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Abstract 10 

Molecular size plays an important role in dissolved 11 

organic matter (DOM) biogeochemistry, but its 12 

relationship with the fluorescent fraction of DOM 13 

(FDOM) remains poorly resolved. Here high-14 

performance size exclusion chromatography 15 

(HPSEC) was coupled to fluorescence emission-16 

excitation (EEM) spectroscopy in full spectral (60 emission and 34 excitation wavelengths) and 17 

chromatographic resolution (< 1Hz), to enable the mathematical decomposition of fluorescence on an 18 

individual sample basis by parallel factor analysis (PARAFAC). The approach allowed cross-system 19 

comparisons of molecular size distributions for individual fluorescence components obtained from 20 

independent datasets. Spectra extracted from allochthonous DOM were highly similar. Allochthonous and 21 
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autochthonous DOM shared some spectra, but included unique components. In agreement with the 22 

supramolecular assembly hypothesis, molecular size distributions of the fluorescence fractions were broad 23 

and chromatographically unresolved, possibly representing reoccurring fluorophores forming non-24 

covalently bound assemblies of varying molecular size. Samples shared underlying fluorescence 25 

components that differed in their size distributions but not their spectral properties. Thus, in contrast to 26 

absorption measurements, bulk fluorescence is unlikely to reliably indicate the average molecular size of 27 

DOM. The one-sample approach enables robust and independent cross-site comparisons without large-28 

scale sampling efforts and introduces new analytical opportunities for elucidating the origins and 29 

biogeochemical properties of FDOM.  30 
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Introduction 31 

Dissolved organic matter (DOM) represents a large pool of organic carbon in aquatic ecosystems of a 32 

magnitude comparable to atmospheric carbon dioxide.1 DOM has a significant role in the continental-33 

scale carbon balance, as well as influence at local scales.2,3 Previous studies have shown direct links 34 

between the optical, physical and chemical properties of DOM, such as the molecular size,4 lignin 35 

content,5 and aromaticity.6 The molecular size distribution of DOM as a whole, and the size of individual 36 

compounds within it, are a key trait that can be linked to its degradation susceptibility.7–10 In particular, 37 

numerous studies suggest a positive relationship between the average molecular size of DOM and 38 

fluorescence emission maxima,11–16 suggesting that “humic-like” fluorescence is the result of extended, 39 

conjugated aromatic structures. 40 

Optical properties of different DOM size fractions have provided evidence for the supramolecular 41 

assembly hypothesis,17 whereby individual DOM moieties recur in non-covalently bound assemblies of 42 

varying molecular size. In support of this hypothesis, highly similar optical properties are seen across the 43 

entire molecular-size gradient of DOM.11,18–20 Apparent molecular size distributions of DOM are typically 44 

analyzed by high-performance size exclusion chromatography (HPSEC) to study changes in the size 45 

distribution of DOM as a function of biogeochemical and physical factors.20–24 Molecular size 46 

distributions depend on the instrument used for its measurement: Mass spectrometry most often shows an 47 

average molecular weight around 400 Da,25 while HPSEC or ultrafiltration show higher averages.4,26,27 48 

However, many studies utilizing HPSEC are based on measurements of discrete sample fractionations, 49 

and hence have relatively low sample (i.e. chromatographic) resolution. Recent studies used online 50 

detectors to provide high resolution data (i.e. < 1 Hz);14,20,28 however in fluorescence studies, a limited 51 

number of excitation wavelengths were monitored simultaneously by these detectors, and a systematic, 52 

comprehensive data analysis approach has yet to be established. Moreover, the determination of 53 
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molecular size distributions of emission excitation matrix (EEM) fluorescence in a continuous fashion 54 

(<1 Hz) at full spectral resolution remains unachieved. 55 

Absorbance and fluorescence spectroscopy allow the rapid and sensitive determination of chromophoric 56 

and fluorescent DOM (CDOM and FDOM, respectively).4,29,30 Due to the higher sensitivity and 57 

selectivity of fluorescence over absorbance spectroscopy, FDOM properties measured as EEMs are 58 

widely used as a proxy for DOM quality in aquatic environments.31–34 EEM fluorescence spectroscopy 59 

produces three-dimensional datasets that can be decomposed mathematically with methods such as 60 

Parallel Factor Analysis (PARAFAC)35,36, to obtain chemically and mathematically independent 61 

fluorescence spectra. Targeted analysis of specific DOM compounds (such as amino acids) and 62 

untargeted analysis of DOM using e.g. mass spectrometry, have suggested the presence of a common, or 63 

even ubiquitous, fraction of chemical compounds within DOM.37,38 These findings may also extend to the 64 

optical properties of DOM and indicate the possible presence of common fluorophores within the global 65 

FDOM pool.39,40 Since 2014, the OpenFluor database has enabled systematic comparisons between 66 

PARAFAC-derived DOM fluorescence spectra;41 however, comparisons between studies and systems are 67 

often hampered by instrumental, methodological and inter-laboratory variation.42 In order to achieve 68 

systematic and robust comparisons and locate common fluorescence spectra in the global FDOM pool, it 69 

is crucial to establish analytical frameworks that mitigate such disturbances, whilst also avoiding 70 

excessive sampling and measurement efforts. 71 

PARAFAC is frequently used to interpret bulk DOM fluorescence datasets, though a number of 72 

practical and theoretical hurdles still limit its application. For example, the fluorescence dataset must 73 

contain sufficient spectral variation to produce meaningful, stable, and verifiable models, hence large 74 

sample sizes are preferred.43 In studies involving a relatively low number of samples, this requirement 75 

often inhibits the use of PARAFAC or prevents model validation. Additionally, the mathematical 76 
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decomposition of EEMs assumes the superposition of a finite number of independently fluorescing 77 

compounds (following Beer’s Law), i.e. that the fluorescence spectrum of a mixture arises from the 78 

spectra of its individual constituents.44,45 However, verifying this assumption is difficult for datasets 79 

containing environmental samples. While multiple studies have questioned the superposition assumption 80 

due to electronic interactions between chromophores,46–49 evidence of electronic interactions have mainly 81 

been observed under conditions of strong chemical oxidation,50 although one study reported self-82 

quenching of humic acid in HPSEC separations.51 The extent to which electronic interactions undermine 83 

the use of PARAFAC under environmental conditions is still unknown. 84 

The goal of this study was to establish a new analytical framework based on HPSEC that can 85 

reveal the molecular size distributions of the underlying DOM fluorescence components in individual 86 

environmental samples using the full spectral resolution of EEMs. We further aimed to identify whether 87 

or not FDOM separated by HPSEC follow Beer’s law (i.e. behaves additively). Once this was confirmed, 88 

the goal was to mathematically decompose EEMs from individual samples and compare the underlying 89 

fluorescence spectra. Moreover, we aimed to assess the supramolecular assembly hypothesis using our 90 

analytical framework. Finally, we aimed to identify consistent trends between fluorescence emission 91 

maxima and molecular size of statistically derived components in individual samples. If found, these 92 

would offer the opportunity to use the bulk FDOM composition to gain direct insights into the average 93 

molecular size of FDOM.  94 
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Materials and Methods 95 

Sample Collection 96 

Four allochthonous samples (Lake Lillsjön, Sweden; Rio Negro, Brazil; Svartan River, Sweden; Rio 97 

Tapajós, Brazil) and two autochthonous samples (Pacific Ocean & Pony Lake) were extracted with PPL 98 

and XAD8 resins, respectively, using established methods (see Supporting Information (SI) S1 and Table 99 

S1 for further information).52–55 200µL of the PPL extract was dried and SPE-DOM was reconstituted in 100 

0.15 M ammonium acetate (pH 7). DOM of two XAD-8 extracts was dissolved in 0.15 M ammonium 101 

acetate at concentrations of 1.4 mg L-1 and 0.25mg L-1 for samples originating from Pony Lake and the 102 

Pacific Ocean, respectively. 103 

High performance size-exclusion chromatography 104 

Full details pertaining to the HPSEC equipment, and methodology are provided in the Supporting 105 

Information (S1, SI Figures S1-S6). Briefly, HPSEC was performed using a Shimadzu Nexera X2 UFLC 106 

system equipped with a TSKgel SuperAWM-H column. DOM was eluted with 0.15 M ammonium acetate 107 

(pH 7), and two sequential detectors were used. Absorbance was measured between 240 and 600 nm at 108 

2 nm intervals using a Shimadzu SPD-M30. Fluorescence emission was then detected between 300 and 109 

600 nm at 5 nm increments across excitation wavelengths from 240 – 450 nm at 5-10 nm increments 110 

using a Shimadzu RF-30Axs by combining measurements from separate runs. For every sample, a 111 

sequence of runs was performed whereby the same sample was injected while instrument parameters were 112 

systematically changed between runs. In total, the chromatographic run was repeated 35 times to allow 113 

the determination of absorbance properties (one run) and fluorescence properties at an EEM-like spectral 114 

resolution (34 runs, one for every excitation wavelength at a constant emission wavelength range). This 115 

resulted in around 1500 individual absorbance spectra and fluorescence emission scans (each of the 1500 116 
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emission scan subsequently combined with those of the other injections to form EEMs as shown in SI 117 

Figure S6) per sample (total of ~ 26 hrs measurement time per sample). To reduce the dataset size, a 118 

subset of 250 evenly-spaced emission scans were extracted for the chemometric analysis (see below). 119 

After compilation of fluorescence emission scans into EEMs, each EEM presents the fluorescence 120 

composition of a measured sample at a given elution volume (or apparent molecular size). The analytical 121 

column was calibrated using polystyrene sulfonate, which serves only to report the approximate apparent 122 

molecular size of peak maxima assuming identical chromatographic separation of chemically diverse 123 

DOM and uniform polystyrene standards. In this regard, whole chromatograms are plotted by elution 124 

volumes rather than size. Data processing steps included dataset alignment (elimination of inter-detector 125 

tubing volume), as well as artefact removal (self-shading and physical scatter) as detailed in the 126 

Supporting Information. Fluorescence data were normalized to the Raman peak area at excitation 127 

wavelength 350 nm. 128 

Chemometric analysis 129 

HPSEC of natural DOM seldom results in the clear chromatographic separation of different DOM 130 

fractions, since the mixture represents an overlapping continuum of compounds.56–58 The separation of co-131 

eluting analytes can be achieved with mathematical deconvolution approaches such as PARAFAC.59 In 132 

this study, PARAFAC was applied using the drEEM toolbox (v0.3.0) to mathematically decompose the 133 

three-way data array as described previously:35,45,60 134 

���� = ∑ ���	��
�� + ����


���  (Eq. 1) 135 

 i = 1…I; j = 1…J; k = 1…K 136 

PARAFAC models the fluorescence emission of the ith sample (representing discrete elution volumes) at 137 

excitation k, and emission j. The term aif is proportional to the abundance of the fth chromatographic 138 
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analyte in sample i. The term bjf represents the least-square estimate of the emission spectrum of the fth 139 

analyte, while ckf is the least-square estimate of the excitation spectrum of the fth analyte at wavelength k. 140 

The term eijk represents the residual matrix that contains unexplained dataset variability. Importantly, the 141 

successful decomposition of chemical datasets into underlying factors using the PARAFAC model hinges 142 

on three assumptions: (1) Variability: No two compounds can have the same exact spectral properties and 143 

identical fluorescence intensities; (2) Additivity: The total fluorescence intensities observed are the result 144 

of the fluorescence of a finite number of analytes that do no interact electronically; and (3) Trilinearity: 145 

The signal of a given analyte is linearly related to its invariant excitation and emission spectrum, i.e. one 146 

component describes an analyte in all three modes. The combination of applying PARAFAC to 147 

decompose HPSEC-derived EEMs is represented herein using the terminology HPSEC-EEM-PARAFAC. 148 

In agreement with the analytical nature of the HPLC dataset, PARAFAC models in this work were 149 

constrained to non-negativity, i.e. component scores and loadings were forced to be positive. Model fits 150 

were stopped when the relative reduction in fitting error from one iteration to the next did not exceed 10-7. 151 

Since HPSEC chromatograms typically feature analyte abundances that vary over several orders of 152 

magnitude, pretreatment of data is critical to avoid extremely different leverages across the dataset 153 

gradient.45 However, normalizing HPSEC EEMs to unit variance is problematic since early- and late-154 

eluting EEMs with fluorescence close to zero are amplified, preventing efficient PARAFAC modelling. 155 

Instead, fluorescence intensities were log10 normalized, which reduced the effect of peak-to-baseline 156 

concentration gradients, limited covariance between simultaneously eluting analytes, and limited the 157 

effect of noise (SI Figure S7). 158 

The Tucker congruence coefficient (TCC) was used to assess spectral congruence between components 159 

derived from different samples and models.61 A classic (dataset-, i.e. sample-specific) split-half validation 160 

was performed for the two autochthonous samples (TCCcombined > 0.95), while a more stringent external 161 
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(i.e. cross-dataset and -sample) comparison was performed for the four allochthonous FDOM models 162 

since these samples appeared to be highly similar. Since these allochthonous samples were collected by 163 

different scientists and at different locations and times, this approach represents a more stringent approach 164 

to assessing model validity. For the external comparison, a slightly lower TCC threshold of > 0.95 for 165 

emission and excitation spectra (i.e. TCCcombined > 0.9) set. This threshold represents a compromise 166 

between the more rigid threshold employed by OpenFluor (TCCcombined >0.95) and a lower threshold that 167 

takes into account variability that can arise from modeling and comparing two completely independent 168 

datasets.  169 
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Results and Discussion 170 

HPSEC optical properties: Beer’s law or charge transfer? 171 

The unique coupling of HPSEC and full-resolution EEM spectroscopy in this study presented the 172 

opportunity to investigate the additive behavior of DOM fluorescence (i.e. compliance with Beer’s law). 173 

The sum of fluorescence emission from size-separated EEMs was compared to the bulk EEM obtained on 174 

the same instrument without the chromatographic column installed. This was performed for two 175 

representative samples (Fig. 1, SI Figure S8). Size separation did not produce substantial changes of 176 

fluorescence in the visible fluorescence emission region (excitation > 300 nm), as might be expected from 177 

intermolecular charge transfer or fluorescence quenching.46,62–64 However, at excitation wavelengths 178 

below 300 nm, two regions deviated from the otherwise randomly-distributed residuals. In the UVA 179 

region, a negative residual of less than 20 % was observed relative to the bulk EEM, indicating loss of 180 

fluorescence during separation. This was likely caused by adsorption of small monomers onto the 181 

analytical column due to secondary interactions, since pure tryptophan and salicylic acid also showed 182 

secondary retention (data not shown). Secondly, a positive residual of <4 % indicating a gain of 183 

fluorescence was seen in the emission range between 360 and 470 nm when excitation was below 184 

300 nm. This small gain is likely attributable to a weak background fluorescence signal emitted by the 185 

mobile phase, which constantly eluted from the analytical column despite an auto-zero blank subtraction 186 

at the beginning of each run. Despite these minor differences, the spectral shape of bulk and size-187 

separated EEMs was highly similar. TCCs between fluorescence emission at all excitations was higher 188 

than 0.9997, but did show lower values at low excitation wavelengths (<300 nm) due to the lack of 189 

protein-like fluorescence in the size-separated EEMs (SI Figure S8). 190 

Overall, the additivity of fluorescence within the framework of HPSEC separation was 191 

confirmed. The application of superposition-based decomposition models such as PARAFAC was 192 
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therefore deemed to be appropriate. Since HPSEC possibly disrupts intermolecular charge transfer and 193 

fluorescence quenching based on partial physical separation, the absence of substantial differences 194 

between separated and bulk EEMs indicates that such interactions between fluorescence components were 195 

not occurring to any significant extent. Conversely, this result does not provide information on 196 

intramolecular charge-transfer or quenching interactions, since chromatographic separation would not be 197 

expected to disrupt their occurrence. Any effects of these intramolecular interactions may thus remain 198 

embedded in the spectral signatures of components identified in Fig. 2. However, since charge-transfer 199 

interactions are embedded in the extracted spectral signatures, HPSEC-EEM-PARAFAC might help to 200 

systematically investigate and identify such interactions by comparing the optical properties of chemically 201 

contrasting samples in future studies.  202 
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Spectral conformity among allochthonous samples 203 

The four allochthonous DOM extracts originated from freshwater environments in Sweden and Brazil 204 

receiving a large proportion of terrestrial organic matter. They were analyzed independently using 205 

HPSEC-EEM-PARAFAC to decompose EEMs into independent fluorescence components. On average, 206 

PARAFAC models with two to five components explained respectively 99.51, 99.78, 99.88, and 99.92 % 207 

of variability in each dataset, and all models with the same number of components (two to five 208 

components) had highly congruent underlying fluorescence spectra (SI Figure S9, SI Table S2). For all 209 

four samples, the five-component PARAFAC model (Fig. 2) best represented their fluorescence 210 

properties (SI Figure S10), since four component models did not adequately represent protein-like 211 

fluorescence, while core consistencies, sum-of-squared-errors, and spectral loadings of six component 212 

models frequently implied over-factorization The spectral congruence between the independent datasets is 213 

interpreted as compelling evidence for the validity of the four individual models (i.e. similar to a 214 

conventional split-half analysis). The five components of the validated PARAFAC model were named 215 

according to their fluorescence emission maximum as follows: C350, C405, C430, C450, C510 (Fig. 2). 216 

Despite high overall similarity between components in all four models (Fig. 2), their spectral 217 

congruence did not always meet the criterion of TCC ≥ 0.95 that is often applied to identify 218 

interchangeable spectra (SI Table S2).41,45 However, in all comparisons, TCC exceeded the threshold of 219 

“fair” similarity (0.85) and in all but one cases exceeded 0.90 (C350 between Lake Lillsjön and Svartan 220 

River).61 Common sources that might result in minor spectral changes, such as sample pH and metal-221 

quenching, were eliminated by the combination of DOM extraction and controlled buffer conditions 222 

during chromatographic separations.65,66 Thus, the spectral differences observed between otherwise 223 

similar models must have originated from other sources. Since fluorescence properties of aromatic 224 

structures are influenced by conjugation and substitution, structural variations in similar fluorophores 225 
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between samples may explain the slight spectral shifts and shape variations.67 While this explanation 226 

cannot be denied without further experiments, we hypothesize that the spectral differences may have also 227 

been caused by the unavoidable spectral limitations of the highly sensitive HPSEC fluorescence detector. 228 

Compared to traditional EEMs,68 HPSEC EEMs are affected by larger areas of scatter and a slightly 229 

reduced spectral range, both of which may influence the mathematical decomposition.69 While the general 230 

influence of these factors has been investigated previously,70 the detailed influence of variable size of 231 

scatter excision and changing spectral ranges on fluorescence modeling remains poorly understood and 232 

should be investigated further. While the identification of the primary factor responsible for the observed 233 

spectral differences between congruent fluorescence components is currently not identifiable, the one-234 

sample framework is best suited to investigate such issues since it would otherwise not be possible to 235 

make such observations using such a limited number of environmental samples. Despite this, a high 236 

degree of overall similarity between the fluorescence compositions of independent samples from 237 

geographically contrasting sites was observed (Fig. 3a, SI Figure S11), since relative component 238 

contributions were within 5 % of the respective mean contributions (Fig. 3b). These deviations are 239 

especially low compared to a recent HPSEC-based study of boreal lake DOM that indicated variations of 240 

more than 50 % for some humic-like components between samples from different lakes.71 This 241 

compositional and spectral similarity is striking and suggests that globally, the bulk optical properties of 242 

terrestrial DOM may arise from very similar chemical structures.  243 
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Comparison between autochthonous, allochthonous and community-derived fluorescence spectra 244 

Since the spectral properties of four allochthonous samples were strikingly similar, it was hypothesized 245 

that spectral properties of autochthonous FDOM would also be similar across samples. To test this, the 246 

size-dependent optical properties of the autochthonous extracts from the Pacific Ocean and Pony Lake 247 

samples were analyzed using the same approach employed for the allochthonous samples. This offered 248 

the opportunity to compare fluorescence components originating from lateral terrestrial inputs in rivers 249 

and lakes with fluorescence components produced in situ. For both autochthonous samples, a six-250 

component PARAFAC model best described the size-dependent optical properties (SI Figure S12). The 251 

spectral properties of the autochthonous extracts visibly differed from the allochthonous extracts and 252 

unlike the allochthonous extracts, contained mostly unique fluorescence spectra. Only two components 253 

(emission maxima at 510 and 430 nm) derived from the Pacific Ocean and Pony Lake sample were 254 

spectrally congruent. Unique spectra in both autochthonous samples consisted of three protein-like 255 

fluorophores with emission maxima below 400 nm and five humic-like components with emission 256 

maxima between 400 and 500 nm. Thus, the hypothesis that autochthonous FDOM components are 257 

spectrally similar across samples was rejected. However, it should be noted that the two autochthonous 258 

samples were extracted using different resins, potentially affecting this result. 259 

Despite greater variability, the fluorescence spectra derived from the autochthonous samples 260 

partially matched with spectra derived from the allochthonous samples. Components closely matching 261 

allochthonous C510 (as identified in Lake Lillsjön) were found in Pony Lake and Pacific Ocean FDOM. 262 

Thus, C510 was the only ubiquitous component across all investigated samples (Fig. 4). Additionally, 263 

components closely resembling C405 and C430 were present in FDOM from Pony Lake and the Pacific 264 

Ocean, respectively (Fig. 4). 265 
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All five freshwater-derived fluorescence components identified in this study correlated with 266 

fluorescence spectra in the OpenFluor database.41 Components C350, C405, C430, C450, and C510 yielded 267 

matches with components from a total of 10, 38, 31, 2, and 24 studies, respectively (Fig. 4, grey lines). 268 

Considering the current total of 62 models with 4 or more components in the database (as of June 2017), 269 

the five allochthonous fluorescence spectra thus showed spectral correlation with a significant proportion 270 

of previous studies (except in the case of C450). C510 and C405 also showed striking similarity with two 271 

components previously listed by Ishii & Boyer (2012) as reoccurring humic-like FDOM components.39 272 

The fact that C510 and C405 also represent the components with the highest number of matches in the 273 

OpenFluor database confirms these earlier observations and the presence of reoccurring PARAFAC 274 

components across aquatic environments. 275 

Compared to the bulk-sample PARAFAC approach,45 the one-sample modeling approach 276 

described here offers critical advantages. First, our approach does not require large-scale sampling efforts. 277 

Secondly, HPSEC offers the unique opportunity to confirm the additive behavior of DOM fluorescence 278 

and thus ensures the applicability of mathematical decomposition routines. Moreover, EEMs originating 279 

from HPSEC separations are not influenced by disturbances common to environmental gradients, such as 280 

pH,65 metal-quenching,66 ionic strength,72 and charge-transfer.73 Thus, we propose that the described one-281 

sample modeling framework offers a systematic approach to investigate the commonality of fluorescence 282 

spectra across different aquatic environments. However, it should be noted that the shown sample 283 

characteristics strictly apply to the time of sampling. DOM composition may change with season and 284 

sampling location. Nevertheless, similarities between samples were found despite factors such as time of 285 

sampling and seasonality of the individual systems, spatial differences in DOM biogeochemistry, and 286 

methodological differences in sampling.  287 
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Physical separation and mathematical decomposition: Molecular size distributions of fluorescence 288 

spectra 289 

In the context of HPSEC-EEM-PARAFAC, component scores represent molecular size as the primary 290 

chromatographic separation mechanism. As stated above, spectral loadings of some components 291 

originating from individual PARAFAC models were strongly congruent and therefore warranted further 292 

comparison to examine apparent molecular size distributions between samples originating from different 293 

aquatic environments. The supramolecular assembly hypothesis states that individual DOM moieties (e.g. 294 

fluorescing compounds) form non-covalently bound assemblies (including non-fluorescing compounds) 295 

of varying molecular size.17,74 Evidence supporting this hypothesis is based on the highly similar character 296 

of DOM obtained from HPSEC-based fractions as observed by mass spectrometry,75 infrared 297 

spectroscopy,17 and fluorescence spectroscopy.11,18–20 In this light, the apparent molecular size 298 

distributions are expected to be broad and unresolved. In agreement with this hypothesis, components 299 

originating from allochthonous DOM showed highly similar molecular size distributions with poor 300 

physical separation (Fig. 5, SI Fig. S13). Components generally exhibited a single peak with tailing 301 

towards higher elution volumes (low apparent molecular size). The molecular size distributions of 302 

PARAFAC components other than C405 were very similar across samples (TCC>0.98, SI Fig. S13). The 303 

observation of broad, overlapping distributions instead of distinct, resolved peaks thus aligns with earlier 304 

findings, although the combined chromatographic and mathematic approach employed here provides 305 

unprecedented detail due to the utilization of online detectors (< 1 Hz) instead of discrete fractionation. 306 

A direct link between fluorescence emission maximum and molecular size would provide evidence that 307 

the chemical structure of larger fluorophores results in “humic-like” fluorescence through extended 308 

conjugation of aromatic structures.76 Contrary to findings in earlier studies that reported direct 309 

correlations between molecular size and fluorescence emission maximum,11–16 peak molecular sizes of 310 
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components were not correlated to fluorescence emission. Across the allochthonous samples, the average 311 

peak molecular size was 1.54 ± 0.15, 1.45 ± 0.05, 1.42 ± 0.09, 1.30 ± 0.12, 0.89 ± 0.24 kDa for 312 

components C510, C350, C430, C450, and C405, respectively (R2 = -0.22, p >0.1). Moreover, no relationship 313 

between the FDOM composition (as observed by relative contributions of PARAFAC components to the 314 

total HPSEC-EEM fluorescence) and molecular size of total fluorescence was apparent (Fig. 3, dashed 315 

line and red dots). Although a direct correlation between fluorescence emission and molecular size might 316 

be expected for simple mixtures, our results suggest that this was not the case for the complex mixtures 317 

analyzed in this study. Our findings rather suggest that FDOM components were possibly associated with 318 

non-fluorescing organic matter with a range of three-dimensional structures / sizes, thus convoluting the 319 

relationship between fluorescence emission and molecular size. The contradictory results may arise at 320 

least in part from the different analytical approaches between studies, but may also result from differences 321 

in sample preparation, choice of analytical column, or the overall degree of compositional variability in 322 

each dataset. While results in this study suggest that bulk FDOM is an unreliable indicator of the average 323 

molecular size of DOM, further investigation with additional samples is warranted. This finding also 324 

highlights the need for additional analytical detectors (such as refractive index or mass spectrometry) to 325 

be included in HPSEC analyses, since a combination of detectors with overlapping analytical windows 326 

will provide deeper insights into the molecular assemblies of DOM. 327 

HPSEC-EEM-PARAFAC demonstrated that apparent molecular size distributions of spectrally congruent 328 

fluorescence spectra may differ between samples. We identified differences in apparent size distributions, 329 

most notably in the low molecular size range, in particular for the poorly-resolved peaks of components 330 

C350, C405 and C450 in several samples (Fig. 5 inserts). Notably, experiments with pure fluorophores 331 

suggested the presence of secondary column interactions with compounds of low molecular size. Thus, a 332 

combination of secondary interaction (possibly of hydrophobic nature) and molecular size might be 333 
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responsible for peaks at low apparent molecular size. Nonetheless, these observations all point towards 334 

distinct compositional differences between samples.  335 

Molecular size distributions of corresponding fluorescence spectra extracted from autochthonous samples 336 

(Pony Lake and the Pacific Ocean) visibly differed compared to allochthonous samples (Fig. 5). Although 337 

molecular size peaks were similar, the size distribution of C510 was shifted toward low apparent molecular 338 

size. For the Pacific Ocean sample, C405 showed two distinct peaks at high elution volume (~3.8, and 339 

~6.1 mL) that did not occur in allochthonous samples. Similarly, C430 of the Pony Lake sample showed a 340 

peak at elution volume 3.9 mL that was not visible in allochthonous samples.  341 

These small, but significant differences present novel insights into the chemical properties of spectrally 342 

interchangeable fluorescence components. For example, according to the size-reactivity continuum,7 343 

chemical compounds at contrasting ends of the marine DOM molecular size distribution are utilized by 344 

bacteria at drastically different rates.8,9 In this light, our findings suggest that interchangeable fluorescence 345 

spectra may inadvertently be proxies for chemical assemblies of different molecular size and thus 346 

different biogeochemical reactivity. The inherent inability of bulk measurements to provide such 347 

information highlights the need to incorporate further analytical dimensions in the characterization of 348 

DOM in order to unravel the biogeochemical role of the various DOM fractions. Similar to the systematic 349 

investigation of spectral properties of FDOM, we propose the one-sample modeling approach as 350 

framework to provide novel insights into the relationship between DOM (as analyzed by various 351 

instruments, such as spectrofluorometers or mass spectrometers) and physical and chemical properties of 352 

DOM (as determined by e.g. HPSEC or reverse-phase liquid chromatography). 353 
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HPSEC-EEM-PARAFAC: Implications and future directions 354 

The combination of physical and mathematical chromatography (HPSEC-EEM-PARAFAC) presents an 355 

advantageous framework for the systematic investigation of fluorescence properties of single 356 

environmental samples. To date, the application of PARAFAC has been hindered by necessity to attain a 357 

large dataset spanning a relevant gradient in composition. The opportunity to now assess cross-system 358 

variability of DOM in a standardized, robust fashion represents a significant advance in the 359 

characterization of DOM. At the same time, this approach provides numerous additional opportunities: 360 

Firstly, the HPSEC-base single-sample approach offers detailed insights into molecular size distributions 361 

of fluorophores. This analytical advance will improve the understanding of fluorophores as proxies for 362 

DOM biogeochemistry. Secondly, the fact that spectral decomposition / characterization can now be 363 

performed on individual samples increases the potential utility of the PARAFAC-EEM approach in 364 

experimental manipulations with limited samples or for studies focused on characterizing trends across 365 

independent systems (e.g. suite of isolated lakes or biomes). Finally, beyond fluorescence spectroscopy, 366 

the single-sample approach opens up opportunities for a systematic comparison of data originating from 367 

different analytical techniques (such as fluorescence spectroscopy, nuclear magnetic resonance 368 

spectroscopy, and mass spectrometry). The fusion of data from multiple analytical approaches may 369 

produce new insights into the composition of DOM that are inaccessible from any technique on its own. 370 
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Figure legends 605 

 606 

Figure 1. Comparison between sum-normalized bulk sample fluorescence (a) and the sum of size separated EEMs (b) of 607 

lake Lillsjön DOM. The difference between both EEMs is shown in (c). Fluorescence in (a) and (b) was normalized to the 608 

sum of fluorescence in each EEM.  609 
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 610 

Figure 2. Contour plots of five allochthonous freshwater PARAFAC-derived fluorescence spectra (sample from Lillsjön 611 

(a)) and comparison between spectral properties of five spectra originating from four different samples and their 612 

respective models (b). Components are ranked and named according to their respective emission maxima. Tucker 613 

congruence coefficients are shown in the SI Table S2.  614 
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 615 

Figure 3. Relative contributions of PARAFAC components to the total fluorescence in the four allochthonous samples (a), 616 

as well as deviation of the relative contribution of PARAFAC components from the average composition per component 617 

(b, left axis & bars LS = Lillsjön, SV = Svartan, RN = Rio Negro, RT = Rio Tapajos) against the molecular size peak 618 

maximum obtained from the total fluorescence chromatogram (right axis, red dots & dotted line). 619 

  620 
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 621 

Figure 4. Spectral congruence between five PARAFAC-derived fluorescence spectra of allochthonous DOM from Lake 622 

Lillsjön (boreal lake, black line), spectra extracted from the OpenFluor database (gray), and two autochthonous DOM 623 

samples (Pacific Ocean and Pony Lake, blue and orange lines, respectively). For C350, the emission spectrum above 450nm 624 

was set to missing numbers since data above that emission wavelength likely represented an artefact related to leftover 625 

physical scatter.  626 
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 627 

Figure 5. Comparison of chromatograms of five PARAFAC components from four allochthonous samples and two 628 

autochthonous samples (only for components with sufficient spectral similarity). To mitigate the high degree of 629 

correlation seen in most components, all datasets were log-normalized prior to modeling and the normalization was 630 

reversed post-fitting to obtain the original chromatograms. Inserts show elution profiles between 4 and 7 mL. 631 
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