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A Bilevel Model for Participation of a Storage
System in Energy and Reserve Markets

Ehsan Nasrolahpour, Student Member, IEEE, Jalal Kazempour, Member, IEEE
Hamidreza Zareipour, Senior Member, IEEE, and William D. Rosehart, Senior Member, IEEE

Abstract—We develop a decision-making tool based on a bilevel
complementarity model for a merchant price-maker energy
storage system to determine the most beneficial trading actions
in pool-based markets, including day-ahead (as joint energy and
reserve markets) and balancing settlements. The uncertainty of
net load deviation in real-time is incorporated into the model
using a set of scenarios generated from the available forecast in
the day-ahead. The objective of this energy storage system is to
maximize its expected profit. The day-ahead products of energy
storage system include energy as well as reserve commitment (as
one of the ancillary services), whereas its balancing product is
the energy deployed from the committed reserve. The proposed
model captures the interactions of different markets and their
impacts on the functioning of the storage system. It also provides
an insight for storage system into clearing process of multiple
markets and enables such a facility to possibly affect the outcomes
of those markets to its own benefit through strategic price
and quantity offers. The validity of the proposed approach is
evaluated using a numerical study.

Index Terms—Energy storage system, energy, reserve, balanc-
ing market, strategic bidding

NOMENCLATURE

A. Acronyms used in superscripts
EN Energy
BL Balancing
RS Reserve
UP Upward reserve
DN Downward reserve
ch Charging mode of storage system
dis Discharging mode of storage system
B. Indices and Sets
t, h Indices of time periods running from 1 to Nt

k Index of scenarios running from 1 to Nk

g Index of generators running from 1 to Ng

d Index of demands running from 1 to Nd

s Index of storage systems running from 1 to Ns

C. Parameters
Og Offer price of generator g, ($/MWh)
Pg Capacity of generator g, (MW)
Φk Probability of scenario k
Rg Maximum reserve capacity of generator g, (MW)
Pd,t Maximum load of demand d at time t, (MW)
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Rd Maximum reserve capacity of demand d, (MW)
Ud,t Bid price of demand d at time t, ($/MWh)
Vd,t Load shedding cost of demand d at time t, ($/MWh)
MCs Marginal cost of storage system s, ($/MWh)
Ps Charging/discharging capacity of storage system s,

(MW)
Rs Maximum reserve capacity of storage system s,

(MW)
Es Reservoir capacity of storage system s, (MWh)
Eini

s Initial stored energy of storage system s, (MWh)
αs A non-negative factor to control stored energy of

storage system s for the the next time horizon
ηs Efficiency of storage system s
Rt Reserve requirement of the market at time t, (MW)
Qt,k Net load deviation at time t under scenario k, (MW)
D. Upper-level variables
es,t Stored energy of storage system s at time t, (MWh)
us,t Binary decision variable indicating the operation

mode of storage system s at time t
ôs,t Price bid/offer by storage system s at time t, ($/MWh)
p̂s,t Energy quantity bid/offer by storage system s at time

t, (MW)
r̂s,t Reserve capacity bid/offer by storage system s at time

t, (MW)
E. Lower-level variables (day-ahead market clearing)
pg,t Scheduled production of generator g in day-ahead

market at time t, (MW)
rg,t Committed reserve from generator g in day-ahead

market at time t, (MW)
pd,t Consumption of demand d at time t, (MW)
rd,t Committed reserve from generator demand d in day-

ahead market at time t, (MW)
ps,t Scheduled energy production/consumption of storage

system s in day-ahead market at time t, (MW)
rs,t Committed reserve from storage system s in day-

ahead market at time t, (MW)
λt Day-ahead market-clearing price (as a dual variable)

at time t, ($/MWh).
F. Lower-level variables (balancing market clearing)
qg,t,k Energy deployed from reserve of generator g in

balancing market at time t under scenario k, (MW)
qd,t,k Energy deployed from reserve of demand d in bal-

ancing market at time t under scenario k, (MW)
ld,t,k Involuntarily curtailed load of demand d in balancing

market at time t under scenario k, (MW)
qs,t,k Energy deployed from reserve of storage system s in

balancing market at time t under scenario k, (MW)
λt,k Balancing market-clearing price (as a dual variable)

at time t under scenario k, ($/MWh).
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µ, ρ Dual variables corresponding to inequality day-ahead
and balancing lower-level constraints. See Sections
(II-B) and (II-C) for details.

I. INTRODUCTION

Federal Energy Regulatory Commission (FERC) order 784
allows energy storage facilities to participate in ancillary
services market [1]. This has created opportunities for such
facilities to expand their revenue streams and improve their
economics. Previous studies have also realized that participat-
ing in multiple market opportunities improve the economic
feasibility of storage projects [2],[3]. Thus, there is a need for
better understating the operation strategies of storage systems
in energy and ancillary services markets.

In this line, the main purpose of this paper is to determine
the optimal bidding and offering strategies of a merchant
storage system in multiple pool-based markets, including day-
ahead market (as a joint energy and reserve settlement), and
balancing (real-time) market. The uncertainty of net load
(demand minus variable generation) deviation in real-time is
incorporated into the model using a set of scenarios generated
from the available forecast in the day-ahead. The objective of
this energy storage system is to maximize the expected profit.
The day-ahead products of energy storage system include
energy as well as reserve commitment (as one of the ancillary
services), whereas its balancing product is the energy deployed
from the committed reserve. The proposed model captures the
interactions of energy, reserve, and balancing markets, and
their impacts on the functioning of an energy storage system.
It also provides an insight for a storage system into clearing
process of multiple markets and enables such a facility to
possibly affect the outcomes of those markets to its own benefit
through strategic price and quantity offers and bids.

Over the past few years, a number of works studied the
pool strategy of a merchant storage system in energy-only
markets [4],[5],[6],[7], the joint energy and reserve markets
as day-ahead settlement [2],[3], and the joint energy and
reserve markets (day-ahead settlement) along with balancing
settlement in real-time [8],[9],[10],[11].

In [4] and [5],[6],[7], the strategic decisions of a price-taker
and a price-maker storage system are derived, respectively, all
considering an energy-only market. Price-taker (price-maker)
refers to an entity, whose operation decisions cannot (can)
affect the market-clearing outcomes, i.e., clearing price and
quantities. References [5],[6],[7] address a price-maker storage
system that competes in an imperfectly competitive market.

References [2],[3] study the operation impacts of a price-
taker storage system in a day-ahead market as a joint energy
and reserve settlement. However, the balancing stage is not
modeled; therefore, the storage system has no knowledge on
the amount of energy to be injected/consumed from its reserve
in real-time under different foreseen scenarios. This makes the
day-ahead decisions of the storage system less accurate since
the real-time operation may alter its scheduling decisions in
the day-ahead stage.

Finally, [8],[9],[10],[11] investigate the operation of a price-
taker storage system in a joint energy and reserve settlement
(day-ahead market) considering the potential uncertainties in

real-time. These works reflect the uncertainty in real-time
using different techniques, e.g., a fixed energy deployment
from committed reserve [8], a probabilistic distribution [9],
robust method [10], and a set of scenarios [11]. In [9], the
balancing operation does not impact the day-ahead strategic
decisions. In [11], for the sake of computational tractability,
an additional constraint linking energy and reserve is enforced
within the problem.

A common assumption in [2],[3],[4],[8],[9],[10],[11] is that
the storage system is price-taker. Although this assumption
holds true for small-size facilities, it may not be necessarily the
case for relatively large-scale storage systems [5]. Compared
to [2],[3],[4],[8],[9],[10],[11], we model a price-maker storage
system capable of capturing opportunities made by the bi-
direction impacts of the storage system’s operation and market
conditions. On the other hand, in studies which model storage
system as a price-maker facility [5],[6],[7], storage system’s
decisions are made in an energy-only market. Considering high
integration of wind power, an important observation is that
the large-scale storage systems tend to offer strategically in
the ancillary services markets, in particular reserve. Compared
to [5],[6],[7], the proposed model in this paper captures the
interactions of different markets and their impacts on the
functioning of the storage system.

In this paper, we propose a decision-making tool based on
stochastic bilevel modeling to determine the pool strategy of
a price-maker storage system in day-ahead (as joint energy
and reserve settlement) and balancing markets, while consid-
ering the net load uncertainty. The storage system behaves
strategically within all markets. Note that the storage system
bids (offers) strategically in its charging (discharging) mode
in terms of energy price, energy quantity, and reserve quantity.
The interaction among energy, reserve, and balancing markets
and the decisions’ dependency in these markets make an op-
portunity for the storage system to raise its expected profit. The
final resulting model is a mixed-integer linear programming
(MILP) problem, which can be solved using the available
commercial software.

Note that some previous works (e.g., [12],[13]) have ad-
dressed the operation scheduling of a storage system where
the facility is considered as a network asset. That is not the
focus of the present work; rather, we focus on a merchant,
for-profit facility.

The presented model takes into account the limitations of
the storage system, the complexity and competition in the
market, and the opportunities that exist for stacking multi-
ple revenue streams. The developed model quantifies how a
merchant storage system can increase its expected profit by
optimally participating in multiple trading floors (such as day-
ahead and real-time balancing stages) and producing different
market products (such as energy and reserve).

The rest of this paper is organized as follows. The math-
ematical formulation of the proposed model is provided in
Section II. The results are presented and discussed in Section
III. Finally, the paper is concluded in Section IV.
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Upper-Level Problem: Storage 
system’s expected profit 

maximization

Lower-Level Problem: 
Clearing the day-ahead 

market (a joint energy 

and reserve settlement)

Lower-Level Problem:
clearing the balancing 
market under scenario 

k 
Committed reserves

Fig. 1. The bilevel structure of the proposed complementarity model

II. METHODOLOGY AND FORMULATION

The proposed model is a bilevel programming problem,
which is in fact a type of Stackelberg game with a single
leader and one or more followers. Specifically, in this paper,
the strategic storage is the leader, whereas the followers are
clearing problems of day-ahead and balancing markets. This
hierarchical structure is illustrated in Fig. 1. This problem is
solved by the storage system. The leader (storage) makes its
offering decisions in the upper level while anticipating the
consequences of such decisions within the market-clearing
problems as followers in the lower levels. This way, the storage
system simultaneously determines its optimal participation
strategy in both day-ahead and balancing markets.

The offering decisions of the storage system include its
charging bids and discharging offers. For given storage
system’s decisions, the followers maximize market’s social
welfare through dispatch decisions. One of the lower-level
problems represents the day-ahead joint energy and reserve
market. The other set of lower-level problems (one per sce-
nario) represents the real-time balancing market. This setup is
similar to the structure of Pennsylvania-New Jersey-Maryland
(PJM) market [14], where the balancing operating reserve
is responsible to offset the wind power uncertainty [15]. In
this hierarchical optimization setup, note that each lower-level
problem is a constraint for the upper-level problem.

It is worth mentioning that since this problem is solved
from the storage system point of view, the offering decisions
of other market parties (e.g., conventional generators and de-
mands) are necessarily treated as parameters. In this paper, we
consider them as perfectly known data. However, it is straight-
forward to take into account their potential uncertainty via
additional scenarios, but at the cost of increased computational
complexity. In case of considering all market participants as
strategic, the problem is converted to an equilibrium problem
with equilibrium constraints, which is the focus of our future
works. In line with real-world electricity markets, the day-

ahead and balancing settlements are cleared sequentially, in
the sense that the day-ahead outcomes (energy schedules and
reserve commitments) are fixed (exogenous parameters) inside
balancing markets.

The proposed bilevel model in this paper may yield multiple
solutions; each solution refers to a different offering strategy
for the strategic storage system, but its expected profit across
all potential solutions is identical. As long as the selected
strategy yields the highest expected profit for the storage
system, it has no preference in choosing a particular solution
among those obtained. The readers interested in bilevel models
and their applications to power systems are referred to [16].

A. Upper-level Problem: Expected Profit Maximization

The upper-level problem seeks to maximize the ex-
pected profit of the storage system from all mar-
kets, and formulated below by (a.1)-(a.18). The pri-
mal variables of the upper-level problem are ΞUL =
{p̂ch

s,t, p̂
dis
s,t , r̂

dis,UP
s,t , r̂dis,DN

s,t , r̂ch,UP
s,t , r̂ch,DN

s,t , uch
s,t, u

dis
s,t , ô

ch
s,t,

ôch,UP
s,t , ôch,DN

s,t , ôdis
s,t , ô

dis,UP
s,t , ôdis,DN

s,t , es,t} as well as all
lower-level primal and dual variables, which will be defined
later:

Max.
ΞUL

Nt∑
t=1

Ns∑
s=1

[[
− (λEN

t +MCch
s ).pch

s,t + (λEN
t −MCdis

s ).pdis
s,t

]
+
[
λUP
t .(rch,UP

s,t + rdis,UP
s,t ) + λDN

t .(rch,DN
s,t + rdis,DN

s,t )
]

+

Nk∑
k=1

Φk

[
(λBL

t,k +MCch
s ).(qch,UP

s,t,k − q
ch,DN
s,t,k )

+ (λBL
t,k −MCdis

s ).(qdis,UP
s,t,k − qdis,DN

s,t,k )
]]

(a.1)

Subject to:
udis
s,t + uch

s,t ≤ 1 ∀s, ∀t (a.2)

uch
s,t, u

dis
s,t ∈ {0, 1} ∀s,∀t (a.3)

0 ≤ p̂dis
s,t ≤ udis

s,t .P
dis
s ∀s, ∀t (a.4)
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0 ≤ r̂dis,UP
s,t ≤ udis

s,t .R
dis,UP
s ∀s, ∀t (a.5)

0 ≤ r̂dis,DN
s,t ≤ udis

s,t .R
dis,DN
s ∀s, ∀t (a.6)

p̂dis
s,t + r̂dis,UP

s,t ≤ udis
s,t .P

dis
s ∀s,∀t (a.7)

r̂dis,DN
s,t − p̂dis

s,t ≤ 0 ∀s, ∀t (a.8)

0 ≤ p̂ch
s,t ≤ uch

s,t.P
ch
s ∀s, ∀t (a.9)

0 ≤ r̂ch,UP
s,t ≤ uch

s,t.R
ch,UP
s ∀s, ∀t (a.10)

0 ≤ r̂ch,DN
s,t ≤ uch

s,t.R
ch,DN
s ∀s, ∀t (a.11)

p̂ch
s,t + r̂ch,DN

s,t ≤ uch
s,t.P

ch ∀s,∀t
s (a.12)

r̂ch,UP
s,t − p̂ch

s,t ≤ 0 ∀s,∀t (a.13)

ôch
s,t, ô

ch,UP
s,t , ôch,DN

s,t ≥ 0 ∀s, ∀t (a.14)

ôdis
s,t , ô

dis,UP
s,t , ôdis,DN

s,t ≥ 0 ∀s, ∀t (a.15)

0 ≤ es,t ≤ Es ∀s,∀t (a.16)

es,t = Eini
s −

t∑
h=1

[pdis
s,t +

Nk∑
k=1

Φk(qdis,UP
s,t,k − qdis,DN

s,t,k )]

+

t∑
h=1

ηs.[p
ch
s,t +

Nk∑
k=1

Φk(−qch,UP
s,t,k + qch,DN

s,t,k )] ∀s, ∀t (a.17)

es,t = αs.E
ini
s ∀s, t = Nt. (a.18)

The objective function (a.1) consists of profit sources from
energy and reserve commitment (upward and downward) in
day-ahead market, along with deployed energy from reserve
in balancing market. Each profit source is envisioned within
both operating modes, i.e., charging and discharging. Note that
the hourly energy prices (i.e., λEN

t ), upward and downward
reserve capacity commitment prices (i.e., λUP

t and λDN
t ),

scheduled energy quantities (i.e., pch
s,t and pdis

s,t ) and committed
reserve quantities (i.e., rch,UP

s,t , rch,DN
s,t , rdis,UP

s,t and rdis,DN
s,t )

are endogenously obtained from the lower-level problem rep-
resenting the clearing of day-ahead market. Similarly, the
balancing market-clearing prices (i.e., λBL

t,k ) and the deployed
reserves (i.e., qch,UP

s,t,k , qch,DN
s,t,k , qdis,UP

s,t,k and qdis,DN
s,t,k ) are endoge-

nously derived from the lower-level problems representing the
clearing of balancing market under different net load scenarios.

The first two lines in (a.1) are associated with storage
system’s profit in the day-ahead market. The first line in-
cludes the cost of charging energy into the storage and the
revenue from energy discharged. In addition, the second line
in (a.1) contains the storage system’s revenue from upward
and downward reserve capacity provision. The last two lines
in (a.1) are associated with the storage system’s profit/cost
in the balancing market, particularly in charging (third line)
and discharging (fourth line) modes. In the charging mode
(third line), the storage system is paid based on balancing
market price (i.e., λBL

t,k ) if it is called for reducing its charging
power by qch,UP

s,t,k (upward reserve provision). In this case, the
storage system earns qch,UP

s,t,k .(λBL
t,k +MCch

s ) since it is also not
incurred by the marginal cost (i.e., MCch

s ). In the same mode;
however, the storage system is charged by qch,DN

s,t,k .(λBL
t,k +

MCch
s ) due to extra power charged in the balancing stage,

i.e., qch,DN
s,t,k (downward reserve provision). Likewise, in the

discharging mode (fourth line), the storage system injects
power qdis,UP

s,t,k (upward reserve provision), and earns based on
the balancing market price minus the cost of operation in the
discharging mode (i.e., qdis,UP

s,t,k .(λBL
t,k −MCdis

s )). Finally, the
storage system’s cost in the discharging mode for downward
reserve deployment is qdis,DN

s,t,k .(λBL
t,k −MCdis

s ) since it pays
back to the market at the balancing market price (i.e., λBL

t,k )
for the energy not produced, while saving the marginal cost.

The operation modes for the storage system are considered
in (a.2) and (a.3). Constraint (a.4), (a.5) and (a.6) restrict
the energy and reserve quantity offers of storage system in
its discharging mode. Constraints (a.7) and (a.8) limit those
quantity offers as a whole to the discharging capacity. Con-
straints (a.9)-(a.13) are similar to (a.4)-(a.8) but in charging
mode. Constraints (a.14) and (a.15) enforce the non-negativity
of bidding and offering prices, either in terms of energy
or reserve. Constraint (a.16) enforces the reservoir capacity.
Constraint (a.17) represents the storage system’s expected state
of charge. Finally, constraint (a.18) is designed to specify the
storage system’s state of charge at the end of the operation
horizon. Note that constraints (a.16)-(a.18) fulfill the storage
requirements in expectation but not necessarily for each in-
dividual scenario. A generalization that fulfills the storage
requirements by scenario is mathematically straightforward but
at the cost of i) additional computational burden as it increases
the number of constraints especially in cases with many
scenarios, and ii) inefficient bidding strategy. In other words,
the maximum profitability cannot be in general achieved
while ensuring the fulfillment of all physical requirements by
scenario. A potential future work may analyze how the storage
system makes a trade-off between profitability and fulfillment
of physical requirements by scenario. One potential approach
is to incorporate the chance constraints [17] into the offering
strategy problem. This way, the storage system can restrict the
number of scenarios with unsatisfied physical requirements.

In case of a price-taker storage system
[2],[3],[4],[8],[9],[10],[11], all market prices (i.e., λEN

t ,
λUP
t , λDN

t , λBL
t,k ) are fixed parameters; therefore, the storage

system solves a self-scheduling problem to determine its most
beneficial charging and discharging actions for given prices.
The resulting optimization problem is in general simpler
than the proposed bilevel model in this paper for a strategic
storage.

Note that the upper-level problem (a.1)-(a.18) is constrained
by lower-level problem (b.1)-(b.22) representing the clearing
of day-ahead market, and lower-level problems (c.1)-(c.11)
representing the clearing of balancing market under different
scenarios. Such lower-level problems are presented in the next
two sections. Note that all offering and bidding decisions of the
storage system (all symbols with a hat, e.g., ôch

s,t) are variables
in the upper-level problem, but treated as parameters in the
lower-level problems. This enables the storage system to gain
insight into the market-clearing outcomes as a function of its
offering and bidding decisions, and then adjust them in the
upper-level problem pursuing expected profit maximization.
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B. Lower-Level Problem: Clearing of Day-Ahead Market
(Joint Energy and Reserve Settelment)

The lower-level problem representing the clearing of day-
ahead market is given by (b.1)-(b.22) below. All dual variables
are given in constraints after a colon. Variable set ΞPrimal

LL−b =

{pch
s,t, p

dis
s,t , pd,t, pg,t, r

ch,UP
s,t , rch,DN

s,t , rdis,UP
s,t , rdis,DN

s,t , rUP
g,t

, rDN
g,t , rUP

d,t , rDN
d,t } contains the primal variables of the

lower-level problem (b), whereas the dual variables of
such a problem are included in the variable set ΞDual

LL−b =
{λEN

t , λUP
t , λDN

t , µ
g,t
, µg,t, µd,t

, µd,t, µ
ch
s,t
, µch

s,t, µ
dis
s,t
, µdis

s,t

, µch,UP
s,t

, µch,UP
s,t , µch,DN

s,t
, µch,DN

s,t , µdis,UP
s,t

, µdis,UP
s,t , µdis,DN

s,t

, µdis,DN
s,t , µch,UP

s,t , µdis,DN
s,t , µUP

g,t
, µUP

g,t , µ
DN
g,t
, µDN

g,t , µ
UP
g,t ,

µDN
g,t , µ

UP
d,t
, µUP

d,t , µ
DN
d,t
, µDN

d,t , µ
DN
d,t , µ

UP
d,t }.

{
Max.

ΞPrimal
LL−b

Ns∑
s=1

(ôch
s,t.p

ch
s,t − ôdis

s,t .p
dis
s,t) +

Nd∑
d=1

UEN
d,t .pd,t

−
Ng∑
g=1

OEN
g,t .pg,t −

Ns∑
s=1

(ôch,UP
s,t .rch,UP

s,t + ôch,DN
s,t .rch,DN

s,t

+ ôdis,UP
s,t .rdis,UP

s,t + ôdis,DN
s,t .rdis,DN

s,t )

−
Ng∑
g=1

ORS
g,t .(r

UP
g,t + rDN

g,t )−
Nd∑
d=1

URS
d,t .(r

UP
d,t + rDN

d,t ) (b.1)

Subject to:
Nd∑
d=1

pd,t −
Ns∑
s=1

(pdis
s,t − pch

s,t)−
Ng∑
g=1

pg,t = 0 : λEN
t (b.2)

Ns∑
s=1

(rch,UP
s,t + rdis,UP

s,t ) +

Ng∑
g=1

rUP
g,t +

Nd∑
d=1

rUP
d,t = RUP

t : λUP
t (b.3)

Ns∑
s=1

(rch,DN
s,t + rdis,DN

s,t ) +

Ng∑
g=1

rDN
g,t +

Nd∑
d=1

rDN
d,t = RDN

t : λDN
t (b.4)

0 ≤ pg,t ≤ Pg : µ
g,t
, µg,t; ∀g (b.5)

0 ≤ pd,t ≤ Pd,t : µ
d,t
, µd,t; ∀d (b.6)

0 ≤ pch
s,t ≤ p̂ch

s,t : µch

s,t
, µch

s,t; ∀s (b.7)

0 ≤ pdis
s,t ≤ p̂dis

s,t : µdis

s,t
, µdis

s,t ; ∀s (b.8)

0 ≤ rch,UP
s,t ≤ r̂ch,UP

s,t : µch,UP

s,t
, µch,UP

s,t ; ∀s (b.9)

0 ≤ rch,DN
s,t ≤ r̂ch,DN

s,t : µch,DN

s,t
, µch,DN

s,t ; ∀s (b.10)

0 ≤ rdis,UP
s,t ≤ r̂dis,UP

s,t : µdis,UP

s,t
, µdis,UP

s,t ; ∀s (b.11)

0 ≤ rdis,DN
s,t ≤ r̂dis,DN

s,t : µdis,DN

s,t
, µdis,DN

s,t ; ∀s (b.12)

rch,UP
s,t ≤ pch

s,t : µch,UP
s,t ; ∀s (b.13)

rdis,DN
s,t ≤ pdis

s,t : µdis,DN
s,t ; ∀s (b.14)

0 ≤ rUP
g,t ≤ RUP

g : µUP

g,t
, µUP

g,t ; ∀g (b.15)

0 ≤ rDN
g,t ≤ RDN

g : µDN

g,t
, µDN

g,t ; ∀g (b.16)

pg,t + rUP
g,t ≤ Pg : µUP

g,t ; ∀g (b.17)

rDN
g,t − pg,t ≤ 0 : µDN

g,t ; ∀g (b.18)

0 ≤ rUP
d,t ≤ RUP

d,t : µUP

d,t
, µUP

d,t ; ∀d (b.19)

0 ≤ rDN
d,t ≤ RDN

d,t : µDN

d,t
, µDN

d,t ; ∀d (b.20)

pd,t + rDN
d,t ≤ Pd,t : µDN

d,t ; ∀d (b.21)

rUP
d,t − pd,t ≤ 0 : µUP

d,t ; ∀d (b.22)
}
∀t.

The objective function (b.1) maximizes the surplus in the
day-ahead market, which consists of energy and reserve terms.
For the sake of generality, upward and downward reserve
requirements of the market can be provided by generators,
demands, and storage system in its both operating modes.

Constraint (b.2) enforces the energy balance, and its corre-
sponding dual variable provides the energy price. Constraints
(b.3) and (b.4) enforce meeting the reserve requirements of
the market from different resources, and their associated dual
variables give the upward and downward reserve capacity
commitment prices, respectively. Constraint (b.5) restricts the
energy production level of generators. Constraint (b.6) limits
the consumption level of demands. Constraints (b.7) and (b.8)
enforce the storage system to be charged and discharged
between zero and its quantity bids and offers. Constraints
(b.9)-(b.14) limit the reserve commitment of storage system.
Similarly, the reserve commitments of generators and demands
are restricted by (b.15)-(b.18) and (b.19)-(b.22), respectively.
To be able to closely tract the results, we ignore the transmis-
sion network and generator’s ramping constraints at this step
of our work. Extending the model to include these constraints
is straightforward [7] and is left to future work.

C. Lower-Level Problems: Clearing of Balancing Market Un-
der Different Net Load Deviation Scenarios

The lower-level problems representing the clearing of
balancing market under different net load deviation scenarios
are given by (c.1)-(c.11). The primal variables of lower-level
problems (c), one per scenario, are included in set ΞPrimal

LL−c =

{ld,t,k, qUP
g,t,k, q

DN
g,t,k, q

dis,UP
s,t,k , qdis,DN

s,t,k , qch,UP
s,t,k , qch,DN

s,t,k , qUP
d,t,k

, qDN
d,t,k} while the dual variables of such

lower-level problems are within ΞDual
LL−c =

{λBL
t,k , ρ

UP
g,t,k

, ρUP
g,t,k, ρ

DN
g,t,k

, ρDN
g,t,k, ρ

UP
d,t,k

,

ρUP
d,t,k, ρ

dis,UP
s,t,k

, ρdis,UP
s,t,k , ρdis,DN

s,t,k
, ρdis,DN

s,t,k , ρch,UP
s,t,k

, ρch,UP
s,t,k ,

ρch,DN
s,t,k

, ρch,DN
s,t,k , ρ

d,t,k
, ρd,t,k}.{

Min.
ΞPrimal
LL−c

Nd∑
d=1

Vd,t.ld,t,k +

Ng∑
g=1

OEN
g,t .(q

UP
g,t,k − qDN

g,t,k)

+

Ns∑
s=1

ôdis
s,t .(q

dis,UP
s,t,k − qdis,DN

s,t,k ) +

Ns∑
s=1

ôch
s,t.(q

ch,UP
s,t,k − q

ch,DN
s,t,k )

+

Nd∑
d=1

UEN
d,t .(q

UP
d,t,k − qDN

d,t,k) (c.1)

Subject to:
Nd∑
d=1

ld,t,k +

Ns∑
s=1

(qch,UP
s,t,k − q

ch,DN
s,t,k ) +

Ns∑
s=1

(qdis,UP
s,t,k − qdis,DN

s,t,k )

+

Ng∑
g=1

(qUP
g,t,k − qDN

g,t,k) +

Nd∑
d=1

(qUP
d,t,k − qDN

d,t,k) = Qt,k : λBL
t,k (c.2)

0 ≤ qUP
g,t,k ≤ rUP

g,t : ρUP

g,t,k
, ρUP

g,t,k; ∀g (c.3)

0 ≤ qDN
g,t,k ≤ rDN

g,t : ρDN

g,t,k
, ρDN

g,t,k; ∀g (c.4)
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0 ≤ qUP
d,t,k ≤ rUP

d,t : ρUP

d,t,k
, ρUP

d,t,k; ∀d (c.5)

0 ≤ qDN
d,t,k ≤ rDN

d,t : ρDN

d,t,k
, ρDN

d,t,k; ∀d (c.6)

0 ≤ qdis,UP
s,t,k ≤ rdis,UP

s,t : ρdis,UP

s,t,k
, ρdis,UP

s,t,k ; ∀s (c.7)

0 ≤ qdis,DN
s,t,k ≤ rdis,DN

s,t : ρdis,DN

s,t,k
, ρdis,DN

s,t,k ; ∀s (c.8)

0 ≤ qch,UP
s,t,k ≤ r

ch,UP
s,t : ρch,UP

s,t,k
, ρch,UP

s,t,k ; ∀s (c.9)

0 ≤ qch,DN
s,t,k ≤ rch,DN

s,t : ρch,DN

s,t,k
, ρch,DN

s,t,k ; ∀s (c.10)

0 ≤ ld,t,k ≤ pd,t : ρ
d,t,k

, ρd,t,k; ∀d (c.11)
}
∀t,∀k.

The main reason for net load deviation is the variable gen-
eration. We assume that generators with variable production
(e.g., wind power producers) offer their production to day-
ahead and real-time markets at zero price, and therefore, they
are treated as negative loads. Based on available variable
generation forecast in day ahead, the elastic demands bid to
day-ahead market only that part of their loads that is not sup-
plied by zero-cost variable generation. However, the variable
generation forecast in day ahead might not be accurate, and
therefore, the potential mismatch (represented by parameter
Qt,k) needs to be offset in the balancing stage.

The objective function (c.1) minimizes the social imbalance
cost (equivalent to the minus social surplus) incurred by the
net load deviation. The first term represents the involuntarily
load shedding cost. The second term includes the production
cost of conventional generators for energy deployment from
their committed upward reserve, while those generators pay
back to the market operator due to reducing their production
(downward reserve provision). The third term of (c.1) is simi-
lar to the second term, but it corresponds to the storage systems
in the discharging mode. The fourth and fifth terms of (c.1)
represent the costs/utilities of storage systems (in charging
mode) and demands, respectively. These two terms represent
the cost of demands and storage systems in charging mode
for providing upward reserve (i.e., consumption reduction), as
well as their utility obtained by extra consumption (downward
reserve provision).

Constraint (c.2) enforces offsetting the net load deviation,
and its dual variable provides the balancing market price. A
positive value for parameter Qt,k implies the need for extra
power at time t under scenario k, which can be provided by
committed upward reserves by generators, demands, storage
systems (in both modes) and involuntarily load curtailment.
Similarly, a negative value for parameter Qt,k indicates the
need for downward reserve resources.

Constraints (c.3)-(c.10) restrict the energy deployed from
each available reserve resource based on its commitment in
day-ahead market. Finally, constraint (c.11) limits the invol-
untary curtailed load.

D. Solution Technique

The solution technique of the bilevel model (a)-(c) is
explained as follows: we first replace the lower-level problems
(b) and (c) by their Karush-Kuhn-Tucker (KKT) conditions, as
given in Appendix A. Note that these KKT conditions provide
the optimality conditions since the lower-level problems (b)

and (c) are linear and continuous. The resulting single-level
optimization model is a mathematical program with equilib-
rium constraints (MPEC). This model, however, is non-linear.
There are two sources of nonlinearity that can be linearized
as described below:

• The first source of non-linearity is complementarity con-
ditions (d.13)-(d.42) and (e.10)-(e.27), which are within
the KKT conditions. Each complementarity condition at
the form of 0 ≤ c ⊥ d ≥ 0 can be readily linearized with-
out approximation using a Big-M approach [18] but at the
cost of introducing a set of auxiliary binary variables.
The resulting mixed-integer conditions are c ≥ 0, d ≥ 0,
c ≤ u.M , and d ≤ (1−u).M . Note that u is an auxiliary
binary variable and M is a large enough positive constant.
The selection of an appropriate value for M could be
a challenge, because a too big value may not hold the
complementarity condition, while a too small value may
result in numerical ill-conditioning and/or increase dras-
tically the computational time. In this paper, for each of
complementarity conditions linearized, we first arbitrarily
choose a big value for M , e.g., 107, and then solve the
model. In the next step, we check the results to investigate
whether each of the complementarity conditions holds. If
not, we reduce the value of corresponding M until all
complementarity conditions are satisfied.

• The second source of non-linearity comes from the bi-
linear terms in objective function (a.1); each one is a
product of price and quantity (either energy or reserve).
Inspired from [19], we linearize without approximation
most of those bilinear terms as described in Appendix B.
The remained bilinear terms are also linearized (but with
approximation) using a binary expansion method [20] as
explained in Appendix B.

III. NUMERICAL RESULTS

In this section, we investigate the performance of our
presented model using an illustrative example (Section III.A)
and a real-world case study based on Alberta electricity market
(Section III.B.) We solve the resulting MILP model using
CPLEX under GAMS on an Intel(R) Core(TM) i7-5930K with
64 GB of RAM.

A. Illustrative Test System

This section provides an illustrative test system to demon-
strate the performance of the proposed trading decision-
making tool for an energy storage system. In this test system,
a daily (24 hours) time horizon is considered. Technical
characteristics of storage system and generators are given in
Tables I and II, respectively. Inspired by compressed air energy
storage systems, we model separate charging and discharging
devices [2]. The hourly loads are given in the second column
of Table III. We assume that loads bid their energy demands
across the whole time horizon at an identical price, i.e.,
$400/MWh. The hourly maximum reserve capacity of demand
is considered to be 10% of its load. The following cases are
studied and compared:
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TABLE I
DATA FOR THE STORAGE SYSTEM

Storage Pdis
s P ch

s MCdis
s MCch

s Rch,UP
s =Rch,DN

s Rdis,UP
s =Rdis,DN

s Es Eini
s αs ηs(s) (MW) (MW) ($/MWh) ($/MWh) (MW) (MW) (MWh) (MWh)

Illustrative Test System 20 15 20 2 10 10 120 0 1 1
Alberta Case 100 50 12 2 100 50 400 0 1 0.5

TABLE II
DATA FOR GENERATORS (ILLUSTRATIVE TEST SYSTEM)

Unit No. Pg OEN
g,t ORS

g,t RUP
g RDN

g

(MW) ($/MWh) ($/MWh) (MW) (MW)
G1 120 12 5 20 20
G2 50 30 15 20 20
G3 30 90 25 20 20
G4 30 120 40 20 20

TABLE III
THE STORAGE SYSTEM BIDDING AND OFFERING DECISIONS, AND

MARKET-CLEARING OUTCOMES IN CASE 1

Hour Pd,t
Storage system pg,t λEN

tpdis
s,t/p

ch
s,t ôdis

s,t/ô
ch
s,t G1 G2 G3 G4

(MW) (MW)∗ ($/MWh) (MW) ($/MWh)
1 60 -15 12 75 12
2 80 -15 12 95 12
3 100 -5 12 105 12
4 80 80 12
5 80 80 12
6 60 -15 12 75 12
7 80 80 12
8 100 100 12
9 120 120 30

10 100 100 12
11 100 100 12
12 80 -15 12 95 12
13 100 -15 12 115 12
14 120 120 30
15 140 120 20 30
16 160 120 40 30
17 200 20 90 120 40 20 90
18 180 20 90 120 40 90
19 180 20 90 120 40 90
20 200 20 90 120 40 20 90
21 160 120 40 30
22 140 120 20 30
23 100 100 12
24 80 80 12

∗A negative/positive value corresponds to the storage system’s charging/discharging mode.

• Case 1: A sole energy-only day-ahead market is con-
sidered. The only profit source of the storage system is
energy arbitrage over time.

• Case 2: The day-ahead market is in fact a joint energy
and reserve settlement, but the balancing stage is still
not considered. The storage system makes a profit from
energy trading as well as reserve provision.

• Case 3: Both day-ahead (joint energy and reserve set-
tlement) and balancing markets are considered. This is
the only case among Cases 1 to 3, which models the
net load deviation uncertainty since the balancing stage
is included. In this case, the storage system achieves
profit from energy trading, reserve provision in day-
ahead, and energy deployed from the committed reserve
in the balancing stage.

In Case 1, the storage system makes a profit through energy
arbitrage, provided that the price difference between charging
and discharging hours is higher than the total marginal costs
of storage system’s charging and discharging devices [5],
which is $22/MWh in this case (Table I). As given in Table
III, the storage system charges during low-demand hours in
which cheap generator G1 is the only dispatched unit. In
all charging hours, the storage system strategically bids at
$12/MWh, which is equal to G1’s offer price; and therefore,

the energy price is set to that price. Then, the storage system
discharges during peak hours, and strategically offers at a
price equal to the offer price of G3, which is the marginal
producer. Therefore, energy price is $90/MWh. One interesting
observation is that the storage offers strategically to affect both
market prices and quantities such that the highest possible
profit achieves. For example in hour 17, the storage could offer
at $120/MWh, which is equal to G4’s offer price. Such an
offer would lead to an energy price of $120/MWh, but energy
schedule of storage would drop to 10 MW (instead of 20 MW
in the current results). In this particular case, the lower energy
dispatch reduces profit, though the energy price is higher.
Therefore, the optimal offering price for the storage system
is $90/MWh, and not $120/MWh. Note that considering the
generator’s submitted offers and storage system’s marginal
cost, the storage system can make money in four hours, i.e.,
hours 17-20. In these hours, the storage system discharges
80 MWh. The storage system charges this amount of energy
when demand and consequently the market price is low. Note
that in this example, the quantity offer/bid of the storage
system in each hour (i.e., p̂ch

s,t, p̂
dis
s,t ) is always identical to

the scheduled quantity in that hour (i.e., pch
s,t, p

dis
s,t ). In other

words, the quantity bids and offers of the storage system are
fully accepted in the market.

In Case 2, the storage system trades in day-ahead market
as a joint energy and reserve settlement. The results are given
in Table IV. In line with [3], the storage system charges and
discharges in a higher number of hours in Case 2 compared
to Case 1 (energy-only case). This way, the storage system
gets more opportunities to make a profit. The storage system
bids to charge to a level of energy that is seen profitable when
discharged. Thus, there is no reason storage charges more than
that. Note that the upward and downward reserve prices are
equal at the charging hours. However, offering upward reserve
at the charging hours creates the opportunity for the storage
system to submit higher quantity offers in the energy market.

In the joint energy and reserve settlement (Case 2), en-
ergy market prices are different than those in the energy-
only settlement (Case 1). In this case, the storage system
strategically bids and offers to take advantage of energy and
reserve prices’ dependency. One interesting observation is that
the energy offer price of storage may not be identical to that
of other generators. For example in hours 17 and 20, it offers
to produce energy at price $105/MWh, which is different than
that of other generators. The energy prices in those two hours
are also $105/MWh. The reason behind this offer price is
the interaction of energy and reserve markets [21]. To supply
one additional MW in hours 17 and 20, the schedule of G3
increases to 21 MW, while its upward reserve commitment
drops to 9 MW. To meet the reserve requirements of the
market, the upward reserve commitment of G4 increases to
11 MW. Therefore, the cost for supply the additional demand
is $90/MWh (G3’s energy offer price) minus $25/MWh (G3’s
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TABLE IV
THE STORAGE SYSTEM BIDDING AND OFFERING DECISIONS, AND MARKET-CLEARING OUTCOMES IN CASE 2

Hr.

Storage Generators Market prices
RDN

t , Energy Reserve Energy Reserve

RUP
t

pdis
s,t , ôdis

s,t , rch,DN
s,t , ôch,DN

s,t , rdis,DN
s,t , ôdis,DN

s,t , pg,t rDN
g,t , r

UP
g,t λEN

t
λDN
t ,

pch
s,t ôch

s,t rch,UP
s,t ôch,UP

s,t rdis,UP
s,t ôdis,UP

s,t G1 G2 G3 G4 G1 G2 G3 G4 λUP
t

(MW)† (MW)∗ ($/MWh) (MW)† ($/MWh) (MW)† ($/MWh) (MW) (MW)† ($/MWh) ($/MWh)
1 -6,6 -9 12 -6,6 5,5 69 12 5,5
2 -8,8 -8 12 -7,8 5,5 88 -1,0 12 5,5
3 -10,10 -10 12 -5,10 5,5 110 -5,0 12 5,5
4 -8,8 -8 12 -7,8 5,5 88 -1,0 12 5,5
5 -8,8 -8 12 -7,8 5,5 88 -1,0 12 5,5
6 -6,6 -9 12 -6,6 5,5 69 0,0 12 5,5
7 -8,8 -8 12 -7,8 5,5 88 -1,0 12 5,5
8 -10,10 -10 12 -5,10 5,5 110 -5,0 12 5,5
9 -12,12 0,10 15 120 -12,0 0,2 30 5,15

10 -10,10 -10 12 -5,10 5,5 110 -5,0 12 5,5
11 -10,10 -10 12 -5,10 5,5 110 -5,0 12 5,5
12 -8,8 -8 12 -7,8 5,5 88 -1,0 12 5,5
13 -10,10 -10 12 -5,10 5,5 110 -5,0 12 5,5
14 -12,12 0,10 15 120 -12,0 0,2 30 5,15
15 -14,14 10 30 -10,10 5,15 120 10 -4,0 0,4 30 5,15
16 -16,16 3 40 -3,10 5,15 120 37 -13,0 0,3 0,3 40 5,25
17 -20,20 20 105 -10,0 5,40 120 40 20 -10,0 0,10 0,10 105 5,40
18 -18,18 20 90 -10,0 5,25 120 40 -8,0 0,18 90 5,25
19 -18,18 20 90 -10,0 5,25 120 40 -8,0 0,18 90 5,25
20 -20,20 20 105 -10,0 5,40 120 40 20 -10,0 0,10 0,10 105 5,40
21 -16,16 5 40 -5,10 5,15 120 35 -11,0 0,5 0,1 40 5,25
22 -14,14 10 30 -10,10 5,15 120 10 -4,0 0,4 30 5,15
23 -10,10 0,10 5 100 -10,0 12 5,5
24 -8,8 -8,0 5 80 0,8 12 5,5

† A negative/positive value corresponds to the downward/upward reserve.

∗ A negative/positive value corresponds to the storage system’s charging/discharging mode.

reserve offer price) plus $40/MWh (G4’s reserve offer price),
which is $105/MWh.

We also compare Case 2 referring to the joint energy and
reserve markets with a case in which energy and reserve settle-
ment are cleared sequentially [22], which is the case of most
European electricity markets (the energy schedules are fixed
within the reserve market). The hourly reserve commitments
of storage system in those two market setups are compared in
Fig. 2. Accordingly, the storage system submits offers for a
higher number of hours in the joint scheme compared to the
sequential energy and reserve markets. This directly impacts
the day-ahead decisions of the storage system in the sense that
the storage system may lose profit in the day-ahead market at
the benefit of gaining more opportunities in the reserve market.
The storage system’s profit in the joint energy and reserve
markets is 6% higher that than in the sequential markets.

In Case 3, the storage system behaves strategically in the
day-ahead market as joint energy and reserve settlement, while
the balancing market is also considered to meet the net load
deviations. We consider three foreseen scenarios representing
the net load deviations uncertainty in the balancing stage, as
given in the second column of Table V. In the first scenario, the
load deviation is zero, while in the second and third scenarios
is -5% and +5% of demand, respectively. The corresponding
probabilities are 0.90, 0.05 and 0.05, respectively. The storage
system’s and generators’ scheduling results are given in Tables
V and VI, respectively.

In Case 3, the storage system uses diverse offering and
bidding strategies across hours to gain the maximum expected
profit from different profit sources. In the charing hours,
i.e., hours 1, 3-5, 8, 10 and 11-13, it bids at a high price
($400/MWh) to be supplied, while the day-ahead price is
set by cheap generator G1 to $12/MWh. Unlike to energy
bid price, the storage system offers its reserve capacity at
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Fig. 2. Case 2: Hourly upward and downward reserve commitments of the
storage system under joint and sequential energy and reserve market-clearing
schemes

a low price ($5/MWh) to be committed for providing the
whole upward reserve and the half of downward reserve
requirements of the market. This brings a market power for the
storage system in the balancing stage, such that the balancing
price under the third scenario (positive net load) increases to
$400/MWh. In the discharging hours, the storage system uses
a different strategy. For example, the storage system offers its
energy during the peak hours, i.e., hours 17 to 20, at a low
price ($12/MWh) to make sure that it gets scheduled. This
way, it is paid at the energy prices of peak hours, which are
$90/MWh and $120/MWh. Note that with the same offer price
of the storage system and generator, the bilevel optimization
problem selects the storage systems’ offer [23].

The storage system’s profit in different three cases is
compared in Fig. 3. It gains more expected profit in Case 3
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TABLE V
RESULTS FOR THE STORAGE SYSTEM IN CASE 3

Hr. Qt,k

Energy Reserve Balancing Market prices
pdis
s,t , ôdis

s,t , rch,DN
s,t , ôch,DN

s,t , rdis,DN
s,t , ôdis,DN

s,t , qch,DN
s,t,k , qdis,DN

s,t,k ,
λEN
t

λDN
t ,

λBL
t,2 , λ

BL
t,3

pch
s,t ôch

s,t rch,UP
s,t ôch,UP

s,t rdis,UP
s,t ôdis,UP

s,t qch,UP
s,t,k qdis,UP

s,t,k λUP
t

(MW) (MW) ($/MWh) (MW) ($/MWh) (MW) ($/MWh) (MW) (MW) ($/MWh) ($/MWh) ($/MWh)
1 0,-3,3 -6 400 -3,6 5,5 0,-3,3 12 5,5 12,400
2 0,-4,4 0,8 5 0,0,4 12 5,5 12,400
3 0,-5,5 -10 400 -5,10 5,5 0,-5,5 12 5,5 12,400
4 0,-4,4 -8 400 -4,8 5,5 0,-4,4 12 5,5 12,400
5 0,-4,4 -8 400 -4,8 5,5 0,-4,4 12 5,5 12,400
6 0,-3,3 0,6 5 0,0,3 12 5,5 12,400
7 0,-4,4 0,8 5 0,0,4 12 5,5 12,400
8 0,-5,5 -10 400 -5,10 5,5 0,-5,5 12 5,5 12,400
9 0,-6,6 2 12 -2,10 5,15 0,-2,4 22 5,15 12,12

10 0,-5,5 -10 400 -5,10 5,5 0,-5,5 12 5,5 12,400
11 0,-5,5 -10 400 -5,10 5,5 0,-5,5 12 5,5 12,400
12 0,-4,4 -8 400 -4,8 5,5 0,-4,4 12 5,5 12,400
13 0,-5,5 -10 400 -5,10 5,5 0,-5,5 12 5,5 12,400
14 0,-6,6 2 12 -2,10 5,15 0,-2,4 22 5,15 12,12
15 0,-7,7 10 30 -10,10 5,15 0,-7,3 30 5,15 30,30
16 0,-8,8 6 30 -6,10 5,25 0,-6,2 40 5,25 12,30
17 0,-10,10 10 12 -10,10 5,40 0,-10,10 120 5,40 12,120
18 0,-9,9 12 12 -10,8 5,25 0,-9,8 90 5,25 12,90
19 0,-9,9 12 12 -10,8 5,25 0,-9,8 90 5,25 12,90
20 0,-10,10 10 12 -10,10 5,40 0,-10,10 120 5,40 12,120
21 0,-8,8 6 30 -6,10 5,25 0,-6,2 40 5,25 12,30
22 0,-7,7 10 30 -10,10 5,15 0,-7,3 30 5,15 30,30
23 0,-5,5 0,10 5 0,0,5 12 5,5 12,400
24 0,-4,4 0,8 5 0,0,4 12 5,5 12,400
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Fig. 3. The profit of the storage system in Cases 1, 2, and 3

compared to the first two cases due to availability of more
business opportunities. In addition, the energy and reserve
market prices for studied cases over 24 hours are illustrated
in Fig. 4. Taking advantage of the price dependency in energy
and reserve markets, the storage system’s behaviour leads to
higher energy prices in Case 2, compared to Case 1. This is
why the storage system gains more profit in Case 2 compared
to Case 1 in the day-ahead market, as evident in Fig. 3. In
Case 3, compared to the first two cases, the storage system’s
actions lead to lower prices during charging hours and higher
prices during discharging hours. Although the energy prices
change to the storage system’s advantage, the storage system’s
submitted quantities are lower in Case 3 compared to Case 2.
That is why the storage system gains less in the day-ahead
market in Case 3 compared to the first two cases (but more
profit in total), as shown in Fig. 3. We now investigate how
the expected profit of strategic storage system changes if the
physical requirement constraints are enforced by scenario. Our
simulation results show that such a profit in Case 3 reduces
by 15% compared to that in a similar case when the physical
constraints are enforced in expectation only.
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Fig. 4. Market prices in Cases 1, 2, and 3

Fig. 5 illustrates that the storage system’s state of charge is
comparatively smoother in Cases 2 and 3 compared to Case 1,
since it participates in more hours. In Case 2 and 3, compared
to Case 1, the storage system participates in the energy market
for a higher number of hours to be able to submit offers in the
reserve market in those hours. In Case 3, compared to Case 2,
the storage system submits lower offer quantities and higher
offer prices. That is why the maximum storage system’s state
of charge is lower in Case 3 than that in Case 2. In all cases,
the model was solved in less than two minutes on a standard
desktop computer.

We also investigate how technical characteristics of storage
system change its profitability. Fig. 6 shows the expected profit
of the storage system as function of the capacity of charging
and discharging devices. As expected, the storage system’s
profit depends on the capacity of both devices. Specifically,
one device with a large capacity while the other one with a
small capacity would not be a desirable configuration for the
storage system in terms of its profitability.
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TABLE VI
RESULTS FOR GENERATORS IN CASE 3

Hr.
pg,t rDN

g,t ,rUP
g,t qUP

g,t,k , qDN
g,t,k

G1 G2 G3 G1 G2 G3 G4 G1 G2 G3
(MW) (MW) (MW)

1 66 -3,0 0,0,0 0,0,0 0,0,0
2 80 -8,0 0,-4,0 0,0,0 0,0,0
3 110 -5,0 0,0,0 0,0,0 0,0,0
4 88 -4,0 0,0,0 0,0,0 0,0,0
5 88 -4,0 0,0,0 0,0,0 0,0,0
6 60 -6,0 0,-3,0 0,0,0 0,0,0
7 80 -8,0 0,-4,0 0,0,0 0,0,0
8 110 -5,0 0,0,0 0,0,0 0,0,0
9 118 -10,2 0,-4,2 0,0,0 0,0,0
10 110 -5,0 0,0,0 0,0,0 0,0,0
11 110 -5,0 0,0,0 0,0,0 0,0,0
12 88 -4,0 0,0,0 0,0,0 0,0,0
13 110 -5,0 0,0,0 0,0,0 0,0,0
14 118 -10,2 0,-4,2 0,0,0 0,0,0
15 120 10 -4,0 0,4 0,0,0 0,4,0 0,0,0
16 120 34 -10,0 0,6 0,-2,0 0,6,0 0,0,0
17 120 40 30 -10,0 0,10 0,0,0 0,0,0 0,0,0
18 120 40 8 -8,0 0,10 0,0,0 0,0,0 0,0,1
19 120 40 8 -8,0 0,10 0,0,0 0,0,0 0,0,1
20 120 40 30 -10,0 0,10 0,0,0 0,0,0 0,0,0
21 120 34 -10,0 0,6 0,-2,0 0,0,6 0,0,0
22 120 10 -4,0 0,4 0,0,0 0,0,4 0,0,0
23 100 -10,0 0,-5,0 0,0,0 0,0,0
24 80 -8,0 0,-4,0 0,0,0 0,0,0
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Fig. 6. The storage system’s expected profit versus different capacity of
charging and discharging devices

TABLE VII
DATA FOR GENERATORS (ALBERTA CASE)

Unit No. Pg OEN
g,t

(MW) ($/MWh)
G1 5950 0
G2 850 10
G3 440 12
G4 400 16
G5 370 22
G6 240 27
G7 260 35
G8 310 46
G9 300 77
G10 330 182
G11 170 472
G12 240 850
G13 270 990
G14 290 1000
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Fig. 7. The daily profile of load and the daily profile of aggregate wind
power forecast in expectation

B. A Case Study Based on Alberta Electricity Market

Over the last few years, several energy storage projects
including one large-scale compressed air energy storage were
filed with the Alberta Electric System Operator (AESO) [24].
This motivates us to apply our proposed model to determine
the optimal participation strategy of a large-scale compressed
air energy storage system in the Alberta electricity market over
an arbitrarily selected daily horizon (November 23, 2015). The
technical characteristics of this storage system are given in
Table I. Note that this particular energy storage technology
has different specifications for its charging and discharging
devices.

More than 200 generation block offers at non-zero price
were submitted to the market operator in the day considered.
We model these generation blocks using 14 conventional
generators, whose technical data are given in Table VII. Due
to lack of some real-world information, we assume that each
of 14 conventional generators offers for its reserve capability
at a price equal to its half of energy offer price. In addition, we
assume that the reserve capability of each conventional gener-
ator is equal to 20% of its installed capacity. Fig. 7 depicts the
daily profile of load and the daily profile of aggregate wind
production in expectation. The minimum reserve requirement
of the market is considered 20% of expected day-ahead wind
power.
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Fig. 8. The storage system’s expected profit for different number of wind
scenarios

In this paper, the uncertainty of net load deviation in real-
time is incorporated into the model using a set of scenarios
generated from the available forecast in the day-ahead stage.
It is a straightforward extension to model additional sources
of uncertainty, e.g., asset failure, but at the cost of increased
computational burden. It is also possible to characterize load
and wind uncertainties separately (instead of modeling net
load uncertainty), which allows for considering their potential
correlation. We generate 1000 daily wind scenarios consider-
ing a normal distribution with the standard deviation of 10%.
A backward scenario reduction method [25] is then used to
select the most representative scenarios. We first start with
four representative scenarios and then increase the number of
scenarios. This way, we derive the storage system’s expected
profit achieved by our proposed model for different number
of representative scenarios as illustrated in Fig. 8. Observe
that such a profit reaches to a stability in a case for which
the number of scenarios is 16. A higher number of scenarios
does not considerably change the storage system’s profit. This
implicitly means this number of scenarios is representative
enough.

We now investigate the computational time for solving the
model. One important observation, as illustrated in Fig. 9 for a
case with 15 net load scenarios, is that the MW-step (horizon-
tal axis) used within the binary expansion method (Appendix
B) considerably affects the computational time while roughly
changes the expected profit of the storage system. The smaller
MW-step (e.g., 25 MW) provides a tighter feasible space, and
thus a higher accuracy for binary expansion approximation, but
at the cost of significant computational time. The bigger MW-
step reduces the accuracy of approximation method and also
lowers the computational time. Note that an iterative approach
[26] can be used, so that the feasible space of discretized
variable can be tightened based on the optimal value achieved
for that variable in the previous iteration.

IV. CONCLUSION

In this paper, we demonstrate that the multiple uses of a
storage system can bring substantive value to it. The pool
strategy of a storage system as a price-maker facility in the
energy, reserve, and balancing markets is proposed and for-
mulated. The uncertainty in the balancing market is reflected
through a set of scenarios. To solve this problem, it is recast
to an MPEC and then linearized. The resulting problem is an
MILP. The storage system’s bidding strategy is discussed in the
energy-only market, the joint energy and reserve markets, and
the joint energy and reserve markets considering the balancing
markets. The results show that the storage system’s strategic
decisions in multiple markets significantly change compared
to a single market. It is also explained how storage strategic
decisions in multiple markets are dependent on each other.

APPENDIX A: KKT CONDITIONS OF LOWER-LEVEL
PROBLEMS

This appendix includes the KKT conditions of lower-level
problems (b) and (c).

The KKT conditions associated with lower-level problem
(b.1)-(b.22) are given by (d.1)-(d.42) below:

ôdis
s,t − λEN

t + µdis
s,t − µdis

s,t
− µdis,DN

s,t = 0 ∀s,∀t (d.1)

−ôch
s,t + λEN

t + µch
s,t − µch

s,t
− µch,UP

s,t = 0 ∀s,∀t (d.2)

OEN
g,t − λEN

t + µg,t − µg,t
+ µUP

g,t − µDN
g,t = 0

∀g,∀t (d.3)

−UEN
d,t + λEN

t + µd,t − µd,t
+ µUP

d,t − µDN
d,t = 0

∀d,∀t (d.4)

ôdis,UP
s,t − λUP

t + µdis,UP
s,t − µdis,UP

s,t
= 0 ∀s,∀t (d.5)

ôdis,DN
s,t − λDN

t + µdis,DN
s,t − µdis,DN

s,t
+ µdis,DN

s,t = 0

∀s,∀t (d.6)

ôch,UP
s,t − λUP

t + µch,UP
s,t − µch,UP

s,t
+ µch,UP

s,t = 0

∀s,∀t (d.7)

ôch,DN
s,t − λDN

t + µch,DN
s,t − µch,DN

s,t
= 0 ∀s,∀t (d.8)

ORS
g,t − λUP

t + µUP
g,t − µUP

g,t
+ µUP

g,t = 0 ∀g,∀t (d.9)

ORS
g,t − λDN

t + µDN
g,t − µDN

g,t
+ µDN

g,t = 0 ∀g,∀t (d.10)

URS
d,t − λUP

t + µUP
d,t − µUP

d,t
+ µUP

d,t = 0 ∀d, ∀t (d.11)

URS
d,t − λDN

t + µDN
d,t − µDN

d,t
+ µDN

d,t = 0 ∀d,∀t (d.12)

0 ≤ pg,t⊥µg,t
≥ 0 ∀g,∀t (d.13)

0 ≤ (Pg − pg,t)⊥µg,t ≥ 0 ∀g,∀t (d.14)

0 ≤ pd,t⊥µd,t
≥ 0 ∀d,∀t (d.15)

0 ≤ (Pd,t − pd,t)⊥µd,t ≥ 0 ∀d,∀t (d.16)

0 ≤ pch
s,t⊥µch

s,t
≥ 0 ∀s,∀t (d.17)

0 ≤ (p̂ch
s,t − pch

s,t)⊥µch
s,t ≥ 0 ∀s,∀t (d.18)
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Fig. 9. The expected profit of the storage system and computational time for solving the proposed model as a function of MW-step used within the binary
expansion method

0 ≤ pdis
s,t⊥µdis

s,t
≥ 0 ∀s,∀t (d.19)

0 ≤ (p̂dis
s,t − pdis

s,t )⊥µdis
s,t ≥ 0 ∀s,∀t (d.20)

0 ≤ rch,UP
s,t ⊥µch,UP

s,t
≥ 0 ∀s,∀t (d.21)

0 ≤ (r̂ch,UP
s,t − rch,UP

s,t )⊥µch,UP
s,t ≥ 0 ∀s,∀t (d.22)

0 ≤ rch,DN
s,t ⊥µch,DN

s,t
≥ 0 ∀s,∀t (d.23)

0 ≤ (r̂ch,DN
s,t − rch,DN

s,t )⊥µch,DN
s,t ≥ 0 ∀s,∀t (d.24)

0 ≤ rdis,UP
s,t ⊥µdis,UP

s,t
≥ 0 ∀s,∀t (d.25)

0 ≤ (r̂dis,UP
s,t − rdis,UP

s,t )⊥µdis,UP
s,t ≥ 0 ∀s,∀t (d.26)

0 ≤ rdis,DN
s,t ⊥µdis,DN

s,t
≥ 0 ∀s,∀t (d.27)

0 ≤ (r̂dis,DN
s,t − rdis,DN

s,t )⊥µdis,DN
s,t ≥ 0 ∀s,∀t (d.28)

0 ≤ (pch
s,t − r

ch,UP
s,t )⊥µch,UP

s,t ≥ 0 ∀s,∀t (d.29)

0 ≤ (pdis
s,t − r

dis,DN
s,t )⊥µdis,DN

s,t ≥ 0 ∀s,∀t (d.30)

0 ≤ rUP
g,t ⊥µUP

g,t
≥ 0 ∀g,∀t (d.31)

0 ≤ (RUP
g − rUP

g,t )⊥µUP
g,t ≥ 0 ∀g,∀t (d.32)

0 ≤ rDN
g,t ⊥µDN

g,t
≥ 0 ∀g,∀t (d.33)

0 ≤ (RDN
g − rDN

g,t )⊥µDN
g,t ≥ 0 ∀g,∀t (d.34)

0 ≤ (Pg − pg,t − rUP
g,t )⊥µUP

g,t ≥ 0 ∀g,∀t (d.35)

0 ≤ (pg,t − rDN
g,t )⊥µDN

g,t ≥ 0 ∀g,∀t (d.36)

0 ≤ rUP
d,t ⊥µUP

d,t
≥ 0 ∀d,∀t (d.37)

0 ≤ (RUP
d,t − rUP

d,t )⊥µUP
d,t ≥ 0 ∀d, ∀t (d.38)

0 ≤ rDN
d,t ⊥µDN

d,t
≥ 0 ∀d,∀t (d.39)

0 ≤ (RDN
d,t − rDN

d,t )⊥µDN
d,t ≥ 0 ∀d,∀t (d.40)

0 ≤ (Pd,t − pd,t − rDN
d,t )⊥µDN

d,t ≥ 0 ∀d, ∀t (d.41)

0 ≤ (pd,t − rUP
d,t )⊥µUP

d,t ≥ 0 ∀d,∀t (d.42)

Likewise, the KKT conditions associated with lower-level
problems (c.1)-(c.11), one per scenario, are given by (e.1)-
(e.27) below:

ôdis
s,t − λBL

t,k + ρdis,UP
s,t,k − ρdis,UP

s,t,k
= 0 ∀s,∀t, ∀k (e.1)

−ôdis
s,t + λBL

t,k + ρdis,DN
s,t,k − ρdis,DN

s,t,k
= 0 ∀s,∀t,∀k (e.2)

ôch
s,t − λBL

t,k + ρch,UP
s,t,k − ρ

ch,UP
s,t,k

= 0 ∀s,∀t, ∀k (e.3)

−ôch
s,t + λBL

t,k + ρch,DN
s,t,k − ρ

ch,DN
s,t,k

= 0 ∀s,∀t, ∀k (e.4)

OEN
g,t − λBL

t,k + ρUP
g,t,k − ρUP

g,t,k
= 0 ∀g,∀t, ∀k (e.5)

−OEN
g,t + λBL

t,k + ρDN
g,t,k − ρDN

g,t,k
= 0 ∀g,∀t, ∀k (e.6)

UEN
d,t − λBL

t,k + ρUP
d,t,k − ρUP

d,t,k
= 0 ∀d,∀t,∀k (e.7)

−UEN
d,t + λBL

t,k + ρDN
d,t,k − ρDN

d,t,k
= 0 ∀d,∀t,∀k (e.8)

Vd,t − λBL
t,k + ρd,t,k − ρd,t,k = 0 ∀d,∀t,∀k (e.9)

0 ≤ qUP
g,t,k⊥ρUP

g,t,k
≥ 0 ∀g,∀t, ∀k (e.10)

0 ≤ (rUP
g,t − qUP

g,t,k)⊥ρUP
g,t,k ≥ 0 ∀g,∀t,∀k (e.11)

0 ≤ qDN
g,t,k⊥ρDN

g,t,k
≥ 0 ∀g,∀t, ∀k (e.12)

0 ≤ (rDN
g,t − qDN

g,t,k)⊥ρDN
g,t,k ≥ 0 ∀g,∀t,∀k (e.13)

0 ≤ qUP
d,t,k⊥ρUP

d,t,k
≥ 0 ∀d,∀t,∀k (e.14)

0 ≤ (rUP
g,t − qUP

d,t,k)⊥ρUP
d,t,k ≥ 0 ∀d, ∀t,∀k (e.15)

0 ≤ qDN
d,t,k⊥ρDN

d,t,k
≥ 0 ∀d,∀t,∀k (e.16)

0 ≤ (rDN
d,t − qDN

d,t,k)⊥ρDN
d,t,k ≥ 0 ∀d,∀t,∀k (e.17)

0 ≤ qdis,UP
s,t,k ⊥ρ

dis,UP
s,t,k

≥ 0 ∀s,∀t,∀k (e.18)

0 ≤ (rdis,UP
s,t − qdis,UP

s,t,k )⊥ρdis,UP
s,t,k ≥ 0 ∀s,∀t, ∀k (e.19)

0 ≤ qdis,DN
s,t,k ⊥ρdis,DN

s,t,k
≥ 0 ∀s,∀t,∀k (e.20)

0 ≤ (rdis,DN
s,t − qdis,DN

s,t,k )⊥ρdis,DN
s,t,k ≥ 0 ∀s,∀t,∀k (e.21)

0 ≤ qch,UP
s,t,k ⊥ρ

ch,UP
s,t,k

≥ 0 ∀s,∀t,∀k (e.22)

0 ≤ (rch,UP
s,t − qch,UP

s,t,k )⊥ρch,UP
s,t,k ≥ 0 ∀s,∀t,∀k (e.23)

0 ≤ qch,DN
s,t,k ⊥ρ

ch,DN
s,t,k

≥ 0 ∀s,∀t,∀k (e.24)

0 ≤ (rch,DN
s,t − qch,DN

s,t,k )⊥ρch,DN
s,t,k ≥ 0 ∀s,∀t,∀k (e.25)

0 ≤ ld,t,k⊥ρd,t,k ≥ 0 ∀d,∀t, ∀k (e.26)

0 ≤ (pd,t − ld,t,k)⊥ρd,t,k ≥ 0 ∀d,∀t,∀k (e.27)
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APPENDIX B: LINEARIZATION OF BILINEAR TERMS IN
OBJECTIVE FUNCTION (a.1)

This appendix explains the linearization process of bilinear
terms within the upper-level objective function (a.1). First of
all, we derive the strong duality equality (f.1) below. This
equality corresponds to lower-level problem (b), and enforces
that the value of its primal objective function, i.e., (b.1), is
equal to that of its dual problem at the optimal solution:

−
Ns∑
s=1

(ôch
s,t.p

ch
s,t − ôdis

s,t .p
dis
s,t )−

Nd∑
d=1

UEN
d,t .pd,t

+

Ng∑
g=1

OEN
g,t .pg,t +

Ns∑
s=1

(ôch,UP
s,t .rch,UP

s,t + ôch,DN
s,t .rch,DN

s,t

+ ôdis,UP
s,t .rdis,UP

s,t + ôdis,DN
s,t .rdis,DN

s,t )

+

Ng∑
g=1

ORS
g,t .(r

UP
g,t + rDN

g,t ) +

Nd∑
d=1

URS
d,t .(r

UP
d,t + rDN

d,t )

= −
Ns∑
s=1

(µch
s,t.p̂

ch
s,t + µdis

s,t .p̂
dis
s,t

+ µch,UP
s,t .r̂ch,UP

s,t + µch,DN
s,t .r̂ch,DN

s,t + µdis,UP
s,t .r̂dis,UP

s,t

+ µdis,DN
s,t .r̂dis,DN

s,t ) +XDA
t ∀t (f.1)

where,

XDA
t = −

Nd∑
d=1

µd,t.Pd,t −
Ng∑
g=1

µg,t.Pg

−
Nd∑
d=1

µUP
d,t .R

UP
d,t −

Nd∑
d=1

µDN
d,t .R

DN
d,t

−
Ng∑
g=1

µUP
g,t .R

UP
g −

Ng∑
g=1

µDN
g,t .R

DN
g

−
Nd∑
d=1

µDN
d,t .Pd,t −

Ng∑
g=1

µUP
g,t .Pg

+(λUP
t .RUP

t + λDN
t .RDN

t ) ∀t (f.2)

From (d.18),(d.20),(d.22),(d.24),(d.26), and (d.28):

µch
s,t.p̂

ch
s,t = µch

s,t.p
ch
s,t ∀s,∀t (f.3)

µdis
s,t .p̂

dis
s,t = µdis

s,t .p
dis
s,t ∀s,∀t (f.4)

µch,UP
s,t .r̂ch,UP

s,t = µch,UP
s,t .rch,UP

s,t ∀s,∀t (f.5)

µch,DN
s,t .r̂ch,DN

s,t = µch,DN
s,t .rch,DN

s,t ∀s,∀t (f.6)

µdis,UP
s,t .r̂dis,UP

s,t = µdis,UP
s,t .rdis,UP

s,t ∀s,∀t (f.7)

µdis,DN
s,t .r̂dis,DN

s,t = µdis,DN
s,t .rdis,DN

s,t ∀s,∀t (f.8)

Substituting (f.3)-(f.8) in (f.1) yields

Ns∑
s=1

([−ôch
s,t + µch

s,t].p
ch
s,t + [ôdis

s,t + µdis
s,t ].p

dis
s,t

+ [ôch,UP
s,t + µch,UP

s,t ].rch,UP
s,t

+ [ôch,DN
s,t + µdis,DN

s,t ].rch,DN
s,t + [ôdis,UP

s,t + µdis,UP
s,t ].rdis,UP

s,t

+ [ôdis,DN
s,t + µdis,UP

s,t ].rdis,DN
s,t )

=

Nd∑
d=1

UEN
d,t .pd,t −

Ng∑
g=1

OEN
g,t .pg,t

−
Ng∑
g=1

ORS
g,t .(r

UP
g,t + rDN

g,t )−
Nd∑
d=1

URS
d,t .(r

UP
d,t + rDN

d,t )

+XDA
t ∀t (f.9)

On the other hand, from (d.1)-(d.2) and (d.5)-(d.8):

λEN
t = ôdis

s,t + µdis
s,t − µdis

s,t
− µdis,DN

s,t ∀s,∀t (f.10)

λEN
t = ôch

s,t − µch
s,t + µch

s,t
+ µch,UP

s,t ∀s,∀t (f.11)

λUP
t = ôdis,UP

s,t + µdis,UP
s,t − µdis,UP

s,t
∀s,∀t (f.12)

λDN
t = ôdis,DN

s,t + µdis,DN
s,t − µdis,DN

s,t
+ µdis,DN

s,t

∀s,∀t (f.13)

λUP
t = ôch,UP

s,t + µch,UP
s,t − µch,UP

s,t
+ µch,UP

s,t

∀s,∀t (f.14)

λDN
t = ôch,DN

s,t + µch,DN
s,t − µch,DN

s,t
∀s,∀t (f.15)

thus,

λEN
t .pdis

s,t = ôdis
s,t .p

dis
s,t + µdis

s,t .p
dis
s,t − µdis

s,t
.pdis

s,t

− µdis,DN
s,t .pdis

s,t ∀s,∀t (f.16)

λEN
t .pch

s,t = ôch
s,t.p

ch
s,t − µch

s,t.p
ch
s,t + µch

s,t
.pch

s,t

+ µch,UP
s,t .pch

s,t ∀s,∀t (f.17)

λUP
t .rdis,UP

s,t = ôdis,UP
s,t .rdis,UP

s,t + µdis,UP
s,t .rdis,UP

s,t

− µdis,UP
s,t

.rdis,UP
s,t ∀s,∀t (f.18)

λDN
t .rdis,DN

s,t = ôdis,DN
s,t .rdis,DN

s,t + µdis,DN
s,t .rdis,DN

s,t

− µdis,DN
s,t

.rdis,DN
s,t + µdis,DN

s,t .rdis,DN
s,t ∀s,∀t (f.19)

λUP
t .rch,UP

s,t = ôch,UP
s,t .rch,UP

s,t + µch,UP
s,t .rch,UP

s,t

− µch,UP
s,t

.rch,UP
s,t + µch,UP

s,t .rch,UP
s,t ∀s,∀t (f.20)

λDN
t .rch,DN

s,t = ôch,DN
s,t .rch,DN

s,t + µch,DN
s,t .rch,DN

s,t

− µch,DN
s,t

.rch,DN
s,t ∀s,∀t (f.21)

Additionally, from (d.17),(d.19),(d.21),(d.23),(d.25),(d.27),
(d.29), and (d.30):

µdis
s,t
.pdis

s,t = 0; µch
s,t
.pch

s,t = 0 ∀s,∀t (f.22)

µdis,UP
s,t

.rdis,UP
s,t = 0; µdis,DN

s,t
.rdis,DN

s,t = 0 ∀s,∀t (f.23)

µch,UP
s,t

.rch,UP
s,t = 0; µch,DN

s,t
.rch,DN

s,t = 0 ∀s,∀t (f.24)

µdis
s,t
.pdis

s,t = rdis,DN
s,t ; µch

s,t
.pch

s,t = rch,UP
s,t ∀s,∀t (f.25)
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Using (f.16)-(f.25) to simplify (f.9) yields

−
Ns∑
s=1

(λEN
t .pch

s,t − λEN
t .pdis

s,t − λUP
t .rch,UP

s,t

− λDN
t .rch,DN

s,t − λUP
t .rdis,UP

s,t − λDN
t .rdis,DN

s,t )

= −
Nd∑
d=1

UEN
d,t .pd,t +

Ng∑
g=1

OEN
g,t .pg,t

+

Ng∑
g=1

ORS
g,t .(r

UP
g,t + rDN

g,t ) +

Nd∑
d=1

URS
d,t .(r

UP
d,t + rDN

d,t )

+XDA
t ∀t (f.26)

Note that expression (f.26) provides a linear equivalent
for the summation of all those bilinear terms in the upper-
level objective function (a.1) that include day-ahead variables
(i.e., day-ahead prices times day-ahead quantity schedules).
Likewise, an equivalent for bilinear terms in (a.1) including
balancing variables can be obtained. To this end, we formulate
the strong duality equation (g.1) below corresponding to each
lower-level problem (c):

Nd∑
d=1

Vd,t.ld,t,k +

Ng∑
g=1

OEN
g,t .(q

UP
g,t,k − qDN

g,t,k)

+

Ns∑
s=1

ôdis
s,t .(q

dis,UP
s,t,k − qdis,DN

s,t,k ) +

Ns∑
s=1

ôch
s,t.(q

ch,UP
s,t,k − q

ch,DN
s,t,k )

+

Nd∑
d=1

UEN
d,t .(q

UP
d,t,k − qDN

d,t,k) =

−
Ns∑
s=1

(ρdis,UP
s,t,k .rdis,UP

s,t + ρdis,DN
s,t,k .rdis,DN

s,t

+ ρch,UP
s,t,k .rch,UP

s,t + ρch,DN
s,t,k .rch,DN

s,t ) +XBL
t,k ∀t,∀k (g.1)

where,

XBL
t,k = −

Ng∑
g=1

(ρRU
g,t,k.r

UP
g,t + ρDN

g,t .r
DN
g,t )−

Nd∑
d=1

(ρd,t,k.pd,t

+ ρUP
d,t,k.r

UP
d,t + ρDN

d,t,k.r
DN
d,t ) + λBL

t,k .Q
BL
t,k ∀t,∀k (g.2)

From (e.19),(e.21),(e.23), and (e.25):

ρdis,UP
s,t,k .rdis,UP

s,t = ρdis,UP
s,t,k .qdis,UP

s,t,k ∀s,∀t,∀k (g.3)

ρdis,DN
s,t,k .rdis,DN

s,t = ρdis,DN
s,t,k .qdis,DN

s,t,k ∀s,∀t,∀k (g.4)

ρch,UP
s,t,k .rch,UP

s,t = ρch,UP
s,t,k .qch,UP

s,t,k ∀s,∀t, ∀k (g.5)

ρch,DN
s,t,k .rch,DN

s,t = ρch,DN
s,t,k .qch,DN

s,t,k ∀s,∀t, ∀k (g.6)

Substituting (g.3)-(g.6) in (g.1) results in

Ns∑
s=1

([ôdis
s,t + ρdis,UP

s,t,k ].qdis,UP
s,t,k − [ôdis

s,t − ρ
dis,DN
s,t,k ].qdis,DN

s,t,k

+ [ôch
s,t + ρch,UP

s,t,k ].qch,UP
s,t,k − [ôch

s,t − ρ
ch,DN
s,t,k ].qch,DN

s,t,k ) =

−
Nd∑
d=1

Vd,t.ld,t,k −
Ng∑
g=1

OEN
g,t .(q

UP
g,t,k − qDN

g,t,k)

−
Nd∑
d=1

UEN
d,t .(q

UP
d,t,k − qDN

d,t,k) +XBL
t,k ∀t, ∀k (g.7)

On the other hand, from (e.1)-(e.4):

λBL
t,k = ôdis

s,t + ρdis,UP
s,t,k − ρdis,UP

s,t,k
∀s,∀t, ∀k (g.8)

λBL
t,k = ôdis

s,t − ρ
dis,DN
s,t,k + ρdis,DN

s,t,k
∀s,∀t, ∀k (g.9)

λBL
t,k = ôch

s,t + ρch,UP
s,t,k − ρ

ch,UP
s,t,k

∀s,∀t,∀k (g.10)

λBL
t,k = ôch

s,t − ρ
ch,DN
s,t,k + ρch,DN

s,t,k
∀s,∀t,∀k (g.11)

therefore,

λBL
t,k .q

dis,UP
s,t,k = ôdis

s,t .q
dis,UP
s,t,k + ρdis,UP

s,t,k .qdis,UP
s,t,k

− ρdis,UP
s,t,k

.qdis,UP
s,t,k ∀s,∀t, ∀k (g.12)

λBL
t,k .q

dis,DN
s,t,k = ôdis

s,t .q
dis,DN
s,t,k − ρdis,DN

s,t,k .qdis,DN
s,t,k

+ ρdis,DN
s,t,k

.qdis,DN
s,t,k ∀s,∀t,∀k (g.13)

λBL
t,k .q

ch,UP
s,t,k = ôch

s,t.q
ch,UP
s,t,k + ρch,UP

s,t,k .qch,UP
s,t,k

− ρch,UP
s,t,k

.qch,UP
s,t,k ∀s,∀t, ∀k (g.14)

λBL
t,k .q

ch,DN
s,t,k = ôch

s,t.q
ch,DN
s,t,k − ρch,DN

s,t,k .qch,DN
s,t,k

+ ρch,DN
s,t,k

.qch,DN
s,t,k ∀s,∀t, ∀k (g.15)

Additionally, from (e.18),(e.20),(e.22), and (e.24):

ρdis,UP
s,t,k

.qdis,UP
s,t,k = 0 ∀s,∀t,∀k (g.16)

ρdis,DN
s,t,k

.qdis,DN
s,t,k = 0 ∀s,∀t,∀k (g.17)

ρch,UP
s,t,k

.qch,UP
s,t,k = 0 ∀s,∀t, ∀k (g.18)

ρch,DN
s,t,k

.qch,DN
s,t,k = 0 ∀s,∀t, ∀k (g.19)

Using (g.12)-(g.19) to simplify (g.7) concludes

Ns∑
s=1

(λBL
t,k .q

dis,UP
s,t,k − λBL

t,k .q
dis,DN
s,t,k

+ λBL
t,k .q

ch,UP
s,t,k − λ

BL
t,k .q

ch,DN
s,t,k ) =

−
Nd∑
d=1

Vd,t.ld,t,k −
Ng∑
g=1

OEN
g,t .(q

UP
g,t,k − qDN

g,t,k)

−
Nd∑
d=1

UEN
d,t .(q

UP
d,t,k − qDN

d,t,k) +XBL
t,k ∀t,∀k (g.20)

We now rewrite the upper-level objective function (a.1)
using (f.26) and (g.20) as follows:

Min.
ΞUL

Nt∑
t=1

[ Ns∑
s=1

(MCch
s .p

ch
s,t +MCdis

s .pdis
s,t )
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−
Nd∑
d=1

UEN
d,t .pd,t +

Ng∑
g=1

OEN
g,t .pg,t

+

Ng∑
g=1

ORS
g,t .(r

UP
g,t + rDN

g,t ) +

Nd∑
d=1

URS
d,t .(r

UP
d,t + rDN

d,t )−XDA
t

+

Nk∑
k=1

Φk.
[
−MCch

s .(q
ch,UP
s,t,k − q

ch,DN
s,t,k )

+MCdis
s .(qdis,UP

s,t,k − qdis,DN
s,t,k )

+

Nd∑
d=1

Vd,t.ld,t,k +

Ng∑
g=1

OEN
g,t .(q

UP
g,t,k − qDN

g,t,k)

+

Nd∑
d=1

Ud,t.(q
UP
d,t,k − qDN

d,t,k)−XBL
t,k

]]
(h.1)

Note that there are still a few bilinear terms in (h.1) within
XBL

t,k ; each one includes a day-ahead quantity schedule and a
balancing dual variable. These bilinear terms are ρUP

g,t,k.r
UP
g,t ,

ρDN
g,t,k.r

DN
g,t , ρUP

d,t,k.r
UP
d,t , ρDN

d,t,k.r
DN
d,t and ρd,t,k.pd,t. We use a bi-

nary expansion method [20] to linearize each of those bilinear
terms but at the cost of introducing an approximation. For
instance, the steps for linearizing the bilinear term ρUP

g,t,k.r
UP
g,t

are as follows:
1) The primal variable rUP

g,t is selected to be discretized
since its lower and upper bounds are known. We dis-
cretize rUP

g,t by parameters r̃UP
g,t,i, where i is an index for

discrete values.
2) The bilinear term ρUP

g,t,k.r
UP
g,t is replaced by∑

i η
UP
g,t,k,i.r̃

UP
g,t,i, where ηUP

g,t,k,i is an auxiliary
continuous variable.

3) Among the discrete values r̃UP
g,t,i, the following equation

selects the closest one to the original variable rUP
g,t :

rUP
g,t −

∆rg,t
2
≤
∑
i

uUP
g,t,k,i.r̃

UP
g,t,i ≤ rUP

g,t +
∆rg,t

2

∀g,∀t,∀k (i.1)

where constant ∆rg,t is the MW-step, i.e., it shows the
distance of two sequential discrete values. In addition,
uUP
g,t,k,i is an auxiliary binary variable, which determines

the closest discrete value to the original variable rUP
g,t .

Note that
∑

i u
UP
g,t,k,i = 1 ∀g,∀t,∀k.

4) In addition, the following constraints are incorporated
into the problem:

0 ≤ [ρUP
g,t,k − ηUP

g,t,k,i] ≤M.(1− uUP
g,t,k,i) ∀g,∀t, ∀k, ∀i

(i.2)

0 ≤ ηUP
g,t,k,i ≤M.uUP

g,t,k,i ∀g,∀t, ∀k,∀i (i.3)

where M is a large enough positive value.

REFERENCES

[1] Federal Energy Regulatory Commission (FERC), “Third-party provision
of ancillary services; accounting and financial reporting for new
electric storage technologies,” Jul. 2013. [Online]. Available: http:
//www.ferc.gov/whats-new/comm-meet/2013/071813/E-22.pdf

[2] E. Drury, P. Denholm, and R. Sioshansi, “The value of compressed air
energy storage in energy and reserve markets,” Energy, vol. 36, no. 8,
pp. 4959–4973, Apr. 2011.

[3] J. Eichman, P. Denholm, J. Jorgenson, and U. Helman, “Operational
benefits of meeting californias energy storage targets,” Technical Results,
National Renewable Energy Laboratory (NREL), Dec. 2015.

[4] R. Sioshansi, P. Denholm, T. Jenkin, and J. Weiss, “Estimating the
value of electricity storage in PJM: Arbitrage and some welfare effects,”
Energy Economics, vol. 31, no. 2, pp. 269–277, Mar. 2009.

[5] H. Mohsenian-Rad, “Coordinated price-maker operation of large energy
storage units in nodal energy markets,” IEEE Transactions on Power
Systems, vol. 31, no. 1, pp. 786–797, Jan. 2016.

[6] E. Nasrolahpour, S. J. Kazempour, H. Zareipour, and W. D. Rosehart,
“Strategic sizing of energy storage facilities in electricity markets,” IEEE
Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1462–1472, Oct.
2016.

[7] ——, “Impacts of ramping inflexibility of conventional generators on
strategic operation of energy storage facilities,” IEEE Transactions on
Smart Grid, to be published, 2016.

[8] G. He, Q. Chen, C. Kang, P. Pinson, and Q. Xia, “Optimal bidding
strategy of battery storage in power markets considering performance-
based regulation and battery cycle life,” IEEE Transactions on Smart
Grid, vol. 7, no. 5, pp. 2359–2367, Sep. 2016.

[9] H. Ding, P. Pinson, Z. Hu, and Y. Song, “Integrated bidding and
operating strategies for wind-storage systems,” IEEE Transactions on
Sustainable Energy, vol. 7, no. 1, pp. 163–172, Jan. 2016.

[10] R. Moreno, R. Moreira, and G. Strbac, “A MILP model for optimising
multi-service portfolios of distributed energy storage,” Applied Energy,
vol. 137, pp. 554 – 566, 2015.

[11] H. Akhavan-Hejazi and H. Mohsenian-Rad, “Optimal operation of
independent storage systems in energy and reserve markets with high
wind penetration,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp.
1088–1097, Mar. 2014.

[12] X. He, E. Delarue, W. D’haeseleer, and J.-M. Glachant, “A novel
business model for aggregating the values of electricity storage,” Energy
Policy, vol. 39, no. 3, pp. 1575 – 1585, 2011.

[13] A. D. Lamont, “Assessing the economic value and optimal structure of
large-scale electricity storage,” IEEE Transactions on Power Systems,
vol. 28, no. 2, pp. 911–921, May 2013.

[14] Pennsylvania-New Jersey-Maryland Interconnection (PJM), “PJM
manual 11: Energy & ancillary services market operations,” Mar. 2016.
[Online]. Available: http://www.pjm.com/∼/media/documents/manuals/
m11-redline.ashx

[15] ——, “Integration of wind production forecasting into
day ahead and real-time scheduling and commitment,”
Apr. 2013. [Online]. Available: https://www.pjm.
com/∼/media/committees-groups/subcommittees/irs/20130617/
20130617-item-02-irtf-issue-resolution-wind-forecasting-tool.ashx

[16] D. Pozo, E. Sauma, and J. Contreras, “Basic theoretical foundations
and insights on bilevel models and their applications to power systems,”
Annals of Operations Research, to be published, 2017.

[17] A. Nemirovsk and A. Shapiro, “Convex approximations of chance
constrained programs,” SIAM Journal on Optimization, vol. 17, no. 4,
pp. 969–996, Nov. 2006.

[18] J. Fortuny-Amat and B. McCarl, “A representation and economic in-
terpretation of a two-level programming problem,” The Journal of the
Operational Research Society, vol. 32, no. 9, pp. 783–792, Sep. 1981.

[19] C. Ruiz and A. J. Conejo, “Pool strategy of a producer with endogenous
formation of locational marginal prices,” IEEE Transactions on Power
Systems, vol. 24, no. 4, pp. 1855–1866, Nov. 2009.

[20] C. Ruiz, A. J. Conejo, and S. A. Gabriel, “Pricing non-convexities in an
electricity pool,” IEEE Transactions on Power Systems, vol. 27, no. 3,
pp. 1334–1342, Aug. 2012.

[21] D. Kirschen and G. Strbac, Fundamentals of Power System Economics.
John Wiley & Sons, Ltd, 2004.

[22] S. Oren, “Auction design for ancillary reserve products,” IEEE Power
Engineering Society Summer Meeting, 2002.

[23] S. Dempe, Foundations of Bilevel Programming. Kluwer Academic
Publishers, 2002.

[24] Alberta Electric System Operator (AESO), “Energy storage
integration,” 2014. [Online]. Available: http://www.aeso.ca/downloads/
EnergyStorageIntegrationDiscussionPaper.pdf

[25] W. L. Oliveira, C. Sagastizabal, D. J. Penna, M. E. Maceira, and J. M.
Damazio, “Optimal scenario tree reduction for stochastic stream flows
in power generation planning problems,” Optimization Methods and
Software, vol. 25, pp. 917–936, 2010.

http://www.ferc.gov/whats-new/comm-meet/2013/071813/E-22.pdf
http://www.ferc.gov/whats-new/comm-meet/2013/071813/E-22.pdf
http://www.pjm.com/~/media/documents/manuals/m11-redline.ashx
http://www.pjm.com/~/media/documents/manuals/m11-redline.ashx
https://www.pjm.com/~/media/committees-groups/subcommittees/irs/20130617/20130617-item-02-irtf-issue-resolution-wind-forecasting-tool.ashx
https://www.pjm.com/~/media/committees-groups/subcommittees/irs/20130617/20130617-item-02-irtf-issue-resolution-wind-forecasting-tool.ashx
https://www.pjm.com/~/media/committees-groups/subcommittees/irs/20130617/20130617-item-02-irtf-issue-resolution-wind-forecasting-tool.ashx
http://www.aeso.ca/downloads/Energy Storage Integration Discussion Paper.pdf
http://www.aeso.ca/downloads/Energy Storage Integration Discussion Paper.pdf


16

[26] S. J. Kazempour, A. J. Conejo, and C. Ruiz, “Strategic generation
investment considering futures and spot markets,” IEEE Transactions
on Power Systems, vol. 27, no. 3, pp. 1467–1476, Aug. 2012.

Ehsan Nasrolahpour (S’14) received the B.Sc. degree from the Shahid
Chamran University of Ahvaz, Ahvaz, Iran, in 2010, the M.Sc. degree from
University of Tehran, Tehran, Iran, in 2013. He is currently pursuing his Ph.D.
at University of Calgary, Calgary, AB, Canada. His research interests include
power systems, electricity markets, and operations research.

Jalal Kazempour (M’14) is an Assistant Professor in the Department of Elec-
trical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.
He received his Ph.D. degree in Electrical Engineering from University of
Castilla-La Mancha, Ciudad Real, Spain, in 2013. He was a postdoctoral
fellow at The Johns Hopkins University, MD, USA, in 2014, and at the
Technical University of Denmark in 2015-2016. His research interests include
power systems, electricity markets, optimization and its applications to energy
systems.

Hamidreza Zareipour (S’03-M’07-SM’09) received the Ph.D. degree in
electrical engineering from the University of Waterloo, Waterloo, ON, Canada,
in 2006. He is currently a full Professor with the Department of Electrical
and Computer Engineering, University of Calgary, Calgary, AB, Canada. His
research focuses on economics, planning, and management of power and
energy systems in a deregulated electricity market environment.

William D. Rosehart (SM’05) received the B.Sc, M.Sc., and Ph.D. degrees in
electrical engineering from the University of Waterloo, Waterloo, ON, Canada.
Currently, he is the Dean of Schulich School of Engineering at the University
of Calgary, Calgary, AB, Canada. His main research interests are in the areas
of numerical optimization techniques, power system stability, and modeling
power systems in a deregulated environment.


	Introduction
	Methodology and Formulation
	Upper-level Problem: Expected Profit Maximization
	Lower-Level Problem: Clearing of Day-Ahead Market (Joint Energy and Reserve Settelment)
	Lower-Level Problems: Clearing of Balancing Market Under Different Net Load Deviation Scenarios
	Solution Technique

	Numerical Results
	Illustrative Test System
	A Case Study Based on Alberta Electricity Market 

	Conclusion
	References
	Biographies
	Ehsan Nasrolahpour
	Jalal Kazempour
	Hamidreza Zareipour
	William D. Rosehart


