Technical University of Denmark

Visualizing Catalysts in Action

Damsgaard, Christian Danvad

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Damsgaard, C. D. (2017). Visualizing Catalysts in Action [Sound/Visual production (digital)]. 13th Multinational Congress on Microscopy, Rovinj, Croatia, 25/09/2017

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Visualizing Catalysts in Action

Christian Danvad Damsgaard

Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark

Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby, Denmark *iħ*

DTU Physics DEpartment of Physics Center for Electron Nanoscopy

Thanks to the organizers

A Look Inside the Reactor

Reactants

J.-D. Grunwaldt, J. B. Wagner, R. E. Dunin-Borkowski, ChemCatChem, 5, 65 (2013)

3 DTU Physics and DTU Danchip/Cen, Technical University of Denmark

The in situ toolbox

ETEM

Image: State of the state of

Size	No	t's the?	Nc	Yes
Morphology	active	What cture	at's the	Yes on le
Phase	15 1,10	str v stimize	Whannical	qoing-scar
Activity	Yes	we othesis.	che. ste?	what's name
Selectivity	Yes	Carr synt	stares)	Non thing
Pressure	10 ⁵ -10 ⁷ Pa	10 ⁻¹ -10 ⁵ Pa	10 ⁻¹ -10 ⁵ Pa	10 ⁻⁴ -10 ³ Pa

Complimentary information can be retrieved, BUT the sample state is DEPENDENT on the experimental limitations of the instruments

Dr. Elisabetta Fiordaliso

Outline

- The *in situ* toolbox
 Environmental TEM
- The catalysts life cycle Identical location and ETEM

 Intermetallic GaPd₂/SiO₂ nanoparticles for low
 pressure CO₂ hydrogenation to methanol
- Watching the reaction ETEM
 Soot oxidation by Ag
- Summary and acknowledgement

Dr. Diego Gardini

Dr. Elisabetta Fiordaliso

The catalysts life cycle - Identical location and ETEM

Intermetallic GaPd₂/SiO₂ nanoparticles for low pressure CO₂ hydrogenation to methanol

Methanol synthesis at lower temperature and pressure from CO₂

Search for new catalysts

CO₂ + 3H₂
$$\leftrightarrow$$
 CH₃OH + H₂O
Requirements:
CO₂ + H₂ \leftrightarrow CO + H₂O

- Active at low pressure (1 bar)
- As selective as Cu/ZnO/Al₂O₃ (100%)
- Stable, resistant towards sintering and deactivation

Search for new catalysts Candidates from DFT calculations: Novel intermetallics Ni-Ga

F. Studt et al., "Discovery of a Ni-Ga Catalyst For Carbon Dioxide Reduction To Methanol". Nature Chemistry 6.4 (2014): 320-324.

T. Fujitani et al., "DEVELOPMENT OF AN ACTIVE GA2O3 SUPPORTED PALLADIUM CATALYST FOR THE SYNTHESIS OF METHANOL FROM CARBON-DIOXIDE AND HYDROGEN". APPLIED CATALYSIS A-GENERAL 125.2 (1995): L199-L202.

- Very active, selective and cheap
- High pressure operations (50-100 bar)
- Suffers from sintering

Cu/ZnO/Al₂O₃

1. Catalytic test

C. Baltes et al., "Correlations Between Synthesis, Precursor, and Catalyst Structure and Activity of a Large Set of CuO/ZnO/Al2O3 Catalysts For Methanol Synthesis". JOURNAL OF CATALYSIS 258.2 (2008): 334-344.

2. In situ XRD

Gas system

PANalytical X'Pert PRO

Anton Paar XRK 900

DTU

 Ξ

2. In situ XRD patterns

3. In situ EXAFS

Extended X-ray Absorption Fine Structure (EXASF)

3. In situ EXAFS

H. W. P. Carvalho

J.-D. Grunwaldt

Edge	Shell	atom	Ν	r(Å)	σ²(10 ⁻³ Ų)	ρ (%)
Pd K	1 st	0	4 ^f	2.01 ^a ~	2.5 ± 0.7 ^a	2.8
	2 nd	Pd	4 ^f	3.03 ^a ~	6.5± 0.8 ^a	
	3 rd	Pd	6.8±1.7 ^a	3.42±0.01ª	8.3± 1.8 ^a	
Ga K	Tet.	0	2.9± 0.3 ^a	1.90±0.02 ^a	2.8 ± 1.9 ^{a#}	1.2
	Oct.	0	1.5± 0.3 ^a	2.07±0.04 ^a	2.8 ± 1.9 ^{a#}	

3

5

4

Exp.

fit

3. In situ EXAFS

H. W. P. Carvalho

J.-D. Grunwaldt

Edge	Shell	atom	Ν	r(Å)	σ²(10 ⁻³ Ų)	ρ(%)
Pd K	1 st	Ga	2.8±0.5ª	2.52±0.01 ^{a#}	6.5 ± 0.6 ^{a#}	2.5
	2 nd	Pd	7.5± 1.4 ^a	2.81±0.02 ^a	11.4± 2.0 ^a	
Ga K	1 st	Pd	5.6± 0.3ª	2.52±0.01 ^{a#}	6.5 ± 0.6 ^{a#}	

4. IL TEM

Deposition on Au/SiO₂ grid of RT dried precursor powder

Furnace ↔ TEM transfer of grids in air

4. IL TEM images

SIZE and DISPERSION

- Nanoparticles decorate the support after drying of the precursors.
- After calcination a sintering of the substrate is observed.
- The nanoparticles size and dispersion are determined upon calcination.
- No significant changes are observed after reduction and CO₂ hydrogenation to methanol.

4. IL TEM analysis

DTU

After Reduction, passivation, exposure to air

COMPOSITION and CRYSTAL STRUCTURE

- No segregation of Pd and Ga is observed: the bulk structure of the particle is maintained after exposure to air.
- FFT reveals the crystal structure of a Pd₂Ga nanoparticle.
- Hints of a surface oxide layer.

Titan, FEI

Deposition on Holey Au/C grid of RT dried precursor powder

Deposition on Protochips

5. ETEM

- Monochromated FEG electron source
- Differential pumping system
 - 1. Gas is leaked in
 - 2. First set of diffusion limiting apertures
 - 3. Turbo molecular pump
 - 4. Second set of diffusion limiting apertures
 - 5. Turbo molecular pump
 - 6. Ion getter pump (IGP)
- Direct line of sight!

T.W. Hansen, J.B. Wagner et al., Mater. Sci. Technol. 26, 1338 (2010)

5. ETEM – conditions

- Orders of magnitude
 - Conventional TEM ~ 10⁻⁸mbar
 - Environmental TEM ~10¹mbar
 - Closed Cell ETEM ~ 10³mbar
 - Bench scale reactors ~10³mbar
 - Industrial reactors ~10⁵mbar
- We have gone most of the way...

5. ETEM images

24

SIZE and DISPERSION

- Nanoparticles decorate the support after drying of the precursors.
- After calcination a sintering of the substrate is observed.
- Size and dispersion are determined upon calcination.
- No significant changes are observed after reduction and methanol synthesis.
- ETEM results correlates with the 1 bar treated catalyst.

12 October 2016

5. SAED patterns

• PdO phase is observed after calcination.

Pd₂Ga phase is formed

upon reduction.

ETEM (4 mbar) and XRD (1 bar) correlates

6. HRTEM

Paralle approach - Conclusions

- Pd₂Ga/SiO₂ catalyst is investigated by complementary techniques.
- The test of the catalyst shows that the methanol yield from Pd₂Ga/SiO₂ is higher to the one given by Cu/ZnO/Al₂O₃, while the CO yield is lower.
- XRD, EXAFS and SAED show that the Pd₂Ga phase is formed upon reduction and is stable with methanol synthesis.
- IL-TEM and ETEM images show that particles size and dispersion are determined upon calcination and no significant changes are observed after reduction and methanol synthesis.
- ETEM results are representative of the 1 bar pressure treated catalyst, closing the pressure gap between techniques.
- Further investigation is required in order to further optimize the catalyst and better understand the alloy formation mechanism.

Outline

- The *in situ* toolbox
 Environmental TEM
- The catalysts life cycle Identical location and ETEM – Intermetallic GaPd₂/SiO₂ nanoparticles for low pressure CO₂ hydrogenation to methanol
- Watching the reaction ETEM
 Soot oxidation by Ag
- Summary and acknowledgement

Watching the reaction

Soot oxidation by Ag

Dr. Diego Gardini

Soot oxidation by Ag catalyst

- Remove soot particles in exhaust of diesel engines by filters for a cleaner and healthier environment
- Low temperature regeneration of filters to reduce fuel consumption

Silver Catalyst for Low Temperature Soot Oxidation

- Soot: silver= 1:5 wt: wt,
- Heating ramp = 11°C/min,
- 1 NL/min, 10.2 vol% O_2 in N_2 .

Loose contact

• P=300 Pa O₂

DTU

Tight contact

• P=300 Pa O₂

33 DTU Physics and DTU Dancl.....

Silver mobility on loose contact

- P=300 Pa O₂
- Ag/soot interface increases during oxidation

Silver mobility on loose contact

- Ag/soot interface increases during oxidation
- Ag detaches

Summary

- Catalytic life cycle
 - Catalyst formation
 - Catalyst test

Visualizing catalytic reaction
 – Soot oxidation

DTU

Acknowledgements

DTU Cen Center for Electron Nanoscopy

DTU Physics Department of Physics

DTU Chemical Engineering Department of Chemical and Biochemical Engineering

Dr. Diego Gardini, Dr. Elisabetta Fiordaliso, Prof. Jakob B. Wagner

Dr. Christian Fink Elkjær, Dr. Irek Sharafutdinov, Prof. Ib Chorkendorff

Assoc. Prof. Jakob Munkholt Christensen, Prof. Anker Degn Jensen

Prof. Jan-Dierk Grunwaldt, Assoc. Prof. Hudson W. P. Carvalho

Additional info

<u>Starting phase after calcination – PdO (13 wt%)</u>

PdO transformed into Pd upon heating in H₂/Ar (13 wt%)

Pd is alloyed with Ga at T > 300°C (13 wt%)

Alloying seems to be completed at T = 500°C (13 wt%)

 $2\theta / O(\lambda = 1A)$

XAS – proportion of Ga species during TPR (23 wt%)

GaPd₂ catalyst for hydrogenation of CO₂ to methanol

Alloying mechanism (25% H_2 in Ar) – one explanation

Reduction in H₂

Alloying mechanism – preliminary data

Pressure gap

