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Radiation therapy may affect several important parameters in the tumor microenvironment and thereby influence the accumulation of
liposomes by the enhanced permeability and retention (EPR)-effect. Here we investigate the effect of single dose radiation therapy on
liposome tumor accumulation by PET/CT imaging using radiolabeled liposomes. Head and neck cancer xenografts (FaDu) and syngenic
colorectal (CT26) cancer models were investigated. Radiotherapy displayed opposite effects in the two models. FaDu tumors displayed
increased mean accumulation of liposomes for radiation doses up to 10 Gy, whereas CT26 tumors displayed a tendency for decreased
accumulation. Tumor hypoxia was found negatively correlated to microregional distribution of liposomes. However, liposome distribution in
relation to hypoxia was improved at lower radiation doses. The study reveals that the heterogeneity in liposome tumor accumulation between
tumors and different radiation protocols are important factors that need to be taken into consideration to achieve optimal effect of liposome
based radio-sensitizer therapy.
© 2017 Elsevier Inc. All rights reserved.
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CExternal beam radiation therapy (RT) is a central part of the
treatment regimen for more than half of all cancer patients.
Liposomal drug delivery systems that carry radio-senzitizers to
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tumors can potentially improve therapeutic efficacy of RT
without increasing loco-regional side effects in the irradiated
region.1,2 Combining targeted RT and targeted drug delivery can
therefore increase regional tumor control.3 Moreover, liposomes
are flexible in regards to the selection of drugs that can be
encapsulated, transported and released within tumors. Lipo-
somes can therefore serve as optimal delivery systems for
targeting radiosensitizers to malignant tissue.1 ,2 However,
liposome accumulation in solid tumors has been demonstrated
to depend on multiple factors, including interstitial pressure,
tumor vasculature and perfusion.4–6 Liposome extravasation by
the enhanced permeability and retention (EPR) effect is primarily
driven by transvascular convection and their accumulation is
adiated tumors display important tumor and dose dependent differences.
3
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inversely correlated to interstitial fluid pressure (IFP) and directly
correlated to regional blood perfusion and leakiness.4 , 6–8 RT
influences these parameters; however, results on the effect on
tumor accumulation levels of nano-sized particles are not
clear.6

Molecular oxygen is the most important radio-sensitizer and
hypoxic tumor cells are highly radio-resistant and display
increased malignancy. Tumor hypoxia is generally divided in
acute perfusion limited, chronic diffusion limited and anemic
hypoxic.9 The nature of tumor hypoxia is closely related to
vascular parameters and liposomes may therefore distribute
poorly to hypoxic regions. In both experimental and clinical
tumors the IFP is increased and associated with an increased
malignant phenotype.10 , 11 RT has been associated with
increased vascular leakiness, and high total radiation doses can
potentially increase the extravasation of macromolecules.6

Pretreating tumors with cytotoxic agents has been identified to
increase tumor blood flow and decrease IFP, potentially being
the results of a reduction in tumor cell density to alleviate tumor
blood vessels compressions and increase the vascular surface
area which subsequently increases liposome accumulation.12,13

Following these observations the effects of RT could also
mediate a beneficial effect for macromolecular extravasation by
reducing cell density.11,14 Importantly, single radiation doses
N10 Gy, are known to cause significant damage to neoangiogenic
tumor vasculature and increase hypoxia and mediate significant
secondary cancer cell death following vascular damage.15 On the
contrary, single doses b10 Gy cause mild vascular damage and
may potentially increase vascular perfusion and thereby decrease
hypoxia after irradiation.15–17 Few studies of the effect of RT on
liposome uptake have been conducted. Single-fraction irradia-
tion had no effect on liposome uptake in human KB cancer
xenografts when evaluated by gamma counting radiolabeled
liposomes.18 Considering this and that important tumor
dependent differences and responses may exist, we investigated
the effect of single fraction radiation therapy on liposome
accumulation. This was evaluated by non-invasive PET
imaging in regard to i) the potential for improving liposomal
drug delivery by RT 24 h prior to liposome administration, ii)
the influence of RT on vascular tumor parameters, cellular
density and necrosis and iii) locoregional liposome accumu-
lation in hypoxic tumor regions, in a human head and neck
cancer xenograft model and in a syngenic murine colon cancer
model.
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Methods

Tumor model

FaDu (human head and neck cancer) xenografts were
established by subcutaneous injection of ~5 × 106 cells
suspended in 100 μl of culture medium and Matrigel over the
thigh/flank of 7 weeks old female NMRI nude mice. Tumors
were allowed to grow for 12-14 days. CT26 (murine colon
cancer) syngenic tumors were established by subcutaneous
injection of ~3 × 105 cells suspended in 100 μl of culture
medium over the thigh/flank of 6 weeks old female Balb/c mice.
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Tumors were allowed to grow for 18 days. The National Animal
Experiments Inspectorate approved all study procedures.

Radiolabeled liposomes

Pegylated liposomes consisting of HSPC:CHOL:DSPE-
PEG2k (56.5:38.2:5.3) were remote loaded with the PET isotope
64Cu2+. Briefly, 100 nm 50 mM pegylated liposomes entrapping
10 mM DOTA were prepared as previously described.19

Radiolabelling was achieved by adding a volume of liposomes
to dried 64CuCl2 followed by incubation at 55 °C for 75 min. The
loading efficiency was afterward evaluated by Thin Layer
Chromatography (Radio-TLC) and Size Exclusion Chromatog-
raphy (Radio-SEC),19 which showed a loading efficiency of
N98% for both techniques. The liposomes were prepared at either
3.3 mM or 6.6 mM lipid concentration and an activity
concentration of 62.5 MBq/ml or 125 MBq/ml (activity at the
time of injection) for the FaDu and CT26 tumors respectively.
Each animal was dosed with a volume corresponding to 22 μmol/kg
and an activity of ~12.5 MBq/animal.

Radiation therapy

Mice carrying FaDu xenografts were randomized into four
treatment groups; non-irradiated controls (n = 11), 5 Gy
(n = 11), 10 Gy (n = 10) and 20 Gy (n = 11). Mice carrying
CT26 tumors were randomized into four treatment groups;
non-irradiated controls (n = 8), 2 Gy (n = 8), 5 Gy (n = 8) and
10 Gy (n = 8). Radiation therapy was delivered as a single
fraction at a dose-rate of 1 Gy/min (320 kV, 12.5 mA) using a
small animal irradiator (X-rad320, pXi, CT, USA). Mice were
irradiated in a dedicated fixation device securing that only the
tumor bearing leg was exposed to irradiation and the remaining
body shielded.

MicroPET/CT imaging

PET/CT imaging was performed on an Inveon® small animal
PET/CT system (Siemens Medical Systems, PA, USA) approx-
imately 24 h after completion of RT. Mice were anesthetized by
inhalation anesthesia (~3% sevoflurane) and 64Cu-liposomes
injected into a tail vein. 64Cu-liposomes were allowed to
distribute for 1 h before commencing a 5-min PET scan (1-h
scan) followed by a corresponding CT scan. A similar PET/CT
scan (15 min acquisition) was performed after a distribution
period of 24 h (24-h scan). Emission data were corrected for dead
time and decay and attenuation correction was performed based
on the corresponding CT scan. PET scans were reconstructed
using a maximum a posteriori (MAP) reconstruction algorithm
(0.815 × 0.815 × 0.796 mm). Image analysis was performed
using Inveon® software (Siemens Medical Systems, PA, USA).
3D regions of interest (ROIs) were manually constructed and
decay corrected data (%injected dose per gram tissue (%ID/g))
reported.

Immunohistochemistry CD31, cell density and necrosis

Immunohistochemistry (IHC) was performed on formalin-
fixed, paraffin-embedded 4 μm tumor sections that were stained
with H&E for histological evaluation and with CD31 antibodies
for tumor blood vessels. CD31 staining was performed by
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heating sections at 60 °C (1 h) followed by deparaffination in
xylene and rehydration. Antigen retrieval was performed by
microwave-based antigen retrieval. Endogeneous peroxidase
was blocked using peroxidase blocking reagent (Dako, Glostrup,
Denmark) for 8 min and sections blocked in 2% BSA for (10
min). Sections were incubated with primary CD31 antibody
(Abcam, diluted 1:100) in 2% BSA (1.5 h/room temperature)
followed by incubation with secondary biotinylated EnVision
FLEX™ (40 min) (Dako, Glostrup, Denmark). Tissue sections
were stained with DAB (10 min) and counterstained with
hematoxylin. Between all steps sections were rinsed in PBS.

Slides were mounted for electronic slide scanning (Axio scan,
Carl Zeiss, Germany) (pixel size 0.022 × 0.022 μm). Tumor
necrosis was evaluated using the Advanced Weka segmentation
plug-in for Fiji (ImageJ). The degree of necrosis in sections was
determined by drawing ROIs in necrotic, background/artifacts
and viable tumor region and transferring these to the trainable
classifier to determine necrotic and viable areas.

Ten regions were selected on CD31 stained sections and sent
for analysis of microvessel density by automated segmentation
algorithm for analysis of microvessels in immunostained
histological tumor sections (CAncer IMage ANalysis: http://
www.caiman.org.uk).20,21 The regions were additionally trans-
ferred to Fiji (ImageJ) for determination of nuclear density. In
short, color deconvolution was performed to yield a separate
hematoxylin image and the nuclei density determined by
excluding fragments and artifacts by automated exclusion of
structures below a cut-off size of (50 pixels^2).

64Cu-liposome autoradiography and hypoxia immunohisto-
chemistry

For analysis of intratumoral distribution of liposomes and
hypoxia FaDu tumors (controls) were intravenously injected
with the radiolabeled liposomes and these were allowed to
distribute for 24 h before sacrificing and bleeding mice. To
further study the influence of radiation therapy on intratumoral
hypoxia and liposome distribution, tumors from and two CT26
tumors from each group were subjected to autoradiography and
hypoxia immunohistochemistry (26 h distribution period for
liposomes). For hypoxia immunohistochemistry the exogenous
hypoxia marker Pimonidazole (60 mg (kg animal)−1 in PBS),
was administered by intraperitoneal injection two hours before
sacrifice. After sacrificing and bleeding animals, tumors were
snap frozen and cryosectioned (8 μm) in cutting media. Sections
separated by at least 400 μm were thaw mounted on Superfrost
Plus microscopy slides. Seventeen sections from eight different
FaDu tumors and five sections from included CT26 tumors were
evaluated. Intratumoral distribution of 64Cu-liposomes was
determined by exposing tumor sections to phosphor imaging
screens for approximately 18 h (−20 °C). Phosphor screen was
read using a phosphor imaging system (Cyclone Plus, Perkin
Elmer, MA, USA) and semi-quantitative luminescence images
(pixel size 0.04 × 0.04 mm) were obtained.

Tumor sections were fixed in acetone (4 °C/10 min). Tissue
peroxidase was quenched using peroxidase blocker (Dako,
Glostrup, Denmark) and non-specific binding blocked using 2%
BSA. Pimonidazole immunohistochemistry was performed
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using mouse monoclonal anti-pimonidazole antibody (Hypoxyp-
robe, MA, USA) diluted in 2% BSA (1:600) (1 h) followed by
Secondary biotinylated anti-mouse antibody (40 min) (Envision
Flex, Dako, Glostrup, Denmark). Antibody binding was
visualized using DAB and sections were counterstained with
hematoxylin (H) and slide scanned as described above.

ROIs, including viable tumor regions and excluding necrotic
regions and artifacts were manually drawn (Fiji, ImageJ, NIH,
MD, USA). Automated DAB-H color deconvolution and manual
thresholding of pimonidazole IHC staining followed by image
binarization was performed in Fiji software. Autoradiography
images were co-registered to the corresponding pimonidazole
DAB-H images using a rigid co-registration algorithm
(MATLAB 8.4, The MathWorks, Inc., MA, United States).
Pimonidazole values on rescaled image (autoradiopgraphy
resolution) represent mean level pimonidazole positive pixels
on the constructed binarized image. 64Cu-liposome autoradiog-
raphy pixels were categorized into four activity levels (0-0.25,
0.26-0.50, 0.51-0.75 and 0.76-1.0) relative to the individual slide
single pixel maximum. The corresponding mean pimonidazole
pixel values for the four 64Cu-Liposome categories were
determined for each slide and bar-plots constructed.

Statistical analysis

Prism 7 (GraphPad Software, La Jolla, CA., USA) was used
for all statistical analysis. One-way or two-way ANOVA
analysis and Holm–Sidak multiple comparison test were applied
for comparisons of groups. All data are reported as mean ± SEM
(standard error of mean) unless otherwise stated and a P-value
b0.05 considered statistically significant.
Results

64Cu-liposome PET/CT after radiation therapy

Radiation therapy was successfully delivered to all mice 24 h
before administration of radiolabeled liposomes. The treatment
schedule was chosen to ensure that the acute effect of irradiation
was activity during the period of liposome distribution. To
evaluate the effects of the different radiation doses we extracted
tumor activity levels of 64Cu-liposome PET data from the
co-registered PET/CT images from the 1-h and 24-h PET/CT
scans. Two PET scans were performed to extract information on
accumulation, as intravascular liposome activity is expected to
dominate the 1-h PET scan and liposomes that have extravasated
through fenestrated tumor blood vessels the 24-h scan. PET/CT
images from the 24-h scans from each treatment group are
illustrated in Figure 1, A-H.

FaDu tumors displayed no significant 64Cu-liposome activity
difference between controls and treatment groups at the 1-h PET/
CT (Figure 2, A and B). At the 24-h PET/CT FaDu tumors
receiving 5 Gy and 10 Gy had significantly higher mean
liposome activity compared to the control group, while no
statistical difference was observed for the mean activity of the 20
Gy treatment group (Figure 2, C). For the comparison of the 24-h
maximum activity, only the 5 Gy treatment group was
statistically higher than the control group (Figure 2, D). The

http://www.caiman.org.uk/
http://www.caiman.org.uk/
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Figure 1. 64Cu-liposome PET/CT of FaDu xenografts (top row) (A) non-irradiated control (n = 11), (B) 5 Gy (n = 11), (C) 10 Gy (n = 10), (D) 20Gy
(n = 11)) and CT26 tumors (bottom row) (E) non-irradiated control (n = 8), (F) 2 Gy (n = 8), (G) 5 Gy (n = 8), (H) 20 Gy (n = 8). (T) Tumor.
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influence of radiation on liposome accumulation was further
investigated in the syngenic CT26 tumors. Following the higher
radiosensitivity in comparison to FaDu tumors, an irradiation
schedule of 2 Gy, 5 Gy and 10 Gy was chosen. Interestingly, for
the CT26 tumors an inverse correlation between radiation dose
and liposome accumulation was observed. There was signifi-
cantly higher mean activity of liposomes in the control group
compared to all treatment groups at the 1-h PET scan (Figure 2,
E). The control group also displayed the highest maximum
activity of 64Cu-liposomes at the 1-h scan although this was not
significant in comparison to irradiated groups (Figure 2, F).
These observations could indicate that a high level of damage
was induced to intratumoral blood vessels that limit intravascular
liposome blood activity. Opposite to the observations in FaDu
tumors, the irradiated CT26 groups displayed lower activity
levels in comparison to controls. This was however only
statistically significant for the controls in comparison to the 5
Gy irradiated group (Figure 2, G and H). Based on the
conflicting results of the liposome uptake in the two included
tumor models we evaluated the effect of radiation dose on tumor
parameters that are expected to influence liposome
accumulation.
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Micro vessels, nuclear density and necrosis

The levels of intratumoral necrosis, nuclear density and micro
vessels were investigated on stained tumor sections. For the
FaDu tumor we observed a higher level of intratumoral necrosis
primarily in the central parts of the tumors whereas less and more
scattered distribution of necrosis was observed for the CT26
tumors. FaDu non-irradiated controls displayed a mean intratu-
moral necrosis level of 21.6% (± 4.5) while CT26 tumors only
displayed 11.0% (± 1.3). For both tumor types the level of
intratumoral necrosis increased with higher doses of radiation,
except for the comparison of the 5 Gy FaDu group and controls.
However, only the 20 Gy FaDu group and the 5 Gy and 10 Gy
CT26 groups and corresponding controls were significantly
different (Figure 3, A and D). As liposome accumulation is not
expected to occur in devascularized non-vital necrotic regions
this could explain the observed lower activity in comparison to
controls for the 20 Gy FaDu group and the irradiated groups of
CT26 tumors.
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ONuclear density was found to decrease with increasing
radiation dose. The cell density in the treatment groups all,
except for the 5 Gy FaDu group, displayed significantly lower
cellular density compared to control groups for both tumor types
(Figure 3, B and E). The lower cell density is expected to
decrease interstitial pressure in tumors and therefore facilitate an
easier extravasation of liposomes. However, this was correlated
to an increased the overall 64Cu-liposome accumulation.
Additionally, cell density could potentially be counteracted by
pressure changes stimulated by radiation-induced inflammation,
apoptosis, necrosis and acute microvessel damage.

The micro vessel density (MVD) was investigated to identify
if blood vessel density could explain the observed liposome
activity differences. The MVD displayed no significant differ-
ence between FaDu groups (Figure 3, C). Interestingly, the CT26
control group displayed significantly higher MVD than all
irradiated groups (Figure 3, F). The higher mean 64Cu-liposome
activity at the 1-h PET could potentially be explained by the
higher microvessel density. However, for the 24-h scan this did
not result in significantly higher activity, whereas the FaDu
tumors displayed significantly higher activity levels for the 5 Gy
and 10 Gy groups.

Microregional distribution of 64Cu-liposomes and pimonidazole

To investigate the potential of liposomal drug delivery system
to improve therapeutic control of radio-resistant hypoxic tumor
regions we compared the accumulation of radiolabeled lipo-
somes to pimonidazole hypoxia immunohistochemistry.
64Cu-liposome autoradiographies were compared to of pimoni-
dazole immunohistochemistry for non-irradiated FaDu tumor
sections. The co-registration process and resizing of images
allowed us to include seventeen sections in the analysis. The
microregional pixel-to-pixel comparison of pimonidazole values
and corresponding categorized 64Cu-liposome activity level
identified that hypoxia decreases significantly with increasing
(within slide) 64Cu-liposome activity (Figure 4, A-D). This
observation is important for liposome based radiosensitizer
therapy, as they may have limited access to important hypoxic
regions at least for the liposomes under investigation. Following
the observed influence of radiation cellular density and vascular
function the influence of dose on pimonidazole positive fraction
was investigated in CT26 tumors. We observed a significantly
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Figure 2. Tumor mean and maximum activity levels at 1-h and 24-h after injection of 64Cu-liposomes evaluated by PET/CT for control and treatment groups.
FaDu tumors (A-D) and CT26 tumors (E-H) (%ID/g ± SEM) (*P b 0.05).
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lower fraction of pimonidazole positive pixel in the 2 Gy
irradiated group, no difference for the 5 Gy group and a
significantly increased positive fraction in the 10 Gy group
relative to controls (Figure 4, E). To determine if the observed
changes in tumor oxygenation could influence the distribution
patterns of liposomes relative to microregional hypoxia a
comparison of 64Cu-liposome activity level and pimonidazole
was performed. The control group displayed an inverse
correlation that was comparable to that of non-irradiated FaDu
tumors (Figure 4, F). However, the 2 Gy and 5 Gy irradiated
groups displayed an almost similar level of hypoxia in the
different levels of 64Cu-liposome activity, which could indicate
that these dose ranges can potentially both decrease levels of
hypoxia and improve liposome accumulation in regards to
hypoxic areas. This must of course be weighed against the
overall accumulation of 64Cu-liposomes.
O 398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414
U
N
CDiscussion

The therapeutic combination of tumor targeting liposome-
encapsulated radiosensitizers and radiation therapy holds great
clinical potential following the dual tumor targeting properties.
Notwithstanding this potential, the direct link between the
parameters of central importance for liposome accumulation and
the effects of radiation therapy makes the determination of
optimal timing of radiation and dose and liposome administra-
tion important.

The two cancer models yielded opposite results in respect to
liposomes accumulation. Whereas radiation improved accumu-
lation in FaDu xenografts after 24-h (5 Gy and 10 Gy groups),
the CT26 tumors displayed an insignificant decrease in liposome
accumulation after radiation. These observations are interesting
E
Din respect to the study in human KB cancer xenografts where no

effect, negative or positive, on liposome uptake was observed for
radiation doses from 5 to 20 Gy evaluated invasively from 1 to
96 h after irradiation.18 Both cancer models displayed an
increase in intratumoral necrosis and decreased cell density
following irradiation, both of which were most significant for the
CT26 tumors. Interestingly, MVD was found to respond very
differently to irradiation between the models. Irradiation
significantly decreased MVD in CT26 while FaDu tumors did
not display changes or patterns in relation to radiation. This was
also illustrated by the mean 64Cu-liposome activity between
groups after a circulation period of only 1-h. In clinical head and
neck squamous cell carcinomas a decrease in MVD was
correlated to an improved response and overall survival.17 In
light of this, our results indicate that the FaDu tumors represent a
more radio-resistant tumor and that adjuvant liposomal radio-
sensitizer therapy could be beneficial, at least from a dose
accumulation perspective for tumors maintaining a high MVD
during irradiation. Based on the differences in liposomes
accumulation and the histological analysis, accumulation
appeared directly dependent on a high MVD. This observation
is in agreement with previous publications identifying, blood
flow as the rate limiting step for liposome extravasation in
tumors with a high vascular permeability.25 However, irradiation
can decrease nuclear density and damage vascular structures to
potentially increase liposome accumulation by lowering IFP and
facilitating transvascular extravasation. No direct measures for
IFP in addition to nuclear density were performed but in a
previous report on irradiation of colon carcinoma xenografts
single fractions of 10 Gy significantly lowered IFP in tumor.22

From our results, the differences between MVD response and
comparable decrease in nuclear density between FaDu and CT26
tumors indicate that the MVD is the most important parameter to
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segmentation on tumor sections from control and treatment groups (mean ± SEM). FaDu tumors (A-C). CT26 tumors (D-F) (mean ± SEM). *P ≤ 0.02,
**P ≤ 0.005, ***P b 0.001, ****P b 0.0001.
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influence liposome accumulation. Compatible results were obtained
for non-small cell lung cancer patients receiving adjuvant liposomal
doxorubicin to fractionated radiotherapy where MVD was associ-
ated with increased accumulation and therapeutic efficacy.23

However, the association of MVD to hypoxia could also influence
this observation as discussed below. Interestingly, the increased
liposome accumulation for irradiated FaDu tumors could also result
from a decreased IFP which may improve tumor perfusion by
alleviating pressure dependent collapse of intratumoral vessels.24,25

Importantly, the optimal timing of liposomal drug administration in
relation to fractionated radiation remains to be determined and the
reported negative impact of RT five days after irradiation indicates
that timing is central for optimization of liposome accumulation.22

Based on our observations improving liposome accumulation is a
balance between maintaining functional blood vessels and improv-
ing intratumoral blood flow as discussed in recent literature.26

However, the heterogeneous response of different tumor models, in
regards to these parameters, highlights the value of directly
quantitative PET imaging using radiolabeled liposomes.

Single doses of (≥10 Gy) RT induce high levels of vascular
damage that leads to secondary cell death when areas become
deprived of oxygen and nutrients. On the other hand, fractionated
low dose irradiation of tumors has been associated with improved
perfusion and reoxygenation.15–17 The tumor sections evaluated
from the 2Gy and 5GyCT26 groups displayed less hypoxia across
all levels of liposome activity, which is in line with reports on early
reoxygenation after low dose irradiation. This indicates that the
low dose irradiation, at least for the CT26 tumors, improves
vascular perfusion and tumor oxygenation and provides the basis
Tfor a more homogeneous distribution of liposomes. The effect of
radiation therapy can therefore potentially also improve liposome
penetration and the potential of targeting liposomes that suffers
from inability to reach their target if trapped in the perivascular
regions.8 Considering the importance of hypoxia and its intricate
link to vascularization, optimized radiation schedules can
potentially improve the distribution of liposomes in radioresistant
hypoxic region.25 Liposomal doxorubicin has been reported to
increase radiosensitivity in hypoxic prostate cancer xenografts in
one study where clamping of the tumor-bearing leg was used to
induce hypoxia during RT. However, liposomes were adminis-
tered prior to clamping and the study therefore provides no
evidence that doxorubicin reaches regions of perfusion and
diffusion limited hypoxia, but highlights the potential of liposomal
chemoradiotherapy.27 Liposomal doxorubicin and cisplatin,
injected 16 h before irradiation, increased the therapeutic efficacy
for 4.5 Gy single dose and 9 Gy/3 fractions but not a single dose of
9 Gy radiotherapy in KB head and neck cancer xenografts. No
benefit was observed from dosing liposomes as a single compared
to multiple injections of the same dose and the authors were not
able to determine if the effects observed were truly radio-
sensitizing or additive,28 which highlights the importance of
timing to achieve a supra-additive effect chemoradiotherapy.
Conclusion

The present study was conducted using a radiolabeled
liposome imaging system that provided quantitative data on
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Cliposome accumulation as a function of RT. The study identifies

that RT may influence the EPR effect and liposome accumula-
tion in a tumor and dose dependent manner. This observation
emphasizes that the 64Cu-liposome PET imaging system may
provide a theranostic tool to identify patients and treatment
combinations and kinetics that may benefit from liposomal drug
delivery in relation to radiation therapy. Future studies of
liposomal drug delivery systems for radiosensitizers focusing on
the correlation between liposome accumulation in tumor tissue
as a function of RT and the therapeutic effect induced are highly
warranted.
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