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 1. INTRODUCTION 

X-ray Computerized Tomography (CT) is a non-destructive 
imaging technique that makes use of X-ray transmission 
projections and tomographic reconstruction algorithms to 
reproduce the internal refractive properties of a sample.  

X-ray projection data can be acquired by different techniques 
with different contrast modes e.g., by X-ray absorption or coherent 
diffraction imaging (CDI) as long as the different components that 
constitute the sample display different interactions with the 
incident beam and the effect increases linearly over the sample 
thickness along the beam direction. X-ray CDI does not rely on X-
ray lenses nor optics and thus has the potential for spatial 
resolution comparable to the X-ray wavelength, with 
demonstrated best resolution of 5 nm in 3D [1]. Ptychography is a 
variant of the CDI technique in which multiple diffraction 
measurements from overlapped regions can be used to extend the 
illuminated field of view to areas much larger than the illumination 
probe. The best demonstrated spatial resolution with 
ptychography is currently in the 8-10 nm range in 2D [2]–[4]. 
Holler et al. [5] further demonstrated that this imaging technique 
can be used to reach an isotropic 3D resolution of 15 nm in a 
tomographic reconstructed volume.  

Three-dimensional phase-contrast imaging usually comprises 
three different steps: phase retrieval, tomographic alignment and 
tomographic reconstruction. 

Iterative phase retrieval algorithms make use of a single full-field 
diffraction pattern, or several overlapping scans (ptychography), 
to recover a complex-valued image of the transmitted radiation 
over the illuminated sample. The properties inherent to such 
recovered projection images are further described in section 1.1. 
Tomographic alignment refers to the determination of the relative 
sample-detector orientation for each projection image. 
Tomographic reconstruction is the computational procedure that 
returns a three-dimensional representation of the sample from a 
finite number of two-dimensional transmission projections. 

Regardless of the technique used for data acquisition, 
tomographic reconstruction often requires an initial tomographic 
alignment operation in order to reconstruct an accurate three-
dimensional representation of the imaged sample. As the sample 
projections reach increasingly better resolution, mechanical 
instabilities or equipment limitations are becoming the main 
dominant factors contributing to the sample positioning 
uncertainties that will further introduce reconstruction artifacts 
and limit the attained resolution in the final tomographic 
reconstruction.  

Different tomographic alignment algorithms have been 
proposed in the literature with various fundamental principles. 
These can rely on the use and track of fiducial markers introduced 
in the sample [6], [7], or on other alignment methods based on the 
center-of-mass properties of the projection images [8], [9] or on 
cross-correlation measurements [10]. To these we may add other 
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markerless alignment methods that make use of iterative 
optimization algorithms [11], where one minimizes the 
disagreement between the measured projections and those 
synthetically produced from the reconstructed volume [12]–[15]. 
Nevertheless, these are usually user dependent, relying on visual 
inspection and manual interaction, they operate slice by slice 
through the illuminated volume, therefore only optimizing a 
limited number of degrees of freedom, not taking into 
consideration all the possible tilts and angular uncertainties that 
might be present in the experimental setup [16]. 

The full computational tool described here was initially 
developed for phase-contrast tomography but can in principle be 
applied to any other projection data acquired with a parallel-beam 
setup. A brief description of phase-contrast data is now presented 
in order to introduce two of the properties that characterize it and 
that should be taken into account during tomographic alignment 
and reconstruction: phase wrapping and phase ramps. 

1.1 PHASE-CONTRAST IMAGING  

Imaging methods that exploit the refractive properties of a 
sample are usually referred to as phase-contrast imaging [17]. 
These, also known as coherent diffractive or inverse imaging 
methods, of which ptychography is an example, are lensless optical 
techniques that make use of coherent light interaction with matter 
creating diffraction patterns that depend on the refraction 
properties of the material. For a monochromatic beam and at the 
far-field (or Fraunhofer) plane, the Helmholtz equation for light 
wave propagation states that the acquired diffraction patterns may 
be approximated by the Fourier transform amplitude of the 
incident wavefront after light-sample interaction. Phase-retrieval 
algorithms [18] and others as described in [19]–[24] are able to 
retrieve the reciprocal-space phase information and recover a 
complex-valued image 𝑂(𝑥, 𝑦) related to the sample 
transmissivity 𝑇(𝑥, 𝑦) by 

𝑂(𝑥, 𝑦) = 𝑇(𝑥, 𝑦)exp(𝐢(𝑎𝑥 + 𝑏𝑦 + 𝑐)). (1) 

Here 𝑥 and 𝑦 are the coordinates in the detector coordinate 
system (as seen in Figure 1), for a single projection image. The real-
valued coefficients 𝑎, 𝑏 and 𝑐 define linear and constant phase 
terms that we will refer to collectively as phase ramp and arise 
from ambiguities during the reciprocal-space phase-retrieval 
operation and uncertainties in the relative beam-detector position.  
Under the “thin sample” condition [25], the complex transmission 
function 𝑇(𝑥, 𝑦) is defined as 

𝑇(𝑥, 𝑦) = exp(−𝐵(𝑥, 𝑦))exp(𝐢𝑃(𝑥, 𝑦)),   (2) 

where 𝐵(𝑥, 𝑦) and 𝑃(𝑥, 𝑦) are defined as 

𝐵(𝑥, 𝑦) =
2𝜋

𝜆
∫ 𝛽(𝑥, 𝑦, 𝑧)d𝑧,  (3) 

𝑃(𝑥, 𝑦) = −
2𝜋

𝜆
∫ 𝛿(𝑥, 𝑦, 𝑧)d𝑧,  (4) 

and are known as absorption projection and phase-shift or phase-
contrast projection images, respectively. It is worth noticing that 
(3) and (4) are limited to the “thin sample” condition, where wave 
propagation effects through the thickness of the sample are not 
considered [25]. Here 𝜆 represents the wavelength of the incoming 
X-ray beam, whereas 𝛿 and 𝛽 are the real and imaginary 
deviations of the complex refractive index 𝑛 from unity [17], [26]: 

𝑛(𝑥, 𝑦, 𝑧) = 1 − 𝛿(𝑥, 𝑦, 𝑧) + 𝐢𝛽(𝑥, 𝑦, 𝑧). (5) 

Three-dimensional tomographic reconstructions from 
absorption projection and phase-contrast projection images provide 
a quantitative measure of the refractive index of the materials that 
constitute the sample under study. Tomographic reconstructions 
from absorption projections return the imaginary part of the 
sample complex refractive index in (5) which is associated with its 
linear absorption coefficient 𝜇 through 𝛽 = 𝜆𝜇/(4𝜋). On the other 
hand, reconstructions from phase-contrast projections are directly 
related to the sample electron density 𝜌 by 

𝛿(𝑥, 𝑦, 𝑧) =
𝜌(𝑥,𝑦,𝑧)𝑟0𝜆2

2𝜋
,  (6) 

where 𝑟0 = 2.82 ∙ 10−5Å is the Thomson scattering length. 
Phase-contrast projections provide quantitative data that are 

usually of higher resolution when compared with their respective 
absorption projection images, but phase-contrast projections may 
present additional challenges that must be taken into account prior 
to the tomographic alignment and reconstruction operation [22], 
[23], [27]. The two main issues addressed here are the presence of 
background gradients in the projections that take the form of 
phase ramps and wrapped areas that are characteristic of coherent 
diffraction imaging techniques. 

Let us define �̅�(𝑥, 𝑦) as the phase of 𝑂(𝑥, 𝑦). �̅�(𝑥, 𝑦) is 
commonly computed as �̅�(𝑥, 𝑦) = arg(𝑂(𝑥, 𝑦)) and can be seen 
as a background-corrupted phase-contrast projection given by 

arg(𝑂(𝑥, 𝑦)) = �̅�(𝑥, 𝑦) = 𝑃(𝑥, 𝑦) + 𝑎𝑥 + 𝑏𝑦 + 𝑐. (7) 

We will refer to �̅�(𝑥, 𝑦) as non-normalized phase-contrast 
projection data. The influence of the term 𝑎𝑥 + 𝑏𝑦 + 𝑐 in (7) must 
be subtracted from �̅�(𝑥, 𝑦) in order to obtain 𝑃(𝑥, 𝑦) that will be 
further used for tomographic reconstruction. We will refer to this 
constant and linear phase term removal operation as phase ramp 
removal. 

When measuring thick or high-contrast samples phase shifts 
larger than the wave-front period (2𝜋) may occur. Because phase-
retrieval algorithms are insensitive to the periodic nature of phase 
signals, they only allow the determination of phase values modulo 
2𝜋 commonly represented in ]−𝜋, 𝜋] ranges. Phase-projection 
images can therefore present a wrapping behavior in the pixels 
associated with phase shift outside the ]−𝜋, 𝜋] interval. 

With ever-increasing data-acquisition rates, provided by more 
brilliant synchrotron sources, manual user interaction during 
phase-ramp removal and tomographic alignment impedes phase-
contrast data processing and analysis. This motivates our 
development of a fully automated alignment and reconstruction 
algorithm that takes into consideration the presence of phase 
ramps, phase wrapping and any possible sample-detector relative 
orientation corrections. 

Although the proposed method, described in this paper, could be 
used for any parallel-beam geometry tomography setup, 
additional requirements and assumptions are necessary for the 
proposed algorithm to return accurate reconstructions when 
phase-contrast data is used. These include a high signal to noise 
ratio in the acquired data, a maximum translation between two 
consecutive projections of less than half of their field of view, and a 
maximum difference between the true and wrapped phase image 
of 2𝜋. We have seen these requirements to be fulfilled for most of 
the acquired phase-contrast tomography data acquired by our 
team during the last 3 years. A few exceptions to these conditions 
were observed when analyzing thick and heavy samples where 



wrapping in the phase-contrast projections exceeded more than a 
full phase period (2𝜋).  

Both phase ramps and phase wrapping constitute two 
immediate obstacles for center-of-mass alignment algorithms. This 
is mainly due to the fact that center-of-mass alignment methods 
rely on measurement of the projection pixel intensity values that 
can be over- or underestimated in the presence of background 
phase ramps and wrapping. Guizar-Sicairos et al. proposed an 
alignment method [27] where phase ramps are initially corrected, 
the projections unwrapped, and a mass-based method is applied in 
a well-behaved area containing no unwrapping artifacts. Phase 
unwrapping can be performed by using a 2D Goldstein  
unwrapping technique [28] or other methods described in the 
literature [29], [30] but these can sometimes be time-consuming, 
semi-assisted or introduce undesired artifacts in the projection 
images that would eventually propagate to the reconstructed 
volume itself. In the same work published in [27] Guizar-Sicairos et 
al. introduced a reconstruction method that allows tomographic 
reconstruction without previous phase unwrapping. The full 
potential of this method is not realized however, unless it is 
combined with alignment tools that are equally insensitive to 
phase wrapping. This has motivated our development of 
alignment and reconstruction methods that effectively handle 
effects of phase wrapping, and have the ability to consider any 
possible sample-detector relative orientation with all the degrees 
of freedom represented in Figure 1.  We characterize our proposed 
method as fully automated because it functions without any user 
supervision after an initial set of parameters is defined.  

1.2 CONTRIBUTIONS AND ORGANIZATION OF THIS ARTICLE  

 Facing the previously described challenges of phase-contrast 
imaging, a robust and automated alignment and reconstruction 
algorithm should: 

 
1. Handle phase wrapping during alignment and reconstruction. 
2. Correct for phase ramps. 
3. Correct for all the possible linear and angular positioning 

errors manifested in sample-detector relative position. 

 
In the following Methodology section we present our proposed 

alignment and reconstruction methods for phase-contrast 
projection data. The different subsections describe each step of the 
tomographic alignment and reconstruction algorithms, for which 
we describe our specific contributions, and are structured as 
follows: 
 

1. Tomographic reconstruction of phase-contrast data. 
2. Coarse Translation Alignment (CTA). 
3. Phase Ramp Removal (PRR). 
4. Fine Projection Alignment (FPA). 

 
Finally, the results of the proposed alignment and reconstruction 

methods are shown for a 3D modified Shepp-Logan phantom 
simulation and for a real ptychographic dataset acquired at the 
cSAXS beamline at the Paul Scherrer Institut (PSI), Switzerland. 
The last comprises a sample of a nanoporous glass overlaid with a 
thin film of Ta2O5, already analyzed and published in reference [31] 
exhibiting an isotropic and three-dimensional resolution of 16 nm. 
A total of 720 tomographic projections were acquired with equally 
spaced angles over a 180-degrees angular span. Each projection 
image was reconstructed from a series of 343 diffraction patterns 

acquired over an area of 9 × 3 μm2, arranged in concentric circles 
with 250 nm radial step-size. Each diffraction pattern was 
measured at 2.363 m from the sample with a Pilatus 2M detector 
(pixel size of 172 μm) using an X-ray beam, 600 nm in diameter 
and a photon energy of 6.2 keV, with an exposure time of 0.6 s. 

2. NOMENCLATURE AND FORWARD MODEL 

The system of simultaneous linear equations that describe the 
forward projection procedure can be expressed as 

𝐀(𝚯)𝒙 = 𝒃,        (8) 

where 𝒃 and 𝒙 are vector forms of the projections and volume 
reconstruction respectively, and 𝐀 is the system matrix that 
performs the discretized Radon transform. The system matrix acts 
as a forward operator performing linear discrete integrations 
through the reconstructed volume 𝒙 according to specific spatial 
relative orientations defined by the set of projection parameters 𝚯.  

 Our studies were conducted in a parallel-beam geometry setup, 
as it is characteristic for X-ray ptychography. We assume that the 
incident beam is perfectly perpendicular to the detector plane with 
the consequence that sample movements in the incident beam 
direction have no significant influence on the acquired projections. 
According to this assumption, there are 5 degrees of freedom 
(DOF), or independent motions that the sample may experience 
during the acquisition of tomographic projections. These include 2 
linear parameters 𝑢 and 𝑣 (horizontal and vertical translation) and 
3 angular parameters: the projection angle 𝜃 and the tilt 
parameters 𝛼 and 𝛽, see Figure 1.  

 

Figure 1: Parallel-beam experimental setup with 5 degrees of freedom. 

 
In the following sections we will refer to these parameters in 

their vector form including their respective values for all the 
acquired projections. These vectors are represented in boldface 
and may also be grouped in a single vector 𝚯 = [𝜽, 𝒖, 𝒗, 𝜶, 𝜷]T  
containing all projection parameters for all the acquired 
projections. The superscripts ‘MEA’, ‘CTA’ and ‘FPA’ will be used to 
differentiate the parameters measured during data acquisition 
from the ones estimated after the CTA and those after the FPA. For 
the simulation studies an additional superscript ‘true’ is used to 
refer to the parameters chosen for simulation data generation and 
it is the aim of the methods presented to recover these. 

3. METHODOLOGY 

As it will be seen, the proposed tomographic alignment 
algorithm requires several tomographic reconstructions during 
operation, which are progressively improved (in terms of spatial 
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resolution) during each alignment step. For this reason we start by 
defining an algebraic tomographic reconstruction algorithm for 
wrapped phase-contrast data.  

3.1 RECONSTRUCTION OF WRAPPED PHASE-CONTRAST DATA 

In order to account for complex projection geometries an 
algebraic reconstruction technique, Simultaneous Iterative 
Reconstruction Technique (SIRT) [32] was extended to wrapped 
phase-contrast projection data. For simplicity, and because the 𝚯 
values are constant during tomographic reconstruction, we will 
drop the argument of 𝐀(𝚯) and refer to it simply as 𝐀. Let us 
define a residual 𝒓, 

𝒓(𝒙) = 𝒃 − 𝐀𝒙.         (9) 

The SIRT algorithm [32], [33] is motivated by solving an 
optimization problem by minimizing a weighted norm of the 
residual vector 𝒓: 

𝒙𝐑 = argmin
𝒙

‖𝒓(𝒙)‖𝐑
2 .  (10) 

Here ‖∙‖𝐑 denotes the weighted norm of a vector so that 
‖𝒙‖𝐑

2 = 𝒙𝐓𝐑𝒙. This problem is solved by an iterative algorithm 
that updates the volume reconstruction at each iteration by 

𝒙𝑘+1 = 𝒙𝑘 + 𝐂𝐀T𝐑 𝒓(𝒙𝑘),  (11) 

where 𝑘 represents the iteration index and 𝐀T is the transpose of 
the matrix 𝐀. 𝐂 and 𝐑 are diagonal matrices that contain the 
inverse of the sum of the columns and rows of the system matrix, 
so 𝐂𝑗𝑗 = 1/ ∑ 𝐀𝑖𝑗𝑖  and  𝐑𝑖𝑖 = 1/ ∑ 𝐀𝑖𝑗𝑗 . These matrices 

compensate for the number of rays that hit each pixel and the 
number of pixels that are hit by each ray.   

As the number of iterations go to infinity the iterates will 
converge to 𝒙𝐑, however due to ill-conditioning of the problem, 
this solution is typically not useful due to excessive noise. The SIRT 
algorithm exhibits a so-called semiconvergence behavior [34] 
moving from smooth to increasingly well-resolved but also noisy 
images, and the best trade-off between resolution and noise is 
normally obtained by terminating after a finite number of 
iterations [16], [35], [36]. 

To take wrapping in the acquired projections 𝒃MEA into account, 
the residual 𝒓 computation should be executed in the phase 
complex domain. This operation is implemented by using the 
function 𝑄(𝑓), defined as 

𝑄(𝑓) = arg(exp(𝐢𝑓)),         (12)  

and thus, the modified residual vector �̃� is computed as 

�̃� = 𝑄(𝒓).        (13) 

By using �̃� instead of 𝒓 we have found that this modified SIRT 
algorithm can return accurate volume reconstructions in the 
presence of wrapped phase-contrast projection data. We will refer 
to this modified SIRT algorithm formulation as phase-SIRT.  
 In this work, we ran 300 iterations of the phase-SIRT algorithm 
in every tomographic reconstruction with the exception of the 
auxiliary reconstructions introduced in Section 3.3 where 10 
iterations were used instead. An illustration of the phase-SIRT 
algorithm reconstruction evolution is presented in Figure 10. 

The computation of the residual vector according to (13) allows 
the extension of model-based iterative reconstruction algorithms 
[36] to wrapped phase-contrast data within reasonable limitations 

for real data applications. Specifically, in order for the phase-SIRT 
to provide accurate quantitative results, the wrapped sections of 
the projection images must be predominantly non-wrapped, and 
the maximum difference between the true and wrapped phase 
must not exceed 2𝜋. These properties were found through 
empirical observation based on the success of our reconstructions. 
We do not yet have a full analysis with conditions for convergence 
of phase-SIRT, but this is subject of ongoing work. 

Although it was not necessary for the presented datasets in this 
publication, we have found empirically that enforcing an 
elementwise non-negativity constraint on voxel values within the 
phase-SIRT algorithm allows for robust handling larger wrapped 
areas. Other constraints and priors could be introduced to 
decrease noise or artifacts in the reconstructed volume. We have 
chosen the SIRT algorithm among other iterative reconstruction 
tools due to its simple formulation and implementation. An 
alternative robust iterative reconstruction algorithm for phase-
contrast tomography that accounts for noise, phase-ramps and 
projections outliers is described in [37] and will be considered in 
our future work where we plan to introduce the modification in 
the cost-function to account for phase-wrapping. 

3.2 COARSE TRANSLATION ALIGNMENT (CTA) 

Image alignment methods based on cross-correlation 
measurements can be used for tomography alignment [7], [10], 
[12], [13], [16] by relying on the assumption that translational 
displacements between two (angular) consecutive projections are 
negligible. Although these methods can be considered more robust 
to the presence of linear or constant background phase terms 
compared with center-of-mass alignment methods, we have found 
that phase wrapping can lead to their failure.  

In our implementation of the cross-correlation alignment 
method, and in order to exclude the influence of wrapped areas in 
the phase-contrast projections, we propose the evaluation of 
relative displacements between projections, not in the image 
phase domain, but in its phase-gradient domain. Due to the 
presence of phase ramps and phase wrapping, two consecutive 
projections are more likely to have a higher cross-correlation 
measurement for their phase gradient field than for their wrapped 
phase values. Working in the phase gradient domain decreases the 
effect of phase ramps, because these are reduced to a constant 
background with low influence on cross-correlation 
measurements.  

Let 𝐺 represent the gradient field of �̅�(𝑥, 𝑦) computed as 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2,      (14) 

where 𝐺𝑥 and 𝐺𝑦 may be computed by forward or central 

differences method. Gradient computations will be distorted by 
discontinuities introduced by phase wrapping. This problem can 
be overcome by computing the horizontal and vertical gradient 
fields in the complex phase domain, making it insensitive to phase 
wrapping. Forward differences are implemented as  

𝜕�̅�(𝑥,𝑦)

𝜕𝑥
≈ 𝐺𝑥 = 𝑄(�̅�(𝑥 + 1, 𝑦) − �̅�(𝑥, 𝑦)), (15) 

𝜕�̅�(𝑥,𝑦)

𝜕𝑦
≈ 𝐺𝑦 = 𝑄(�̅�(𝑥, 𝑦 + 1) − �̅�(𝑥, 𝑦)), (16) 

where division by the step size has been ignored as a constant 
scaling factor. Two examples of the projection phase gradient 
intensity field can be seen in Figure 6 and Figure 14. 



After computing the gradient fields 𝐺 of the projections, cross-
correlation measurements are used to compute the displacement 
vector between two consecutive projections, from the first to the 
last with subpixel accuracy. The coordinates of the highest peak in 
the cross-correlation matrix, evaluated from two adjacent 
projections, correspond to the relative horizontal and vertical 
displacement between the two analyzed images. Cross-correlation 
alignment of tomographic projections requires as many image 
displacement computations as number of projections that 
constitute the full dataset. An efficient subpixel up-sampling 
method is described in [38]. 

Due to the periodic properties of the Fourier transform, this 
method is able to detect displacement values up to half of the 
image dimensions, which is sufficient for most tomographic 
datasets. The cumulative sum of the computed displacement 
vectors up to an index 𝑛 corresponds to the projection parameters 
𝑢CTA and 𝑣CTA which are estimates of the relative linear sample-
detector displacement of the 𝑛th projection. Errors in the 
displacement measurements can be accumulated from this 
sequential calculation, but subpixel evaluations can decrease this 
effect. At this moment, only relative displacements between the 
projections are determined. The global alignment of the 
projections is performed by using the first and last projection from 
a full-range tomographic dataset (0° to 180°) as it is commonly 
done for center-of-rotation (COR) correction [8], concluding the 
CTA. 

As characteristic of parallel-beam projection images, two 
projections separated by 180° are symmetric over the rotation axis 
direction. The computed horizontal displacement value between 
the first and last projection (flipped over the rotation axis) is used 
for center-of-rotation correction by applying half of this computed 
horizontal displacement to the whole projection dataset. The 
vertical displacement vector between the first and last projection is 
linearly and evenly distributed over all the projections that 
constitute the dataset, considering this overall vertical shift as a 
consequence of accumulation of errors. Both horizontal and 
vertical alignment errors that may arise from this algorithm step 
are later optimized in the fine projection parameters alignment. 

Differentiation operations may amplify noise, causing a 
requirement of good signal to noise ratio in the acquired data in 
order for this method to succeed. Another required condition for 
this algorithm to succeed is that the phase gradients computed by 
(15) and (16) should not be wrapped, or if preferred that the 
phase difference between two adjacent pixels in a projection 
should be smaller than 𝜋. The same assumptions are made for the 
derivative FBP introduced in [27]. 

3.3 PHASE-RAMP REMOVAL (PRR) 

Although the CTA can provide, for most tested cases, a good 
relative alignment of projections, background phase ramps must 
still be removed before tomographic reconstruction in order to 
provide accurate quantitative results. 

The main adopted strategy for removing linear and constant 
phase terms in the projection images, PRR, is based on the 
identification of the surrounding areas outside the sample domain 
in each projection in which phase ramps are to be estimated.  

Different tomographic datasets may differ strongly in contrast, 
morphology and feature sizes making it hard to develop a 
universal and robust method for segmentation of projections. 
Phase ramps and wrapping areas may also interfere with pixel-

intensity based segmentation techniques which lead us to an 
alternative approach. 

Instead of applying image segmentation methods to the �̅�(𝑥, 𝑦) 
projection datasets, we start by making an auxiliary volume 
reconstruction from the non-normalized phase-contrast 
projection data, previously aligned by the CTA. The auxiliary 
reconstructed volume 𝒙CTA is obtained by means of the phase-
SIRT algorithm using 10 iterations, 𝚯 = 𝚯CTA and 𝒃MEA = �̅� in 
(11). The tomogram 𝒙CTA should not be mistaken for 𝒙CTA 
reconstructed with the same projection parameters but using 300 
iterations in the phase-SIRT algorithm instead. At this stage, the 
obtained tomographic reconstruction, 𝒙CTA, is not intended to 
retrieve an accurate and quantitative reconstruction of the volume, 
but only to attenuate the effect of phase ramps in the image 
segmentation operation.  

We found that the obtained reconstruction was accurately 
segmented by simple segmentation methods such as Otsu’s 
method [39] allowing the identification of a support volume that 
defines the sample domain. Otsu’s method can be applied to each 
independent slice or to the whole reconstructed volume. We have 
also found that for samples with significant contrast in the axial 
direction (stratified samples with different materials) a slice-by-
slice approach is preferred for accurate volume support 
identification. 

The objective of threshold segmentation is to assign a zero value 
to the air sections that surround the support volume and a non-
zero value, such as 1, to the voxels belonging to the volume support 
domain. In this way, we define our volume support 𝒙S as the 
binary result from Otsu’s segmentation method, applied to 𝒙CTA. 

The air sections of the reconstructed volume are then mapped to 
the tomographic projections domain by creating synthetic 
projections 𝑷air, by means of a discretized Radon transform, 

 𝑷air = 𝐀(𝚯CTA)𝒙S.  (17) 

As the forward-projection operation is equivalent to computing 
line integrals over the three-dimensional volume, the resulting 
synthetic projections have zero-intensity pixel values for areas 
where the integration path does not intersect the volume support 
and non-zero values otherwise. Figure 7 shows an example of the 
auxiliary (non-quantitative) reconstruction for the simulated 
dataset and its resulting segmentation. The zero-valued regions of 
the synthetic projections are then defined as air regions, from 
which to determine the appropriate phase ramp correction. 

The identified air regions in the projections could be used in a 
least-squares data-fitting operation (for example) in order to 
determine the linear and constant phase terms of the background. 
Guizar-Sicairos et al. presented a least-squares fitting method that 
takes possible wrapping of the phase ramps into account [27]. 
Nevertheless we have found this method to be sensitive to the 
selected air sections especially when some pixels in 𝑷air are 
incorrectly assigned as ‘air’ and act as outliers during the data 
fitting operation. In order to solve this problem, and improve the 
robustness of the proposed method, we make use of the projection 
gradients fields values computed by (15) and (16) in the air 
regions to determine the linear terms of phase ramps in the 
horizontal and vertical direction. The median of the computed 
gradients fields in the air sections is taken to reduce possible 
uncertainties from the segmentation using Otsu’s method, and 
correspond to the first-order term of the background phase ramp 
in the horizontal and vertical direction respectively. 



After subtracting the first-order phase term from each acquired 
projection, the constant phase offset is assigned, as the median 
pixel intensity value of the air regions, and subtracted from each 
projection. The resulting dataset, 𝒃PRR, is now corrected for the 
undesired phase ramps characteristic of CDI reconstruction 
techniques. We will refer to the tomographic reconstruction 
obtained by applying the phase-SIRT algorithm to 𝒃PRR as 𝒙PRR. 
During the PRR the projection parameters are unaffected and thus 
𝚯PRR = 𝚯CTA. 

3.4 FINE PROJECTION ALIGNMENT (FPA) 

The fine projection parameters alignment optimization of the full 
proposed algorithm is based on a projection matching technique 
[11] also known as projection distance minimization [7], [12], [14], 
[40], [41] by which discrepancies between the real measured 
projections and synthetic ones made from the current volume 
reconstructions are minimized.  

The introduction of additional DOFs, including tilt angles 
(described as α and β in Figure 1) has been previously published 
for electron tomography data [41], with a method analogous to 
ours. The iterative reconstruction method that we use, allows the 
inclusion of prior information for regularization, and has not, to the 
authors’ knowledge, been reported before for phase-contrast X-ray 
tomography. 

Under the assumption of moderate, zero-mean and Gaussian 
distributed noise, the projection-matching algorithm as described 
in [14], [40] aims to solve the alignment and reconstruction 
problem formulated as a nonlinear least-squares problem of the 
form 

 min
𝚯,𝒙

1

2
‖𝒃 − 𝐀(𝚯)𝒙‖2.  (18) 

This optimization problem was previously characterized in the 
literature as difficult to solve due to nonlinear coupling between 
the unknown 3D object 𝒙 and the projection parameters 𝚯 [40] 
and therefore it is commonly solved in an alternating approach 
solving for 𝚯 while holding 𝒙 fixed and, in an analogous way, 
solving for 𝒙 while keeping 𝚯 fixed. This alternating approach is 
framed in an outer-iterative process that returns after each outer 
iteration 𝑙 an updated estimate of 𝒙 and 𝚯. The starting values for 
𝒙 and 𝚯 are chosen according to the previously recovered values 
after the CTA and PRR operations so that 𝒙0

FPA = 𝒙PRR and 
𝚯0

FPA = 𝚯PRR, while 𝒃 = 𝒃PRR. 
In the presence of a current reconstructed volume 𝒙𝑙

FPA, a 
refinement of the projection parameters in 𝚯 during the FPA is 
performed by solving 

 

𝚯𝑙+1
FPA = argmin

𝚯

1

2
‖𝒃 − 𝐀(𝚯)𝒙𝑙

FPA‖
2

.   (19) 

Once an optimum set of projection parameters, for the current 
𝒙𝑙

FPA, is determined, a tomographic reconstruction is computed as 

𝒙𝑙+1
FPA = argmin

𝒙

1

2
‖𝒃 − 𝐀(𝚯𝑙+1

FPA)𝒙‖
2

.   (20) 

In our implementation of projection matching, the optimization 
problem described in (19) was solved via a Levenberg-Marquardt 
algorithm (LMA) implementation described in this section, 
whereas the reconstruction problem in (20) was replaced by the 
phase-SIRT algorithm described in section 3.1. It is important to 
note that, the SIRT reconstruction algorithm solves a different 

optimization problem than in (20) by minimizing a weighted norm 
of the residual vector instead of its 2-norm as in expression (20). 

The LMA [42], [43] is a nonlinear least-squares optimization 
algorithm which has previously shown to yield faster and 
sometimes better convergence when compared with other similar 
techniques such as quasi-Newton BFGS [14], Gauss-Newton or 
steepest-descent [44]. It consists of a gradient-based minimization 
technique that takes steps in the negative gradient direction of a 
cost function with step sizes defined as a linear combination of 
gradient-descent and Gauss-Newton approaches [44].   

The suggested implementation of the LMA makes use of some 
problem-specific properties that allow its extension to large-scale 
problems in a computationally efficient way. These are related to 
the sparse properties of the Jacobian matrix that defines the 
optimization algorithm search direction and step size. 

Let us define a cost function 𝑓 as in (19), 

𝑓(𝒓) =
1

2
‖𝒓‖2

2 =
1

2
∑ 𝑟𝑖

2𝑁𝑀𝑛𝑝

𝑖=1
. (21) 

The LMA is also an iterative algorithm and therefore its 
iterations will be identified with the counter 𝑚 in what we will 
refer to as the inner-iterative process. 

At each iteration 𝑙 of the outer-iterative cycle, each inner-
iteration 𝑚 updates the projection parameters in 𝚯FPA by taking 
steps of size 𝜹𝑚: 

𝚯𝑙+1;𝑚+1
FPA = 𝚯𝑙+1;𝑚

FPA + 𝜹𝑚 ,  (22) 

𝜹𝑚 = −(𝐇 + 𝜆 diag(𝐇))
−1

𝛁𝑓, (23) 

where 𝐇 and 𝛁𝑓 represent the Hessian matrix approximation and 
gradient of 𝑓 evaluated at 𝒙𝑙

FPA and 𝜆 is a Lagrange multiplier. 
While 𝜆 is updated at every iteration depending on the cost-
function minimization success [42], 𝐇 and 𝛁𝑓 are computed as 

𝐇 = 𝐉T𝐉 ,         (24) 

𝛁𝑓 = 𝐉T𝒓,           (25) 

𝐉𝑖,𝑗 =
𝜕𝒓𝑖

𝜕𝚯𝑗
.       (26) 

The update formula for 𝜆 used in this work is described in [45]. 𝐉 is 
the Jacobian matrix of the residual formed by its partial derivatives 
with respect to 𝚯, and exhibits a characteristic shape for this 
tomography alignment problem. In our discrete model, the 
derivatives that compose the Jacobian matrix are computed and 
approximated through the use of the finite forward differences 
scheme. For brevity, we present only the formulation of the 
Jacobian elements corresponding to the 𝜽 parameter optimization,  

𝐉𝑖,𝜽 =
𝜕𝒓𝑖

𝜕𝜽
=

𝐀(𝜽+𝟏ℎ,𝒖,𝒗,𝜶,𝜷)𝒙−𝐀(𝜽,𝒖,𝒗,𝜶,𝜷)𝒙

ℎ
, (27) 

where 𝟏 represents a vector with unit elements and ℎ the Jacobian 
step size. Similar expressions are used for the remaining projection 
parameters. 

Bleichrodt [7] presented some remarks concerning the choice of 
a proper Jacobian step size. He stated that irregularities at small 
scales of the GPU implementation of the cost function, mainly due 
to floating-point errors and noise in the acquired projections, can 
compromise accurate calculations of the Jacobian. We observed 
the same irregularities in the Jacobian computation and 
empirically found a step size of  ℎ = 10−3 to prevent the issue. 



As each tomographic projection is only a function of its own 
projection parameters, the full computation of the Jacobian matrix 
is an extensive and unnecessary operation. The full Jacobian has 
dimensions 𝑁𝑀𝑛𝑝 by 5𝑛𝑝, where 𝑛𝑝 represents the number of 

acquired projections. Considering the residual vector in (9) the 
Jacobian matrix has a sparse form as represented in Figure 2. The 
sparse nature of 𝐉 decreases the computational memory 
requirements by a factor of 𝑛𝑝, which becomes especially 

convenient for large-scale problems with a large number of 
projections. 

After the projection parameters in 𝚯𝑙+1
FPA are optimized a new 

reconstruction 𝒙𝑙+1
FPA is determined and the outer-iteration cycle 

can be repeated until a desired convergence criterion.  In our work, 
at this stage, a fixed number of iterations are being imposed as a 
stopping rule in the phase-SIRT algorithm and inner and outer 
iterative cycles. 

A summary flowchart of the proposed alignment algorithm is 
presented in Figure 3. 

 
 

 

Figure 2: Representation of the characteristic Jacobian structure for the 
optimization problem with 5 degrees of freedom. The filled (non-
blank) lines represent the non-zero values of the Jacobian matrix while 
the blank areas its null values. In order to easily represent the Jacobian 
structure highlighted in the magnification, we used a dataset of 
projections with a total number of pixels 𝑀𝑁 = 4. 

 

Figure 3: Summary flowchart of the proposed alignment algorithm. 

4. SIMULATION DATA SETUP 

The presented algorithm was developed and tested using 
MATLAB® 2016a on both Windows and Linux platforms. For both 
data generation and image reconstruction we made use of the 
ASTRA toolbox version 1.6 [35], [46] which is an open source, GPU 
accelerated software platform that allows the full description of 
the radiation source, sample and detector relative position in 
space.  

As mentioned in section 1, the successive results of the proposed 
alignment algorithm are assessed by using a 3D modified Shepp-
Logan phantom [47] and real data from a nanoporous glass 
sample acquired at the cSAXS beamline at Paul Scherrer Institute 
(PSI), Switzerland. Figure 4 illustrates the 3D modified Shepp-
Logan phantom and the intensity distribution in two different 
slices. 

 

Figure 4: Three-dimensional representation of the modified Shepp-
Logan phantom and intensity maps of two selected slices. 
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A 3003-voxel discretized modified 3D Shepp-Logan phantom 
was used to synthetically produce 360 transmission projections 
over 180 degrees. In order to simulate mechanical instabilities or 
position uncertainties, uniform random distributions of the 
projection parameters described by 𝜽, 𝒖, 𝒗, 𝜶, 𝜷 were introduced. 
Such uncertainties were produced within [−1°, 1°] for 𝜽, 
[−5°, 5°]  for 𝜶 and 𝜷 and [−10,10] pixels for the linear 
translations 𝒖 and 𝒗. As already mentioned, the superscript ‘true’ 
will differentiate the projection parameters used for data 
generation from the ones recovered through the proposed 
alignment algorithm. In order to avoid repetitive plots the imposed 
linear and angular parameters for data generation can be seen in 
Figure 12 and Figure 13. 

To the generated projection images 𝑷true, linear background 
terms were added also with random orientations to replicate the 
undesired phase ramps. Let us consider 𝐗 and 𝐘 as two 
dimensional matrices with dimensions 𝑁 × 𝑀 so that 𝐗𝑖,𝑗 = 𝑗 and 

𝐘𝑖,𝑗 = 𝑖. Each individual ramp 𝑆(𝑛) for the 𝑛th projection was 

numerically computed as 

𝑆(𝑛)  = 𝑎(𝑛)𝐗 + 𝑏(𝑛)𝐘 + 𝑐(𝑛),  (28) 

where 𝑎, 𝑏 and 𝑐 are zero-mean normally distributed random 
values. For the simulation study presented here, a standard 
deviation of 0.5 and 0.3 were chosen for the linear terms (𝑎 and 𝑏) 
and constant term 𝑐 respectively. The assigned standard 
deviations produce phase ramps with slopes of the same order of 
magnitude as those observed in real data measurements. 

After generating random background phase ramps, the 
projections were wrapped according to (30): 

𝑷true = 𝐀(𝚯true)𝒙true,  (29) 

𝑷wrapped = 𝑄(𝑷true + 𝑺).  (30) 

5. QUANTIFICATION OF ALIGNMENT RESULTS  

The attained results from the proposed algorithm were assessed 
by visual inspection of well-defined features and quantified via 
Fourier Shell Correlation (FSC) and by monitoring the objective 
function defined in (15) at the different stages of the proposed 
algorithm. For the simulation studies an additional relative root-
mean-square error (RRMSE) between the reconstructed 
tomograms and the original phantom was also included. 

The FSC is a similarity measure between images or tomograms, 
often used as a standard resolution criterion for electron 
microscopy or X-ray tomography, [48]–[50]. It measures the 
normalized cross-correlation coefficient between two different 
sub-tomograms over corresponding shells of radius 𝑟�̅� in Fourier 
space (see equation (31)). After reconstructing two sub-
tomograms from half the projections dataset each, one can 
evaluate their agreement by means of the convolution theorem. 
The FSC function is defined as the summation over all the voxels 
inside a sphere of radius 𝑟𝑖 of the normalized cross-correlation in 
the reciprocal space, 

𝐹𝑆𝐶𝑓,𝑔(�̅�𝑖) ≝
∑ 𝑭∗(�̅�)∙𝑮(�̅�)

𝑟𝑖
𝑟=0

√∑ 𝑭2(�̅�)
�̅�𝑖
�̅�=0 ×∑ 𝑮2(�̅�)

�̅�𝑖
�̅�=0

 ,      (31) 

where 𝑓 and 𝑔 are in this case the two mentioned sub-tomograms. 
𝑭(�̅�) is the three-dimensional discrete Fourier transform of 𝑓 at 
radial position �̅� in the reciprocal domain and 𝑭∗(�̅�) represents 
the complex conjugate of 𝑭(�̅�). The chosen frequency threshold is, 

as suggested by van Heel and Schatz [50], the “½-bit” threshold 
curve defined as 

𝑇½−𝑏𝑖𝑡(�̅�𝑖) ≝
0.2071+1.9102 √𝑛(�̅�𝑖)⁄

1.2071+0.9102 √𝑛(�̅�𝑖)⁄
 ,     (32) 

where 𝑛(�̅�𝑖) is the number of voxels inside a sphere of radius �̅�𝑖 of 
the normalized cross-correlation in the reciprocal space. 

The RRMSE for a tomographic reconstruction 𝒙 relative to the 
original simulated phantom 𝒙true is defined as 

RRMSE(𝒙) = √
1

𝑁2𝑀

∑ (𝒙𝒊−𝒙𝒊
true)

2𝑁2𝑀
𝑖=1

∑ (𝒙𝒊
true)

2𝑁2𝑀
𝑖=1

. (33) 

During the described alignment operations, the determined 
projection parameters may be related to global rigid body 
movements, such as translations, between the original phantom 
and the reconstructed tomograms. As an overall translation does 
not present a decrease in quality or resolution, a global alignment 
with the original phantom was performed before computation of 
the RRMSE. The overall displacement vector was computed using 
a three-dimensional cross-correlation alignment analogous to the 
algorithm in [38]. 

6. RESULTS 

The following images exhibit the results obtained at each state of 
the proposed algorithm. We will first present the results obtained 
at each stage of the proposed alignment and reconstruction 
algorithm for the Shepp-Logan simulation study followed by the 
ones for the nanoporous glass sample. We will conclude our 
analysis with the quantification of the resolution gain for both 
datasets. 

6.1 SIMULATION RESULTS  

Before any alignment operation or phase ramp removal, an 
immediate tomographic reconstruction 𝒙MEA has limited 
resolution and strong artifacts that compromise further sample 
analysis. A representation of the selected slices from 𝒙MEA   at this 
initial stage can be seen in Figure 5.  

Figure 6 shows one of the phase projection images for the 
simulated dataset. In the exhibited projection image it is possible to 
observe wrapping even in the background linear term. These 
effects are attenuated in the computed gradient fields (right) that 
are used for the CTA. 

The cross-correlation alignment was performed with an up-
sampling factor of 100 in the frequency domain by means of the 
algorithm described in [38].  
The central slice for the auxiliary reconstruction used for the 
sample volume support delimitation is exhibited in Figure 7 (top). 
On the top-right, one can see the attained segmentation results of 
the reconstructed volume. The vectors superimposed are intended 
to illustrate the effect of a discrete line integration operation over 
the segmented volume. Synthetic projections are generated from 
the segmented volumes using 𝚯MEA as projection parameters. The 
resulting auxiliary projections return a zero value for the regions 
corresponding to the air surrounding the sample that are later 
used to determine the linear background phase term (phase ramp) 
orientation and slope. 



 

Figure 5: Simulation reconstruction results before alignment and 
phase ramp removal (𝒙MEA) for the two selected slices represented in 
Figure 4. 

 

Figure 6: Simulated phase projection image with phase ramp and 
wrapping 𝒃MEA, and respective gradient intensity field computed 
through (14). 

 

Figure 7: On the top: Auxiliary reconstruction �̃�CTA used to define the 
object support volume 𝒙S. The effect of phase ramps is attenuated in 
the object domain. The dashed-line vectors represent areas with no “X-
ray”-sample interaction that map the air section to the different 
projections. At the bottom: Simulated projection from 𝒃MEA before 
PRR and its respective corrected projection from 𝒃PRR. Phase 
wrapping is still present in 𝒃PRR as it is shown in the figure. 

The same projection image as in Figure 6 is again represented in 
Figure 7 (bottom) overlapped with the detected air sections from 
the previously described method. After the PRR, the phase-
contrast projections have been corrected to a zero constant value 
for the background. It might be worth mentioning that this 
operation may change the wrapping areas of the projections as it 
can be seen for the simulation case. 

In the FPA, 5 outer iterations were run, with 15 LMA inner 
iterations and 300 phase-SIRT iterations. The main evolution in 
the projection parameters estimation was made during the first 
iterative cycle as it can be seen in Figure 8. The new tomographic 
reconstructions, represented in Figure 8 by dashed-dot lines, are 
also responsible for a decrease in the cost function as it can be seen 
at the end of every 15 iterations. 

Figure 9 shows a detailed section of a selected slice of the 
simulated phantom after PRR, 𝒙PRR, and after FPA, 𝒙FPA. 
Resolution is seen to be dramatically increased by FPA. 

The proposed modification in the SIRT algorithm allowed the 
extension of this reconstruction technique for phase-contrast 
wrapped projection data. During the first iterations, with the 
previously stated assumption of predominantly non-wrapped 
projections, some progress toward 𝒙true is achieved.  

 

Figure 8: Cost function evolution for the simulation data during FPA. 
The dashed-dot lines indicate the moment when a new tomographic 
reconstruction was performed. 

 

Figure 9: (a) Reconstruction results after PRR 𝒙PRR and (b) after the 
FPA 𝒙FPA. A close inspection of some phantom features exhibits a gain 
in the reconstructed volume resolution. The regions of interest defined 



by the dashed squares in (a) and (b) are shown in (c) for 𝒙PRR and in 
(d) for  𝒙FPA. 

 

Figure 10: Central slice representation of the final reconstructed 
tomogram 𝒙FPA over different iterations of the phase-SIRT algorithm. 

 However, wrapped areas in the phase-contrast projections are 
responsible for reconstruction artifacts. This effect can be seen in 
Figure 10 where the central area of the represented slice is highly 
corrupted by wrapped projections at the start of the tomographic 
reconstruction. Such artifacts are a consequence of back-projecting 
an overestimated residual vector in the wrapped-projections 
areas.  As 𝒙𝑘 is successively updated in each iteration, the phase 
difference between the forward projections 𝐀(𝚯)𝒙𝑘 and 𝒃PRR  
becomes smaller and is expected to converge to zero. 
By computing the residual vector as in (13) we ensure that the 
back-projected residual vector is not overestimated by 2𝜋 periods 
in the wrapped areas of 𝒃PRR. This operation constrains the 
residual vector to a  ]−𝜋, 𝜋] interval and it can be said to act as an 
additional regularization to the SIRT reconstruction problem. 

The observed increased resolution is supported by the FSC 
measurements of the reconstructed volumes before and after the 
FPA. The FSC curves computed after MEA, CTA, PRR and FPA, and 
the ½–bit threshold curve are exhibited in Figure 11. 

The intersection values between the FSC curve and the ½-bit 
threshold indicate an increase of the maximum resolved spatial 
frequency of the respective tomograms. This gain in resolution is 
sample and problem dependent and should not be taken as a 
general representation of the algorithm performance. 

The linear projection parameters 𝒖true, 𝒗true, 𝒖FPA and 𝒗FPA are 
presented in Figure 12. It may be relevant to state that 𝒗FPA was 
plotted after normalization with its mean value for a better 
comparison with 𝒗true. In an analogous way, overall tomogram 
translations in directions perpendicular to the rotation axis will 
affect the 𝒖FPA by a sinusoidal function. For the presented 
simulation study, a global translation of 1 pixel (approximately) in 
the 𝑦 direction between 𝒙true and 𝒙FPA affects  𝒖FPA so that 
𝒖FPA ≈ 𝒖true + cos(𝜽FPA). For this reason larger differences 
between 𝒖FPA and 𝒖true are seen at projection angles closer to 0° 
and 180° and smaller differences at projection angles closer to 90°.  

 

 

Figure 11: Fourier Shell Correlation measurements for the Shepp-
Logan phantom. 

 

 

Figure 12: Comparison between 𝒖true and 𝒖FPA, and 𝒗true and 𝒗FPA 
for the 3D Shepp-Logan phantom. 

 

Figure 13: On top: Comparison between αtrue and αFPA, and βtrue and 
βFPA for the 3D Shepp-Logan phantom. At the bottom: detailed views 
of the recovered 𝜶 and 𝜷 parameters with the highest agreement with 
(a) 𝜶true and (b) 𝜷true. 



Despite the observed resolution increase, the FPA was only able 
to fully recover some of the tilt angular parameters 𝜶 and 𝜷. The 
recovered values for these last mentioned parameters are 
presented in Figure 13. A detailed view of the recovered 
parameters with the highest agreement with 𝜶true and 𝜷trueis 
presented at the bottom. 

 

Figure 14: (a) Acquired phase-contrast projection; (b) projection 
gradient field; (c) detected air region and (d) phase-contrast projection 
after phase ramp removal. The “bright pixels” inside the sample in (b) 
are due to phase wrapping caused by PRR. 

It was not clear from our simulation studies why some of the tilt 
projection parameters seem to converge to their true values for 
some of the projections while others do not. We believe that this 
effect could be related to the ellipsoidal shape of the 3D Shepp-
Logan phantom that makes the LMA more sensitive to the 𝜶 
parameters changes for some of the projections and more 
sensitive to the 𝜷 parameter for others.  

6.2 REAL DATA RESULTS  

We now present results for the real nanoporous glass dataset. 
Figure 14 shows an example of a projection image (a), its gradient 
field (b), the air region detected for PRR (c) and the same 
projection image after PRR (d). Please note that the bright points in 
the projection after phase ramp removal (d) are due to phase 
wrapping that are caused by PRR. 

The cost function evolution during FPA for the nanoporous glass 
sample is presented in Figure 15.  

Figure 16 shows the determined 𝒖FPA, 𝒗FPA, 𝜶FPA and 𝜷FPA for 
the nanoporous glass dataset. 

 

Figure 15: Cost function evolution for the real dataset during FPA. The 
dashed-dot lines indicate the moment when a new tomographic 
reconstruction was performed. Please note that the y-axis does not 
extend to zero in this figure. 

 

Figure 16: Linear and tilt angular parameters recovered after the fine 
projection parameters alignment for the nanoporous glass sample. 

 

Figure 17: Central slice of the nanoporous glass tomogram before 
alignment: (a) 𝒙MEA, (b) 𝒙CTA, (c) 𝒙PRR and (d) 𝒙FPA. The tomogram 
in (b) is not quantitatively accurate since it was reconstructed before 
PRR. Differences between (c) and (d) are not significantly visible to the 
naked eye to allow conclusions about possible resolution 
improvements after the FPA. 

The central slices of the reconstructed tomograms at each stage 
of the full proposed algorithm are presented in Figure 17. As it can 
be seen, for the nanoporous glass dataset the major resolution gain 
was achieved by CTA and PRR. This observation is supported by 
the FSC measurements at the different stages of the proposed 
algorithm for the nanoporous glass dataset, presented in Figure 18. 

No significant improvements in the obtained resolution were 
observed after FPA for this specific sample. This can possibly be 



explained by the small detected values for 𝜶FPA and 𝜷FPA (almost 
all smaller than 0.1°) which indicate that the projections were 
acquired with a stable (tilt insensitive) rotation stage at the cSAXS 
beamline at PSI. Nevertheless, the final calculated FSC values for 
this sample, with a pixel size of 10.2 nm, indicate an isotropic 
three-dimensional tomographic resolution around 13.6 nm (0.75) 
of the Nyquist frequency. This is a 14.5 % improvement compared 
to the obtained resolution of 15.9 nm previously reported for the 
same dataset [31]. 

 

Figure 18: Fourier Shell Correlation measurements for the nanoporous 
glass sample. 

This result suggests that our proposed alignment algorithm can 
match or slightly improve the resolution obtained by a non-
automated alignment method but, crucially, using a fully 
automated procedure. Whereas this resolution gain is specific for 
the dataset and different experimental setups and specimens may 
behave differently, we expect that similar gains can be achieved 
under comparable experimental conditions of low-noise and 
predominantly non-wrapped projections. In the presence of large 
artifacts, unpaired phase residuals and high noise levels in the 
tomographic projections, user-assisted algorithms such as the one 
in [27] may be preferable, but at the cost of intervention by an 
experienced user. We also note that the reported resolution 
improvement is not only due to the proposed alignment method 
but also a consequence of the chosen iterative reconstruction 
algorithm (phase-SIRT) that we have found more robust to noise 
than the FBP algorithm applied to the derivative of the wrapped 
phase used in [31]. 

In both datasets an increase in the FSC measurements and a 
decrease in the cost function (21) were observed during the whole 
proposed alignment algorithm. Table 1 summarizes the results 
obtained with the different results quantification methods as 
described in section 4. 

Table 1: Alignment quantification results for both datasets 

 
 

7. CONCLUSIONS & FUTURE WORK 

The results presented here suggest that the proposed algorithm 
is able to return accurate tomographic alignments with an 
automated approach matching resolution values obtained by a 
non-automated method. This fact makes our alignment and 
reconstruction algorithm a perfect candidate for phase-contrast 
tomography data processing, avoiding unnecessary, time-
consuming and subjective user interaction. The automated nature 
of our algorithm also allows processing of several different 
datasets simultaneously, which can be especially beneficial to 
handle ever-increasing data acquisition rates supplied by more 
brilliant sources. By fully automated we imply that our proposed 
alignment and reconstruction algorithm is able to run in an 
unsupervised fashion after an initial set of parameters is defined. 
These include the up-sampling factor for the cross-correlation 
calculations, the number of iterations used during tomographic 
reconstruction, the number of inner and outer iterations in the 
FPA, and the finite differences step-size during the Jacobian 
calculation. We found the parameters used in this manuscript to 
work well for the tested simulations and real data acquired by our 
research group in the past 3 years with the exception of thick 
samples. 

In the presence of large tilts, as in the simulation study, the FPA 
was able to recover better estimates of the angular projection 
parameters contributing to a significant increase in the final 
attained tomographic resolution. The introduction of the FPA in 
the real acquired data did not seem to improve the reconstruction 
accuracy or overall resolution, possibly due to the presence of 
small and negligible tilt angles during the acquisition of 
tomographic projections. Nevertheless, the calculated FSC values 
for the nanoporous glass sample indicated a satisfactory three-
dimensional tomographic resolution when compared with similar 
results from the literature [31]. 

For phase-contrast projection data, we have found that working 
with the gradient field of projections decreases the effect of 
undesired phase ramps and phase wrapping during relative 
alignment of projections. 

The SIRT algorithm was extended to phase-wrapped data and 
demonstrated to work as desired if the modification in the residual 
vector computation is implemented as we suggest. 

Although the computed resolution measure corresponds to 
dimensions larger than the voxel width, sub-pixel alignment 
between projections is required for accurate reconstructions. 

Due to the non-convexity of (18) one cannot be sure that the FPA 
will return the global minimum of the problem. This is a general 
limitation of projection matching algorithms, which is well-
established in the literature. Nevertheless, projection matching is 
capable of producing substantial improvements in tomographic 
alignment and reconstruction, as established by the results, which 
we find satisfactory from a practical perspective. 

In the future, additional studies will be performed in order to 
optimize the algorithm convergence and reduce the effect of the 
irregularities found at small scales due to the GPU discrete 
implementation.  

Other algebraic reconstruction algorithms will be implemented 
for wrapped phase-contrast data. The algorithm in [37] may show 
promising results in order to decrease reconstruction artifacts, 
supported by its robustness to outliers in the projections.  

Before 
Alignment

Coarse 
Alignment

Phase Ramp 
Removal

After Fine 
Alignment

FSC
Simulation 0.09 0.64 0.70 0.99

Real Data 0.03 0.68 0.76 0.75

Simulation 584.4 354.1 13.95 1.14

Real Data 2433 2372 78.7 66.74

RRMSE
Simulation 10.5 6.62 4.39 3.82



The described computational tools and simulation test scripts 
have been made publically available and can be accessed in Ref 
[51]. 
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