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RC = LC-SNR [dB]       

The models were evaluated in conditions with: 
  Speech mixed with stationary or non-stationary interferers:  Speech shaped noise (SSN), 
which was also used to fit the model; Amplitude modulated SSN (SAM) with fc,mod = 8 Hz and 
modulation depth of 1. and the speech like, but non-semantic international speech test signal 
(ISTS). 
 Noisy speech in the presence of reverberation : T60 = 0, 0.4, 0.7, 1.3 and 2.3 s 
 Noisy speech subjected to different types of non-linear processing 

• Ideal Binary Mask processing (IBM) with four interferers. 
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A powerful tool to investigate speech perception is the use of speech intelligibility 
prediction models. Recently, a model was presented, termed correlation-based speech-
based envelope power spectrum model (sEPSMcorr) [1], based on the auditory processing of 
the multi-resolution speech-based Envelope Power Spectrum Model (mr-sEPSM) [2], 
combined with the correlation back-end of the Short-Time Objective Intelligibility measure 
(STOI) [3]. The sEPSMcorr can accurately predict NH data for a broad range of listening 
conditions, e.g., additive noise, phase jitter and ideal binary mask processing.  
 
The sEPSMcorr model includes audibility thresholds, such that sensitivity loss can be 
incorporated based on the audiogram, but other types of hearing impmairment s (HI) 
cannot be simulated using this framework.  However, speech perception can vary greatly 
among listeners even when hearing sensitivity is similar. Therefore, the predictive power of 
the sEPSMcorr back-end was further investigated in combination with a more realistic 
auditory pre-processing front-end adopted from the computational auditory signal 
processing and perception model (CASP) [4]. Here, the speech-based CASP (sCASP) was 
evaluated in NH conditions and compared to the sEPSMcorr. 

 Introduction Test conditions 

Fig 6. Clean speech   (top) and  speech  with phase 
jitter distortions  of α =0.75 (bottom)  
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Fig 1. sEPSMcorr stucture, 
consisting of an auditory 
processing (left) and a 
correlation-based back-
end (right) 
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The CASP model offers more flexibility to model hearing impairments, 
beyond the audiogram, due to the Dual Resonance Non-Linear filterbank 
(DRNL), [5]. The model has been shown to account for psychoacoustic data 
from individual HI subjects. 

 
 
 
 
 
 
 
 

Results 

The sEPSMcorr model 

 Investigate the model’s ability to account for individual hearing impairments using the parameters available in the CASP framework. 
 Consider additional processing stages that could account for inner hair-cell loss and auditory nerve deafferentation (Sumner et al., 2002 [8]; López-Poveda and Barrios, 2013 [9]), as they are likely to be 

determinant in speech-in-noise related tasks. 
 Determine the conditions on which the HI model will be tested  with special focus on supra-threshold distortions that might be challenging for HI subjects. 
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Towards prediction of HI data 
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Fig 2. sEPSMcorr metric before computation 

• Phase Jitter distortion 
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Fig 4. Structure of the DRNL filterbank 

Fig 3. Structure of the sCASP model 

Fig 5. Example diagram  
of NH and HI basilar 
membrane I/O functions 
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Binary mask processing 
Fig 11. Intelligibility scores for IBM processed speech with four different interferers 
(columns) and two SNRs (rows). Human data from [3]. mr-sEPSM: ρ =0.39 STOI: ρ = 
0.94  sEPSMcorr: ρ = 0.79 
sCASP: ρ = 0.86. 

Fig 8. SRT predictions for additive noises: SSN, SNN with an 8-
Hz  amplitude modulation  and the International Speech Test 
Signal. Human data from [2]. mr-sEPSM ρ = 0.99. STOI ρ = 
0.54. sEPSMcorr ρ = 0.96.  sCASP ρ = 0.96. 
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Fig 9. SRT predictions for reverberant noisy speech 
reverberation. Human data from [2]. An alternative (long-
term version) of sEPSMcorr is shown. mr-sEPSM ρ = 0.99. STOI 
ρ = NA. sEPSMcorr, LT ρ = 0.94. sCASP ρ =NA . 

Fig 10. Intelligibility scores for noisy speech with phase jitter. 
Human data from [6]. mr-sEPSM: MAE  49.4%. STOI: MAE = 
9.0%.  sEPSMcorr: MAE = 17.0%. sCASP: MAE = 5.4%. 
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The models are fitted per speech material to the condition of clean 
speech with SSN by fitting a sigmoid function between the model 
outputs and the human scores.   
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Fig 7. Diagram of model fit 

Modulation envelope extraction 
 fc,mod > 10 Hz 

Fitting of the models 

The sCASP model  provides similar (and in 
some conditions better) results than the 
sEPSMcorr. 
 
The model can now serve as foundation for 
the development of a HI model, since the 
DRNL-based framework allows for fitting to 
individual impairments. 

Summary of results 
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