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Thanks to the organizers
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A Look Inside the Reactor

Reactants

Products Catalyst pellets

10mm

Supported metal 
particles

100nm

Active surfaces

2nm

T: RT-1000°C+

P: 102 bar

J.-D. Grunwaldt, J. B. Wagner, R. E. Dunin-Borkowski, ChemCatChem, 5, 65 (2013)
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Data acquisition and analysis
Size No (Yes) No Yes (Yes
Morphology No No (Yes) Yes Yes
Phase No Yes Yes Yes (No
Activity Yes (Yes) (Yes) No (Yes
Selectivity Yes (Yes) (Yes) No (Yes
Pressure 105-107 Pa 10-1-105 Pa 10-1-105 Pa 10-4-103 Pa 10-1-10

In situ XRD ETEMReactor In situ XAS

The in situ toolbox

In s  
Ptychog

Complimentary information can be retrieved, BUT the sample state is 
DEPENDENT on the experimental limitations of the instruments
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Outline

• The in situ toolbox
– Environmental TEM

• The catalysts life cycle - Identical location and ETEM
– Intermetallic GaPd2/SiO2 nanoparticles for low 

pressure CO2 hydrogenation to methanol

• Watching the reaction - ETEM
– Soot oxidation by Ag

• Summary and acknowledgement
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Pd2Ga - Zone axis [1 0 0]

Dr. Diego Gardini

Dr. Elisabetta Fiordaliso



12 October 2016DTU Physics and DTU Danchip/Cen, Technical University of Denmark

The catalysts life cycle - Identical 
location and ETEM
Intermetallic GaPd2/SiO2 nanoparticles for low pressure CO2
hydrogenation to methanol

Dr. Elisabetta Fiordaliso
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Methanol synthesis at lower temperature 
and pressure from CO2

CO2 + 3H2 ↔ CH3OH + H2O

H+

H+

H+

H2O

O2

CO2

CO + H2

e-
e-

CH3OH

CO2 + H2
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Requirements:

• Active at low pressure (1 bar )

• As selective as Cu/ZnO/Al2O3 (100%)

• Stable, resistant towards sintering and deactivation

CO2 + 3H2 ↔ CH3OH + H2O

CO2 + H2 ↔ CO + H2O 

Search for new catalysts
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Pd2Ga/SiO2

Candidates from DFT calculations:
Novel intermetallics Ni-Ga

Search for new catalysts

T. Fujitani et al., “DEVELOPMENT OF AN ACTIVE GA2O3 SUPPORTED 
PALLADIUM CATALYST FOR THE SYNTHESIS OF METHANOL FROM 
CARBON-DIOXIDE AND HYDROGEN”. APPLIED CATALYSIS A-GENERAL 
125.2 (1995): L199-L202. 

F. Studt et al., “Discovery of a Ni-Ga Catalyst For Carbon Dioxide 
Reduction To Methanol”. Nature Chemistry 6.4 (2014): 320-324. 
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Pd2Ga/SiO2
(23% metal loading)

Sample preparation

Pd(NO3)2 + Ga(NO3)3 + HNO3 + H2O

HSA SiO2

Catalyst life cycle
p = 1 bar

RT
Air

Air

H2

H2+CO2

Drying
120°C

Calcination
260°C

Reduction
550°C

Reaction
175-250°C

Air

1. Catalytic test
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Methanol synthesis

CO2 + 3H2 ↔ CH3OH +H2O

Cu/ZnO/Al2O3

• Very active, selective and cheap

• High pressure operations (50-100 bar)

• Suffers from sintering 

dyes

pharmaceuticals
coatings

fuel
plastics

CO + 2H2 ↔ CH3OH
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CO2 + 3H2 ↔ CH3OH + H2O

1 bar, 25% CO2 and 75% H2

CO2 + H2 ↔ CO + H2O 

1. Catalytic test

C. Baltes et al., “Correlations Between Synthesis, Precursor, and Catalyst Structure and Activity of a Large Set of CuO/ZnO/Al2O3 
Catalysts For Methanol Synthesis”. JOURNAL OF CATALYSIS 258.2 (2008): 334-344.
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PANalytical X'Pert PRO

Anton Paar XRK 900

Gas system 

2. In situ XRD
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Catalyst life cycle
p = 1 bar

RT
Air

Air

H2

H2+CO2

Drying
120°C

Calcination
260°C

Reduction
550°C

Reaction
175-250°C

Air

20 25 30 35 40 45 50

 Calcination

 

 

 

 

2θ (°)
 

 Reference for PdO

 

 Drying

20 25 30 35 40 45 50

 

 Reduction

 

 

2θ (°) 

 Reference for Pd2Ga
 Methanol synthesis

2. In situ XRD patterns
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Extended X-ray Absorption Fine Structure (EXASF)
3. In situ EXAFS

storage ring
monochromator

mirror

slits 

ionization chambers

IoI1I2

samplereference
ANKA
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Catalyst life cycle
p = 1 bar

RT
Air

Air

H2

H2+CO2

Drying
120°C

Calcination
260°C

Reduction
550°C

Reaction
175-250°C

Air
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 |χ
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)| 
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)
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 Exp.
 fit

Pd-K 

Edge Shell atom N r(Å) σ2( 10-3 Å2) ρ (%)

Pd K 1st O 4f 2.01a~ 2.5 ± 0.7a 2.8

2nd Pd 4f 3.03a~ 6.5± 0.8a

3rd Pd 6.8±1.7a 3.42±0.01a 8.3± 1.8a

Ga K Tet. O 2.9± 0.3a 1.90±0.02a 2.8 ± 1.9a# 1.2

Oct. O 1.5± 0.3a 2.07±0.04a 2.8 ± 1.9a#
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3. In situ EXAFS
H. W. P. Carvalho

J.-D. Grunwaldt
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Catalyst life cycle
p = 1 bar

RT
Air

Air

H2

H2+CO2

Drying
120°C
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260°C

Reduction
550°C
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175-250°C

Air

0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0
Pd-K 

R (Å)

 |χ
 (R

)| 
(Å

-3
)

 Exp.
 fit

 

 

0 1 2 3 4 5

-2

-1

0

1

2

 Exp.
 fit

R (Å)

 |χ
 (R

)| 
(Å

-3
)

Ga-K 

 

 

Edge Shell atom N r(Å) σ2( 10-3 Å2) ρ (%)

Pd K 1st Ga 2.8±0.5a 2.52±0.01a# 6.5 ± 0.6a# 2.5

2nd Pd 7.5± 1.4a 2.81±0.02a 11.4± 2.0a

Ga K 1st Pd 5.6± 0.3a 2.52±0.01a# 6.5 ± 0.6a#

3. In situ EXAFS
H. W. P. Carvalho

J.-D. Grunwaldt
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4. IL TEM  

Deposition on Au/SiO2 grid of 
RT dried precursor powder

Reactivation

550°C, H2

Reaction
200°C

Catalytic path
p = 1 bar

RT
Air

Air

H2

H2+CO2

Drying
120°C

Calcination
260°C

Reduction 
550°C

Passivation

Air

Furnace  ↔ TEM                                    
transfer of grids in air
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Drying, 120ºC, Air Calcination, 260ºC, Air

Reduction, 550ºC, H2 Reaction, 200ºC, H2+ CO2

SIZE and DISPERSION

• Nanoparticles decorate the 
support after drying of the 
precursors.

• After calcination a sintering 
of the substrate is observed. 

• The nanoparticles size and 
dispersion are determined 
upon calcination. 

• No significant changes are 
observed after reduction and 
CO2 hydrogenation to 
methanol.

4. IL TEM images
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COMPOSITION and                   
CRYSTAL STRUCTURE

• No segregation of Pd and Ga 
is observed:
the bulk structure of the 
particle is maintained after 
exposure to air.

• FFT reveals the crystal 
structure of a Pd2Ga 
nanoparticle. 

• Hints of a surface oxide 
layer. 

2 1 0

2 1 0

TEM FFT

Pd2Ga - Zone axis [0 0 
1]

2 2 0

0 1 01 0 0

STEM EDX line profile

0 2 4 6 8 10 12 14 16

 

 

In
te

ns
ity

 (a
.u

.)

Position (nm)

 Ga K
 Pd L

After Reduction, passivation, exposure to air 

4. IL TEM analysis
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5. ETEM

Deposition on Holey Au/C grid 
of RT dried precursor powder

Deposition on 
Protochips

Catalyst life cycle
p = 4 mbar

RT
Air

Air

H2

H2+CO2

Drying
120°C

Calcination
260°C

Reduction
550°C

Reaction
175-250°C

Air

Titan, FEI
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• Monochromated FEG electron 
source

• Differential pumping system
1. Gas is leaked in
2. First set of diffusion limiting 

apertures
3. Turbo molecular pump
4. Second set of diffusion limiting 

apertures
5. Turbo molecular pump
6. Ion getter pump (IGP)

• Direct line of sight!

T.W. Hansen, J.B. Wagner et al., Mater. Sci. Technol. 26, 1338 (2010)

22

5. ETEM
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• Orders of magnitude
– Conventional TEM ~10-8mbar
– Environmental TEM ~101mbar
– Closed Cell ETEM ~103mbar
– Bench scale reactors ~103mbar
– Industrial reactors ~105mbar

• We have gone most of the way…

23

5. ETEM – conditions 
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Drying, 120ºC, Air Calcination, 260ºC, Air

Reduction, 550ºC, H2 Reaction, 200ºC, H2+ CO2

SIZE and DISPERSION

• Nanoparticles decorate the 
support after drying of the 
precursors.

• After calcination a sintering 
of the substrate is observed. 

• Size and dispersion are 
determined upon calcination. 

• No significant changes are 
observed after reduction and 
methanol synthesis.

• ETEM results correlates with 
the 1 bar treated catalyst.

5. ETEM images
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• PdO phase is observed 
after calcination.

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
 

 

1/d (nm)

Reference 
for PdO

 

 

DP

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Reference 
for Pd2Ga

 

 

1/d (nm)

 

 

DP

Calcination, 260ºC, Air

Radial intensity 

profile from DP

Reduction, 550ºC, H2

Radial intensity 

profile from DP

• Pd2Ga phase is formed 

upon reduction. 

ETEM (4 mbar) and XRD (1 bar) correlates

5. SAED patterns
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0 2
0

0 1 
3

0 1 
3

(a) Reduction, 550ºC, H2 (b) FFT

Pd2Ga - Zone axis [1 0 0]

6. HRTEM
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Paralle approach - Conclusions

• Pd2Ga/SiO2 catalyst is investigated by complementary techniques.

• The test of the catalyst shows that the methanol yield from 
Pd2Ga/SiO2 is higher to the one given by Cu/ZnO/Al2O3, while the CO 
yield is lower.

• XRD, EXAFS and SAED show that the Pd2Ga phase is formed upon 
reduction and is stable with methanol synthesis. 

• IL-TEM and ETEM images show that particles size and dispersion are 
determined upon calcination and no significant changes are 
observed after reduction and methanol synthesis.

• ETEM results are representative of the 1 bar pressure treated
catalyst, closing the pressure gap between techniques.

• Further investigation is required in order to further optimize the 
catalyst and better understand the alloy formation mechanism.

27
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Outline

• The in situ toolbox
– Environmental TEM

• The catalysts life cycle - Identical location and ETEM
– Intermetallic GaPd2/SiO2 nanoparticles for low 

pressure CO2 hydrogenation to methanol

• Watching the reaction - ETEM
– Soot oxidation by Ag

• Summary and acknowledgement
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Pd2Ga - Zone axis [1 0 0]
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Watching the reaction
Soot oxidation by Ag

Dr. Diego Gardini
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Soot oxidation by Ag catalyst

30

• Remove soot particles in exhaust of diesel engines by filters for a 
cleaner and healthier environment

• Low temperature regeneration of filters to reduce fuel
consumption

Gardini, JBW et al. submitted 2015

Loose contact Tight contact
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Silver Catalyst for Low Temperature 
Soot Oxidation

31

• Soot:silver= 1:5 wt:wt, 
• Heating ramp = 11˚C/min, 
• 1 NL/min, 10.2 vol% O2 in N2.
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Loose contact

32

• P=300 Pa O2
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Tight contact

33

• P=300 Pa O2
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Silver mobility on loose contact

34

• P=300 Pa O2

• Ag/soot interface increases
during oxidation

Gardini, JBW et al. submitted 2015
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Silver mobility on loose contact

35

• Ag/soot interface increases during oxidation
• Ag detaches

Gardini, JBW et al. submitted 2015
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Summary

36

• Catalytic life cycle
– Catalyst formation
– Catalyst test

• Visualizing catalytic reaction
– Soot oxidation

Drying, 120ºC, Air Calcination, 260ºC, Air

Reduction, 550ºC, H2 Reaction, 200ºC, H2+ CO2
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Additional info

38



20 25 30 35

2θ / ο (λ = 1Α)

30oC

Starting phase after calcination – PdO (13 wt%)
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20 25 30 35

30oC

2θ / ο (λ = 1Α)

150oC

PdO transformed into Pd upon heating in H2/Ar (13 wt%)
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20 25 30 35

30oC

500oC

2θ / ο (λ = 1Α)

150oC

Pd is alloyed with Ga at T > 300oC (13 wt%)

~ 300oC
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20 25 30 35

30oC

550oC

500oC

2θ / ο (λ = 1Α)

150oC

Alloying seems to be completed at T = 500oC (13 wt%)
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Alloying mechanism (25% H2 in Ar) 
– one explanation

GaPd2 catalyst for hydrogenation of CO2 to methanol

650oC, 

H2/He
320°C < T < 550°CPdO Pd2Ga

Reduction in H2
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Alloying mechanism – preliminary data

Reduction, 4 mbar H2, 550°CCalcined

PdO [1 1 0]

FFT

0 0 2

1 1 0

1 1 2
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Pressure gap

46
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