and electronic devices in use are included. A 

common occurrence within the dataset has been that sometimes 

a vital sign appears normal, but only does so because a 

medication or a medical device, such as a respirator, supports 

the body. Since the model is incomplete in this regard, EWS 

cannot currently be used to determine when patients can safely 

be discharged. Nevertheless, the existing EWS model is a 

promising starting point, as the regression tree in Fig 11 shows. 

Looking back at national guidelines from Fig 1, an EWS score 

of 6 and above is considered critical, and hence the physician 

takes over the surveillance; Similarly, the automatically 

generated regression tree for our population starts by separating 

patients at an EWS of 7.  

Due to the complexity of the content in EHR entries, it was 

not possible automatically detect events in the EHR and map 

them against the timeline.  It was nevertheless still possible to 

use NLP to extract full entries and map them against the EWS 

timeline, allowing manual inspection of what caused 

physiological changes at any given time. In many cases this was 

sufficient to find cause and resolution to development around 

events.  

Although the dataset is rather small, patterns are already 

visible, indicating that it is possible to make an automatized tool 

for quality control of past admissions. It also confirmed that the 

ICU is fully in control of what goes on within, but is 

overwhelmed and unaware by the amount of data available per 

patient. Thus, it is necessary to develop tools that combine the 

data in a way that is easily understandable to most medical staff. 

The selected population has, from the hospital’s point of 

view, increased risk for complications and deterioration. It is 

therefore safe to assume that their condition fluctuates more 

than for average patients. This affects observations because 

deterioration is more prominent and therefore easier to detect. 

On the other hand, it is still visible through standard deviation 

and Fig 10, that deceased patients were more unstable than 

discharged patients. Since the data is gathered from an ICU 

where surroundings are well controlled, staff may be a major 

contributor to fluctuations in their efforts to improve 

continuously deteriorating patients.    

The next steps in development, prior to inclusion of decision 

boundaries are event registrations by staff, and modelling the 

effects of medication and comorbidities. While the data for 

comorbidities and medication are available in this study, they 

are omitted due to population size. The patients were admitted 

for similar reasons, but their initial co-morbidities, and the 

medication they receive, are widely distributed. Therefore, few 

received the same treatments, and when they did, various other 

factors also affected the outcome. Unfortunately, with a 

population of 44 patients who are admitted from different 

departments, there is little overlap, making it impossible to 

draw unbiased conclusions.  

 

VI. CONCLUSION 

The PCT tool demonstrates a novel approach to combining 

EHR with vital signs measurements to automatically generate 

an overall overview of a patient’s development throughout an 

admission. The EWS model proved viable for detecting 

changes in physiological condition, making it possible to 

evaluate whether health is improving, stable or deteriorating.  

The overall analysis of mortality among patients in the 

dataset revealed that EWS of 8 and above is the most critical. It 

also showed the next focus of development should be on 

including medical history to improve the model for patients 

who have had longer history of illnesses. 

The next step will be improving the model for physiological 

condition by including medication, comorbidities, and disease 

history. This can ideally be done through a clinical study in 

which experienced staff registers events and manually scores 

the patient’s condition in fixed intervals, allowing for a better 

validation of the model.   
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Abstract— We designed a queue-based model, and investigated 

which parameters are of importance when predicting stroke 

outcome. Medical record forms have been collected for 57 ischemic 

stroke patients, including medical history and vital sign 

measurement along with neurological scores for the first twenty-

four hours of admission. The importance of each parameter is 

identified using multiple regression combined with a circular 

queue to iteratively fit outcome. Out of 39 parameters, the model 

isolated 14 which combined could estimate outcome with a root 

mean square error of 1.69 on the Scandinavian Stroke Scale, 

where outcome for patients were 36.75 ± 10.99. The queue-based 

model integrating multiple linear regression shows promising 

results for automatic selection of significant medically relevant 

parameters. 

 

I. INTRODUCTION 

 Stroke occurs when brain blood flow is compromised. This 

happens either through bleeding (hemorrhage) or when a 

formed blood clot prevents blood supply to tissue (ischemia). 

At least 80% of incidents are ischemic, and treatable with 

intravenous recombinant tissue plasminogen (rt-PA), also 

known as alteplase, to dissolve blood clots. The dosage 

guideline is based on the patient’s weight, and is generally 0.9 

mg/kg administered over an hour. Reducing the dosage to 0.6 

mg/kg can insignificantly decrease mortality but in exchange 

for an increase in disability [1]. Untreated, two million neurons 

die every minute until brain blood flow is restored [2]. 

Symptoms of ischemic stroke may be language difficulties, 

visual loss, loss of motoric functions and numbness. The 

symptoms heavily depend on where the ischemia is formed, and 

are noticeable in seconds to hours after onset.  

 Previous studies have investigated the contributions of 

individual parameters to outcome in ischemic stroke patients, 

examining e.g. treatment time, vital signs, glucose levels [3-5]. 

An already incorporated finding is, that treatment with rt-PA 

4.5 hours after onset increases mortality [6]. Once this window 

of opportunity runs out, hospitals advise physicians not to 

administer rt-PA.  

 On admission, and the next 24 hours, neurological 

functionality is assessed using Scandinavian Stroke Scale (SSS) 

scores, which examine eight parameters explaining the patient’s 

progress. Combined, the score can be between 0 – 46, with 46 

representing no visible disabilities being present. In this study, 

we apply multiple linear regression combined with circular 

queue data structures to quantify which of already monitored 

parameters contribute to stroke outcome after 24 hours.  

II. METHODS AND MATERIALS 

 

A. Patients  

In the years 2013 – 2015, Zealand University Hospital treated 

792 ischemic stroke patients with alteplase. Data was collected 

for sixty-four randomly selected patients, of which seven were 

excluded because of missing data. The final population is 

therefore 57 patients. All data, listed in Table 1, were recorded 

manually by nurses and physicians as part of standard hospital 

treatment routine, following national guidelines for intravenous 

thrombolysis treatment during stroke. All variables are only 

registered once, except for vital signs and assessment of 

neurological scores. Blood pressure, pulse and SSS are 

registered every fifteen minutes for the first two hours of 

admission. Frequency reduces to once every thirty minutes until 

the eighth hour of admission, and then once per hour for the 

remaining sixteen hours. Every other time measurements are 

registered, temperature and oxygen saturation are also included; 

except for the hours between second to fourth, fourth to sixth 

and sixth to eighth.   

 

B. Approach overview 

Hand-written medical forms have been acquired for each 

patient and digitized. The digitized features, along with derived 

features are then used as input in a circular queue. Features are 

iteratively tested in a multiple regression model to fit patient’s 

stroke outcome after 24 hours. 

Form 
Acquisition

Digitalization 
+ Validation

Feature 
Queue

Fit model
dequeue

enqueue

Derived 
features

Historical 
features

Enqueue features

 
Fig 1: Approach overview 
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C. Data digitalization and validation  

Data is then validated to ensure that it was not corrupted 

during the digitization process. Parameters that were only 

recorded once, were further examined to see intervariable 

relationships, as illustrated in Fig 2. It illustrates a correlation 

matrix between variables through colors ranging from dark blue 

to yellow, representing correlation coefficients from -1 to 1. 

Obvious correlations are visible, such as patients having a 

history of hypertension are on anti-hypertensive medication (r 

=0.60, p<0.01). Similarly, clopidogrel, which is an antiplatelet 

used to prevent stroke, was in this population used by patients 

with previous incidents of transient ischemia attack (TIA) (r = 

0.63, p<0.01). The time from hospital arrival to treatment was 

slightly shorter for females (r = -0.35, p<0.01), and for patients 

who arrived quicker to the hospital (r = -0.31, p<0.02). The 

shorter pre-hospitalization time indicates fewer complications 

in terms of compliance, leading to quicker treatment after 

arrival at the hospital. 

D. Derived Features 

Potential features are also derived from SSS and vital signs 

measurements for systolic blood pressure (SBP), diastolic 

blood pressure (DBP), pulse, temperature and oxygen 

saturation level. For each parameter, mean and standard 

deviation are estimated during the first two hours of admission. 

Also, the correlation between SBP and DBP is examined as a 

higher correlation may be associated with better outcome [7]. 

So, in addition to the features from Table I, following other 

features are also examined:  

 

• Mean and Standard Deviation: DBP, SBP, Oxygen 

saturation, Pulse, SSS, Temperature. 

• Correlation coefficient between DBP and SBP. 

 
Fig 2: Intervariable relationships through correlation 

TABLE I: Available data from neurological, vital signs, and medical history forms  
Type Parameter Population 

(n=57) 
Type 

Profile Age (years) 68.21 ± 11.92 Numeric 

 BMI (kg/m2) 26.65 ± 5.25 Numeric 

 Gender (Female) M=32 F=25 Ordinal Binary 

Treatment at hospital Modified Ranking Score (mRS) onset  0.42 ± 1.02 Ordinal (0-5) 

 Onset to arrival (min) 108.12 ± 47.34 Numeric 

 Arrival to treatment (min) 30.63 ± 14.24 Numeric 

 Dosage rt-PA (mg) 69.91 ± 13.40 Numeric 

 Glucose (mmol/l) 7.04 ± 2.18 Numeric 

Vascular risk factors Arterial fibrillation 18 % Ordinal Binary 

 Diabetes  16 % Ordinal Binary 

 Heart insufficiency 8 % Ordinal Binary 

 Hypertension 61 % Ordinal Binary 

 Hyperlipidemia 79 %  Ordinal Binary 

 Peripheral arterial disease 4 % Ordinal Binary 

Previous events Acute myocardial infraction (AMI) 11 % Ordinal Binary 

 Previous apoplexy 50 % Ordinal (1-3) 

 Transient ischemic attack (TIA) 11 % Ordinal Binary 

Relevant drugs Acetylsalicylic acid 23 % Ordinal Binary 

 Clopidogrel 11 % Ordinal Binary 

 Dipyridamole 2 %  Ordinal Binary 

 Anti-hypertensive 37 % Ordinal Binary 

Habits Alcohol (exceeding national recommendation) 11 % Categorical 

 Smoking (prev. or currently) 51 % Ordinal (1-4) 

Outcomes Bleeding complications 2 % Ordinal Binary 

 Modified Ranking Score (mRS) after 3 months 2.32 ± 1.75 Ordinal (0-6) 

Neurological assessment (24H 
monitoring) 

Scandinavian Stroke Scale, NIH Stroke Scale admission  Numeric 

Vital signs (24H monitoring) pulse, temperature, blood pressure, oxygen saturation level  Numeric 
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E. Feature selection and classification  

Queues are data structures where data is accessed like their 

real-world equivalents. In first-in-first-out queues, data is being 

processed in the order in which they arrived. The queue 

becomes circular when elements are placed at the back into the 

queue after they were taken out. Queues are in this study used 

for storing features that are to be tested in the fitting model. In 

each iteration, a feature is dequeued (removed from the queue), 

tested in a fitting model, and either kept as part of the model or 

enqueued (put back at the end of the queue).  

The fitting model is a multiple linear regression model with 

mixed nominal and continuous variables, and SSS after 24 

hours as the dependent variable. When a new feature is 

introduced during an iteration, its confidence is tested and the 

feature is included in the model if its p < 0.20. If the root mean 

square error (RMSE) is furthermore lower than that of previous 

iterations, the current fitting model is stored as the best so far. 

If the p > 0.20, the feature is enqueued again. Since the entire 

regression model is updated in every iteration, the estimate and 

confidence will also be updated. Therefore, a correction step is 

necessary. When the entire queue is tested without any changes 

to the model, all features with confidences of p > 0.20 are 

enqueued again. This results in a continuously improving fitting 

model which includes features with confidences up to p < 0.20. 

The process is illustrated in Fig 3. 

QiikikiiiH vvvSSS   ,,,22,110,24 ...

v4

vk

v3
Front

Rear

p(vk) < pThresh  
Enqueue p(vk) > pThresh

lastImproved++

lastImproved < 2xQ.length
yes

yesDequeue vk

lastImproved=0
Add vk to model

no

RMSE < minRMSE

minRMSE = RMSE
bestModel = currentModel

yes

no

Fig 3: Scandinavian Stroke Scale outcome fitting model where features 

are iteratively tested in a multiple regression model with a circular 

queue providing features 

III. RESULTS 

Before investigating which parameters are of greatest 

importance to stroke outcome, the system’s robustness is 

verified. Depending on the order in which variables are 

introduced to the regression model, the final model is likely to 

vary. This is because variables are added and removed one by 

one, and it is possible that interaction between variables are 

overlooked. In Fig 4, the orange line outlines fitting progress 

when variables are provided in random order. To verify the 

fitting, it is tested again (blue line), but with variables in the 

queue being provided in the order of their confidence from the 

previous model.  

 
Fig 4: Optimizing fitting model for stroke outcome. Orange model is 

fitted with variables added randomly to the model. Blue model shows 

fitting with variables from previous best-fit model. 

In both cases, the best model included the same variables 

and fitting did not improve after reaching RMSE = 1.69. The 

reason for RMSE being 5.23 already from start in the random 

model is because the first random variable was onset SSS – 

which is highly correlated with SSS at discharge (r = 0.86). The 

mean SSS in the first two hours is even more correlated with 

outcome (r=0.93), which is why the ordered model starts at 

RMSE = 2.6. The SSS readings from the first two hours alone 

are enough to fit outcome with RMSE = 2.01, but by including 

other variables, a more accurate fitting is achieved. 

 

 

Table II shows the variables that are included in the 

determined model. Variables with significant confidences (p < 

0.05) are highlighted bold. The insignificant ones are not 

removed as they contribute through interaction. The t-statistics 

clearly show the contribution differences between SSS 

measures and the remaining variables which are quite close to 

each other. The greatest contributor to poor outcome for the 

population was peripheral arterial disease, and although it could 

make sense, it is important to note that only two patients in the 

population had the diagnosis (see Table I).  

TABLE II: Best-fit multiple linear regression model for 

stroke outcome for dataset population with RMSE 1.69 
Variable Estimate SE t-Statistic p-Value 

(Intercept)  6.90 3.95  1.75 0.09 

SSS_onset -0.43 0.07 -6.03 <0.01 

Hyperlipidemia -0.94 0.61 -1.53 0.13 

Arrival2Treatment -0.04 0.01 -2.13 0.04 

Alchohol_High -1.30 0.93 -1.40 0.17 

SBP_std -0.05 0.04 -1.33 0.19 

Dosage -0.05 0.03 -1.60 0.12 
Pulse_mean -0.05 0.02   2 52 0.01 

SSS_mean  1.42 0.08 17.23 <0.01 

mRS_onset  0.50 0.27 1.86 0.07 
PrevTIA  1.70 0.80 2.13 0.04 

Age -0.04 0.03 -1.43 0.16 

PeripArterDisease -4.94 2.08 -2.37 0.02 

BMI   0.20 0.10  2.04 0.04 

BP Correlation 1.35 0.79 1.72 0.09 
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Table III demonstrates the fitting model when data about 

SSS data is excluded. The intra-variable estimate ratio 

increases, but RMSE becomes 6.30. Most variables are the 

same as in the best-fit model from Table II.  

 

IV. DISCUSSION 

Through a combination of circular queuing and multiple 

linear regression, it was possible to reduce dimensionality and 

deduce important factors of outcome for stroke patients. The 

main limitation of the approach lies in the possibility of 

overseeing contributions of variables when combined. 

Variables can be left out if they together significantly contribute 

to the model but individually, in no other combination have a 

confidence of p < 20.  

Stroke outcome can primarily be derived by SSS which 

evaluates the severity of the stroke and its progress. 

Contributions of other factors are much smaller and possibly 

overseen if they are well regulated. As an example, the arrival 

to treatment would be considered insignificant if all patients 

were treated at onset, because the dataset lacks representation 

on what happens when the patient has been left untreated for 

hours after onset.  

From the vascular risk factors, most influential parameters 

were hyperlipidemia, heart insufficiency, hypertension and 

peripheral arterial disease. While hyperlipidemia and 

hypertension were well represented in the dataset, only two 

patients suffered from peripheral arterial disease and four 

patients had heart insufficiency.   

In terms of treatment, dosage, modified ranking score 

(mRS) and arrival at hospital to treatment start were the most 

important. It is interesting that onset to arrival at hospital was 

discarded in all scenarios, but arrival to treatment was not. A 

plausible explanation is that, once patients are admitted, 

treatment is initialized quickly unless difficulties occur. If the 

patient is restless, the patient needs a sedative before CT scan 

can be performed and the stroke type verified.  

From the vital signs, pulse and SBP contributed to the model 

along with BP correlation. In the best-fit model that includes 

SSS, BP correlation positively contributes to outcome, while it 

has the opposite effect in the model without SSS. In both cases, 

the contribution is insignificant and serves as an interaction 

variable.   

The results presented in tables II and III demonstrate that 

individual estimate contributions of variables can be linked to 

the model but not directly to SSS. Although high alcohol 

consumption reduces outcome by -8.41, it only reduces 

outcome by that much in a model that exactly includes all 

variables from table III. From a medical point of view, the most 

unexpected results were increased BMI and previous TIA being 

linked to a more positive outcome in the dataset.  

V. CONCLUSION 

The presented queue-based modelling algorithm narrowed 

down variables of importance for stroke outcome from 39 to 14 

variables. Data about SSS from the first two hours alone 

lowered RMSE to 2.01 but the remaining variables further 

improved accuracy and lower RMSE. Although half of the 

identified variables had a significance of p < 0.05, the less 

significant variables contributed to lowering RMSE from 2.01 

to 1.69. Some classes were underrepresented in the dataset, 

such as peripheral arterial disease and heart insufficiency, 

making them unreliable. The next step is therefore to expand 

the dataset to include more patients, allowing a more realistic 

determination of parameters involved in stroke outcome.  

The designed queue-based model combined with multiple 

linear regression shows promising results as a general approach, 

with wide applicability, for automatic selection of significant 

parameters. 
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Abstract— This study investigates which parameters most 

accurately identify diabetes mellitus patients from data of the first 

24 hours of admission to the stroke unit. Data consists of medical 

records after admission, and forms in which vital signs and 

admission progress are registered.  It includes 72 patients of which 

22 had a pre-admission diagnosis of DM. Through bidirectional 

feature selection, 12 features were isolated and used in a quadratic 

Support Vector Machine classifier. The classifier successfully 

identified DM diagnosed patients with an accuracy of 87.5%.  

I. INTRODUCTION 

Stroke is one of the most prominent causes of death in 

developed countries. It is estimated that around 85% of cases 

are ischemic, meaning that the blood supply to the brain is 

blocked by clots closing the arteries. Diabetes mellitus (DM) 

after stroke is associated with poor outcome weeks and months 

after patients are discharged, but determining whether a patient 

has DM is a challenge since the endocrine and cardiovascular 

system behave abnormally. A study by Gray et al found that 

even glycated hemoglobin in the blood (HbA1c), which reflects 

blood glucose over several prior weeks, is not sensitive enough, 

and that potentially one third of stroke patients may have 

unrecognized DM [1]. 

This study investigates an automatic data-driven approach to 

determining the prominent factors in separating DM from non-

DM stroke patients through use of the data that is already 

available in stroke units. Achieving a high accuracy in 

automatic separation the two groups is the first step towards 

identification of unrecognized DM. 

II. METHODS 

Data were obtained for 72 patients, of which 22 were 

considered having DM because of registered information in the 

national patient database, previous medical records or the 

evaluation form during admission. It included profiling (age 

weight etc.), treatment (stroke onset time, time from arrival to 

treatment, dosage etc.), vascular risk factors, previous stroke 

events, relevant prescribed drugs, neurological assessment, 

image findings and statistical features derived from vital signs 

– such as mean and standard deviation for systolic/diastolic 

blood pressure, pulse, temperature and oxygen saturation level. 

Significant features are determined by using bidirectional 

feature selection, where forward selection includes features that 

increase classification accuracy of a support vector machine 

(SVM) classifier, that is trained to distinguish DM from non-

DM post-stroke patients. The classifier is tested with data for 

the entire twenty-four hours, and for only the first two hours. 

The SVM was quadratic with a kernel scale of 2.77 in the final 

setup. Training was done with 5-fold cross validation, with at 

least 4 DM patients presented in each fold. Data is standardized 

prior to training through estimation of z-scores, because of ratio 

differences in parameters. 

III. RESULTS 

Best performance is obtained when using vital signs for the first 

two hours of admission. The final model consists of Twelve 

parameters: BMI, time from onset to hospital arrival, time from 

arrival to treatment, previous apoplexy or transient ischemic 

attack, dosage, hypertension, glucose, mean and standard 

deviation for systolic and diastolic blood pressure. 

  Predicted class  

A
ct

u
al

  n=72 non-DM  DM  

non-DM  47 3 50 

DM 6 16 22 

  53 19  

Fig 1: Confusion matrix for Support Vector Machine classification, 

given medical history and two hours of admission data 

 

Fig 1 shows the confusion matrix for the SVM classifier when 

above features are used with up to two hours of vital signs data. 

Overall obtained accuracy is 87.5%, which is decent, but it is 

important to keep in mind that slightly over two third of the 

population belong to the same class.  

IV. DISCUSSION 

Using signal processing techniques, we can isolate features of 

importance when dealing with diseases such as DM, allowing 

us to optimize and improve recording of data. In this study, 

bidirectional feature selection found that even four blood 

pressure readings per hour can have significant impact on 

separating DM from non-DM patients in post-stroke settings. 

When increasing vital signs measurements from two hours to 

twenty-four hours, the accuracy drops to 80.6% because the 

patient groups have more differences once stroke occurs e.g. 

one group’s autonomic nervous system is more affected than 

the other’s. As time passes however patients become stable and 

similar, making them harder to distinguish. 
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Abstract— One third of stroke patients suffer from potentially 

unrecognized diabetes mellitus (DM) which is associated with 

increased morbidity and mortality if left untreated. This study 

investigates data from the first 24 hours of admission to the stroke 

unit, to identify the parameters most accurately identifying DM 

patients. Medical records of the first 24 hours after admission for 

acute ischemic stroke were collected and digitized. Totally, 72 

patients of which 22 had a pre-admission diagnosis of DM were 

included. Through bidirectional feature selection, 12 features were 

isolated and used in a quadratic Support Vector Machine 

classifier. The classifier successfully identified DM diagnosed 

patients with an accuracy of 87.5%. Our findings indicate that the 

differences in patient groups are greater in the first hours of 

admission and that the development of blood pressure is an 

important contributor.    

 

Index Terms— Biomedical monitoring, Diabetes, Diseases, 

Hypertension, Classification algorithms, Machine learning, 

Support vector machines 

I. INTRODUCTION 

TROKE is one of the most prominent causes of death in 

developed countries. The disturbance in blood supply to the 

brain frequently causes irreversible damage, making stroke the 

leading cause of disabilities in adults. Although stroke primarily 

affects elder people, it is a disease of all age groups depending 

on many factors such as lifestyle, medical history and genetics. 

It is estimated that 10-15% of stroke incidents are due to 

hemorrhage, while around 85% are ischemic, meaning that the 

blood supply to the brain is blocked by clots closing the arteries. 

When a stroke occurs, the symptoms are typically visible for 

observers in form of loss in motoric or language functions, or 

subjective to patients as visual disturbance or numbness in parts 

of the body. Depending on the location and severity of the 

stroke, signs and symptoms can be noticed in seconds to hours 

after onset.  

The standard treatment of ischemic stroke uses intravenous 

recombinant tissue plasminogen (rt-PA), also known as 

alteplase, to dissolve blood clots. The dosage is generally 0.9 

mg/kg with 10% as bolus, and the rest is administered 

continuously over an hour. Anderson et al. demonstrated that 

reducing the dosage to 0.6 mg/kg insignificantly decreases 

mortality but causes an increase in disability [1].  

Previous studies show that diabetes mellitus (DM) and 

hypoglycemia after stroke are associated with poor outcome 

weeks and months after patients are discharged [2-6]. A review 

 
 

 

by Luitse et al [5] has found that mortality in DM is not 

increased compared to patients without DM (non-DM) in the 

first three months but is increased for DM after one year, 

especially for patients younger than 50 years; Poor outcome 

could even be documented after six months in DM patients [2]. 

When it comes to disabilities Kaarisalo et al determined that 

recovery after stroke was slower for 51% of DM patients in a 

population of 1103 after a period of twenty-eight days [6]. 

There is an overrepresentation of patients with a diagnosis 

of DM in stroke units, but there are also cases where patients 

unknowingly have the disease. In the acute phase determining 

whether a patient has DM is a challenge since the endocrine and 

cardiovascular system behave abnormally. As an example, 

hyperglycemia is reported in 30-40% of stroke patients, of 

which most were non-DM [7-9]. A  potentially more accurate 

acute estimate of DM status is glycated hemoglobin in the blood 

(HbA1c), which reflects blood glucose over several prior 

weeks. Measurement of HbA1c is however not sensitive 

enough. Gray and coworkers studied sixty-two post-stroke 

patients for twelve weeks, where HbA1c was compared to oral 

glucose tests, and found that potentially one third of stroke 

patients may have unrecognized DM [10]. 

This study investigates an automatic data-driven approach 

to determining the prominent factors in separating DM from 

non-DM stroke patients through use of the data that is already 

available in stroke units. Achieving a high accuracy in 

automatic separation the two groups is the first step towards 

identification of unrecognized DM patients.  

II. PATIENTS  

A total of 792 ischemic stroke patients were treated with 

alteplase at the department of neurology at Zealand University 

Hospital in the period from 2013 – 2015. From these, data was 

collected for seventy-eight randomly selected patients and later 

expanded with additional thirteen randomly selected DM 

patients (See Fig 1). Nine non-DM patients were excluded 

because they were relocated to another hospital within few 

hours after admission. Additional nine patients, of which one 

had DM, were excluded due to missing data. A non-DM patient 

was excluded from the study due to history of gestational 

diabetes. The final population therefore consists of 72 patients. 

A patient was considered having DM if the information was 

registered in the national patient database, any previous medical 

records or the evaluation form during stroke-related admission. 

The collected and processed data were all recorded manually 
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by nurses and physicians as part of the standard hospital 

treatment routine, which follows national guidelines for 

intravenous thrombolysis treatment during acute ischemic 

stroke. Table I contains a list of all information gathered 

throughout the study.  

All measures are registered once per patient, except for the 

“24 hours monitoring” measurements which follow a different 

pattern depending on the variable. Blood pressure, pulse and 

Scandinavian Stroke Scale (SSS) are registered every fifteen 

minutes for the first two hours of admission. The frequency is 

then reduced to once every thirty minutes until the eight hour of 

admission, then once per hour for the remaining sixteen hours. 

Every other time that measurements are registered, temperature 

and oxygen saturation are also included; except for the hours 

between second to fourth, fourth to sixth and sixth to eighth. 

6393

792

Patients admitted to 
Department of 

Neurology 2013-2015

Ischemic stroke 
patients

78

73
Vital signs for 24h 

Relevant medical history
Neurological scores (NIHSS + SSS)

50 22 1

Grey-zoneDiabeticsNon-diabetics

Randomly selected 
patients

13
Randomly selected 

patients (biased 
towards diabetes)

 
Fig 1: Patient selection overview 

III. METHODS 

A. Approach overview 

The overall approach is illustrated in Fig 2, and starts with 

acquiring of hand-written evaluation forms for each patient. If 

neurological scores and vital signs measurement for twenty-

four hours are available, along with the medical history, they 

are digitalized, validated and corrected in case of obvious 

mistakes. The significant features are determined and used as 

input for a support vector machine (SVM) classifier trained to 

distinguish between DM and non-DM post-stroke patients. 

SVM classification is tested with data for the entire twenty-four 

hours, and for the first two hours. The two-hour period is tested 

partly to see if differences can be detected early in the 

admission, but also to see how the groups react to treatment 

during the first hour during – and shortly after – bolus is 

administered. 

 

Classification (24 hour test)

Data acquisition

Form 
aquisition

Filter 
patients

Digitalize 
Forms

Validate/correct data 

Intervariable cross 
correlation

Visualization

Extract raw history + 
admission  related features  

Derive features from 
vital signs and SSS

SVM
Feature 

selection 
(final 24 hours)

Validate 
values

Evaluation

Classification (2 hour test)

SVM
Feature 

selection 
(init. 2 hours)

Evaluation

 
Fig 2: Overall approach of study to identify potentially diabetic 

patients 

B. Data digitalization and validation  

The digitalization process from paper to digital data was split 

into three parts with respect to frequency of recording. Values 

that were only recorded once, were put into the same comma-

separated values (CSV) file, Scandinavian Stroke Scale (SSS) 

and vital signs into one, and finally the National Institutes of 

Health Stroke Scale (NIHSS) into its own file because the 

values that make up NIHSS are the only ones measured once at 

admission and once after 24 hours. Fig 3 illustrates this, where 

all papers for a patient make up three CSV files, which are in 

the end merged into a MATLAB file.  

Data are then visualized and validated to ensure that all have 

been correctly digitized, and aligned appropriately. Since some 

parameters are only recorded once, the intervariable 

relationships are also examined and illustrated in Fig 4. 

 

Vital signs + SSSVital signs + SSS

  NIHSS  NIHSS

   Evaluation   Evaluation

 
Fig 3: digitalization process from paper to MATLAB files 

 

Data are then visualized and validated to ensure that all have 

been correctly digitized, and aligned appropriately. Since some 

parameters are only recorded once, the intervariable 

relationships are also examined and illustrated in Fig 4. This 

figure displays correlations between variables color coded from 

dark blue to yellow, representing correlation coefficients from 



 

115 
 

-1 to 1. As an example, we see an almost perfect match (r = 

0.89, p<0.01) between the variable Outcome24 (Outcome 24 

hours after admission) and OutcomeT (Outcome at discharge) 

because most patients are discharged from the unit after 24 

hours. Similarly, a higher than average positive correlation is 

seen between alteplase dosage and BMI (r = 0.72, p<0.01), 

which is expected because the guidelines for administering 

alteplase uses body mass to calculate dosage. The reason that 

dosage is negatively correlated with age (r = -0.41, p<0.01) is 

because the older patients weighed less, as it is also visible from 

the relationship between age and BMI. More surprisingly was 

the fact that the time to get from arrival at hospital to treatment 

start was longer for females (gender = 0). We have no 

explanation for this phenomenon but are considering it 

prospectively. 

C. Derived Features 

 Historical information is supplemented with potential 

features derived from vital signs after admission to investigate 

whether this data helps separating DM from non-DM patients. 

The additional features are mean and standard deviation of SSS 

and all vital signs (systolic blood pressure (SBP), diastolic 

blood pressure (DBP), pulse, temperature and oxygen 

saturation level). standard deviation of SSS and all vital signs 

(systolic blood pressure (SBP), diastolic blood pressure (DBP), 

pulse, temperature and oxygen saturation level). Two additional 

features are examined: Correlation between SBP and DBP, and 

change in SSS from admission to 24 hours later. 

 
Fig 4: Intervariable relationships through correlation 

The correlation coefficient is included since previous studies 

TABLE 19: Available data from neurological, vital signs, and medical history forms  
Type Parameter Diabetes 

(n=22) 
Non-Diabetes 

(n=50) 
Type 

Profile Age (years) 69.27 ± 9.91 68.12 ± 11.92 Numeric 

 BMI (kg/m2) 30.80 ± 6.45 25.72 ± 3.39 Numeric 

 Gender (Female) 50 % 56 % Ordinal Binary  

Treatment at hospital mRS prior onset 0.55 ± 0.91 0.32 ± 0.96 Ordinal (0-5) 

 Onset to arrival (min) 124.68 ± 60.67 105.68 ± 43.71 Numeric 

 Arrival to treatment (min) 33.36 ± 21.15 31.04 ± 14.91 Numeric 

 Dosage rt-PA (mg) 78.27 ± 10.04 69.10 ± 13.32 Numeric 

 Glucose (mmol/l) 9.04 ± 2.96 6.47 ± 1.37 Numeric 

Vascular risk factors Arterial fibrillation 23 % 14 % Ordinal Binary 

 Heart insufficiency 18 % 4 % Ordinal Binary 

 Hypertension 86 % 58 % Ordinal Binary 

 Hyperlipidemia 86%  66 %  Ordinal Binary 

 Peripheral arterial disease 18 % 0 % Ordinal Binary 

Previous events Acute myocardial infraction 18 % 10 % Ordinal Binary 

 Apoplexy 50 % 24 % Ordinal (1-3) 

 Transient ischemic attack (TIA) 23 % 8 % Ordinal Binary 

Relevant drugs Acetylsalicylic acid 41 % 21 % Ordinal Binary 

 Clopidogrel 32 % 10 % Ordinal Binary 

 Dipyridamole 9 %  2 % Ordinal Binary 

 Anti-hypertensive 64 % 34 % Ordinal Binary 

Habits Alcohol intake (exceeding national recommendation)          4% 2% Categorical 

 Smoking (prev. or currently) 77 % 46 % Ordinal (1-4) 

Outcomes Outcome 24h – – Ordinal (1-5) 

 Outcome discharge – – Ordinal (1-5) 

 Bleeding complications 4 % 0 % Ordinal Binary 

 Discharge diagnosis – – Categorical 

 mRS after 3 months 2.36 ± 1.94 2.16 ± 1.69 Ordinal (0-6) 

 Cause of death (if applicable) –  – Categorical 

Image findings CT/MR bleedings 0 %   4 % Ordinal Binary 

Neurological assessment 
(24 hours monitoring  

Scandinavian Stroke Scale, NIH Stroke Scale 
admission 

  
Numeric 

Vital signs (24 hours 
monitoring) 

pulse, temperature, diastolic blood pressure, 
systolic blood pressure, oxygen saturation level 

  
Numeric 
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have found that there is a positive linear relationship between 

SBP and DBP which is influenced if the patient has DM [11]. 

If blood pressure had been measured e.g. three times every hour 

throughout the entire admission, the change in SBP versus DBP 

could have been used to extract information about arterial 

stiffness [12-13]. The expectation was that correlation 

coefficient is at first widely distributed, and later stabilizes 

around r = 0.74 for most patients [11]. The change is uncertain 

for DM patients.  

 

 
Fig 5: Correlation between diastolic and systolic blood pressure, two 

and twenty-four hours after initialized treatment.  

 

The two scatter plots in Fig 5 show each patient’s SSS and 

blood pressure correlation for respectively two first hours and 

after twenty-four hours. The bold markers represent the center 

of mass for each group. DM patients improve in SSS by a mean 

of 3.77 while non-DM improve by 4.34. In terms of correlation 

however, a decrease is seen in DM patients from r=0.47 to 

r=0.46, and in non-DM it increased from r=0.41 to r=0.54. The 

histograms show the correlation distribution with a 

convergence towards 0.6 for non-DM over time, and slightly 

positive, yet widely distributed, correlation for DM patients.  

To summarize, in addition to the features from Table I, 

following other features are examined:  

 

• Mean: DBP, Oxygen saturation level, Pulse, SBP, 

SSS, Temperature 

• Standard deviation: DBP, Oxygen saturation level, 

Pulse, SBP, SSS, Temperature 

• Correlation coefficient between DBP and SBP. 

 

D. Feature selection and classification  

 Feature selection poses several challenges. On top of the 

fact that one third of the patients may have unrecognized DM, 

the dataset has a low patient to variable ratio. This results in 

overfitting and poor generalization if all variables are included 

as features. To reduce dimensionality, Principal Component 

Analysis (PCA) was considered but discarded because of 

categorical variables being present and likely of importance; 

examples being history of hypertension or previous TIA which 

are of higher risks in DM patients.  

 Features were instead selected by using bidirectional feature 

selection, where forward selection is first used to include 

features that increase classification accuracy of the SVM, and 

then features are individually tested eliminated to see if 

accuracy is changes after their removal. From the variables, 

available in Table I, some were dismissed prior to this process 

because they were either rare occurrences in the dataset 

(bleeding related to dosage, bleeding findings in CT/MR, cause 

of death) or irrelevant/redundant (discharge diagnosis, 

Outcome 24h, Outcome discharge, NIHSS). NIHSS was 

discarded as it is interchangeable with, and addresses many of 

the same parameters as, SSS [14-15] – but NIHSS was 

registered only at admission and discharge while SSS was 

monitored continuously. In terms of vital signs, blood pressure 

correlation and SSS features, two SVM classifiers were trained. 

The first, where all readings for the twenty-four hours are 

included, and the other only for readings from the first two 

hours (see Fig 2). 

 The SVM was quadratic and MATLAB’s ‘auto’ setting was 

used to determine the kernel scale of 2.77 in the final setup. The 

data was split for training and testing using 5-fold cross 

validation, with at least 4 DM patients presented in each fold. 

Because of ratio differences in variables, the data is 

standardized prior to training through estimation of z-scores.  

 

IV. RESULTS 

The best performance was obtained when combining medical 

history with vital signs monitoring of the initial two hours of 

admission. For both two and twenty-four hours, the same 

features resulted in best performance:  

 

• BMI  

• From onset to arrival time 

• From arrival to treatment time  

• Previously had apoplexy  

• Dosage  

• History of hypertension 

• Previously had TIA 

• Glucose at arrival  

• SBP Mean 

• SBP Standard Deviation 

• DBP Mean 

• DBP Standard Deviation  

Fig 6 shows the confusion matrix for the SVM classifier 

when above features are used with up to two hours of vital signs 

data. Most misclassifications are with DM patients, which is 

also to be expected. Ratio-wise the uneven grouping causes the 

non-DM to be favored due to population size. Another reason 

can be that, since some patients have unrecognized DM, the 

milder cases of recognized DM may be similar, and thus end up 

grouped together. In the same way, wrongly classified non-DM 

patients could potentially have unrecognized DM. 

Nevertheless, the overall obtained accuracy is 87.5%, which is 
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decent, but it is important to keep in mind that slightly over two 

third of the population belong to the same class.  

 
  Predicted class  

A
ct

u
al

 c
la

ss
 n=72 non-DM  DM  

non-DM  47 3 50 

DM 6 16 22 

  53 19  

Fig 6: Confusion matrix for SVM given medical history and two 

hours of admission data 

 

When increasing the vital signs from two hours to twenty-

four hours, the accuracy drops to 80.6% (see Fig 7). This is 

likely due to the patient groups having more differences once 

stroke occurs e.g. one group’s autonomic nervous system is 

more affected than the other’s. The more time passes however, 

the more stable and similar both groups become, making them 

harder to distinguish.  

 

  Predicted class  

A
ct

u
al

 c
la

ss
 n=72 non-DM  DM  

non-DM  45 5 50 

DM 9 13 22 

  54 18  

Fig 7: Confusion matrix for SVM given medical history and twenty-

four hours of admission data 

 

 Continuing with the better classifier, the confidence levels 

are examined in further detail. If the confidence is low in the 

case of misclassifications, the sensitivity of an eventually 

implemented system can be improved through thresholding, so 

that only classifications with high confidence are accepted.  

Fig 8 shows confidence levels for the SVM classifier. The 

colors indicate corresponding correct class, and the sign is 

negated in case of misclassification. I.e. patient seventeen does 

not have recognized DM but SVM determined with a 

confidence of p=0.25, that the person had DM. Due to the high 

classification confidences, false classifications cannot be 

avoided unless additional features are added.  

The common traits for misclassified non-DM patients were, 

that all had hypertension, and received a higher than average 

dosage of rt-PA. Two of the three patients had glucose levels 

greater than one standard deviation above average, while the 

last patient had above average glucose level but a history of TIA 

as well as apoplexy. No single features stood out in terms of 

misclassified DM patients. 

Fig 9 shows all twelve features after standardization. All blue 

and brown lines represent non-DM and DM patients 

respectively, and the dashed lines represent misclassifications. 

As in Table 1, we see increased mean and standard deviation in 

BMI and glucose for DM patients. The figure also shows that 

all misclassified non-DM patients had hypertension while there 

was only one misclassification was unrelated to hypertension.  

 

 
Fig 8: Classification confidence for SVM. Confidence is negated for 

misclassifications 

 

 
Fig 9: Concurrent feature comparison. Line colors indicate the correct 

class, and are bold and dashed in case of misclassifications. 

 

V. DISCUSSION 

Using signal processing techniques, we can isolate which 

features are of importance when dealing with diseases such as 

DM, allowing us to optimize and improve recording of data. In 

this study, bidirectional feature selection found that, when 

detecting DM, even four blood pressure readings per hour can 

have significant impact on separating DM from non-DM 

patients in post-stroke settings. 

At first, vital signs were only investigated for the entire 

twenty-four hours. Most patients improve greatly throughout 

the admission however, meaning that their vital signs become 

more similar over time, as seen from Fig 5. An attempt was also 

made to combine data from two hours of vital signs monitoring 
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with the cross-correlation coefficient of blood pressure after 

twenty-four hours, because the coefficient is more likely to be 

over r=0.5 for non-DM patients. The feature was still 

automatically eliminated during generation of the SVM model. 

Elevated blood pressure is seen in about 80% of patients after 

acute ischemic stroke, and is to some degree preferable, as too 

high or too low pressure is documented to be associated with 

poor outcome. Many suggestions have been provided to what 

causes the elevation, ranging from mental stress due to sudden 

admission, to the fact that elevation of blood pressure increases 

the perfusion pressure in the ischemic penumbra [9,16-21]. 

Like in our findings, Carstensen et al recognized that change in 

blood pressure could already after four hours be linked to 

outcome [17]. Since DM patients have increased risk of 

impaired cerebral autoregulation, it would be interesting to 

investigate how blood pressure changes after stroke for DM 

versus non-DM patient. To do so, vital signs should be 

monitored at a higher resolution, preferably in seconds, rather 

than every fifteenth minute [22]. 

In terms of feature selection, an important limitation of this 

study is the lack of HbA1c as a potential feature which is 

expected to be higher for patients with unrecognized DM. Since 

it is a historical measure and does not represent the current state 

of the stroke patient, it is not standard procedure to test at 

admission – although some physicians test it. The most recent 

HbA1c measurements were obtained for all but three patients 

from the dataset, but many measurements were unrelated to the 

stroke admission. All values were under the standard boundary 

<42 mmol/mol, meaning that even DM patients were well 

controlled. It was also not surprising that dosage was selected 

as a primary feature after BMI, as guidelines for administration 

of rt-PA take weight into account. The intervariable 

dependency is not seen as problematic though, because dosage 

varies when other factors, such as age and present disability 

degree, are considered.  

The SVM classifier correctly found if a patient is diagnosed 

with DM in 87.5% cases, proving that there are significant 

differences allowing the two groups to be separated. 

Nevertheless, one needs to keep in mind that due to population 

size, random guessing would result in an accuracy of 69.4%. 

The population difference is likely the primary cause for 

misclassifications although unrecognized DM may have a role 

in it [10]. It was not possible to quantify how many patients in 

the dataset had undiagnosed DM. Entries in the medical record 

during admission suggested in many patients that there was a 

suspicion of DM. This was further investigated in the 

department of neurology but left for the general practitioner to 

follow up on. 

VI. CONCLUSION 

The developed classifier successfully identified which 

patients have diagnosed DM with an accuracy of 87.5%. The 

approach is based on data that is already available and 

registered in many developed countries. Although vital sign 

recordings were available for twenty-four hours, best 

performance was achieved with data from the first two hours of 

admission. 

To further improve this approach, vital signs need to be 

monitored at higher resolution and Hb1Ac readings at time of 

admission, or within weeks after stroke need to be available. 

Finally, follow-ups are recommended to identify and correct for 

unrecognized cases of DM. 

Promising results have been achieved for automatically 

identifying DM in early hours after stroke, which, when 

combined with information from follow-ups after discharge, 

could potentially help detecting patients with unrecognized 

DM. 
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