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Summary

This thesis formulates a framework to perform uncertainty quan-
tification within wind energy. This framework has been applied to
some of the most common models used to estimate the annual en-
ergy production in the planning stages of a wind energy project.
Efficient methods to propagate input uncertainties through a model
chain are presented and applied to several wind energy related prob-
lems such as: annual energy production estimation, wind turbine
power curve estimation, wake model calibration and validation, and
estimation of lifetime equivalent fatigue loads on a wind turbine.
Statistical methods to describe the joint distribution of multiple
variables are applied to the description of the wind resources at a
given location. A new method to predict the performance of an
aeroelastic wind turbine model, and its corresponding uncertainty,
is presented. This approach helps understand the uncertainty in
the lifetime performance of a wind turbine under realistic inflow
conditions.  Operational measurements of several large offshore
wind farms are used to perform model calibration and validation
of several stationary wake models. These results provide a guide-
line to identify the regions in which a model fails to make accurate
predictions, and therefore help guide research and development to
focus on areas with the biggest uncertainty to lower costs of energy
effectively.






Resumé

Denne afhandling opstiller en fremgangsmade til at kvantificere
usikkerheder indenfor vind energi. Fremgangsméaden benyttes pa
nogle af de mest almindelige modeller til bestemmelse af den arlige
energi produktion i forbindelse med planleegningen af vind energi
projekter.

Effektive metoder til at fore input usikkerheder igennem en mod-
elkzede praesenteres og anvendes pa flere relaterede vind energi prob-
lemer, sasom bestemmelse af arlig energi produktion, vindmgllers ef-
fektkurver, kalibrering og validering af kglvandsmodeller samt vur-
dering af udmattelseslaster i vindmgllens levetid. Statistiske metoder
til beskrivelse af multivariable fordelinger er anvendt til beskrivelse
af vind ressourcer pa et givent sted.

En ny metode til at forudsige ydeevnen af en aeroelastisk vin-
dmgllemodel, og de tilhgrende usikkerheder, praesenteres. Denne
tilgang gger forstielsen af usikkerheden af en vindmglles ydeevne
under realistiske indstrgmningsbetingelser.

Malinger fra flere fungerende offshore vindmglleparker er brugt
til at kalibrere og validere flere stationaere kglvandsmodeller. Disse
resultater giver retningslinjeri forhold til at identificerer omrader,
hvor de enkelte modeller giver ungjagtive forudsigelser, og derfor
understgtte forskning og udvikling til at fokusere pa omrader med
stgrst usikkerhed for derved at seenke prisen af energi effektivt.
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When asked how to deal with uncertainty in life one realizes that
there are three options: to hide and avoid the external world, to
live without considering consequences, or to understand the risks

and try to get the most out of things.






Chapter 1

Introduction

fter years of negotiations, all nations have signed an agree-

ment to mitigate the effects of climate change in the UN-

FCCC COP21 Paris 2015". The objective of the mitigation
efforts is to keep the global temperature rise below 2°C above pre-
industrial levels. The European Environment Agency (EEA) has
established targets for reduction of greenhouse gases emissions to
20% in 2020, 40% in 2030 and at least 80% by 2050. These targets
are implemented by increasing the share of the renewable energy
sources in the total energy consumption up to 20% by 2020 and up
to at least 27% by 2030 [10]. Wind energy is one of the main sources
of renewable energy; in 2015 the total amount of wind energy capac-
ity installed (63 GW) represented 50% of the total energy capacity
installed world wide [11]. To fulfill these targets, it is required to
continue decreasing the Levelized Cost of Energy (LCoE) for wind
projects to competitive levels with respect to fossil fuels projects,
a goal that has come true as onshore wind energy is cheaper than
other energy options for some markets, see [12] for comparison of
levelized cost of energy for different technologies.

The estimation of the cost of energy of a wind energy project
takes into account parameters such as the Annual Energy Produc-
tion (AEP), the operation and maintenance costs, the capital cost
of the project, the interest rates and the expected lifetime of the
project among others. In the planning stage of a wind project most
of these variables are uncertain. Estimating the uncertainty in the
prediction of the lifetime energy production of large wind plants is
one of the main aspects that needs to improve in order to asses the fi-
nancial viability of wind energy projects [13]. Optimized wind plant
designs that minimize the cost of energy require an understanding
of the uncertainty in the energy production, in the operation and

| United Nations Frame-
work Convention on Cli-
mate Change, Conference
Of The Parties

[10] EEA. 2016

[11] GWEC. 2016

[12] Lazzard. 2015

[13] Gass et al. 2011
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[14] Réthoré et al. 2013

Figure 1.1: Model structure
for typical AEP estimation.

maintenance costs, and in the lifetime of the project. The former
two variables can be related to the lifetime accumulated fatigue
damage in the structural components of every wind turbine in the
project [14] among other additional parameters.

1.1 Uncertainty Quantification in Wind Energy

ind energy is a field in which the main variables have a nat-
Wural stochasticity e.g. the long term wind resources on a site
have variability caused by the yearly or longer term variability. Ad-
ditionally, the estimation of the performance of a wind plant uses
a combination of models such as a wind resource assessment flow
model, a wind turbine model and a wake model. The accuracy of
each of these models needs to be evaluated in order to be able to
estimate the uncertainty in the AEP and the LCoE of a wind en-
ergy project. Additionally, part of the evaluation of the viability of
a wind energy project requires the estimation of the uncertainty in
the AEP, which is usually given as the 90% quantile of its predicted
distribution, P90. See figure 1.1. Wind energy has two problems
that are central to the uncertainty quantification field: the natural
variability in some of the variables and the possibility that the mod-
els are not perfect under all the possible conditions. The following
sections define the vocabulary of uncertainty quantification.

Wake L "AEp [ Poo
A

Model
Turbine Wind
Model Resources

1.2 Basic definitions

The estimation of the accuracy of the predictions of a computational
model is a key problem in modern sciences and engineering. This
problem needs to account for the aspects of the system that are not
well known and for the stochastic behaviors in some of the modeled
variables. The term Uncertainty is ambiguous because it refers to
both of these problems: the stochastic behavior and the lack of



knowledge [15]. In this thesis, a variable is said to be uncertain if
it is modeled as a stochastic variable.

Aleatoric uncertainty is used to describe the stochasticity or in-
herent variability in a variable. Aleatoric uncertainties can not
be reduced as they are intrinsic to the reality being modeled.
An example of a variable that has aleatoric uncertainty is the
wind speed at a given height and location over the years. Vari-
ables with aleatoric uncertainty are represented with a Probabil-
ity Density Function (PDF).

Epistemic uncertainty is used to refer to variables that are not well
known. This type of uncertainty could be reduced if time and
money are spent in better understanding, measuring or mod-
eling the variable. An example of epistemic uncertainty is the
uncertainty related to any measurement. A high quality instru-
ment produces measurements with narrower tolerances. Vari-
ables with epistemic uncertainties can be represented using an
uniform PDF.

Error is defined as the difference between a variable and its true
value. Errors are the product of imperfect measurements or im-
perfect models. Errors can not be known and therefore need to
be modeled as uncertain variables.

The purpose of Uncertainty Quantification (UQ) is to gain in-
sight about the accuracy and precision of a model, and to un-
derstand what are the consequences in the predictions of having
stochastic variables in the model chain. More specifically, a model
with UQ will help make informed decisions by estimating the prob-
ability distributions of the predictions. A robust UQ framework can
be the tool for certification tasks and can help decision makers to
identify the aspects that require further research and investment in
order to improve the accuracy in the predictions.

1.3 Modeling and Measuring Reality

n this section we define the variables and terminology used when
Ireferring to a modeling and measuring campaign. This section
also identifies the different sources of uncertainty that could be in-
troduced into a modeling chain. Figure 1.2 describes the process of
measuring and modeling reality.

INTRODUCTION 23

[15] Oberkampf et al. 2002
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Figure 1.2: Measuring and
modeling reality. Diagram
modified from [16].

[16] Huard et al. 2006

A model tries to capture the real process that relates the true
input variables x to the true output variables y. The model receives
additional parameters 8 to make a prediction: M(x,0). The model
parameters are defined as independent of the inputs. Models are not
perfect and therefore there is a difference between the true outputs
and the model predictions: the model prediction error, € 4.

On the other hand, measurements of the inputs, x, and of the
outputs, y, are performed. The difference between the true variables
and the measurement is called measurement error, ex or €,. Note
that the diagram represents the measurement and modeling process
for a single realization of the true inputs and outputs.

True Inputs

x
Measurement /
error in X £x

Model Parameters
-

X=X-+éex M(x, ) o
Measured
pairs Real Process
y=y+tey
EM Model

rediction error
Measurement ¥ P

error in
Y \y y:M(X79)+€M

True Outputs

Physical uncertainty or natural variability is an aleatoric uncertainty
caused by the stochastic nature of a variable. It is referred to as
residual variability because it cannot be reduced. The physical
uncertainty may be present in the true input and output vari-
ables. The natural variability is characterized by the PDF of the
true variable: f(x) or f(y).

Measurement uncertainty is a mixed of aleatoric and epistemic un-
certainties. It is caused by the imperfection of every measure-
ment process due to signal noise, dynamical response of the sen-
sor, calibration issues, faulty set-up of experiment racks, etc.
This type of uncertainty introduces biases and noise in the mea-
surements therefore it has a mixed behavior between aleatoric
and epistemic uncertainty. Measurement uncertainty is present
in the observed variables, X and y, and it is characterized by the
PDF of the measurement errors: f(ex) or f(ey).



The Guide to the expression of Uncertainty in Measurement
(GUM) [17] classifies measurement uncertainties into two groups:
Type A measurement uncertainty represents the component of
the uncertainty that can be estimated from multiple independent
repetitions of the measurement using the standard error of the
mean which is a consequence of the central limit theorem. Type
B measurement uncertainty represents the epistemic uncertainty
in the measurements due to the instrument or measurement pro-
cess. Type B measurement uncertainty is estimated by assuming
a PDF based on experience about the instrument performance
such as calibration errors, signal drifts, data acquisition errors,
etc. Type B uncertainty estimation relies on the information
given by the manufacturer and by the standardization agencies.
Combining the information from the Type A and B sources of
measurement uncertainties gives an estimation of the PDF of the
measurement errors.

Parameter uncertainty is the epistemic uncertainty that captures

the lack of knowledge about the true value of the parameters used
in the model. The model parameters can represent physical con-
stants or simply tunning parameters that need to be calibrated
using measurements. The parameter uncertainty is characterized
by the PDF of the parameters, f(6).

Model uncertainty is an epistemic uncertainty caused by the imper-

fection of the model. The model uncertainty reflects the regions
in which the assumptions in the model are a good representations
of reality and the regions in which there is a lack of physics in
the model. The model uncertainty is characterized by the PDF
of the model prediction error f(eq) and it depends on the input
variables. 2

Statistical uncertainty is the epistemic uncertainty due to the lim-

ited sample size of any variable. Observations are in many cases
scarce and limited for both measurements and simulations, there-
fore the PDF of a variable cannot be determined exactly. If addi-
tional observations are provided then the statistical uncertainty
may be reduced. The statistical uncertainty appears in every un-
certain variable modeled with a PDF, such as the measurements,
f(x) or f(y), as well as in the model predictions, f(M(x,8)).

INTRODUCTION 25

[17] ISO et al. 2008

2 An example of the depen-
dence of model uncertainty
on the inputs is Newton’s
theory of gravity. It can be
used to design a wind tur-
bine but it should not be
used to calculate the loca-
tion of a GPS device using
satellite triangulation. The
validation region of New-
ton’s theory depends on the
speed of the bodies studied.
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(18] Oberkampf et al. 2010
[19] Oberkampf et al. 2004

[20] Biller et al. 2006

[21] Helton et al. 2003

Figure 1.3: Propagation of
uncertainty problem.

[22] Saltelli et al. 2000

1.4 Framework for Model Verification, Validation
and Uncertainty Quantification

his section gives the definitions, objectives and the key review
Treferences for each of the steps of a model verification, valida-
tion and uncertainty quantification (VV&UQ) process. For more
details about the framework readers are referred to [18][19].

Model verification: To evaluate the accuracy of the model to solve
the mathematical problem. The verification step has two objec-
tives: Solution verification consists in quantifying the numerical
accuracy of the representation and solution of the mathematical
problem. Code verification consists in assessing the reliability of
the implementation. A review of methodologies for estimation of

numerical errors in complex models can be found in [18].

Input uncertainty elicitation: To identify the different sources of
uncertainty; to define a mathematical structure to represent them
and their correlation structure; and to fit their joint PDF f(x).
Since the input variables are measured it is required to take into
account measurement uncertainties and statistical uncertainties.
A review of the methods to describe multi-dimensional correlated
PDF can be found in [20].

Uncertainty propagation or uncertainty analysis: To determine the
uncertainty in the model prediction that is produced by the in-
puts and parameters uncertainties. The outcome of this process
is the PDF of the model output given a PDF of the inputs,
f(M(x,8)), see Figure 1.3. This process is the core of the uncer-
tainty quantification problem as it is a requirement for following
steps such as sensitivity analysis, model calibration and model
validation. A survey of methods for uncertainty propagation can
be found in [21].

Stochastic Model Stochastic

input variables — — output variables
f(x.0) o M8 f(M(x,0))?

Sensitivity analysis: To detect which sources of uncertainty have
the largest impact on the variation of the outputs. Consequently,
sensitivity analysis can help the modeler simplify the UQ problem
by identifying the variables whose uncertainty can be neglected.
A review of the different methods used to perform sensitivity
analysis can be found in [22].



Model calibration: To determine the values of the model parameters
given a set of measurement pairs, (X,¥). The result of a calibra-
tion process is the joint PDF associated to the parameters, f(8).
This PDF quantifies both the lack of knowledge about the true
value and the natural variability in the parameters. The PDF of
the parameters is also a consequence of the measurement uncer-
tainties in the measured pairs. A review of model calibration is
given in [23].

Model validation: To estimate the model prediction error given a
set of measurement pairs, (X,¥). The result of a validation pro-
cess is the PDF of the model prediction error as a function of the
true input variables f(ea) = f(¢(x)). The change of notation
from e to ((x) represents the fact that the model prediction
error distribution can be estimated a priori on an unvalidated
input case using the previous validation efforts.The validation
process is performed in different validation points in the input
space in order to identify the region in which the model is ac-
curate enough for the application. The limits of the validation
region depend on the user tolerance to model uncertainty. For
some general examples of model validation refer to [24], [25].

Model Assessment: To perform model selection and/or model com-
bination to minimize the total output uncertainty. In model
combination each model contributes information to the final pre-
diction with the objective of minimizing a cost function defined
based on the final output uncertainty and the computational cost.
A survey of model combination is presented in [26].

1.5 Problem statement

ncertainty in the predicted performance of a wind plant de-
Upends on the uncertainty in the wind resource estimation and
in the uncertainty of each of the models in the model chain. The
primary questions this thesis seeks to answer are:

o What is the effect of the different turbulent inflow conditions in

the performance of a wind turbine?

e How does the wake model prediction errors affect the estima-
tion and the uncertainty in the annual energy production of an
arbitrary wind plant?

INTRODUCTION 27

[23] Tarantola. 2005

[24] Roy et al. 2011
[25] Higdon et al. 2004

[26] Peherstorfer et al. 2016
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[4] Murcia et al. 2016

e (Can the uncertainty of a simplified wake model be capture through
a calibration process?

o How can we establish a systematic procedure for model validation

in wind energy?

1.5.1 Methodology

In order to answer these questions the following methods were re-
searched:

e Statistical methods to handle the typical correlated PDFs that
are observed in the atmospheric variables.

o Efficient methods to propagate input uncertainties through non-
linear models and to perform sensitivity analysis.

e Methods to post-process the operational data from an offshore
wind plant to define calibration and validation datasets. This
methods include the estimation of the measurement uncertain-
ties.

o Model calibration and model validation methods based on datasets
that have uncertainties in both inputs and outputs.

1.6 Contributions

r | 1he main focus of this thesis was the development of key concepts
related to the uncertainty quantification in wind energy. The
main contribution of this thesis to the field are:

VVEUQ framework: A model verification, validation and uncer-
tainty quantification has been applied to the wind plant perfor-
mance problem.

Stochastic surrogate of an aeroelastic wind turbine model: A method-
ology to build stochastic surrogates of the aeroelastic model of a
wind turbine has been developed. These surrogates help under-
stand the uncertainty in the wind turbine model under realistic
inflow conditions [4].

Wake model validation and calibration: Wake model calibration and
validation procedures have been implemented using several databases
of operational measurements from offshore wind plants. This
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technique could improve the practice of the wind energy industry

in terms of model development and evaluation because it helps

to identify the regions in which a model fails to make accurate

predictions [3] [5]. 3] Murcia et al. 2016
[5] Murcia et al. 2016

1.7 Thesis Structure

ach chapter of this thesis contains a literature review, an overview

Eof the most important concepts, illustrative examples and cor-
responding sub-conclusions. Chapter 2 discusses the different model
chains used in wind energy and gives an overview of the previous
uncertainty quantification efforts done on each of the submodels.
Chapter 3 presents the different options to handle multidimensional
stochastic variables with different correlation structures. Addition-
ally, this chapter explains the basic methodology to generate a sam-
ple from such distributions. Chapter 4 presents the different meth-
ods for efficient propagation of uncertainty and sensitivity analysis.
Chapter 5 contains the formulation to perform model calibration
and validation. These two techniques are grouped as they share a
similar problem structure. Relevant examples and applications on
wind energy are given for each method presented. Overall conclu-
sions and perspectives on future work are presented in Chapter 6.
The articles forming the research content of the thesis are found as
appendices.






Chapter 2
Wind Plant Flow Modeling

ind energy in the world is growing at an accelerated pace

and large wind plants and wind plant clusters' are be-

ing developed on sites with good wind resources. This
scenario is happening for offshore in the North Sea and the coasts
of UK, and for onshore in China, USA and Brazil [11]>. Some ex-
amples of such large projects are:

e Gansu (China, 2010 and 2012): 6000 MW wind energy complex
consisting of 60 wind plants.

o Shepherds Flat (USA, 2012): 845 MW plant composed of 338
turbines.

o Ventos de Santa Joana complex (Brazil, 2015): 439 MW dis-
tributed over 15 wind plants.

o London Array (UK, 2013): 630 MW offshore plant composed of
175 wind turbines.

o Gwynt y Mér (UK, 2015): 576 MW offshore plant composed of
160 wind turbines.

The large wind project developers are continuously dropping the
price of energy in their bids for the development of new wind energy
projects. An example of this improvement can be seen in the off-
shore European market. DONG Energy bid €72.7/MWh for Bors-
sele T and II 700 MW offshore wind plant (Holland) in 2016, while
for Anholt 400 MW offshore wind plant (Denmark) the bid was
€140/MWh in 2010 [27]. Vattenfall dropped this price even lower
to €49.9/MWh for Kriegers Flak 600 MW offshore wind plant (Den-
mark) [28]. This reduction of the biding price requires an accurate
estimation of the LCoE. As it was mentioned in the Introduction

LA wind plant cluster or
complex is a site with sev-
eral wind plants

[11] GWEC. 2016

21t is important to remark
that most modern wind en-
ergy projects are onshore.
Only ~12 GW out of the to-
tal ~433 GW installed wind
power available by the end
of 2015 are offshore [11]

[27] DONG. 2016

[28] Vattenfall. 2016
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Figure 2.1: Model chain
structure for typical wind
plant performance estima-
tion.

chapter, the estimation of the cost of energy of a wind energy project
takes into account parameters such as the AEP, the operation and
maintenance costs, the capital cost of the project, the interest rates
and the expected lifetime of the project among others.

2.1 Structure of a Wind Plant Flow Model

he estimation of the performance of a wind plant uses a combi-
Tnation of models such as a wind resource assessment flow model,
a wind turbine model and a wake model, see Figure 2.1. The wind
resource assessment flow model predicts the local long term wind
resources at each wind turbine site. The flow model captures the
effect of the terrain, obstacles and elevation in the surroundings
of the wind plant and on each turbine. The wind turbine model
predicts the power and loads given the local inflow conditions (in-
cluding wakes produced upstream). The wake model modifies the
inflow conditions for each turbine operating behind the wake(s) of
other turbines using the turbine model and the atmospheric inflow

conditions.
Wake Plant Qol and
Model Performance Uncertainty
Turbine Wind
Model Resources

2.2 Quantities of Interest

r | there are three groups of quantities of interest (Qol) that are
studied using wind plant flow models: energy production, wind
turbine loads and cost of energy.

2.2.1 Energy Production

The annual energy production (AEP) is the most common measure
of wind plant performance used in wind project planning. The AEP
represents the expected mean energy production during a certain re-
turn period, usually the lifetime of the project (~20 years). This
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means that the AEP is proportional to the expected power pro-
duction under all the possible atmospheric conditions during the
lifetime of the project. An equivalent Qol to the AEP is the power
plant capacity factor (CF) that normalizes the AEP by the energy
that would be produced in a year if the plant constantly produced
the rated power.

AEP of a single wind turbine

The distribution of the long term wind resources at the location and
the hub height of a turbine is characterized by the joint probability
density function f(x). Traditionally, the wind conditions are repre-
sented by the wind speed and wind direction averaged over a time
step At of usually 10 min or 1 hour: x = [U, 0]. The AEP of a single
wind turbine, AEPT, is estimated by computing the expected power
production over the long term distribution of the wind resources,
see equation 2.1. The constant n; represents the number of time
steps in a year and a factor for change of units, i.e. n; = 8760 for
10 min averages and for AEP in [MWh].

AEPT = n; AtE(Pr) = ny At J Pr(x) f(x)dx (2.1)
Qx

AEP of a wind plant

The local wind resources at each wind turbine location f(x;) are
needed in order to estimate the AEP of each turbine AEPT; in-
dividually. The total plant AEPp is estimated using the equation
2.2. This equation includes the wake losses for each turbine as a
function of its local wind conditions: 7;(x;). In practice, the wake
losses on a turbine depend on the operational conditions of the wake
generating turbine.

NT NT
AEPP = 2 AEPT,L = Z T At PTi(Xi) ni(xi) f(XZ‘) dXi (22)
i=1 Q

i=1

Time series wind resources

Time dependent estimation of the energy production of the plant is
starting to gain importance in wind energy. In this method a time
series of the weather conditions for a long time period, such as 20
years can be used as an input to the energy production model of
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the plant. The wind plant model evaluates the energy production
for each timestamp ¢;.

1 20me Nr
AEPp = 5 D03 AL Pri(x(t5)) mi(xilt))) (2.3)
j=1 i=1

Additional atmospheric variables can also be consider as part
of the wind resources such as the air density (p), the turbulence
intensity at hub height (I), the turbulence length scale (A), the
shear exponent at hub height («) or the atmospheric boundary
layer stability (Obukhov length L). The time series method has
the advantage of capturing the correlation of the additional atmo-
spheric parameters when all of them are estimated per time step.
Advanced methods for multidimensional correlations are required
to describe the distribution of the different atmospheric conditions
by the pdf function f(x) = f(U,0,p,I,\, L). Refer to chapter 3 for
these methods.

An alternative energy production Qol is the instantaneous power
production of each turbine Pr;(¢) or the wind plant Pp(t). This
Qol is used when the models are developed to fully capture the
dynamic response of each turbine e.g. to design control strategies
for individual WT or for the over-all wind plant control (i.e. down-
regulation). Full versions of these models are unsteady and require a
wind turbine model that handles the control strategy, the unsteady
aerodynamics and the structural vibration of the wind turbine in a
fully coupled aero-servo-elastic code.

2.2.2 Wind Turbine Loads

The second group of Qol are related to the loads that the compo-
nents of each wind turbine will experience through a given period
of time. The lifetime equivalent fatigue load (Leq) is a measure of
the wear that a component of a wind turbine will experience during
its expected lifetime of 20 years. Lo are required for the design of
modern wind turbines and for the selection of the wind turbine for
a particular wind energy project i.e. wind plant sitting.

The damage equivalent fatigue loads (Deq) are computed using a
rainflow counting algorithm to determine the number of load cycles
ny, with their corresponding load range Sy, in a given reference pe-
riod (10-min or 1 hour) of turbine response. The damage equivalent
fatigue load is obtained using the fatigue properties of the materials
i.e. Wohler exponent m for example, see equation 2.4 [29]. The ref-
erence number of load cycles Nyt is used to obtain a 1Hz damage
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equivalent fatigue loads, and it is based on the number of 1Hz cycles
in the reference period: Ny = 600 for 10 minutes or N,of = 3600
for 1 hour reference periods.

D, = |&1L2L 2.4
. [ 2t (2.4)

The lifetime equivalent fatigue load of a component is the accu-
mulated Dgq over the joint probability of the wind conditions felt
by the turbine during the expected 20 years of operation, see equa-
tion 2.5. Where n; is the number of reference periods in a year,
and V1, ¢q is the number of 1Hz load cycles that the component will
experience in its lifetime, usually 10”. In contrast to the estimation
of AEP, the L.y requires the inclusion of additional atmospheric
parameters to properly describe the turbulent inflow acting on the
turbine. Additionally, an aero-servo-elastic turbine model that is
able to predict instant loads on the wind turbine components is
required. Wind turbine design standards [30] define additional con- [30] TEC 61400-1. 2005
ditions a turbine experiences (e.g. normal operation, idle, etc.) and
they should be included in equation 2.5.

Leg =

1/m
[20’“ f [Deq ()™ Nret £(x:) dx; (2.5)

In this case, the flow model and the wake model are used to
estimate the wind conditions at the location of each wind turbine:
x;. The wake model is used to estimate the turbulent and waked
inflow for each turbine for a given observed inflow. An aero-servo-
elastic turbine model of each turbine predicts the Deg.

Another Qol are the extreme loads a wind turbine component
will experience during its operational lifetime. This problem is con-
siderably more complicated. First, it requires the estimation of the
extreme wind conditions that will occurred in the location during
the lifetime. Second, it requires the estimation of the maximum in-
stantaneous load that the component will experience in the extreme
wind conditions.

2.2.3 Cost of Energy

If the objective of the wind plant model is to assess the total eco-
nomical and financial balance of a wind energy project the most
common Qol is the cost of energy (CoE). CoE is defined as the rate
between the initial capital cost (ICC) of the wind plant and the
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expected annual energy production. The cost of energy is a rough
estimation of the price at which the wind energy project will pro-
duce energy over the expected project lifetime. The CoE disregards
the change of value in money® and the difference between fixed costs
and variable costs such as operation and maintenance costs.
I1CC
CoE = AP (2.6)
The levelized cost of energy (LCoE) is defined as the ratio of
the total levelized annual cost of the project and the AEP. LCoE
accounts for aspects like the fixed charge rate (FCR), the annual
land lease cost (LLC), the levelized operation and maintenance cost
(OMC) and the levelized replacement/overhaul cost (ROC). This
Quantity of Interest (Qol) takes into account the balance of the
cashflows over time and then redistributed the net present value of
the project (NPV) into annual fix value payments. Cost models
need to be added to a wind plant flow model in order to make
predictions in terms of LCoE for a wind energy project [31]. Note
that the OMC and ROC models use the Loq as a measure of wear
of the components and to estimate their lifetime [14].
FCR x ICC + LL.C + OMC + ROC

LCoE = 2.
Co AED (2.7)

2.3 Wind resource assessment

ind resource assessment consists in predicting the distribu-
Wtion of wind resources at a given location on the site. This
predictions are based on observation/measurements of the wind re-
sources in a nearby location or on numerical models. A survey of
the methodologies applied in wind resource assessment can be found
in [32][33][34].

The wind atlas methodology is the core of the flow model used
to estimate the wind resources on each wind turbine location based
on the measurements in another nearby location [35]. This method-
ology consists in predicting the distribution of the generalized wind
climate by removing the effects of the terrain, roughness, roughness
changes, obstacles and mean stability from the wind resources at
the reference point. This generalized climate is then used used to
predict the wind resources at each turbine location by including the
effects of terrain, roughness and mean stability of the new locations.
See figure 2.2.
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2.3.1 Flow Model

The linearized Reynolds Averaged Navier-Stokes (RANS) flow mod-
els such as the spectral BZ model of WAsP [36], the LinCom model
of WAsP Engineering [37], MS-Micro (MS3DJH/3) [38] among oth-
ers are widely used because of their computational speed. Lin-
earized flow models have proven to be accurate for the prediction
of neutral flows over smooth roughness terrains with reduced slope
hills. These class of models have been the industry standard for 30
years.

Models based on the solution of the fully non-linear RANS equa-
tions are now available in research and commercial Computational
Fluid Dynamics (CFD) codes such as Ellipsis 3D [39] in WAsP CFD,
MSFDPBL [40], Fluent and OpenFoam [41]. These family of mod-
els vary in complexity and accuracy, but these models have been
developed to be used in complex terrain where the assumptions of
the linear models have been proven to not hold.

A third group of flow models fully resolves the largest turbu-
lent structures in the flow. Large Eddies Simulation (LES) models
have started to be used for flow modeling because they produce

Figure 2.2: Wind atlas
methodology. From [35].

[36] Troen. 1990

[37] Dunkerley et al. 2001
[38] Taylor et al. 1983

[39] Sgrensen. 1995

[40] Ayotte et al. 1995
[41] Balogh et al. 2012
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Figure 2.3: Speed up er-
rors as a function of dis-
tance between the two sites
from multiple site-site cross-
validation. From [43].

time series of the wind resources and therefore naturally handle the
correlation between the wind resources in multiple locations. LES
models have the limitation of their high computation requirements;
nevertheless they are applicable to the estimation of wind resources
in the present [42].

Weather Research &
Forecasting Model (WRF), can be used to generate the long term

Finally, mesoscale weather models, i.e.

weather resources of the generalized climate over large areas. Cou-
pling the atmospheric weather models and the micro scale LES flow
models is currently a topic of research [34], that promises to obtain
the benefits of the long term time series of the resources from the

weather forecast models, and of the smaller dynamical scales of the
LES flow models.

2.3.2 Uncertainty in the Flow Model

Clerc et. al [43] presented an empirical methodology to perform un-
certainty quantification of the flow model for wind energy resources
assessment. The results of this article are applicable to the industry
standard linearized flow models. These models estimate the wind
conditions at the wind turbine locations by computing the speed-up
(Sp) and turning (T'u) effects due to the terrain, obstacles and land
use with respect the observed wind resource on a meteorological
mast.

UTi =SpU GTi =Tu+46 (28)

A statistical model to estimate the speed-up errors based on a
validation campaign on a large database of meteorological masts
pairs is presented in [43], see figures 2.3. Uncertainty models for
the speed-up are build from empirical relationships.

30

Speed-up error (%)
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Flow Model Speed-up Uncertainty:

The flow model uncertainty presented in [43] is an em-
pirical model for the errors in the speed-ups predicted by
linearized flow models as a function of the distance between
the reference measurement site and each of the locations.
This models assumes that the distributions of the errors of
the speed-ups (egp) are correlated between different wind
direction bins:

esp ~ (0,Csp) (2.9)

In the literature at the present time there is not a model for the
error of the turning component of the flow model. This is mainly
because of the difficulty of considering the spatial decorrelation in
the wind direction. A discussion of this aspect in offshore wake
model validation is presented in the next section.

Several studies have been published about flow model valida-
tion in complex terrain. For example, several validation campaigns
have been conducted for WAsP and it has been concluded that the
uncertainty in the wind atlas methodology grows as a function of
the difference in the ruggedness indexes between observation and
prediction locations [44].

Some of the major micro meteorological experiments on complex
flow are the Askevin hill experiment [45], the Bolund hill experi-
ment [46] performed by Risg/DTU, the Alaiz test site [47] and the
Benakanahalli experiment [48]. In these experiments detailed mea-
surement were taken with multiple met masts and/or remote sensing
devices (SONAR and LIDAR) to fully characterize the flow.

These experiments have been used to validate different flow mod-
els [49] and [50]. A summary of the results is presented in the IEA-
Task 31 Wakebench international project results overview article
[51]. The uncertainty related to the flow models in complex ter-
rain has not been fully understood. A review of flow modeling and
validation can be found in [34].

Similar experiments and validation campaigns are being con-
ducted to determine the effect of stability such as the daily atmo-
spheric boundary layer experiments (GABLS) [52]. The results have
shown that there are still large uncertainties associated to modeling
the daily ABL cycle.

[44] Mortensen et al. 2006

[45] Mickle et al. 1988
[46] Berg et al. 2011
[

47] Chévez Arroyo et al.
2014
[48] Berg et al. 2012

[49] Bechmann et al. 2011
[50] Koblitz et al. 2014
[51] Sanz Rodrigo et al. 2014

[34] Sanz Rodrigo et al. 2016

[52] Svensson et al. 2011
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2.4 Wind Turbine Wake

he flow behind a wind turbine is a complex unsteady aero-servo-
Telastic problem that requires understanding of aerodynamics,
fluid-structure interaction for non-rigid bodies and control. It is
nevertheless, a key aspect in modern wind energy project planning
to be able to predict the modified flow structure in which downwind
turbines will operate. This flow structure is necessary to design
the layout and select the wind turbines in the plant. A number
of reviews on the different aspects of wind turbine wakes can be
referred to, such as [53][54][55][56][34][57]. The present overview of
the main features of the wake flow is based on these reviews (further
individual references are omitted).

The flow behind a wind turbine can be divided into two regions:
near and far wake. The near wake starts right after the turbine
and extends to 1-5 turbine diameters downstream (depending on
the ambient turbulence intensity and the operational conditions of
the wind turbine). The near and far wake regions are depicted in
Figure 2.4.

near wake pressure recovery

———————> —————
——————>
Turbulent
mixing
—
—>
——>
—>
Figure 2.4: Near and far Initial expansion
Wake regions.
& Near wake Far wake
Near wake

In the near wake region, the flow is three dimensional, unsteady
and characterized by the rotor-flow dynamic interaction. Since the
turbine extracts momentum/energy from the flow, there exist steep
gradients of pressure and axial velocity in front and behind the
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rotor’s plane; in particular there is a sudden pressure drop at the
turbine’s disc-plane.

The velocity difference between the air inside and outside the
wake generates the wake shear layer that grows thicker as it moves
downstream. The wake shear layer is an important source of turbu-
lence production because of the large velocity gradients. This gen-
eration of turbulent eddies is responsible of mixing the fast outer
wake flow with the slow inner wake flow. The near wake ends at
the point where the wake shear layer reaches the center of the wake
(wake axis), see Figure 2.4. Detailed modeling of the near wake
flow under real atmospheric boundary layer and rotor orientation
conditions is critical for modeling unsteady/transient wind turbine
operation and to predict the dynamic load distribution on the tur-
bine. On the contrary, the near wake flow has reduce influence on
the energy production of a wind plant because the turbines are not
placed inside the near wake region of other turbines. This restric-
tion is applied in order to avoid the reduced power production and
higher fatigue loading.

Far wake

In the far wake, the wake is characterized by the distribution of
velocity deficit and of turbulence intensity. These distributions can
be approximated as axisymmetrical functions. In this region the
effects of the wake generating turbine are limited to general opera-
tional parameters such as thrust force coefficient and tip-speed ratio.
As the wake moves downstream, the turbulence mixing accelerates
the wake recovery in terms of reducing both the velocity deficit and
the small scale turbulence fluctuations (small turbulent eddies). In
this process the wake expands at a rate that depends on the inflow
turbulence intensity, the ABL profile, the land roughness and the
topographical effects. The deviations from axisymmetry and shape
preserving (sel-similarity) behavior of the wake are due to asym-
metric flow conditions such as: shear in the atmospheric boundary
layer, ground effects, large scale atmospheric turbulent structures
and dynamic behavior of the wake.

In addition to the mechanical turbulence produced by the tur-
bine and by the shear layer in the edge of the wake, the far wake
flow is under the influence of the large-scale atmospheric turbulence
structures. These large eddies are not modified with the interaction
with the rotor and induce meander in the wake as it is convected
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Figure 2.5: Photograph of
the Horns Rev 1 danish
offshore wind farm taken
the 12th of February 2008
at around 10:10 UTC seen
from the south [59].

[59] Hasager et al. 2013.

downstream. The meandering of the wake means that there is a
dynamic vertical and horizontal translation center of the wake.

A wind turbine operating behind a wake with meandering op-
erates under a dynamical wake location and hence under changing
partial wakes and yaw-misalignment conditions. Wake meander-
ing is one of the main sources of uncertainty in wind plant power
production and load predictions under atmospheric conditions, the
reason is that the meandering of the wake contributes to the re-
duction of the time-averaged velocity deficit whereas significantly
increases the unsteady loading on the downstream turbines in a
process described as apparent added turbulence [58].

Wind plant flow

The flow inside a wind plant is considerably more complicated than
the single wind turbine wake case. In general, turbines inside the
plant will produce less power and experience higher fatigue loads,
due to the reduced wind speed and the higher turbulence intensi-
ties inside the plant. The flow inside a wind plant has dynamical
interactions of multiple wakes in both velocity deficits and turbu-
lence levels. In order to predict the power production and the loads
on a turbine, it is required to understand how a turbine operates
under such complex inflow conditions. The wake interaction can
be observed in figure 2.5. Although, this picture is not representa-
tive of operational conditions, since the wind speed is low and most

turbines are not operating [59].
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2.4.1 Wind Plant Flow Models

Wind plant flow model classification consist in separating station-
ary models used for AEP predictions from dynamic models used to
predict instant power and fatigue loads. An overview of the dif-
ferent wake model and their assumptions is presented in table 2.1,
while figure 2.6 shows the computational effort and the amount of
physics included in each wake model family.

CPU time

Cluster
LES

DWM

Laptop RANS

Engineering
Wake Models

Stationary wake models can be divided into engineering mod-

Modified RANS

Physics

els that use empirical relations to predict single wake axial velocity
deficits and added turbulence intensities, and into coupled wind
plant models that use numerical methods to solve the RANS equa-
tions, or a simplified version of them. In general, stationary wake
models predict the velocity deficit in the wake and its recovery as the
wake moves further downstream from the wake generating turbine.
Stationary wake models rely on the estimation of the turbulent ki-
netic energy in the wake as an intermediate Qol to model Dy, by
assume a dependency between the inflow turbulence intensity at
hub height with the fatigue loads on the different components of a
turbine [60].

Dynamical wake models consider the multiple scales of turbu-
lence, and as a consequence require larger computational time. Some
example of dynamic wake models are: LES and the Dynamic Wake
Meandering (DWM). The DWM is based on small scale turbulence
filters and uses an aeroelastic turbine model to capture the dynamic
turbine response. LES models rely on distributing the axial forces
actuating on the rotor into the flow the rotor disc for Actuator Disc
(AD), or over the blades chord center line for the Actuator Line
(AL).

Figure 2.6: Wake model
classification diagram.

[60] Frandsen. 2007
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Stationary Wake Models

Model Qol Turbine Model Flow/Wake Assumptions
Mesoscale: AEP Cr(U), P(U) Wind plant modeled as an internal
Fitch [61] Volker [62] boundary layer (IBL)

Engineering: AEP Cr(U), P(U) Empirical, axisymmetric, self-similar
Jensen [63] Frandsen [64] velocity deficit

Gaussian [65] FLORIS [66]

Semi-empirical AEP Cr(U), P(U) Thin shear layer RANS, axisymmetric
Engineering: self-similar velocity deficit, no pressure
Larsen [67] Ainslie [68] gradients outside the wake, mixing
Madsen [69] length turbulence closure

Added Turbulence: Ty (z,r) Cr(U) Empirical, axisymmetric, self-similar
Frandsen [70] Quatron [71] wake generated turbulence intensity
Hassan [72] Crespo [73]

Chamorro [74]

Modified RANS: AEP Cr(U), P(U), AD Linearized RANS or Parabolized RANS,
FUGA [75], prescribed pressure gradients outside
UPMWAKE |[76] the wake or near wake boundary
WAKEFARM [77] condition, turbulence closure.

RANS: AEP Cr(U), P(U), AD RANS with turbulence closure, forces
Van Der Laan [78] uniformly distributed or radially
Cabezon [79] dependent

El Kasmi [80] Gomez [81]

Dynamic Wake Model

Model Qol Turbine Model Flow/Wake Assumptions

DWM: P(t), Aeroelastic Small turbulent scales filter, Meandering
Larsen [82] Madsen [69] AEP, induced by large turbulent scales, Wake
Keck [83] Deq, Leq added small scale turbulence

LES: [84] P(t), Deq AD, AL, Fully resolved large scales, Small scales

AD: Nilsson [85] Wu [86]
Sgrensen [87]

AL: Churchfield [88]
Ivanell [89] Troldborg [90]
AL-Aeroelastic:
Andersen [91]

Full rotor: Heinz [92]

AL-Aeroelastic, Full

rotor

(Subgrid) turbulence model

Table 2.1: Qol for different
types of wind plant models



WIND PLANT FLOW MODELING 45

2.4.2 Uncertainty in the Wake Model

Supervisory Control And Data Acquisition (SCADA) data from
wind plants is available to the project developers and operators,
and such data could be used to evaluate the performance of wake
models. SCADA data analysis presents challenges such as the de-
tection and filtering of normal wind turbine operation cases for each
individual turbine. This is a complex task taking into account that
such databases are composed of hundreds of sensors that have to
be verified for quality, calibrated and filtered for normal conditions

[93][94]. Wake model comparisons with the operational data from [93] Réthoré et al. 2009
various sites have been performed in several studies, a review of the [94] Barthelmie et al. 2009
experimental data for wake model validation can be found in [95]. [95] Barthelmie et al. 2013

Small wind plants/single turbine sites:

o Nibe turbines (ETSU) [96]

o Sexbierum wind farm (TNO) [97]

 Tjeereborg turbine (Risg/DTU) [98]

« Nordtank 500 turbine (Riss/DTU) [99]

e Wieringermeer wind farm (ECN) [100]

Large wind plants:

o Vindeby 1-3 (Risg/DTU) [101][102]

o Horns Rev 1 (DONG/Vattenfall) [103][104][105][106]

o Middlegrunden 1-2 (Middelgrundens Vindmgllelaug) [107][14][108]
o Nysted (DONG/Vattenfall) [94][103][109][110][106]

o NoordZee/Egmond Aan Zee (NoordZeeWind B.V.) [111]
o Lillgrund (Vattenfall) [112][113][106]

o North Hoyle (RWE npower renewables) [106]

o London Array (DONG) [110]

e Anholt (DONG) [110]

Plant to plant interaction:

o Nyested and Rgdsand II (E.ON/SEAS-NVE) [114][115][110][106]
o Walney (Walney 1 and Walney 2) (DONG) [110]

In most of these validation databases the undisturbed inflow condi-
tions can not be measured for all wind directions. The inflow conditions
are usually point observations from a meteorological mast that do not
capture the spatial variability of the inflow conditions throughout the
whole plant. The inflow information is even scarcer for offshore SCADA
databases. For these cases, the inflow conditions are inferred from a single
or a group of undisturbed wind turbines. One of the main challenges for



46

[116] Politis et al. 2012

[82] Larsen et al. 2008

[90] Troldborg et al. 2007

[117] Mann. 1998

[118] Gaumond et al. 2014

[118] Gaumond et al. 2014

[95] Barthelmie et al. 2013

wake model validation is the large uncertainties on the inflow conditions
for the SCADA observations.

Moriarty et. al [105] published the results of the wake model bench-
marking campaign (IEA Task 31 Wakebench). This study concluded
that there is no clear improvement in the power production prediction
of wake models of higher fidelity when compared with the operational
data of large offshore wind farms. This is explained as an effect of the
large uncertainties in the undisturbed inflow conditions in the validation
datasets. The higher fidelity wake models are expected to accurate simu-
late the wake characteristics, but even the most sophisticated model can
fail to reproduce the flow if the provided inputs are erroneous or deficient.
Most of the studies disregarded the effect of the measurement uncertainty
and rely on grouping the measurements into inflow wind speed and wind
direction bins.

The combination of wakes and terrain effects is still a research topic
but model comparison/validation in such conditions suffers of even larger
uncertainties about the inflow conditions because of the non-uniformity of
flow conditions and the non-linear interactions between wake and terrain
flows [116].

In general, all the wake models require the undisturbed wind speed
and wind direction, and in some degree the ambient turbulence intensity
and atmospheric stability. Dynamic wake models such as DWM [82] and
LES-AL [90] models require a turbulent inflow field that can be generated
using a precursor simulation or a wind field simulation generated using
a spectral turbulence model [117].

Wind Direction Uncertainty

Gaumond proposed a wind direction error post-processing as a tool to
improve the comparison of the power predictions of stationary wake mod-
els to SCADA databases [118]. This approach proposes a correction for
the power of a wake operating turbine based on the PDF of the difference
between the reference wind direction and the local wind direction. The
PDF of the local wind direction error (g9 ~ 6ref — Onp) can be fitted to a
normal distribution: f(e¢) = Normal(0, og).

[v'e}

Preorrected (8) = J Pr(0 +¢€0) f(eo) deo (2.10)
— 00

The post-processing methodology for wind direction uncertainty was
deemed necessary in order to be able to compare the stationary model
predictions with SCADA measurements of real wind farms binned in
narrow wind direction sectors (less than 5°).

At the same time, this correction does not modify the accuracy of sta-
tionary models when the data is grouped into wider wind direction sectors
[118]. This approach resolves the limitations presented by Barthelmie
[95] regarding the comparison of wake deficits from stationary models
with measurement under atmospheric turbulence. However, this ap-
proach does not consider the correlation between local wind direction

[105]
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errors nor the effect of yaw miss-alignment in wake development, as pre-
sented in [119]. Further modifications need to be considered regarding [119] McKay et al. 2013
these aspects.
Ott [75] proposed a further correction to include non-stationarity in [75] Ott et al. 2014
the reference wind direction measurements. These variations are trends
inside the averaging time period. Note that these variations are also due
to large turbulent scales. In this report Ott argues that theses tendencies
can be estimated by computing the change between two consecutive time
averaged reference wind directions (Af).
The local wind direction error can then be estimated by combining
both of these sources of uncertainty in wind direction are considered in a
post-processing process. This methodology was used to validate RANS
simulations of different wind farms with SCADA data grouped in narrow
wind direction sectors in [7]. [7] Laan et al. 2015

f(g0) ~ Normal (O7 A OE+ O'ZAG> (2.11)

Uncertainty in individual turbine inflow conditions:

Due to the spatial and temporal decorrelation the inflow con-
ditions of each individual turbine in a plant will have an error
with respect to the reference instrument. This phenomena af-
fects both the wind speed and the wind direction. The correla-
tion between these variables depend on the distance between the
points. A decrease in the correlation of the wind direction occurs
for wind turbines operating deep inside the plant. A statistical
model for the wind direction error in multiple sensors in a wind
plant due to spatial decorrelation can be built by assuming a
multivariate normal distribution.

f(g6) ~ Normal(0, Cp)

(2.12)
f(ev) ~ Normal(0, Cy)

2.5 Wind Turbine Performance

he power production, the thrust force and the fatigue loads on a
wind turbine depends on the turbulent inflow conditions it experi-
ences. Traditionally, the power curve is used to characterize the power
production of the wind turbine as a function of the wind speed at hub
height. The thrust coefficient curve as a function of the wind speed at hub
height is also used in order to estimate the wake the turbine generates.
These curves are published by the manufactures.
In reality the actual performance of a turbine can depend on other
atmospheric variables such as the turbulence intensity, shear exponent
of the atmospheric boundary layer, among others. This section gives
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[120] IEC 61400-12-1. 2005

The standard error is a con-
sequence of the central limit
theorem and it is defined as
the ratio of the standard de-
viation by the squared root
of the number of observa-

tions: S(P)/+/N.

Figure 2.7: Official power
curve and thrust curve for
Vestas v80.

[122] Wagner et al. 2011

[30] IEC 61400-1. 2005

an overview of the methods to estimate the performance of a turbine in
realistic atmospheric conditions.

2.5.1 Binning method for power and thrust curve

The most common method to capture the performance of a wind turbine
is using power and thrust curves based on the hub height wind speed.
The IEC 61400-12 standard [120][121] defines the steps to characterize
the power performance of a wind turbine based on observations from a
near-by meteorological mast. Here, the inflow is the mean wind speed at
hub height corrected for density variations. This methodology consists
in binning the observations with respect to the hub height wind speed to
obtain the mean power at each bin. This method proposes the standard
error as the associated uncertainty to the mean power.

Vestas v80 2MW offshore
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2.5.2 Effect of wind speed shear on the power curve

A redefinition of the power curve based on the rotor equivalent wind
speed has been proposed in [122] in order to capture the effect of the
ABL wind speed profile in the power curve. The rotor equivalent wind
speed uses the definition of power coefficient to define a wind speed that
contains the equivalent kinetic energy over the full rotor disc.

1
3

p= %pAUSCP Usg = % jU?’dA (2.13)
A

2.5.3 Effect of turbulence on the power curve

Power curves depend on the turbulence intensity distribution of the site.
Power curves are usually reported for a reference turbulence intensity of
10%, this reference turbulence intensity defines the PDF of turbulence
intensity as a function of the wind speed [30]. A turbine that operates
on a site with a higher reference turbulence intensity will have a different
power curve. An experimental power curve that shows the effect of the
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turbulence intensity is presented in figure 2.8. The main trend of the
effect of turbulence intensity is seen, but there is considerable uncertainty
in the hub height wind speed measurements because the meteorological
mast is located 2 km away from the turbine.
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The turbulence renormalization method considers the effect of the
measured turbulence intensity at hub height by predicting an ideal zero
turbulence power curve [123]. This curve is obtained by assuming an
ideal performance on each of the operation regions. This means that the
power will extract maximum Cp in region II and rated power in region
ITI, see equation 2.14. In this equation w represents the instantaneous
rotor averaged wind speed.

%pAUSCP,maz for Pideal (U) < Prated

Pideal(u) = { (2.14)

Prated for all other cases

Finally the turbulence renormalization process uses the experimental
zero turbulence power curve and the assumption of normally distributed
instantaneous wind speed (f(u) = N (Ueq, I Ueq)) to predict the power
curve correction at a given hub height turbulence intensity.

P(Ueq) = JPidcal(u) f(u)du (2.15)

Figure 2.9 presents an example of the effect of turbulence intensity
on power and thrust curves with renormalization method. The turbulent
fluctuations around the mean wind speed have different effects on the
power curve depending on the region of operation. For cases near the
rated wind speed, the turbulent fluctuations will force the pitch mech-
anism to regulate the power output; this effect produces a lower 10-
min mean power than otherwise expected using the ideal zero-turbulence
power curve. The turbulent fluctuations around and above rated wind
speed have the effect of increasing the 10-min mean power; this is due to
the fact that the power is proportional to the cube of the instantaneous
wind speed, therefore, there is an extra amount of energy in comparison
to the original power curve.

Figure 2.8: Example of the
influence of turbulence in-
tensity on a measured power
curve.

[123] Clifton et al. 2014
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Figure 2.9: Example of the
influence of turbulence in-
tensity on power and thrust
curves with renormalization
method for Vestas v80.

[124] Hansen et al. 2006

[117] Mann. 1998

Figure 2.10: Inputs and
outputs for an aeroelastic
model.

[125] Simms et al. 2001

[126] Buhl Jr et al. 2006
[127] Vorpahl et al. 2014

2.5.4 Aeroelastic turbine model

Aeroelastic turbine models are the standard tool for design of wind tur-
bines. In these models the dynamics of the structure are captured using
an structural model of the turbine; while the unsteady aerodynamics are
captured using the quasy-stationary blade element momentum (BEM)
method with a dynamic stall model. The dynamical stall model describes
the forces that act on the turbine and their unsteady interaction with the
flow; additionally such models contain a controller. For a review on this
topic refer to [124].

The main advantage of using an aeoelastic model to capture the tur-
bine response is that it captures the unsteady power, thrust coefficient
and loads of the turbine to realistic turbulent inflow conditions as the tur-
bulent fields generated using a spectral turbulence model such as Mann’s
turbulence model [117]. Figure 2.10 shows the general turbulent inflow
inputs variables and turbine performance outputs of an aeroelastic model.
Here, the variable TIR represents the turbulent inflow realization, and it
represents the variability due to having different turbulence structures in
the inflow field.

Output variables
- y=M(x) eRE
y :[PTy CT: Deq]

Input variables
x € RM
x =[U, I, a, TIR]

Aeroelastic Model

Several aeroelastic codes exist. Benchamarking campaigns have com-
pared their predictions but due to the large number of input variables
required, it is hard to pin-point the main differences between the codes
[125].  Although the code inter-comparison has improved significantly
in the latest decade, the main differences remain to be caused by the
turbulent inflow conditions, the airfoil aerodynamics used in the model
and the structural damping [126][127].
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2.5.5 Surrogate of an aeroelastic turbine model

Since the response of the turbine to the turbulent inflow field is highly
non-linear, it has been proposed to use surrogates of the turbine response
in order to capture the mean power, the thrust coefficient and D.q as
a function of the rotor averaged wind speed, wind shear and turbulence
intensity [128] [129]. In these articles the random forest method is used as [128] Clifton et al. 2013
a surrogate, but other methods for supervised machine learning problem [129] Clifton et al. 2014
[130] Toft et al. 2016
[131]

131] Abdallah et al. 2015

can be applied such as response surfaces [130], Co-Kriging [131], among
others.

2.5.6 Uncertainty in wind turbine model

The power curve has been identified as a main source of uncertainty

in the prediction of power production of individual turbines due to the

fact that the flow is oversimplified and important aspects such as mean

wind speed vertical profile (wind shear), directional changes over height

(wind veer) and turbulence intensity vertical profile are ignored [122]. A [122] Wagner et al. 2011

comparison of the measured mean power and the predicted power using

the three methods of power curve mentioned in this section has concluded

that surrogate based power curves that capture the effect of additional

atmospheric variables give considerable better results [123]. [123] Clifton et al. 2014
Abdallah concluded that the uncertainty in the aerodynamic data (air-

foil aerodynamic polars) used by any aeroelastic tool has a considerable

effect on the estimation of the extreme loads on a wind turbine [132]. [132] Abdallah et al. 2015
This agrees with the expected effect on the predicted loads characterized
by the uncertainty factors given in the standards [30]. [30] IEC 61400-1. 2005

An additional source of uncertainty in the prediction of the thrust
coefficient and Deq on the different components of a turbine is the turbu-
lent inflow realization. This uncertainty is not negligible when the inflow
parameters are known (i.e. hub height wind speed, turbulence intensity,
shear exponent). Many studies have analyzed the difficulties of studying
fatigue and extreme loads under different turbulent inflow realizations
[133] [134]. [133] Moriarty. 2008
Surrogate techniques of computational expensive models are promising [134] Agarwal et al. 2009
for wind plant model uncertainty reduction as the uncertainty in the
prediction of thrust and power propagates through the wind plant model.
Further additional advantages can be obtained using a surrogate model
for the mean power, thrust coefficient and Deq response for a turbine
operating inside a plant. This surrogate will predict the dependency of
the turbine performance on the rotor averaged wind speed, rotor averaged
turbulence intensity, wind shear (or another atmospheric boundary layer
model) and a wind speed deficit at different locations. Such a model
could improve the prediction capacity of simple stationary wake models
but could also accelerate the computational time of dynamic models.
This approach was proposed in the database of partial wakes used in
Risg’s TopFarm wind plant optimization platform [14]. [14] Réthoré et al. 2013
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2.6 Uncertainty in AEP - A mental example

As an example, in an offshore wind plant the wind resources of the site can
be represented by the PDF of the wind direction and wind speed at hub
height f(U, @). This distribution is commonly discretized by a histogram
with normalized frequency f;; ~ f(U;,0;). The wake model uses the
layout of the plant to predict the power production as a function of wind
speed and wind direction, P;; ~ P(U;, 0;). The wake model requires a
wind turbine model which is usually the power and the thrust coefficient
curves (as well as the rotor diameter and hub height). The AEP can
then be computed as the expected value of the power production times
a proportional constant (a) that considers the additional losses and the
averaging time of the variables i.e. 10 minutes:

AEP = aE(P) =a ) fi;Pi; (2.16)

Assume that we know the error in the prediction of the power produc-
tion for a given wind speed and wind direction due to the wake model
and the turbine model. In this hypothetical scenario one could predict
the true power production for those conditions:

Pij true = Pij + €P;; (217)

The error on the AEP (eagp) will be the expected value of the wake
model error weighted by the wind resources:

ABPuue = a Y, fi(Piy +epy;) = a Y fiPij+a Y fyer,,  (2.18)

4,7 7 4,7
S —
AEP EAEP

The wind resources represent the longterm corrected variability in
the wind, therefore there is an intrinsic uncertainty in them due to the
yearly variability. Imagine that we could track the weather on the site for
hundreds of years, then we could produce several realizations of the wind
resources during 20 consecutive years; fi’} represents a single realization.
The AEP and its error will be different for each one of these weather
resources realizations.

AEPfue =a Y fl(Pyy +epyy) = a Y fiPiy+a ), fliep,,  (2.19)

2% 2% 2%
[ —
k k
AEP €AEP

The uncertainty in the AEP, and therefore the P90, can then be ob-
tained form the histogram of the different realizations of the corrected
AEP:

f(AEP i) = N (E(AEP” + eXgp), V(AEP® + eiup)) (2.20)
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This example is relevant since it explores two concepts that are central
in this thesis: the natural variability in some variables and the possibility
that the models are not perfect for all the possible conditions.

2.7 Summary

This chapter has given an overview of the different models used in wind
farm flow modeling. References are given for the main publications
that have estimated the prediction errors of each model on a validation
database. From this survey the following conclusions can be made:

e There is a need to understand the uncertainty in the wind resources
flow model in more details. Clerc [43] has presented empirical distri- [43] Clerc et al. 2012
butions of the model prediction errors of the speed-up factor. This
methodology only applies to linearized flow models and does not in-
clude information about the errors in the wind direction.

e There is a need to build a statistical model for the wake model predic-
tion error. This validation process needs to consider the measurement
uncertainties in the inflow conditions present in the SCADA databases
of large offshore wind plants. This is the objective of the article [3]. [3] Murcia et al. 2016
This article can be found in appendix D.
e There is a need for a statistical model to predict the uncertainty in the
power and thrust curves for realistic inflow conditions. A methodology
to achieve this is presented in the article [4]. The methodology is also [4] Murcia et al. 2016
used to estimate Deq in different components of a turbine. This article
is available in chapter B.






Chapter 3

Input uncertainty

he initial step of any model uncertainty quantification study starts

by defining the PDF of the input variables of the model. In general

this process requires measurements, theoretical knowledge about
the underlying physics of the variables and understanding of the theory
of probabilities and statistics. This chapter summarizes the methods to
describe the most common multivariate distributions that are relevant for
wind energy applications. A review of this field can be found in [20]. This
chapter assumes that the reader is familiar with basic statistics/proba-
bility concepts; a good introductory reference is [135].

3.1 Parametric probability density functions

he most common method to represent an uncertain variable is to
Tuse a parametric PDF, which are distributions with an analytical
expression for their PDF given as a function of some hyperparametersy
The most important probability density functions are the normal and
the uniform distributions. In the wind energy field, it is very common
to refer to the Weibull distribution to characterize the PDF of the wind
speed at given location. Lognormal distributions are also commonly used
to characterize the uncertainty of variables that have to be positive by
definition. A summery of the parameters of these distributions is given

in table 3.1.

[20] Biller et al. 2006

[135] Grinstead et al. 2012

I Note that we refer to hy-
perparameters of a distribu-
tion to make a distinction to
the parameters of a model.

Table 3.1: Important PDFs.
I'(z) is the Gamma function.

Distribution ~ Notation = PDF: X ~ f(z)  Mean: E(X) Variance: V(X)
Uniform U(a,b) 1/(b—a) (a+0b)/2 (b—a)?/12

Normal N(p,0) a\}ﬂ 67% 1 o?

LogNormal LN (p,0) Mxl/g 6_% ehtot/2 (e7"= 1)e2nto”
Weibull Wk A) 5 (5) e @ ara+ ) AP+ ) - (0(1+4))°]
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Figure 3.1: Statistical
uncertainty on a Weibull
distribution fit.

(top) A 10* random sample of
W(k, A) is fitted using three
different methods: method
of moments for mean and
variance (EV), method of
moments for the mean and
skewness (ESk) and maximum
likelihood estimation (MLE).

(bottom) MLE for ran-
dom samples of different
sizes.

A note on notation:

In this thesis we use capital letters to denote random variable
and lower case letters to denote variables, a lower case with a
subindex denotes a sample and bold cases are used for denoting
vectors (multiple variables). For example X ~ f(x) means that
the random variables X are distributed with the PDF given by
the function f(x). If a sample of the random variable is obtained
a similar notation can be used x* ~ f(x). In an analog way but
for single variables, the notation X ~ f(z) indicates the PDF of
the random variable X, while z* ~ f(x) represent a sample.

3.1.1 Fitting a distribution to observations and the effect of
the statistical uncertainty

Several methods to estimate the hyperparameter of a distribution given
an independent sample of the variable. The method of moments con-
sists in estimating the parameters that make the statistical moments of
the distribution equal to the statistical moments estimators of the ob-
servations. The maximum likelihood estimation (MLE) method consists
in finding the hyperparameters that maximizes the product of the PDF
of the observations for the given hyperparameter. Another alternative
method consists in performing fitting a function to the empirical Cumu-
lative Density Function (CDF) of the sample by minimizing the least-
squared errors. Methods for model calibration and how to estimate the
uncertainty of the calibration are discussed in more details in Chapter 5.
All the fitting methods will give a different estimation of the hyperpa-
rameters and therefore are part of the total uncertainty in the stochastic
variables.

An additional aspect to consider when fitting a distribution to a sam-
ple is the statistical uncertainty. This uncertainty is the effect of having
only a reduced number of observations. As an example a random sample
of Weibull distribution is fitted using MLE for different sample sizes, see
figure 3.1. It can be seen how the MLE estimation is able to reconstruct
the true hyperparameters of the distribution as the number of observation
increases.
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3.1.2 Multivariate normal distribution

The most common parametric multivariate distribution is the multivari-
ate normal. This distribution is widely use in most of the methods re-
lated to uncertainty quantification because it describes the distribution of
multiple normal variables as well as the correlations between them. The
correlation structure captured by the multivariate normal distribution is
a linear correlation and therefore it can only capture random variables
that show linear trends between them. The distribution is defined by the
vector of means p and by the covariance matrix C:

X ~ N(u,C) (3.1)

The correlation structure in a multivariate normal distribution is bet-
ter represented by the correlation matrix, a matrix whose elements are
the Pearson correlation coefficient between every pair of variables. An
example of a sample from a four dimensional normal distribution can be
seen in figure 3.3. This figure shows a two dimensional histogram for ev-
ery two pairs of variables in the lower diagonal, and the one dimensional
histograms represent the marginal distribution of the variables”. The
correlation matrix for this example is presented in figure 3.2. Note that
the correlation matrix determines whether there is a positive, negative
or no trend between every pair of variables.
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2 The marginal distribution
neglects any relationships
among variables.

Figure 3.3: A 10° Halton
sample of a multivariate nor-
mal distribution.

Pearson Correlation Coeff.
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Figure 3.2: Corresponding

correlation matrix to figure
3.3.
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[20] Biller et al. 2006

[136] Rosenblatt. 1952

[137] Li et al. 2008

[138] Feinberg et al. 2015

3.2 Iso-probabilistic transformations

Iso—probabilistic transformations are used to handle multiple uncertain
inputs with non-normal marginal distributions and non-linear corre-
lation structures between them. These transformations are a change of
variables from the correlated variables into a set of identically distributed
and independent variables w. The notation of these transformations and
their inverse is given in 3.2. The iso-probabilistic transformations R(.)
have the property of conserving the integration of any function h(x) with
respect the PDF, f(x), over the input variables space (2x. See equation
3.3.

x=R(w) «— w=R'(x) (3.2)
G0 SGdx = [ (R(w))f(w)dw (33
Q. Qu

In this section only the most important transformations are discussed,;
these transformations can be mixed in order to define more complex de-
pendency structures [20]. The inverse transformation is a basic unidi-
mensional transformation from any distribution into a uniform variable;
this transformation is the basis for all iso-probabilistic transformations.
The Rosenblatt transformation considers the cases in which the marginal
distribution of each individual variable is defined in a sequential condi-
tional dependency with respect the other variables [136]. The Cholesky
decomposition is the transformation used to decorrelate multivariate nor-
mal distributions. The generalized Nataf transformation can be used to
transform correlated non-normal inputs into a multivariate independent
normally distributed variables [137].

3.2.1 Inverse transformation

Let x be a single input variable with a probability density function f(z)
and a corresponding cumulative density function F(x). An unitary uni-
form variable, w ~ U(0,1), can be defined using the properties of F(x);
the inverse transformation is defined in equation 3.4. Numerical approxi-
mations can be used to define F~!(w) for those distributions that do not
have an analytical form; see [138] for details of this implementation.

w=F(x) «— z=F "(w) (3.4)
The importance of the inverse transformation:

The inverse transformation is the cornerstone of all the meth-
ods related to uncertainty quantification. This transformation
can be used to change the distribution of the variable from any
arbitrary distribution to the unitary uniform distribution. Fur-
thermore, the inverse transformation can be used sequentially
and transform any distribution into a more familiar distribution
such as the standard normal distribution.




3.2.2 Cholesky decomposition

Let the input variables be distributed as a multi-dimensional normal
distribution x ~ A(u, C); with mean p and covariance C. The Cholesky
decomposition consists in decomposing the covariance matrix into a lower
diagonal matrix product, C = LLT, where L is a lower diagonal matrix.
This decomposition is always possible because the covariance matrix is
positive definite. The isoprobability transformation for multi-dimensional
normal distribution into an independent normally distributed variables
v is given in 3.5.

v=L"'%x «— x=Lv (3.5)
Cholesky decomposition:

The Cholesky decomposition is the method that makes han-
dling multivariate normal distribution easy. Using this trans-
formation one can decorrelate the variables into non-correlated
standard normals.

3.2.3 Nataf transformation

Nataf transformation consists of three steps: (1) Transform each input
variable x into an uniform distributed variable using the inverse transfor-
mation, these uniform variables are correlated v . (2) Transform v into a
multivariate correlated normal variables w using the inverse transforma-
tion, and (3) transform w into a set of independent normally distributed
variables z using the Cholesky decomposition, see equation 3.6.

v = Fi(z:)) «— @z = Fi_l(”i)
w; = (1371(’[)1') «—> Vi = @(w,) (3.6)
z=L"'w > w=1Lz

The main limitation with this approach is that the covariance of the
multivariate correlated normal variables w might not reflect the details
of the correlation in the actual variables x [139]. Some authors have
proposed methods to determine the optimal correlation matrix in the
normal w space that will approximate the correlation in the non-normal
input variables [137].

When to use the Nataf transformation?

The Nataf transformation is used when there is enough infor-
mation/data to be sure that the variables are non-Normally dis-
tributed but there is not enough information to describe their
correlation in details. That means that this method is used
when the marginal distributions of each variable can be char-
acterized but only the Pearson correlation coefficient between
them is known.
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In equation 3.6, Fj(z;) is the
CDF of the i-th input vari-
able and ®(w) is the CDF
of the standard normal dis-
tribution.

[139] Lebrun et al. 2009

[137] Li et al. 2008
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3 The term hyperparameter
refers to the set of parame-
ters that determine a para-
metric probability density
function. E.g. the mean and
standard deviation for a nor-
mal distribution.

[136] Rosenblatt. 1952

30] TEC 61400-1. 2005

[140] Nelsen. 2007

3.2.4 Rosenblatt transformation

Let the set of input variables x have a sequential conditional dependency
such that the distribution of the i-th input variable x; is given by the
F; whose hypelrparametelrs3 ¥; are themselves functions of the previous
input variables:

T ~ fz(.'.liz|’l97, :191-(:00,:01,...,301-_1)) (37)

The Rosenblatt transformation consists in using the inverse transfor-
mation in sequence to transform the variables into a set of uncorrelated
unitary uniform variables [136], see equation 3.8.

w; = F1($1|'L91 = '01'(33073317 e ,xifl))

Tqi = Ffl(’wi‘ﬁi = 191'(1}0,1‘1, ey m,l))

(3.8)

When to use Rosenblatt transformation?

The Rosenblatt transformation is the most natural way
to capture the correlation between multiple non-Normal vari-
ables. This sequence of conditionally dependent distributions
are widely used in wind energy and can be constructed using
moving window distribution fits. Some example of such distri-
butions are:

e The wind rose is a sequential conditional distribution: the
distribution of the wind direction is independent, while the
parameters of the Weibull distribution of the wind speed de-
pend on the value of the wind direction.

e The normal turbulence model [30] describes the wind speed
as an independent Weibull distribution while the turbulent
fluctuation in the streamwise direction follows a LogNormal
distribution whose parameters depend on the value of the
wind speed.

3.2.5 Copulas

Additionally, recognizing that each marginal distribution can be trans-
form into correlated unitary uniform variables v; = f(x;), lead to the
proposal of copula theory. A copula is an iso-probabilistic transforma-
tion that does not modify the marginal distributions of each individual
variable, but that defines correlation structures in their corresponding
uniform space; see equation 3.9. The copula C or its copula density &
are analytical expressions for the most common types of copulas such as
Gaussian, Frank, Clayton or Gumbel copulas. For these expressions refer
to [140].



Fx) = C(Fi(n1),.., Fo(zp) )

o0 = 6C(F1(x1),...,FD(:vD))

81:1,...76:0[) (39)

1) =% (Fa@1),..., Fp(ap)) ﬁf(aci)

i=1
When to use Copulas?

Copulas are used when the amount of data is not enough to
build a Rosenblatt distribution and when the NATAF method
fails to capture the correlation structures.

[llustrative example

Figure 3.4 shows three different two dimensional correlated distributions.
All of them share a similar Pearson correlation coefficient, but it can
be seen that the correlation structures are very different. In particular
Rosenblatt and copulas are very useful to describe the joint distribution
of non-Normal variables.

el et
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pearsonr = 0.6, p = 0 pearsonr = 0.53; p =0 pearsonr = 0.55; p = 0
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3.3 Sampling methods

n order to obtain a sample from any arbitrary distribution it is re-
Iquired to define the transformation from the variables x into their
unitary uniformly uncorrelated variables v; this can be achieved using
iso-probabilistic transformations. A sample can be generated in the uni-
tary uniform space (unitary hypercube) and then transformed back into
the desired distribution.

Several sampling methods can be used to generate a sample in the uni-
tary hypercube. Factorial design of experiments, Box-Behnken designs or
central composite designs define points that cover the unitary hypercube,
but these methods are avoided for large number of dimensions because
the number of model evaluations grows to the power of the number of
dimensions.

Pseudo-random sample is the most used method to generate a sample
from the independent unitary uniforms in large numbers of dimensions.
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Figure 3.4: Examples of
a 10* Halton sample of
2D f(x) with different
correlation structure but
similar Pearson correlation
coefficient and its p-value*:

(a) 2D normal
z1 ~ N(0.8,0.2)
o ~ N(4, 08)
p=0.6

(b) Rosenblatt:
z1 ~ N(.8,.2)
xa|zy ~ W(2,2(x1 + 0.3)?)

(c) Joe Copula:
z1 ~ N(0.8,0.2)
To ~ W(2, 2)

6 =2

*p-value is the probabil-
ity of finding the Pearson
correlation coefficient in the
sample of a distribution with
null correlation
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[141] Hammersley. 1960
[142] Halton. 1960
[143] Sobol’. 1967

[144] McKay et al. 2000

Figure 3.5: Examples of
1000 sample of the 2D
hypercube: (a) Pseudo-
Random (b) LHS (c) Hal-
ton.

[145] McLachlan et al. 2004

4 A Kernel refers to a dis-
tributions that is defined in
terms of the distance to the
observation.

[20] Biller et al. 2006

Different sampling techniques have been designed in order to reduced the
required number of samples to cover a multidimensional space such as:

Quasi-MC methods define a sequence of numbers that fully cover the
unitary hypercube. The points are not random and their locations
are defined using prime numbers. Some examples are Hammersley
sequence [141], Halton sequence [142] and Sobol sequence [143].

Latin hypercube sample (LHS) divides the hypercube into a number of
regions with the same probability and then uses semi-random sample
inside each regions [144]. Modifications of the sampling inside the re-
gions have been proposed to maximize the minimum distance between
points or to reduce the correlation between variables.

SR L
Gy Y

~

0.4 0.6 0.8 1.0

3.4 Non-parametric multidimensional distributions

Non—parametric distributions are methods to describe the joint prob-
ability distribution based on an observation sample. These methods
rely on the mixture or superposition of multiple distributions. One of the
most important non-parameteric distributions methods is the mixture of
multivariate normals. In this method the joint probability function is ap-
proximated as the mixture of Ny multivariate normal distributions, each
of these distributions has a frequency of occurrence «; and its own mean
vector, covariance function C; and where ¢(x|u;,C;) is its correspond-
ing multivariate normal density. Several algorithms for selection exist to
determine the hyperparameters («;, pj,C;) and the optimal number of
distributions Ny to be used; refer to [145].

A generalization of the mixture of distributions method is the Kernel
density estimation (KDE)4. In this method an individual distribution is
added for every observation in the sample. Each of these distributions
has a maximum at the location of the observation and share the same
hyperparameters that controls the region of influence or bandwidth ¥:
K(x — x}[9). Several distributions can be used such as uncorrelated
normal, exponential and others, see [20].
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Non-parametric multidimensional distributions:

KDE and mixtures models are very attractive methods to de-
scribe a multidimensional joint distribution. The main drawback
is that these techniques are purely data driven and therefore they
do not contribute to better understanding of the physics of the
correlations between variables. This means that non-parametric
distribution can not be used to generalize on what the distribu-
tions should look like on other datasets.

These types of distributions have been suggested for wind re-
source assessment in [146] and [147]. This methods have the
potential to reduce the statistical uncertainty in the wind re-
sources by not making assumptions on what distribution family
represents each variable.

3.5 Expert elicitation

For those cases where there are no measurements highlighting the vari-
ability of some variables a common practice is to perform an expert
elicitation. A survey on this topic is presented in [148]. In this process a
group of experts is gathered and a series of surveys are used to aggregate
the information about the uncertainty in the variables and their corre-
lations. This process gives an estimation of the joint PDF of the input
variables, which is for most cases represented using a known multivari-
ate distribution such as a multivariate normal distribution. Alternative
methods that rely on graphical input from the expert have been proposed
[149]. Note that expert elicitation should only be used when there is no
measurements as these methodologies can give overconfident assessments
of the actual variability [148].

3.6 Summary

This chapter has given an overview of the different methods to handle
the joint distributions of multiple variables. Several examples of UQ
problems that use this distributions can be found in https://github.
com/ jp5000/Examples_PhD_thesis [DOI:10.5281/zenodo.204786]. From
this chapter the following conclusions can be made:
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[146] Carta et al. 2008

[147] Zhang et al. 2013
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[148] Morgan. 2014

The wind rose approach to represent the wind resources on a site
can be improved by considering the joint distribution of wind speed
and wind direction (or other additional atmospheric variables). This
can be done using a Rosenblatt transformation or it can be a non-
parametric distribution using KDE.

The joint distribution of multiple inflow parameters and the sampling
methods described in this chapter are used in the article [3]. This
article can be found in appendix D.



Chapter 4
Propagation of Uncertainty

ropagation of uncertainty consists in finding the PDF of the out-

puts of a model produced by the joint PDF of the inputs and pa-

rameters. To simplify the notation, the uncertain parameters will
be included as part of input variables and the model is assumed to have
no prediction error. The propagation of uncertainty problem is depicted
in Figure 4.1. This chapter formulates the methods for propagation of
uncertainty that exist in the literature.

Stochastic Model Stochastic

input variables — — output variables
fx) Ly =M fy)?

4.1 Analytical techniques/Convolution

ropagation of uncertainty can be performed analytically using the
Pconvolution function. The PDF of the outputs, f(y), can be ex-
pressed using the convolution operation [150]. Here, the joint PDF of
the inputs and the Dirac’s function (§) of the model and outputs give an
expression for the joint PDF of the model outputs:

f(y) = j 5y — M(x)) £(x) dx (4.1)
Qx

Two conditions make it difficult to obtain an analytical expression out
of equation 4.1. Most of the models are too complicated to evaluate over
all the input/parameter space and in most physical applications the joint
PDF, f(x), is too complicated to obtain an analytical expression for the
integral. Only simple cases of uncertainty propagation can be found ana-
lytically: models that consists of linear combinations of independent and
identically distributed inputs of well known PDF families (i.e. Normal,
Chi-squared, among others) [150].

Figure 4.1: Propagation of
uncertainty problem.

[150] Dietrich. 1991
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[118] Gaumond et al. 2014

Approximation of convolution:

The convolution equation can be approximated using a pre-
defined design of experiments x* that cover the input variables
space {dx. A common approach in wind plant flow modeling
is applying a convolution of the uncertain variable to a model
to obtain an expected model output for given inputs. This ap-
proach has been used for wake models to consider the uncertainty
in wind direction in [118]. This approximate approach consists
in weighting the precomputed model evaluation databases with
the probability of the desired evaluation point. See equation 4.2,
where the constant b is normalization constant for the weights
(f(x¥|x)) and its usually related to the space between the eval-
uation points and the number of points N. Note that this ap-
proach does not give the distribution of the outputs but it is a
good approach to remove nuisance variables.

N

E(y[x) = [ MOx-+ o) flex) o x b 3 M) Fx ) (42)
Oy J=1

More advanced methods exist that use the properties of the

Fast Fourier Transformation (FFT) to approximate the convo-
lution theorem.

4.2 Monte-Carlo simulations

onte-carlo (MC) simulations are a numerical approach that uses ran-

dom numbers to sample from PDFs. These methods are also used
to evaluate integrals of complex multi-variate regions. MC simulations
consists in generating a sample in the unitary hypercube and then use
iso-probabilistic transformation to obtain a sample from the input distri-
bution (xF,...,x%); finally, the model is executed for each of the obser-
vations in the sample, obtaining an output sample (M (x¥),..., M(x%)).
Descriptive statistics can be calculated from the output sample such as
the mean, variance, skewness, kurtosis or histograms. The main limita-
tion of MC simulations is that the number of samples required to have
convergence in the statistics of the output can become very large since the
rate of convergence of the statistical moments of the output is ocN /2.
Despite this limitation, Monte-Carlo simulations give the reference so-
lution to any uncertainty propagation problem (that does not have an
analytical solution) as it is easy to understand and to parallelize.
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The curse of dimensionality:

The property that makes MC methods interesting is that the
number of sample points required to achieve convergence in the
estimation of the statistical moments of the output does not
depend on the number of input uncertain variables.

The curse of dimensionality is the main problem of using fac-
torial design of experiments to select the points of evaluation of a
model. In a problem with 5 uncertain input variables, a factorial
design of experiments with 10 levels for each dimension makes a
total of 10° model evaluations.

The best performance of MC simulation is obtained when ad-
vanced sampling techniques (Quasi-MC or LHS) are used to de-
fine the evaluation points. This is important for problems with
large number of inputs variables.

Example: Power law ABL vertical extrapolation

A common problem in wind resource assessment is the vertical extrapola-
tion of the wind resources. This problem consists in taking measurements
at a height and predicting the resources at different heights. In this ex-
ample the empirical power law ABL model is used, equation 4.3, where
H and Upg are the height and wind speed measurement.

U(z) = (4.3)

Un [%]a for Ug > 1
UH for UH <=1
The measured wind speed at 80 [m] (Uso) follows a Weibull distribu-
tion and the shear exponent follows the conditional distribution proposed
in [151]: [151] Dimitrov et al. 2015

f(Uso) = W(A =10,k = 2)

(4.4)
f(Oé|U80) = N(M(Ugo) = 0.088(111(U80) — 1), O‘(Ugo) = 1/Ugo)

A MC simulation is performed in order to predict the wind resources
in multiple heights using the Rosenblatt transformation, a Halton se-
quence and a sample size of N = 10°. The results are presented in
figure 4.2. It can be observed that the correlation structure between
shear and wind speed describes sites for which there is large variability
in the shear exponent at low wind speeds. Additionally, it is evident
that the wind speed at the prediction height (Ui20) is highly correlated
with the measured wind speed (Usp). The resulting distribution for the
wind resources at 120 [m] height was fitted to a Weibull distribution
f(Ui20) = W(A = 10.49,k = 1.93) [m/s]. The distribution predicted if
the mean shear coefficient is used to shear-up the scale coefficient at the
measured point is less accurate: W(A = 10.37,k = 2.).
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Figure 4.2: MC simula-
tion for power law ABL.
(left) 100 realizations of
the ABL profile with the
mean profile, and the 5%
and 95% quantiles profiles.
(right) Joint distribution of
the inputs and and an ex-
ample output f(x,y) =
f([Uso, o, U20]).

[152] Forrester et al. 2009
[26] Peherstorfer et al. 2016

[153] Friedman et al. 2001
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4.3 Surrogate Models

Surrogate based uncertainty methods are designed for computationally
expensive models. Since theses models are usually locally and glob-
ally non-linear; Taylor based methods can lead to large errors in the Qol
statistics. For such models direct application of MC methods is prohib-
ited due to the large number of simulations required. In this situation,
the uncertainty propagation problem is applied to a surrogate model that
consist in a mathematical model that replicates the behavior of the model
over the input/parameter space of interest. Several options of surrogates
have been proposed from different areas of mathematics, statistics, en-
gineering and computer science; reviews of the different surrogate tech-
niques can be found in [152] and [26]. In most of these techniques a
limited number of model evaluations is used to train/build a surrogate.
Additional model evaluations can be used to estimate the accuracy of the
surrogate.

The problem of building a surrogate model based on a set of model
evaluations (or actual data) is also called supervised machine learning in
modern applied statistics. Supervised machine learning algorithms can
be grouped into three groups:

1. Generalized linear models are algorithms that fit the model evaluations
as a linear combination of proposed basis functions. This type of
models groups several of the most common used surrogates such as
polynomials, piecewise polynomials splines and radial basis functions.
Techniques for preforming sparse regression are very useful to avoid
over fitting when building surrogates in large number of input variables
and functional candidates. The detailed description of techniques like
Ridge, least absolute shrinkage and selection operator (LASSO), least-
angle regression (LAR), among others can be found in [153].
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2. Algorithms based on the distance between points. These methods use
the distance between point evaluations as one of the main parameters
to determine the surrogate output; some examples are: radial basis
functions (RBF), Gaussian process, support vector machines (SVM),
among others [154].

3. Ensemble algorithms divide the problem into independent (or sequen-
tial) smaller regressions. Some examples are random forest (ensemble
of decision trees), neural networks, bagging method, AdaBoost boost-
ing algorithm, among others. A detail description of these methods
can be consulted in [155].

4.3.1 Taylor series expansion

Taylor series expansion is the most traditional method for calculating the
sensitivity of a model due to input and parameter variation. This is the
basis for the uncertainty propagation methods proposed in the Guide to
the expression of uncertainty in measurement (GUM) [17] and in the IEC
61400 standards for AEP uncertainty estimation [120].

The Taylor series expansion consists in linearizing the model around
the expected value of the inputs. The linearized model can be considered
the simplest surrogate model possible. The Taylor expansion is given in
equation 4.6; here, J represent the Jacobian matrix and C represents the
covariance matrix'. In this method the inputs are assumed to follow a
multivariate normal distribution f(x) = A (ux, Cx).

y(x) & M(px) + I [x — pix] (4.5)
Depending on the complexity of the model the Jacobian can be cal-
culated analytically, approximated numerically using a perturbation/fi-
nite differences scheme or generalized linear model regression techniques.
Once the model has been linearized then the mean and variance of the
output can be approximated from the mean and variance of the inputs,
see equation 4.6. The final distribution of the output is also a multivari-
ate normal because the linearized model does not modify the distribution
shape: f(y) =N (uy,Cy). 2

pry ~ M (pix)
Cy ~JCxJ"
Several assumptions need to be checked in order to use GUM: (1) The

(4.6)

non-linearity of the model can be neglected in the region covered by the
input uncertainty. (2) The input variables can be approximated using
a normal distribution. The critical issues with GUM approach are the
treatment of asymmetric probability distributions and non-linearities in
the model. For these cases, the expected value of the output variable can
have a bias. Additionally, the variability in the output variable can be
over estimated. Extensions to this approach consists in using a higher
order Taylor expansions for propagation; expressions for second order
Taylor expansion around the expected value for the first moment and for
the second moment of the output can be found in literature [156].

[154] Smola et al. 2004

[155] Dietterich. 2000

[17] ISO et al. 2008
[120] IEC 61400-12-1. 2005

I The Jacobian contains the
local sensitivities of the
model with respect each of
the variables at the expected
value of the input:

oM
Jji = 55t lx=nx

2 The equation for the co-
variance of the output in
equation 4.6 is the general
version of the law of prop-
agation of uncertainty.

[156] Mekid et al. 2008
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[157] Pefia et al. 2012

On which cases should I use GUM?

This method can be used in problems where the input uncer-
tainty represent only a small variability in comparison to the full
scale of the problem, for such cases even in complex models the
linearizion of the model is a good approximation.

For wind energy related problems such as the estimation of the
uncertainty in AEP and LCoE for a wind plant the GUM method
will not give an unbiased expected value of the output. The
reason for this is that for non-linear models the expected output
is not necessarily the evaluation of the model at the expected
input pry # M (px). Furthermore this method can have biased
estimation of the uncertainty in the output.

Significantly, most variables in wind energy have several layers
of uncertainty. For example, the 10 minutes mean wind speed at
a given site follows a Weibull distribution, but the measurement
uncertainty related to a single observation of the wind speed fol-
lows a normal distribution. These different scales of uncertainty
are related to the different scales of turbulence, and they are dif-
ficult to be characterized as a multivariate normal distribution.

GUM example: Log-law ABL vertical extrapolation

This example is a similar version of the vertical extrapolation of the wind
resources problem, in which the measurements at a height are used to
predict the resources at different heights. In this example the logarithmic
ABL model with stability and ABL height is used, equation 4.7 [157].
Where u, is the friction velocity, k is the von Karman constant (~0.4),
zo is the roughness height, L is the Obukhov length, z; is the ABL height,
and s is an auxiliary variable: s = (1 — 12%)1/3.

P —4.7% for L>0
¥ (f) “12m (M) — +/3arctan (2”1) + 2 for L<0
2 3 V3 V3
f (i) 1= i for stable: L>0 (4.7)
"\ 2 1 for unstable: L<0

v =2 [u(2) -6 (2) 0. ()]

The vertical extrapolation simplifies the equation by removing the
dependency on the friction velocity. The uncertain parameters in this
case are redefined in order to achieve an almost perfectly linear behav-
ior: x = [Un,In(20),1/L, 2] and a multivariate normal distribution is
assumed. A negative correlation is assumed between 1/L and z; as it is
a well known fact that the atmospheric boundary layer height is reduced
during stable conditions, and the positive correlation between the wind
speed and the roughness considers ocean roughness increase with wind
speed.
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A MC simulation is performed in order to have a reference solution
of the wind resources at multiple heights using a Halton sequence and
a sample size of N = 10%. In order to linearized the model a set of 15
simulations cover the region around the expected value. The results are
presented in figures 4.3, 4.5 and 4.6. It can be observed that the defini-
tion of the uncertain variables makes this problem an ideal candidate for
linearization. Finding the mean ABL profile under different conditions is
relevant for wind resource assessment flow models, for a more theoretical
approach refer to [158]. The main limitation of this example is the fact
that the wind speeds are normally distributed.
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Figure 4.3:  (colour his-
togram) 10% MC simulation.
(+) points used to fit the
PCE surrogate.
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Figure 4.4: Corresponding
correlation matrix to figure
4.3.

Figure 4.5: (colour his-
togram) 10° MC simulation
on the linearized model. (+)
points used to linearized the
model.

Figure 4.6: Comparison be-
tween MC and GUM predic-
tions of the wind resources
at different heights with the
two methods.
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[159] Xiu. 2010

[160] Gautschi. 1994

Table 4.1: Classical orthog-
onal polynomial families.

4.3.2 Polynomial chaos expansions

Response surface surrogates consist in fitting an analytical expression to
the model outputs; usually a polynomial function is proposed. Polyno-
mial Chaos Expansion (PCE) is a technique for uncertainty propagation
that consist in building a global polynomial response surface, with the
particularity of using a polynomial basis based on f(x). For an overview
of the PCE methods refer to [159].

Consider a model with a single uncertain input z and a single output
y. PCE consists of defining a polynomial family that is orthogonal with
respect to the input distribution, f(z). It is then required to define
an inner product between two arbitrary functions, gi(z) and g2(x) with
respect to the probability density function of the input f(x) as:

(g1,92) = f 01(5) g2(z) £(z) do (4.8)

The polynomial basis (¢;(x) with polynomial orders ¢ = 0,1,...) is
then constructed such that ¢o = 1 and all the polynomials are orthogonal:

580> = jk—{lT”,"“ (49)
0if j # k

An important consequence of the orthogonality property is that all

the polynomials in the orthogonal basis are orthogonal to the unitary

function, see equation 4.10. For details on how to define new polynomial

basis to an arbitrary input distributions refer to [160]. Orthogonal poly-

nomial families with respect to the most important distributions are well
known, see table 4.1.

(1,65 =0 f 6,(z) f(x)dz =0 ¥j>0  (4.10)
Qx
Distribution Polynomial Family
Uniform Legendre
Normal Hermite

These polynomials are used to build an approximation of the output,
see equation 4.11. Where ¢; is the correspondent coefficient to ¢;(x) and
M represents the truncation order of the PCE.

M

y(@) ~ g(z) = )] ¢ ¢;(x) (4.11)

j=0
The orthogonality property makes the PCE an useful approach to
propagate uncertainty because the statistical moments of the output can

be derived directly from the coefficients:

M
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When the problem has D input dimensions, the first step is to use an
iso-probabilistic transformation to transform the input variables into an
independent identically distributed space w. A D-dimensional polyno-
mial is constructed as the sum of the product between one dimensional
polynomials for each of the uncorrelated variables, w = [wo, ..., wp_1]:

W (W) = ¢io(wo) X -+ X ¢y (Wp-1) (4.13)

The D-dimensional surrogate is written using a set of multiple indexes
Z < NP. An element J € Z contains the order of the polynomial in each

dimension: J = [lo,...,Ip-1]. Additionally, the multiple indexes are
enumerated, J < j € N. A PCE with N, terms can be written as: 3
Ne—1
y(x) = y(R(W)) ~ Y, ¢; ¥;(w) (4.14)
j=0

Two groups of methods exist to fit the PCE coefficients c;:

Semi-Spectral projection consists in using quadrature rules to approxi-
mate the inner product definition of the ¢; coefficients. A quadrature
rule gives N,, nodes for model evaluation z; and their corresponding
weights w;, see equation 4.15 for the 1-dimensional quadrature. Gaus-
sian quadrature rules are widely used because they are accurate for
smooth function integration with respect a weight function f(z). The
location of the nodes depends on the truncation order.

6 = w6 = [1a)6,0) f@)do x Y wiy(w)  (115)

There are several options to design more efficient truncation schemes
in multidimensional problems: Smolyak sparse grid collocation pro-
poses quadrature rules from the combination of lower order quadra-
tures that significantly reduce the number of model evaluations re-
quired. Adaptive sparse collocation can be build by sequentially en-
riching the terms and their sparse quadratures from the full set of
possible terms [161].

Point collocation consists in fitting the c; coefficients based on a sample
of model evaluations. Traditionally, this fit can be done using least
squares algorithm. A weighted least squares can be used to include
information about the PDF of the input evaluation points f(x*). Ad-
vanced generalized linear model regression algorithms can be used to
obtain sparse PCE approximations that do not include all the pos-
sible interaction terms in the final surrogate; for examples refer to
[162][163].

PCE example: Ishigami function

The Ishigami function was introduced in [164] as a test function for un-
certainty propagation methods because it contains nonlinearities and in-

3 This equation uses the
iso-probability transforma-
tion notation x = R(w).

[161] Le Maitre et al. 2010

[162] Blatman et al. 2011
[163] Sudret. 2008

[164] Ishigami et al. 1990
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[165] Pedregosa et al. 2011
[138] Feinberg et al. 2015

Figure 4.7: (top) 105 MC
simulation on the Ishigami
function (bottom) Sparse
PCE surrogate fit of 495
simulations.

Figure 4.8: Comparison
of f(y) with 10> MC and 495
PCE.

[30] IEC 61400-1. 2005

teraction terms, see equation 4.16. The constants of the model are set as
a="Tand b=0.1.

y = sin(z1) + a sin®(2z2) 4 b sin(z1) (4.16)

Figures 4.7 and 4.8 shows the model results for uncorrelated uniform
input variables in the range 2; ~ U(—m, ) using a N = 10° MC sim-
ulation and a PCE approximation based on N = 495 simulations. The
regression of the coefficients was done using the implementation of the
LAR algorithm available in the Python libraries Scikit-learn [165] and
chaospy [138].

15

10

5

> 0
-5
-10
-15

15
10

-10
-15

1 MC
0.10 [ PCE
0.08

PDF(y)
°
8

-15 -10 -5 0 5 10 15 20

When the input variables have aymore complicated joint PDF includ-
ing non-linear correlations, the Ishigami function can be quite challeng-
ing to surrogate due to its periodicity. To exemplify this, the Ishigami
function is applied to a set of variables related to a wind resource assess-
ment problem: 10 minutes mean wind speed (z1 = U), 10 minutes mean
wind direction (z2 = 0) and turbulence intensity. The turbulence inten-
sity is modeled using the standard deviation of instantaneous streamwise
wind speed scaled to have a valid range for the original Ishigami function
xz3 = 01/10. The distribution for the streamwise turbulent fluctuations
conditioned on the wind speed is described as the normal turbulence
model in the IEC standards [30]. A reference turbulence intensity of 16%
is used.

f(0) =U(—m,m)
FU) = W(A =8,k = 2) (4.17)
f(01|U) = LN(IJ‘O'I = Moy (U)>Ut71 = 0oy (U))
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2 2
To0 1 (Let (0.75U + 3.8)) — L;l

Figures 4.9 and 4.10 show a N = 10° MC simulation and a PCE
approximation based on N = 495 simulations for the Ishigami function

oy = In (E(02]U)) -

when there are large correlations between the input variables. For the
PCE the maximum possible polynomial order is set to be 8. The final
surrogate is as good as in the case with uncorrelated input variables. It
can be observed that the mean and the standard deviation (figure 4.11)
of the output are well captured, but if the Qol is the prediction for a
single input case then a more flexible global surrogate should be used
such a reduced basis functions or Gaussian process.
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Figure 4.9: Predicted f(y)
with N = 10° MC simula-
tions.

Figure 4.10: Predicted f(y)
with N = 495 PCE. Surro-
gate is evaluated at the same
locations as with MC.

Figure 4.11: Comparison
of f(y) with MC and PCE,
when the input variables are
non-normal and correlated.
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[166] Oakley et al. 2004

4In this example the in-
put variables are correlated
which it was not considered
in the original article [166]

Figure 4.12: (left) MC sim-
ulation correlation matrix.
(right) PCE correlation ma-
trix.

Figure 4.13: Comparison of
f(y) obtained with MC and
PCE.

PCE example: Oakley and O'Haggan function

The Oakley and O’Haggan function is used to test the methods for inter-
mediate number of uncertain input variables since it has 15 dimensions
[166]. This function contains nonlinearities and interaction terms, see
equation 4.19. This function is design to have 5 variables that are rela-
tively important, 5 intermediate variables and 5 nuisance variables. This
function is a good example for testing sensitivity analysis methods, as
well as, reduction of problem dimensionality.

y(x) = a1’ x +az” sin(x) + ag” cos(x) + x’ Mx (4.19)

With this number of dimension it is difficult to present the joint dis-
tribution in a gridplot as it has been used for the previous exarnples4.
Instead only the correlation matrix is used to illustrate the linear corre-
lations between the different variables. For this case the input variables
follow a multivariate normal distribution with null mean, unitary stan-
dard deviation but a correlation structure, see figure 4.12. Note that
there is almost no linear correlation between the inputs and the output
(last line of the correlation matrix); this is because of the periodicity
in the output. This sort of dependency is not captured by the Pearson
correlation coefficient. Figure 4.13 shows a N = 5 x 10° MC simulation
and a PCE based on N = 2448 simulations with a maximum polynomial

order of 3.
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PCE as a generalization of GUM:

Think about PCE as a generalized version of the GUM that
simplifies the model but that is able to capture most of its global
properties. PCE becomes equivalent to GUM if the polynomials
are forced to be of first order, and if the input uncertain variables
are normally distributed.

PCE becomes very powerful for problems where the model
is non-linear and where the distributions are non-normal. This
makes it a very good candidate method for wind energy UQ
problems.

One of the main limitations of this method is that the number
of polynomial terms in the surrogate grows exponentially with
the number of input variables. Even using sparse generalized
linear model regression methods there is a limit in the number
of uncertain variables this method can handle. The maximum
number of dimensions for real applications is in the order of 100
variables with the most advanced methods PCE methods [167].

4.3.3 Radial basis functions

Radial Basis Function (RBF) surrogates consist in approximating the
model as a linear combination of simple functions that only depend on the
radial distance from their definition node [168]. In this method a sample
of the input x* and its corresponding model evaluations y* = M(x*)
are used to define the nodes of the RBFs, see equation 4.20.

Y6~ 35 s K(lbx = ) (4:20)

Similarly to the response surface method, different calibration meth-
ods can be used to find the ¢; coefficients. The most common approach
consists in solving the least squares errors by solving the linear system of
equation given by arranging the RBF evaluations into the Gram matrix
@, see equation 4.21.

Pc=y*
®[i, j] = K(||x}' — x51])

J

(4.21)

Several radial functions can be used such as linear, cubic, among oth-
ers. The most widely used RBF is the Gaussian RBF because it assures
stability to the solution of the weights. The Gaussian RBF is given by
the following equation:

X —X; 2
e (122)
G

The Gaussian RBF contains a hyperparameter ¥ that represents the
radius of influence of each of the model evaluations in the input space.
This hyperparameter is usually shared between all the RBFs and becomes
a tunning parameter that controls how smooth is the resulting surrogate

[167] Bigoni et al. 2016

[168] Broomhead et al. 1988
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[26] Peherstorfer et al. 2016

[169] Hesthaven et al. 2015

[26]. This hyperparameter needs to be defined by the user. Since the
input variables x have different units and ranges, it is appropriate to use
the RBF applied in the uniform space after an iso-probabilistic transfor-
mation x. This means that all the variables are scaled in the range [0, 1]
and therefore the hyperparameter J¢ can be set to vary within [0,1].

y(x) = y(R(w)) ~ Z c; K(|[w —wil) (4.23)

Greedy algorithm

Since the optimal radius of influence of the Gaussian RBF is unknown,
one could model it as an uncertain variable. This means that for a set
of observed model evaluations (training points) there will be a set of
predictions for every evaluation location. This extra information can be
translated into an estimation of the error in the surrogate. The user of the
surrogate can expect the true model to be inside the confidence interval
generated by the surrogate uncertainty. Surrogate models that give a
confidence region for the prediction can be considered to be certified since
their error can be reduced to a tolerable level using a greedy algorithm
[169].

The first step is to build the surrogate uncertainty model is to define an
expected range of influence in the hyperparameter. Since in the uniform
space all variables vary between [0, 1], then a good initial estimate is to
define f(d¢) ~ N(0.5,0.1). This estimation can be improved using the
calibration techniques described in section 5.1.

The greedy algorithm can be summarized as:

1. Define an initial set of simulations based on extreme values of the in-
puts, and enrich it with a small random distribution of input points
in the inner range. This initial condition should define the minimum
number of simulations and it defines the initial condition for the al-
gorithm.

2. Define the evaluation points where the surrogate is to be evaluated; it
could be a large MC of the inputs.

3. Define the test values for the hyperparameters. A small sample of
the hyperparameters can be obtained according to their distribution
f(¥¢). This sample can vary as the distribution of the hyperparameter
is reduced.

4. Estimate the evaluation point that has the largest variability accord-
ing to the ensemble of RBFs. The standard deviation of the RBF
ensemble is computed using the predictions done with each of the
different hyperparameters.

5. Evaluate the model in that new point. Enrich the training data set.

6. Stop if the maximum surrogate standard deviation is lower than a
tolerance value.
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RBF example: Ishigami function

The same example of the Ishigami function applied to the x = [0, U, o1]
of section 4.3.2 is to illustrate the greedy algorithm with certified RBF
surrogates. In this example a sample of 10 hyperparameters was selected.
The initial training set consisted of 58 values, 8 extreme values and 50
inner points generated using a Halton sequence. Figure 4.14 shows the
mean and standard deviation of the ensemble of surrogates for the initial
condition. Figure 4.15 shows the mean and standard deviation of the
ensemble of surrogates after the greedy algorithm has enrich the training
dataset to 250 points. Note how the standard deviation of the surrogates
has been reduced. Figure 4.16 present the comparison of a 10° MC
simulation and the RBF ensemble prediction. Note that the final RBF
surrogate achieves a perfect surrogate with only 250 simulations.
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Figure 4.14: Mean and stan-
dard deviation of the output
predicted with an RBF en-
semble trained based on 57
model evaluations. Initial
condition for the greedy al-
gorithm.

Figure 4.15: Mean and stan-
dard deviation of the out-
put predicted with an RBF
ensemble trained based on
250 model evaluations. Af-
ter 193 added points by the
greedy algorithm.

Figure 4.16: Comparison
of f(y) with RBF after the
greedy algorithm.
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5The Jacobian represents
the local sensitivity analy-
sis for models with multiple
outputs

PCE or RBF?

RBF is a good replacement for PCE when the output has sev-
eral complex interaction terms. RBF surrogates are very flexible
to interpolate complex models in multiple dimensions because
their response is only driven by the number of know solutions.
The flexibility of the RBF to interpolate the behavior of the
model is both its advantage and its main problem. This flexibil-
ity makes it less accurate and therefore it will require a larger
number of model evaluations than PCE for a large number of in-
put dimensions. Note that the distance between points increases
as the problem has additional dimensions. RBF is a good ap-
proach to build surrogates when the input variables are heavy
tailed distributed and/or when they have complex correlation
structures.

The greedy algorithm is an optimal approach to build a cer-
tified surrogate. It can be applied to several different surrogate
methods that give an estimation of the surrogate error such as
Gaussian process, or surrogates based on model ensembles.

4.4 Sensitivity Analysis

ensitivity analysis is a required step after propagation of uncertainty

because it helps to understand which uncertain input variables are
responsible for the variability in the outputs. This means that an initial
sensitivity analysis of a model is a powerful tool to select what variables
are required to be considered as uncertain in future uses of the model. A
sensitivity analysis is a necessary aspect of building a model, specially to
those models that have large number of inputs/parameters. In general,
having multiple input variables makes a model very flexible to capture
any phenomena but it also makes it more sensitive to uncertainties in
these multiple inputs/parameters.

4.4.1 Local sensitivity analysis

Local sensitivity analysis consists in finding the gradient of the model
with respect to the inputs around a specific point in the input space5.
This sensitivity can be non-dimensiona-lized using the variance of the
input and output. This local Derivative Based Global Sensitivity Index
(DBGS) represents the ratio of influence of a given input in the variance
of the output, see equation 4.24. The main limitation of local sensitivity
analysis is that it only represent the actual variability if the model can
be linearized using a Taylor series approach. This equation represents
the contribution of a single variable in the famous law of uncertainty
propagation when normalized by the variance of the output.

DBS; = (gjx (ux)) Z/((?)) (4.24)
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Global sensitivity analysis consists in giving a measure of how much
of the variance in the output can be explained by the propagation of the
uncertainty in each of the inputs. Global sensitivity is required when
the model is non-linear and when the uncertainty in the inputs is large
enough to explore regions with different model output local sensitivity.

A review of the SA methods can be found in [170].

4.4.2 Screening methods

An estimate method to obtain global sensitivity analysis information
based on the local sensitivity or gradients of the model. Morris screening
estimates the local sensitivity using finite differences and it samples the
input space using the Morris sequence [171]. Morris screening requires
very few simulations and it can be used as a preliminary SA study. DBGS
is obtained by the partial derivatives of the model evaluated at a MC sam-
ple of the input. This translates the local model sensitivities into global
sensitivity measures [172].

DBGS; = j

Qx

oM 2 V()
(Gw0) T reoax (4.25)

When the uncertainty in the variables is not large or when the model is
linear, the DBGS and Derivative Based Sensitivity Index (DBS) converge
to the same value.

4.4.3 Variance decomposition

Variance decomposition method consists in decomposing the variance of
the output into contributions of variance of the output from each of the
individual inputs, and from interaction terms of multiple combinations
of inputs. Refer to [173] for further details. This method is the most
recognized methods for global sensitivity analysis and it shares the same
theory used in analysis of variance (ANOVA). Variance decomposition
can be expressed in terms of the variance of the marginal expected value
of a subset of input variables. Note that this decomposition is not a

infinite series expansion, but it is just a recurrent use of Bayes theorem.

=1

||Mu
||Mc

PR

In this equation, V; = V (Evqg, 2, (M (x]2s)))
main effect®. The output variance due to the interaction between the i-
th and j-th variables is Vi; = V (Eva, 2,2, (M(x|zs,25))). The output
variance due to the triple interaction between the i-th, j-th and k-th
(x|zi, xj, 7x))).

The global sensitivity analysis consist in normalizing the variance due

D D
2 Z Vijk +..+Vi . p (4.26)
j>ik>j

is the variance due the

variables is Vi, =V (Evm#zi,mj,zk (M

to the interaction terms by the total output variance.

\ A\ j

Si = —— Sij = W (4.27)

[170] Iooss et al. 2015

[171] Morris. 1991

[172] Sobol’ et al. 2009

[173] Saltelli et al. 2010

6 Main effect refers to the ef-
fect on the output due to
a single variable. These ef-
fects can be isolated from
the other variables. Note
that the main effect are not
necessarily linear.

The interaction terms refer
to terms that have product
between multiple.
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[163] Sudret. 2008
[174] Wu et al. 2016

Where the main effect Sobol index (S;) is the fraction of output
variance that can be explained by the main effect of the i-th variable
and its variation. While the total effect Sobol index is the sum of
all the Sobol indexes that contain interactions with the i-th variable
(Sti = Si+ X yp Sik + ...) and it represents the fraction of variance of
the output that is explained by the variance of the i-th variable.

The main effect Sobol index (S;) is equivalent to the DBGS for a
model where the linearized surrogate is a good approximation and when
the variables are normally distributed. The total Sobol index is a bet-
ter measure of the sensitivity as it includes non-linearities and variable
interactions.

Three different approaches to calculate the Sobol indexes based on
MC samples of the inputs have been proposed and are compared in [173].
Surrogates models can facilitate the computation of the global SA: Sobol
indexes can be obtained directly from the PCE coefficients [163] and from
the Gaussian RBF weights [174].

Variance decomposition and Sobol index need to be computed in un-
correlated variables, therefore for a case when the variables are correlated
an iso-probability transformation needs to be applied. This means that
the Sobol indexes will be estimated for the corresponding uniform vari-
able and not the physical variables them-selves.

For conditionally correlated variables it is important to recognize that
the corresponding uniform variable only describes the variability given
the previous variables. For example the uniform variable corresponding
to the streamwise turbulence intensity o1 in the example shown in figure
4.9 only represent the variability for a given wind speed; it does not
represent the marginal variability of the o1. Regardless of this fact, the
Sobol index represent a ratio between the variability in the output due
an input with respect the total output variability so no modifications to
the equations is required.

GUM example: Log-law ABL vertical extrapolation

For this example, all the sensitivity analysis indexes provide the same
information since the model can be linearized. The SA indexes depend
on the height of the predicted wind resources, see figure 4.17.

The variability in the measured wind speed usgo is the main responsible
for the variability of the wind resources at different heights. The second
most important variable is the stability. Note that the ABL height and
the roughness are not main contributors and therefore these variables
could be treated as certain from further analysis. It is important to
recognize that this is only valid if the standard deviation of these variables
is not increased in the future uses of the model. From this figure, it can
be recognized how the importance of modeling the stability grows as the
resources are predicted further away from the observation point.
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PCE example: Ishigami function

This example shows how the main effect Sobol index does not capture
the full picture for models that have periodicity and other types of non-
linearities. The Sobol indexes for the Ishigami function with uniform and
uncorrelated input variables are presented in table 4.2. The main effect
Sobol index do not give all the information because of the periodicity and
interaction terms present in the Ishigami function. It can be observed
as expected from the results presented in figure 4.7 that the first two
variables are equally important in terms of the total effect but not for
the main effects. The lack of information that comes from the linear
effect SA is clear for the third variable, where it is clear that it is not an
important variable in itself but it does have interaction terms with other
variables.

T T2 T3
Si 0.34 043 0.00
Sti; 057 043 0.23

The Sobol indexes for the Ishigami function for the example with
correlated variables are presented in table 4.2, note that the Sobol index
are given for the corresponding uniform variables after an iso-probabilistic
transformation w. In this case as expected from the results presented in
figure 4.9, the most important variable is the wind direction while the
second one is the wind speed. The turbulence (z3) has a negligible total
and main effects and therefore could be modeled as having a fixed value.
This means that the streamwise turbulence fluctuation can be modeled
as a function of the wind speed (the expected value E(c1|U)) and not as
a distribution conditioned on the wind speed (f(o1|U)).

Correlated 0 U o1
Uncorrelated w1 w2 w3
S 0.93 0.07 0.00
ST 0.93 0.07 0.00

Figure 4.17: indexes
for the Log-law ABL ver-
tical extrapolation uncer-
tainty propagation example.

Table 4.2: Sobol Indexes
for the Ishigami function
with uniform and uncorre-
lated input variables.

Table 4.3: Sobol Indexes for
the Ishigami function with
correlated inputs. Note that
the Sobol indexes are given
for the corresponding uni-
form and uncorrelated in-
put variables after an iso-
probabilistic transformation
w=R71(x).
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Figure 4.18: Sobol  in-
dexes for the Oakley and
O’Haggan function (top)
original uncorrelated inputs
(bottom) correlated inputs
example.

PCE example: Oakley and O'Haggan function

The Sobol indexes for the Oakley and O’Haggan function are presented
in the figure 4.18 for the original case without any correlation between
the input variables and for the present case with the correlation matrix
presented in figure 4.12. As it has been discussed before the correlation
between variables considerably modifies the variability of the output; this
is a consequence of an accumulation of the effects of multiple inputs co-
varying. For the correlated example presented in this thesis, it can be
concluded that the most important variables are xo,x1,r2,r3,24, While
the remaining variables can be treated as certain.
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How to select the SA method?

If possible Sobol indexes should be used because they are the
only global measure for sensitivity analysis that can handle non
linear models with arbitrary input variables distributions.

If the model can be linearized and the input variables are
normally distributed, then the local derivative based sensitivity
index can be used because it is equivalent to the Sobol index.

Screening methods should only be used as rough estimations.
They are not a replacement for the Sobol indexes.

4.5 Summary

This chapter has given an overview of the different methods to propa-
gate uncertainty through a model. The examples of uncertainty prop-
agation can be found in https://github.com/jp5000/Examples_PhD_
thesis [DOI:10.5281/zenodo.204786]. From this chapter the following
conclusions can be made:


https://github.com/jp5000/Examples_PhD_thesis
https://github.com/jp5000/Examples_PhD_thesis
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e Propagation of uncertainty through a computationally efficient model
can be done with Monte-Carlo simulations.

o A surrogate model can be used to efficiently propagate the uncertainty
through a non-linear model and to obtain global sensitivity analysis.

e An extension of a polynomial response surface that predicts the mean
and the uncertainty in the power, the thrust coefficient and Deq on
different components of a turbine for realistic inflow conditions has
been developed. This methodology is presented in the article [4]. This [4] Murcia et al. 2016
article is available in chapter B.






Chapter 5
Model Calibration and Validation

odel calibration and validation processes share the same prob-

lem structure, in which the model prediction capacity is con-

trasted against measurements. The objective in model calibra-
tion is to determine the model parameters while in model validation the
objective is to determine the model prediction error. These types of
problems are called inverse problems since the model is not used to make
predictions but instead information about the model is inferred based on
the measured pairs (X,y).

True Inputs
X
Measurement /
error in X Ex
Model . Parameters
0

X=X+ éex M(X7 ) 0
Measured

pairs @ Real P@
y=y+tey

EM Model
Measurement v prediction error

error in
y \y y:M(x,B)—i—aM

True Outputs

In general a calibration or a validation dataset consists of several in-
dependent observations of the measured pairs. The notation used in this
thesis is: (Xz,¥y7) = {(X1,¥1), (X2,¥2), ... (Xng,YNg)}. Where Nz is the
total number of observed pairs in the dataset.

Figure 5.1: Measuring and
modeling reality.
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5.1 Model Calibration

There are several methods for model calibration. This section presents
them and states their assumptions. Two main groups of methods ex-
ist: maximum likelihood estimation and Bayesian calibration. Different
methods can be derived from these two classes depending on the assump-
tions about the measurement uncertainties. Refer to [175] for details and
a comparison of calibration methods.

5.1.1 Maximum likelihood estimation (MLE)

Maximum Likelihood Estimation (MLE) is a calibration method based
on the likelihood function. The likelihood function is defined as the PDF
of observing a measured output given the measured inputs and a set
of parameters: L(y,%|0) = f(¥|X,0). The calibration problem is then
reduced to an optimization problem in which the parameter estimators
maximizes the total likelihood function, see equation 5.1. In this equa-
tion the observations are assumed to be independent, therefore the total
likelihood is the product of the individual likelihoods for each observed
pair.

Nz Nt
L(31,%210) = | [ L(F:,%:10) = [ | £(3:[%:, 0)
i=0 i=0 (5.1)

6 = arg max L(yz,%z|0)

Additionally, MLE requires assumptions about the measurement un-
certainty in the inputs ex, outputs €y and the model prediction error e
in order to estimate the likelihood function. Classical methods for MLE
assume that the observed pairs do not have uncertainty in the inputs.
The equation 5.2 describes the deviation between model and observa-
tions € and it is obtained by re-arranging the modeling and measuring
processes shown in figure 5.1.

81(0) = S’z — M(}Ez,e) =EMi+ Eyi

T o ~ _ (5.2)
L(Fi,%:|0) = f(Fi|%:,0) = f(§i — M(%:,0)) = f(e:(6))

MLE is equivalent to the Least Squared Errors (LSE) method when
f(ez(0)) is assumed normal and with the same variance for each obser-
vation pair. MLE is equivalent to the Weighted Least Squared Errors
(WLSE) method when the f(ez(0)) is assumed to be a multivariate nor-
mal. This equivalence can be proven using the definition of the multi-
variate normal PDF, see [175] for details. MLE is a more general ap-
proach that can be used to describe calibration problems that contain
non-normal measurement errors, input measurement uncertainty, model
uncertainty, among others.
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Least squared errors (LSE)

LSE method for calibration consists in finding the parameters that min-

imize the Residual Sum of Squares (RSS) of the model. LSE assumes

that the model calibration will make the deviations of the model follow a

normal distribution ez(0) ~ A (0, ). For few problems the LSE calibra-

tion can be solved analytically while for most problems it can be solved

numerically. Once the parameters have been calibrated a detail descrip-

tion of the distribution of the model deviations €(0) is required in order

to verify the assumption of no bias and normality.

RSS(0) = ||§z — M(%z,0)|]” = ez(0)"ez(0)

6 = arg rrgn RSS(0)

Weighted least squared errors (WLSE)

WLSE consist in minimizing the Weighted Sum of Squares (WSS), which

considers the variance in each measured output. In practice, WLSE as-

sumes that the uncertainty in the output measurement ey7(6) ~ N'(0,Cy,)

follows a multi-dimensional normal distribution, see equation 5.4. This

assumption is very general and can represent cases in which each obser-

vation has a different variance but are independent, or cases where there
is a correlation in the measurement errors of different observations. The

covariance Cy, can be estimated when the observed pairs are obtained

after binning the raw data. This is a common practice in wind energy. In

WLSE the model deviations are weighted by the variance in the output

measurements.

WSS(60) =ez(0)" C;} ez(0)

6 = arg mein WSS5(0)

5.1.2 Bayesian calibration

Bayesian calibration consists in considering the prior knowledge about

(5.4)

the parameters as part of the information available to calibrate the model.

Here the measurement pairs are considered sources of information or
evidence, from which the prior knowledge about the parameters can be
updated into the postem’orl. The basic problem in Bayesian calibration
is summarized in the Bayes theorem, see equation 5.5. In this equation
the likelihood function £(Xz,yz|0) is the same likelihood function used
in MLE, and it gives a measure of how well a set of parameters agree
with the observations; the proportional constant that makes equation 5.5

an equality is the normalization constant”.

foost(01%z,¥7) o€ L(Xz,572|0) forior(0)

(5.5)

L1p Bayesian statistics the
knowledge is characterize by
a PDF; therefore narrower
distributions are assigned to
parameters with less uncer-
tainty.

2The normalization con-
stant makes the posterior a
PDF i.e. a PDF has uni-
tary integration over all its
domain.
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Maximum a Posteriori (MAP)

Maximum a Posteriori (MAP) calibration method consists in obtaining
the set of parameters that maximizes the posterior distribution after a
Bayesian update, see equation 5.6.

é = arg mgxx fpost(0|5§I7 S’I) (56)

Special case - Calibration with input uncertainty

For some cases it is necessary to build a likelihood function that cap-
tures the impact of the different uncertainties in the calibration process.
The input uncertainty is characterized by the measurement uncertainty
model, ex ~ f(x|X). The output measurement uncertainty has a simi-
lar structure, ey ~ f(y|y), while the model inadequacy is described as
f(y|x,0). The general likelihood function can be seen in equation 5.7
and it consists in marginalizing the effect of the input uncertainty [16];
for this reason this methodology is also known as expected likelihood ap-
proach [176]. This likelihood function can be used in MLE or Bayesian
calibration techniques.

L(%;,5:]0) = L(X:) L(F:]%:,0)

- fﬁ(ii\x)ﬁ(yilx,e)f(X) dx
J (5.7)

= [ 70 31 Mx. ) ) dx
Qx

Note that the calibration process requires a prior distribution of the
true inputs f(x); and a model inadequacy and input uncertainty propa-
gation likelihood, f(y|x, 0, M). If the model is linearized and the input
uncertainties are assumed distributed multivariate normal (or even a lin-
ear combination of normals) then equation 5.7 has an analytical closed
form, see [16] for an example. If this is not the case then numerical inte-
gration using sampling techniques is required. The impact of disregard-
ing input uncertainty in linear model calibration consists in introducing
a bias in the estimated parameters [16].

5.1.3 Parameter uncertainty estimation

The last step of the model calibration process is the estimation of the
uncertainty in the calibrated parameters. The parameter uncertainty is
the result of the uncertainty in the observations. This uncertainty rep-
resents the fact that the calibrated parameters are not perfectly known.
This section presents different approaches to estimate this uncertainty.

Taylor expansion

Parameter uncertainty estimation can be obtained when it is acceptable
to linearize the model and to approximate the uncertainty in the param-
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eter estimator with a multi-variate normal distribution with a covariance
Cy. A Taylor series expansions of the model response for the parameters
is build around the expected parameters 9, see equation 5.8. Where Jj
is the Jacobian of the model with respect the parameters; i.e. the lo-
cal sensitivity of the model to the parameters evaluated at the expected
parameters 0.

M(%,0) ~ M(%,0) +J,[6 — 8] (5.8)

The WSS can be used to build an unbiased estimator for the variance
of €(0). Finally, the parameter uncertainty is obtained as a normal dis-
tribution if the number of observations in the dataset Nz is larger than

the number of parameters to estimate Nj.

£(8) =N(8,Cy)

WSS (g N\ (5.9)
Co = NN, (Ja Cy Ja)

From this distribution then confidence intervals and other types of
statistics can be computed. The effect of the uncertainty in the param-
eters to the outputs of the model is obtained as the propagation of the
parameter uncertainty:

Cy =J5Cy 3 (5.10)

Two main limitations exist in this approach: the assumption of nor-
mally distributed errors and the assumption of null input uncertainty.
Extensions exist that address these two issues: if the input uncertainty
is considered then the problem of parameter estimation can be extended.

Bootstrap method

Bootstrap method uses the measurements to calculate the joint distribu-
tion of model parameters by generating multiple synthetic samples from
the calibration dataset. The method assumes a distribution of the model
error but it does not assume any form of distribution of the parameters
[177]. The procedure to generate the fictitious sample consist in ran- [177] Efron. 1979
domly picking (with replacement) individual measured pairs and adding
a random realization of the measurement error. A parameter estimation
is performed for each of the synthetic datasets. As a result the bootstrap
technique produces a distribution of parameter estimators. This tech-
nique can be used to estimate parameter uncertainty without assuming
their final distributions and due to its simplicity is easy to implement.
The main limitation of this method is the requirement for large number
of observations in the calibration dataset in order to represent accurately
the model in a subset.
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Bayesian calibration

The posterior distribution obtained in Bayesian calibration represents
the uncertainty in the calibration. This property is one of the main
advantages of Bayesian calibration.

f(0) = foost(01%z,57) (5.11)

5.1.4 Example: Analytical model

This example illustrates the differences between the three main calibra-
tion methods: LSE, WLSE and Bayesian calibration. Since the model is
analytical, the results of the calibration can be verified with the known
true parameters. This example assumes that there is no model uncer-
tainty.

The simple analytical model is given by the equation:

y=10e"“" cos(0.5x) (5.12)

The true parameter is a = 0.2, while the true input distribution used
to generate the observations is a Weibull distribution:

F(z) = W(A = 2,k = 10) (5.13)

The measurement uncertainties are generated using a normal distri-
bution for the input and the output. The observed pairs are obtained by
sampling the true inputs, evaluating the model with the true inputs and
adding measurement errors. Two different cases are generated one with
low input uncertainty and one with large input uncertainty.

f@Elr) =N(p==0.) =2+ N(u=0,0.)
f@ly) =N(p=y,0y) =y +N(u=0,0y)

Note that the WLSE method does not use the raw observations but
it uses the bin averaged observation and the corresponding standard de-

(5.14)

viation of the error (SEM) as the observation uncertainty.

For the Bayesian calibration method the prior distribution is assumed
to be uniform, this means that the posterior only depends on the like-
lihood function. The likelihood function including input uncertainty
in equation 5.7 is approximated using a MC sample of the true input
x; ~ f(x). This approximation is expressed in equation 5.15, where N
is the MC sample size.

£(%.,5:(0) = f J([%) (3701 M(x, 0)) F(x) dx
L& (5.15)
NZ Xi —x;) f(§i — M(x;,0))
Figure 5.2 presents the results when there is low input measurement

uncertainty. This is given by a standard deviation of the measurement
error of o, = 0.5. In this case the measurement uncertainty in the output
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is given by o, = 2.0. Two main conclusions can be made of this case: the
bin averaged observations are a good representation of the true model
and all the calibration methods show very similar distribution of the
parameter. All the calibration methods agree because the assumptions
of normally distributed model deviations in LSE and WLSE are fulfilled
by having low input measurement uncertainty.

10
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Figure 5.3 presents the results when there is large input measurement
uncertainty: o, = 2.0 and a low measurement uncertainty in the output:
oy = 2.0. In this case the bin averaged observations are not a good
representation of the true model. Furthermore, there is a bias in the LSE
and WLSE calibration methods. This is the consequence of having large
input measurement uncertainty. As a consequence of the assumptions of
LSE and WLSE, the uncertainty in the measured output is overestimated;
this produces larger uncertainty in the parameter than in the case of
Bayesian calibration.
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When to use which model calibration method?

Bayesian calibration is a very powerful method, but it is more
computationally expensive than other calibration techniques.
For this reason Bayesian calibration should only be used when all
the other methods give inconsistent results. One of the main ad-
vantages of the Bayesian calibration is the fact that it can handle

Figure 5.2: Model calibra-
tion example with low input
uncertainty case (left) Ob-
served pairs, bin averaged
observed pairs with their
corresponding standard er-
ror of the mean (SEM) and
true model. (right) Model
calibration results.

Figure 5.3: Model calibra-
tion example with large in-
put uncertainty case (left)
Observed pairs, bin aver-
aged observed pairs with
their corresponding stan-
dard error of the mean
(SEM) and true model.
(right) Model calibration re-
sults.
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dataset with reduced number of observed pairs. It also has the
advantage of including the prior information from the experts.
This information can speed up the computation by reducing the
effective parameter space in which the calibration will search for
the parameter. Maximum likelihood estimation is related uses
the same information as the Bayesian calibration, the likelihood
function and therefore it can be used on the same cases.

Simplified versions of the MLE such as WLSE should be used
only when there is evidence that the measurement uncertainty
in the inputs is reduced.

5.2 Model Validation

odel validation is a term that has multiple interpretations in the
Mseientiﬁc community. When a model is compared against measure-
ments it is not enough to show a plot where the model prediction passes
through the error bars (or confidence intervals) of the observations. In
this thesis, model validation is defined as the process that builds a statis-
tical model to predict the model prediction error at a given input vector.
Most scientific models are only valid under specific conditions, this means
that the model prediction error depends on the input variables. In order
to make clear this assumption, the notation for model error changes to
em = ((x). Using this notation, one can express the model prediction
error for a given observed pair (X;,¥;) in the validation dataset as:

((%i) =¥i + ey — M(X: +&x,0) (5.16)

Equation 5.16 expresses the model prediction error for a single ob-

servation. The main problem with this equation is the fact that the

observation errors are unknown and therefore one can not fully compute
the model prediction error as a deterministic problem.

Model validation as an uncertainty propagation problem

One way of understanding the construction of the statistical model of the
prediction error consists in recasting the validation problem into a prop-
agation of uncertainty problem. One can consider the model prediction
error as a model that receives as inputs the measurement/observation
errors for the inputs and outputs as well as the model parameters, see
figure 5.4. This means that if the experimental/measurement uncertain-
ties are well understood in terms of having a model that predicts their
observation errors and if the parameters of the model have been previ-
ously calibrated, then the PDF of the prediction error can be obtained
by propagating the uncertainties through the model chain.
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Inputs Model Output variables
[exiey.0] CCHiesety Vit~ M(itexd)
Inputs Model Output variables

/(lex.2y.6)) ™ ) T ()7

Usually a calibration or a validation dataset includes an estimation of
the measurement errors for inputs and outputs. These estimations are
expressed as a measurement uncertainty model such as:

flex) =N(0,Cx)  f(ey) =N(0,Cy) (5.17)

Simplified model validation

In general the uncertainties in inputs and parameter are not zero. This
produces a combination of the output measurement uncertainty and the
propagation of input/parameter uncertainties through the model. If the
measurement uncertainties are central, normally distributed, a common
approach is to assume that the measurement uncertainty in the output
and the propagation of parameter and input uncertainties are uncorre-
lated. This assumptions implies that the expected model prediction error
at the observed input can be estimated as:

E(((X)) =y — EM(X +&x,0)) (5.18)

Simultaneous Validation and Calibration

Simultaneous validation and calibration is often an intractable problem
because deviations from the true value of a parameter can be compen-
sated by the model inadequacy term ((x). This means that the parame-
ters and model inadequacy are highly correlated. To be able to solve this
problem, Bayesian inference and physical description of the prior distri-
butions for both model parameters and model inadequacy are necessary.
This framework is usually referred to as the Kennedy-O’Hagan approach
[178][25][179].

In machine learning context every dataset is divided into three groups:
a model calibration, a model validation and an evaluation datasets. Some
experts propose to use 50% of the data as training (calibration) dataset,
25% of the data is used for validation, and the last 25% of the data
is used for final evaluation. The last step consists in checking that the
model inadequacy is correctly predicted; this step is a verification of the
validation [153]. The process of splitting the data can be done in an
aleatory process and repeated several times. This will enable to test that
the statistical model for the prediction error is properly estimated.

5.2.1 Validation regions

The validation of a model is an ongoing process in which several validation
cases will be performed for different validation datasets. As a result the

Figure 5.4: Model validation
as a propagation of uncer-
tainty problem.

[178] Kennedy et al. 2001
[25] Higdon et al. 2004

[153] Friedman et al. 2001
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[19] Oberkampf et al. 2004

3 A model that has high bias
in the model prediction error
is clearly not capturing the
physics of the process

[3] Murcia et al. 2016

Figure 5.5: An example of
model validation region.

validation process should build a validation region. Its main purpose is
to understand the regions where the model can be used with confidence,
the regions where the model is not able to capture the physical behavior
and the regions where there is evidence to predict how well or badly the
model will perform.

The validation region can be used as a predictive model for the model
prediction error at new non-validated input points [19]. The definition of
a validation region consists in setting a maximum tolerance values for the
model prediction error and for the variance in the prediction of model
prediction error’. If the number of validation datasets in a region is
limited or zero then there is no evidence that will inform us on whether
the model could be used there. A model that is used outside the validated
region (or in general far away from a validation point) will be penalized
as there is more uncertainty about how much model inadequacy should
be expected at this application point. See figure 5.5 for a visual example
of the process.

There are many advantages of knowing the current state of the valida-
tion region of a model: a validation region will clearly state the regions
in which the users can use the model with reasonably levels of model
uncertainty and obtain estimations of these uncertainties. Additionally,
a validation region is a planning tool for the design of new experiments
that may challenge the models. There is value in increasing the size of the
validation regions as it will extend the range of application of the model.
Note that the validation region will be different for different models even
if the same validation datasets are used, due to the maximum tolerance
to the mean model inadequacy.

5.2.2 Example: Validation region for a wake model

Figure 5.5 presents the validation region for NOJ wake model based on
Horns Rev 1. This validation region is a generalization of the model pre-
diction error obtained from a validation campaign done using the opera-
tional data from two offshore wind plants [3]. The generalization consists
in translating the wind direction into a measure of the averaged spacing
and number of turbines aligned. This will help to have an estimation of
the model prediction error on an different wind plant with an arbitrary
layout.
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This chapter has given an overview of the different methods to do

model calibration and model validation. Several examples of model cal-
ibration can be found in https://github.com/jp5000/Examples_PhD_
thesis [DOI:10.5281/zenodo.204786]. The main ideas presented in this
chapter are:

Traditional calibration techniques such as LSE and WLSE failed when
there are large uncertainties in the inputs. Special treatment of such
uncertainties needs to be considered using alternative definitions of
the likelihood function.

A calibration method that takes into account the uncertainty in the
input uncertainties can be implemented for calibration of simple wake
models based on SCADA data from multiple offshore wind plant. This
is the main objective of the article [5]. This article is available in
chapter D.

Model validation requires to consider the measurements uncertainties
in the observations. This chapter introduced a methodology for model
validation based on uncertainty propagation. This methodology is
used in the articles [3] and [2].

[5] Murcia et al. 2016

[3] Murcia et al. 2016
[2] Murcia et al. 2015


https://github.com/jp5000/Examples_PhD_thesis
https://github.com/jp5000/Examples_PhD_thesis




Chapter 6

Conclusions and Future Work

he main focus of this PhD project was the development of a frame-

work to validate models in the wind plant model chain. The clas-

sical procedure for estimation of model validation assumes that
the uncertainty in the input variables, such as observed wind resources
and wake losses, can be propagated through a linearized version of the
model chain. This procedure has been adapted to include a more realistic
propagation of uncertainty and to include the effect of model prediction
errors with a distribution that depends on the input conditions.

Wind resources

Several extensions to the traditional wind rose used to describe the PDF
of the wind resources on a site have been studied. Time series as used
in the wake model validation articles C and D, continuous conditional
distributions as used in the wake model calibration article E and mixture
of multivariate normal distributions can be used to describe the joint
distributions for wind speed and wind direction without the traditional
30°binning. To include the atmospheric turbulence intensity the normal
turbulence model proposed in [30] can be used. A shear distribution
conditioned on wind speed and turbulence intensity should be used such
as the one proposed by [151]. These two extensions were explored in the
article about efficient propagation of uncertainty through an aeroelastic
model, article B. From these studies it can be concluded that:

e A sequential conditional dependency between the atmospheric vari-
ables is a natural way to represent the variability that characterize
the wind resources.

e Rosenblatt transformation and other iso-probabilistic transformations
can be used to generate samples of arbitrary sizes and are a key ele-
ment of the methods for efficient propagation of uncertainty.

o In the case when the number of uncertain variables is large (~100)
advanced sampling techniques can be used to obtain a sample; these
methods also required a sequential conditional distribution.

30] TEC 61400-1. 2005

[

151] Dimitrov et al. 2015
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[3] Murcia et al. 2016
[2] Murcia et al. 2015

[5] Murcia et al. 2016

Uncertainty in the wind turbine model

One of the main contribution of this thesis is the methodology to cap-
ture the uncertainty in the wind turbine model presented in article B. In
this article a surrogate of the aeroelastic model of wind turbine is able
to predict the distribution of power, thrust coefficient, damage equiva-
lent fatigue loads and extreme loads as a function of several turbulent
inflow parameters. The proposed methodology is also able to capture
the uncertainty due to different realizations of the turbulent structures
in all the outputs of the turbine. This methodology is based on defining a
conditional distribution for each of the outputs as a function of the atmo-
spheric turbulent inflow variables. From this study it can be concluded
that:

e A surrogate of an aeroelastic wind turbine model based on a condi-
tional distribution for each of the outputs as a function of the atmo-
spheric turbulent inflow variables is an efficient method to capture the
turbine response and its corresponding uncertainties.

e The proposed type of surrogates can be used in two-level propagation
of uncertainty model chains in order to estimate the uncertainty in
AEP and Leq.

Wake model validation

Wake model validation has been implemented using SCADA data from
Horns Rev 1 and Nysted offshore wind plants for several of wake models
in articles [3] and [2]. The validation methodology takes into account
the uncertainty in the undisturbed inflow conditions and the uncertainty
in the mean power curve of the turbines. The main objective of these
validation campaigns was to understand the distribution of the model
prediction error as a function of the inflow variables from which a gen-
eralized stochastic model to predict the wake model prediction error can
be built. From these studies it can be concluded that:

o Wake model validation requires to consider the measurement/obser-
vation uncertainty in the undisturbed inflow conditions (inputs) and
power production (outputs). If these uncertainties are not considered
the model prediction error will be overestimated.

e The uncertainty in the AEP prediction is a combination of the dis-
tribution of the model prediction error as a function of the inflow
conditions, the power curve uncertainty and the probability of the
inflow conditions (the PDF of the wind resources).

Wake model calibration

Model calibration of a simple engineering wake model using the SCADA
data of four large offshore wind plants is presented in article [5]. This
article shows that calibration techniques that consider the uncertainty
in the inputs can be implemented to avoid the introduction of a bias
in the calibration. Similar calibrations have been performed in the past



CONCLUSIONS AND FUTURE WORK 101

[109] without considering uncertainty in the undisturbed inflow condi- [109] Cleve et al. 2009
tions. The uncertainty in the parameter can be estimated and used to

estimate the uncertainty in AEP. From this study it can be concluded

that:

¢ Wake model calibration based on least squared errors on individual
flowcases does not include the uncertainty in the inflow conditions
and therefore, it produces a bias in the estimated parameter.

e Maximum likelihood calibration can be used to include the effect of
the uncertainty in the input variables.

e The maximum likelihood parameters obtained from each individual
flowcase show a clear structure with respect to the inflow conditions
which reveals the existence of a structural model error due to lacks of
physics. This fact agrees with the previous wake validation studies.

6.1 Future Work

There are mainly two subjects which have not been investigated in this
thesis but that are reasonable next steps of the proposed implementation
of the UQ framework:

e A full propagation of uncertainty to predict the uncertainty in the
LCoE of an onshore wind plant in the planning stages requires to
consider a large number of uncertain variables: the uncertainty in the
long term wind resources, the uncertainty in the flow model (including
spatial decorrelation), the uncertainty in the wind turbine response
operating inside the plant and the uncertainty in the wake model.
Efficient propagation methods as the ones presented in this thesis, are
necessary to be able to consider these large amount of uncertainties.

e The concept of validation region has been introduced to the field of
wake models. This concept promises to be an useful way to communi-
cate the users of a model that the assumptions of the model only hold
on a certain subdomain of the input variables space. The uncertainty
of the model, represented by the statistical model of the model pre-
diction error, depends on the input variables and is different for every
model. This means that, using this information the user could iden-
tify the input conditions that require high-fidelity modeling in order
to reduce the uncertainty in the final variables such as AEP or LCoE.

e The model validation regions are constructed based on SCADA data
from multiple sites. This means that if there is no validation cases
for certain conditions, then the model uncertainty predicted by the
validation region would be high. This case will enable international
agencies to prioritize experiments that fill the gaps of knowledge for
the models.
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Abstract. Wind farm flow models have advanced considerably with the use of large eddy
simulations (LES) and Reynolds averaged Navier-Stokes (RANS) computations. The main
limitation of these techniques is their high computational time requirements; which makes their
use for wind farm annual energy production (AEP) predictions expensive. The objective of the
present paper is to minimize the number of model evaluations required to capture the wind
power plant’s AEP using stationary wind farm flow models. Polynomial chaos techniques are
proposed based on arbitrary Weibull distributed wind speed and Von Misses distributed wind
direction. The correlation between wind direction and wind speed are captured by defining
Weibull-parameters as functions of wind direction. In order to evaluate the accuracy of these
methods the expectation and variance of the wind farm power distributions are compared against
the traditional binning method with trapezoidal and Simpson’s integration rules.

The wind farm flow model used in this study is the semi-empirical wake model developed
by Larsen [1]. Three test cases are studied: a single turbine, a simple and a real offshore wind
power plant. A reduced number of model evaluations for a general wind power plant is proposed
based on the convergence of the present method for each case.

1 Introduction

The evaluation of the performance of a wind power plant requires to calculate the expected
energy production over the years. The most common measure of wind farm performance used
in the planning or evaluation stages is the annual energy production. AEP is proportional to
the expected mean power over all the possible atmospheric conditions: AEP = 8760E(P) in
[W.h]. The expected power is defined in eq. 1.1. The likelihood of occurrence of the different
atmospheric conditions is represented by the joint probability density function, PDF(u, §), where
u and @ are the Reynolds-averaged wind speed and wind direction.

27T 0o

E(P) / / P(u, ) PDF(u, 0) du df (1.1)
0 0

The common practice in the wind energy industry is to consider the Reynolds-averaged wind
speed variations over the years at a given location to follow a Weibull distribution. On the
other hand, the mean wind direction is modeled by defining sectors or bins. Additionally,
the correlation between wind direction and wind speed is captured by defining different wind



speed Weibull-parameters for each sector. As a result the wind speed and wind direction are
independent in each of the Ry wind direction sectors: [6;,0;41], see eq. 1.2. In this equation, P;
is the the probability of occurrence of each sector.

PDF(U, 0) = PDF(UW S [9j7(9j+1])]P)DF(0|9 S [6]', 6j+1]) Pj (1.2)

This assumptions implies that the mean power can be computed in each sector independently
and then weighted averaged with respect P;.

9,
Re i+1 oo
B(P)~ 3 P / /P(u, 6) EDE(ul6 € [6;,0,41]) FDE (8]0 € [0, 6;+1]) dudf (1.3)
J=1 0, 0

There are different approaches to numerically approximate eq. 1.3: trapezoidal and Simpson’s
integration rules consist in building linear or quadratic interpolation lines between a number of
wind speed and direction evaluation points, P(ug, 0)). Such techniques are the common practice
in the industry and they can be interpreted as a weighted average of the evaluation points, see
eq. 1.4. The weights shown in this equation, wg, depend on the integration technique and on
the PDF(u, 6).

Ry N
E(P)~ ) P, <Z ka(uk,Gk)> (1.4)
j=1

k=1

Polynomial chaos with semi-spectral collocation techniques can be used to have a higher
accuracy prediction to integrals in the same way as presented in eq. 1.4 with a reduced number
of model evaluations. The idea originally introduced in [2], presents quadrature rules based
on a normal distribution by the construction of an orthonormal polynomial basis with respect
the normal probability density function. The generalized polynomial chaos (gPC) techniques
presented in [3] expand this technique to uniform, beta and gamma probability distributions. In
the present work, data driven polynomial chaos (aPC) techniques introduced in [4] are applied
to the Weibull distribution. Furthermore, the multi-element polynomial chaos presented in [5]
is implemented in this paper to deal with integrals over multiple regions of wind speed and wind
direction.

2 Polynomial Chaos for AEP

2.1 Multi-element Data-driven Polynomial Chaos (MEPC)

PC techniques enables the user to find the statistical properties of a model with a reduce number
of simulations. This is achieved by defining a set of polynomials that are used to interpolate the
model response. The purpose of using multiple element PC is to separate the integration region
into small sub-regions in which the integration variables can be assumed to be independent.
In the present section the theory for building quadrature rules is presented. The theory is
presented as a tool to integrate the function f(z) under a random variable, x, characterized by
its probability density function PDF(z). The integral is separated over R, regions, defined by
its end points, ;.

00 Ra Li+1
/ f(z)PDF(z) dz = 3 P, / (@) PDF(z|z € (23, zi11]) da (2.1)
—00 i=1 T

i



An inner product is defined based on the conditional probability density function such that:

Ei(f) = (f); = / f(2) PDF (2l € [zi, 2141]) de (2.2)
Ei(fg) = (f, g)i = / £(z) g(x) PDF(z]z € [15, 3511]) da (2.3)

T

A polynomial of order n is defined as:

n
7I'n(33) =aop + A1 T+ ... + app " = § Amn, ™ (24)
m=0

An orthonormal polynomial basis based on the probability distribution consists in a group
of polynomials that are orthogonal and that have unitary norm with respect the inner product
defined in eq. 2.3. These conditions are summarized in eq. 2.5-2.6. These equations are
recursive as they use the coefficients from the lower order polynomials to find the next one.
The first polynomial is assumed to be: my(x) = 1. Furthermore the statistical moments of the
truncated distribution, E;(z™), up to the (2j — 1)-th order are required.

n n k
(Tn, )i =0 = Z A, (™, TR )i = Z Amn (Z a Ei(xm"'l)) Vk <n (2.5)
m=0 m=0 =0

To close this system of equations orthogonality is solved first. This is done by setting the
last coefficient of each polynomial to be: a,, = 1. Finally the polynomials are normalized:

Ty = (2.6)
<7Tna 7Tn>

Note that the polynomial basis will be different for each region, since each one has a different
conditional PDF. The polynomial basis for the i-th region will be denoted as 7.

The fundamental theorem of Gaussian quadrature states that integrals with respect the
PDF(x) can be approximated using only N evaluation points, 2. The quadrature rules calculate
exactly the integral of functions, f(z), that are a polynomial of order equal or smaller than
2N — 1.

Ti41 N
Bi(f) = (i= [ @) PDEGle € (o ain]) do = 3w flaw) (2.7
k=1

Z;

where the evaluation points, z, are the roots of the N-th polynomial in the basis, m; 5, and
the weights, wy, are computed as:

1
Wy = -~ (2'8)
% (in(ar)”

By projecting any function, f, into the orthonormal polynomial basis one can approximate
its response as a polynomial. Note that since the method can handle different truncation
orders in each region in general there are going to be discontinuities in the polynomial response



between the regions; this does not produce any problem as the integration in each region is done
independently.

[eS) N N
flx) = Z(fv Tin)i Tin(2) ~ Z(f, Tin)i Tin () = Z Cin Tin(T) V2 € 24, Ti11] (2.9)
n=0 n=0 n=0

The coefficients of the function in the polynomial basis, ¢;;, can be computed numerically
using the Gaussian quadrature rules presented in eq. 2.8; this method is also known as spectral
collocation:

N
Cin = (f, Tin)i = Zwk f(@g) min(zg) VY <N (2.10)
k=1
Finally the statistical moments of the function can be obtained from its coefficients in the
polynomial basis:

R. R.
E(f):ZPiEi(f) :Z]P’icio (2.11)

R, N
V() =D > Pic, —E(f)? (2.12)

i=1 k=0
It is very important to notice that the polynomial surrogate function is not used for computing
neither the E(f) nor V(f). In fact, the E(f) can be computed using the quadrature rule directly
as presented in eq. 2.7; which is equivalent to computing only the 0-th order coefficients; and
then using eq. 2.11. If the variance is required then all the coefficients in the polynomial basis

are computed and used in eq. 2.12.

2.2 MEPC for wind speed and wind direction:

Due to the independence between wind direction and speed inside a direction sector, a polynomial
basis can be constructed independently for wind speed and for wind direction. The 2D
polynomial basis is then the product between the one dimensional polynomial basis. Similarly
the 1D quadrature weights can be used to define the 2D quadrature rules for each sector. A
polynomial basis of orders N, for wind speed and Ny for wind direction are built by solving
the equations 2.5 and 2.6. To build the orthonormal polynomials the statistical moments of
the truncated Weibull are required, as well as the truncated moments for the wind direction
distribution. Expressions for the truncated statistical moments of the Weibull distribution are
presented in [6].

R, R
E(P)~ > Y (P);P;P; (2.13)
i=1 j=1
0541 wit1
<P>ij = / / P(u, 0) PDF(@W € [9]‘, 07+1]) PDF(U‘U € [ui, qu]) du df
0; ui

N, Ny

~~ Z Zwﬂ vk P(ug,0;) (2.14)
k=1 I=1



The notation used is: wj; represents the weight associated to the {-th root of the Ng-th order
polynomial for the wind direction inside the j-th sector. v;; represents the weight associated to
the k-th root of the N,-th order polynomial for the wind speed inside the i-th sector. The roots
and weights are computed independently as in the single variable case from eq. 2.8. Once the
polynomial families have been obtained for each sector, one can capture the statistical properties
of the power as produced by the random wind speed and wind direction by projecting the power
curve function into the 2D polynomial basis:

N, No

P(u, 9) ~ Z Z Cijkl ﬂzk(u) le(e) Vo € [0]‘, 9]'+1] and Yu € [ui, uHﬂ (215)
k=0 1=0
The coefficients of the power in the polynomial basis can be computed numerically using the
quadrature rules:

N, No

Cijkl = <P, 7Tik77jl>ij ~ Z Zwﬂ Vik P(uk, 91) ﬂik(uk) le(gl) (216)
k=1 =1

Finally the statistical moments of the power distribution can be obtained from the polynomial
basis coefficients:

Ry Ry
E(P) =Y PiPj(cijoo) (2.17)
i=1 j=1
Ru Ry N, Ny
V(P) =" <Pi Py > c,?jk,) — E(P)? (2.18)
i=1 j=1 k=0 (=0

3 Single wind turbine case

A single wind turbine case is considered in order to verify the concept of using MEPC techniques
to estimate the AEP. For this case the power is only a function of the Weibull distributed wind
speed. The wind speed operational range of the wind turbine and optionally the region with
rated power are used to define the regions of integration. Some examples of the orthonormal
polynomial basis for the truncated Weibull distribution are shown in figure 1, as well as the
obtained quadrature points and the polynomial surrogates. In this figure it can be observed
that the polynomial response passes through the evaluation points. And it can be expected that
oscillations might appear for high polynomial orders, especially for regions with constant power.
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Figure 1. (Left) 6-th order polynomial basis for an individual region Weibull distributed wind
speed: u € [4,25] [m/s] (Right) Power curve (black line), quadrature evaluation points and
polynomial surrogate of the power curve.



Figure 6 shows the convergence for different integration schemes for the relative error of
E(P) and of V(P) vs. the number of model evaluations used in the integration N. The
relative error is calculated with respect the trapezoidal integration rule with 10° points. The
instabilities in the MEPC quadrature results are produced by the difference in the location of
the evaluation points. The location of the evaluation points and the accuracy of the quadrature
rules depend on the Weibull parameters because the method depends on the PDF(u). The
benefit obtained for using MEPC is considerable; as it reduced the number of model evaluations
from 21 (current common practice) down to 6 model evaluations for similar relatives errors of
0.1% in expected power and variance. Note that the method becomes numerically unstable
at high polynomial orders (larger than 10) even with careful handling of number precision
because of the large differences in the values of the high order statistical moments, E(z™).
The results presented in this article use the following python libraries: the polynomial handling
class on numpy (http://www.numpy.org), scipy (http://www.scipy.org) for its implementation of
the trapezoidal/Simpson’s methods and mpmath (http://mpmath.org/doc/current/index.html)
for handling the polynomial construction and root finding algorithms with an arbitrary high
precision.
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Figure 2. Convergence for different integration schemes vs. number of model evaluations N for
the relative error of (left) E(P) and (right) V(P). Weibull distribution with shape parameter
kw = 2 and scale parameter (Top) A = 8.0 [m/s] (Bottom) A = 10.0 [m/s].

4 Simple wind power plant case

In this section the multi-element polynomial chaos technique is applied to a simple wind power
plant. The power is computed using G. C. Larsen’s semi-empirical wake model [1]. The local
weather is characterized by a Weibull distributed wind speed and an uniformly distributed wind
direction inside each wind direction sector. Note that this type of assumption is the standard in
most wind energy flow models such as WAsP. On the other hand, the method proposed in this
paper could be applied for an arbitrary distribution of wind direction inside each sector. The
only requirement is that the statistical moments are known or computable (some examples of



marginal distributions for wind direction are: Multiple mixture of Von Mises, or kernel density
estimated PDF).

Under the assumptions of the present model, the correlation between wind speed and wind
direction is modeled by having different parameters of the Weibull distribution as a function
of the wind direction sector. The 1D polynomial basis for the wind direction are the Legendre
polynomials since the conditional probability density function for the wind direction inside each
sector is assumed to be uniform. The final number of evaluation points is the tensorial product
(meshgrid combination) of the wind speed and the wind direction quadrature points.

The layout of the simple offshore power plant is shown in figure 3, as well as the power
and thrust coefficient curves for the Vestas V80-offshore turbines. The wind rose and Weibull
parameters for the site are shown in figure 4.
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Figure 3. Simple wind power plant: (Left) layout and (Right) power and thrust coefficient
curves for the turbines.
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Figure 4. (Left) Wind rose of the site. (Middle) Weibull scale parameter for each sector.
(Right) Weibull shape parameter for each sector.

The wind park’s power curve , P(u,6) is shown in figure 5 (Left). This power curve is
computed using 30960 model evaluations: every 0.5 [deg.] and 0.5 [m/s]. This figure additionally
shows an example of the resulting polynomial surrogate power curve. It can be observed that the
power surrogate captures the rough behavior of power. As expected the polynomial surrogates
present oscillations in the region of rated power as well as discontinuities between the regions;
this does not cause any problem due to the fact that the integration in each region is done
independently and since the oscillations around the real power curve cancel out when computing
the E(P) or V(P). It might be of interest to visualize the polynomial surrogate because if the
surrogate presents to many oscillations it means that the order of the polynomial is to high, and
a further division of integration region can be executed.
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Figure 5. Power plant power curve: (Left) computed from 720 x 43 = 30960 model evaluations.
(Right) Polynomial surrogate of the power curve order computed in Rp = 12 sectors, with
N, = 8-th order in wind speed and Ny = 5-th order in wind direction for a total of 12x5x8 = 480
simulations.

The convergence of the expected power and of the standard deviation of power normalized by
the rated wind farm power are shown in figure 6. The same numerical instabilities produced by
the shifting of root locations can be observed. Furthermore it can be observed that the MEPC
algorithm converges very fast to the desired values with relatives error of order of 1%. This
relative error is computed with respect the predictions with 30960 model simulations and it is
show in the figure as the shaded purple region. It is important to remark that surrogates with
a low polynomial degree, 2-nd in wind direction per sector and 4-th in wind speed, capture the
expected power and its variance within 1% accuracy with around 10 times less model evaluations
than the trapezoidal integration scheme used in the traditional binning method. Note that when
R, = 2, the regions are defined as: [4,14] and [14,25] [m/s], and the order on the rated power
region is always N, [2] = 1.
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Figure 6. Convergence for different integration schemes vs. number of point evaluation N for
the (left) normalized expected power E(P) and (right) normalized standard deviation of power,
S(P) for number of model evaluations.

5 Real wind power plant case - Horns Rev 1

In this section the multi-element polynomial chaos technique is applied to the Danish offshore
wind power plant Horns Rev 1 (HR1) co-owned by Vattenfall and DONG Energy. This wind
farm is located in the Western coast of Denmark, at a distance of 9 to 12 [km] from the coast.
This plant has has been studied in several articles and it is one of the benchmark cases for wind



turbine wake models. The layout of HR1 is shown in figure 7, along with the power and thrust

coefficient curves for the Vestas V80-offshore turbines. The wind rose and Weibull parameters
for the site are shown in figure 8.
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Figure 7. Horns Rev 1 power plant: (Left) layout and (Right) power and thrust coefficient

curves for the turbines.
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Figure 8. Horns Rev 1 plant: (Left) Wind rose of the site. (Middle) Weibull scale parameter
for each sector. (Right) Weibull shape parameter for each sector.

The power curve of Horns Rev 1, P(u,6) is shown in figure 9. As in the previous section
the power curve is computed using 30960 simulations of G. C. Larsen’s model [1]. An example
of a polynomial surrogate for the power curve is also presented in this figure. As expected, the
polynomial surrogate presents discontinuities between the sectors and it contains oscillations in
the region of rated power. As discussed in the previous section, the discontinuities do not cause
problems in the computation of AEP because each region is treated individually. Note that
the 12 wind direction sectors were divided into 2 regions in order to reduce the degree of the
polynomial basis required to capture the dependency on wind direction.

Convergence of power expectation and standard deviation can be observed in figure 10. It can
be observed that the MEPC algorithm converges very fast to the desired values with relatives
error of order of 1%. This relative error is computed with respect the predictions done using
30960 model simulations and it is show in the figure as the shaded purple region. It is important
to remark that surrogates with a low polynomial degree, 2-th in wind direction per sector and
4-th in wind speed, capture the expected power and its variance within 1% accuracy using 10
times less model evaluations than the trapezoidal integration scheme used in the traditional
binning method. Note that when R, = 2, the regions are defined as: [4,16] and [16,25] [m/s],
and the order on the rated power region is always N, [2] = 1.
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Figure 9. Horns Rev 1 power curve: (Left) computed from 720 x 43 = 30960 model evaluations.
(Right) Polynomial surrogate of the power curve order computed in Rp = 24 sectors, with 3-th
order in wind direction and 4-th order in wind speed for a total of 24 x 3 x 4 = 288 simulations.
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Figure 10. Convergence for different integration schemes vs. number of point evaluation N for
the (left) normalized expected power E(P) and (right) normalized standard deviation of power,
S(P) for number of model evaluations.

6 Discussion

The conceptual methodology of MEPC has been proven as having the potential to handle
arbitrary local wind resources probability distributions. The methodology presented in the
current paper has been implemented to handle user defined number/machine precision. Despise
these efforts the polynomial basis building algorithm presents instabilities for large order of
polynomial basis order. The quadrature rules are a fundamental step to find the statistical
parameters of the power. Further research is still required to assure stability in the convergence
rates of polynomial chaos for arbitrary Weibull distributions.

AEP production calculations with high fidelity flow models are restricted by their large
computational requirements, in particular due to the large number of model simulations required
to estimate the AEP with a certain level of accuracy. There is a need for methods to reduce
the number of model evaluations required to compute power statistics. Furthermore analysis
of uncertainty in power production have shown that the uncertainty in AEP can go up to
10% depending on the uncertainty in the input parameters [7]. The minimum requirement of
AEP accuracy should be between 0.1 — 1%. MEPC method can achieve a relative error in
the calculation of AEP smaller than 1% for a reduced number of evaluations. A reduction
by a factor of 10 in comparison to current techniques can be achieved using MEPC with
192 = 24 x 4 x 2 model simulations: this accounts for 2 regions of wind speed polynomial
basis of orders Ny = [4, 1] and a 2-nd order basis for wind direction.



The presented method is designed to be applied in optimization under uncertainty in which
AEP calculations are going to be calculated on every optimization step (possible thousands of
times). Each optimization step will propose a new wind power plant layout which makes the use
of previous simulations impossible. Building the MEPC surrogate is a fast process, specially if
the polynomial basis in wind direction and wind speed are precomputed and stored before the
optimization technique. Furthermore, in optimization algorithms the accuracy of the AEP is
gradually refined as the objective function increment diminishes, this can be achieved with the
present method by increasing the order of the polynomial basis. Consequently a good estimation
of AEP with few model simulations can speed up the process of optimization significantly and
a more accurate AEP estimation will only be computed for the final steps.

Further investigation of the use of other types of functional basis are planed to be developed
such as: (1) the use of polynomial basis for correlated wind velocity vector and turbulence
intensity, (2) the use of wavelets for wind speed to deal with the discontinuities in the power
curve and (3) a mixtures of polynomials and Fourier series for wind speed, wind direction and
turbulence intensity. These techniques promise to have a better estimation of AEP but at the
cost of increasing the number of model evaluations in comparison to the method presented in
this article.
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Abstract

In the present work, polynomial surrogates are used to characterize the energy produc-
tion and lifetime equivalent fatigue loads for different components of the DTU 10 MW
reference wind turbine under realistic atmospheric conditions. One of the contributions
of the present article is to model the variability caused by different turbulent struc-
tures in the inflow. This is done by creating independent surrogates for the mean and
standard deviation of each output of the aeroelastic model for different realizations of
the turbulent structures. A global sensitivity analysis shows that the turbulent inflow
realization has a bigger impact on the total distribution of equivalent fatigue loads
than the shear coefficient or yaw miss-alignment. The methodology presented extends
the deterministic power and thrust coefficient curves to uncertainty models and adds
new variables like damage equivalent fatigue loads in different components of a wind
turbine. These surrogate model can then be implemented inside other work-flows such
as: estimation of the uncertainty in annual energy production due to wind resources
variability and/or robust wind power plant layout optimization. It can be concluded
that it is possible to capture the global behavior of a modern wind turbine and its
uncertainty under realistic inflow conditions using polynomial response surfaces. The
surrogates are a way to obtain power and load estimation under site specific charac-
teristics without sharing the proprietary aero-elastic design.

Keywords: Uncertainty quantification, aeroelasticity, wind turbine model, annual
energy production, lifetime equivalent fatigue loads

1. Introduction

The wind turbine design standard IEC 61400-1 [1] provides wind climate specifica-
tions which are used as a reference for the structural design of the wind turbines. For
achieving type certification of a new turbine model, the designer has to demonstrate
that the structural capacity of the turbine is sufficient for withstanding the reference

Preprint submitted to Renewable Energy September 19, 2016



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

wind conditions over the entire lifetime of the turbine. Such a demonstration is nor-
mally given by dynamic load simulations which characterize the behavior of the turbine
under the reference wind conditions. Once certification is achieved, the given turbine
model can safely be installed on sites where the wind conditions are identical or more
benign than the reference standard conditions. However, in many occasions one or
more of the parameters describing the site environmental conditions will be outside
the ranges which are sufficiently covered by the IEC reference conditions. In such
cases, it is necessary to estimate the actual loads which the turbine will experience
over its entire lifetime, by considering the full joint distribution of the variables that
describe the turbulent inflow. This is similar to a propagation of uncertainty prob-
lem in which the distribution of the atmospheric conditions on the site needs to be
propagated through the aeroelastic model of the turbine, see Figure 1.

Stochastic inputs Model Stochastic outputs

POFG) MBN™  PDF(y)?

Figure 1: Propagation of uncertainty problem.

If a full design load case setup similar to the IEC 61400-1 design cases is used for that
purpose, the problem quickly becomes time-consuming as new dynamic simulations
would be required for each site. As an example, the number of simulations required
to predict within 1% error the lifetime equivalent fatigue loads on a floating wind
turbine can reach up to 3,200,000 = 20° using regular grid-based estimates or in
the order of 50,000 using Monte-Carlo (MC) simulation [2]; in this study the inflow
conditions (sea/wind fields) are characterized by five stochastic variables. An approach
that alleviates these issues is mapping the turbine response to different environmental
inputs by means of a fast and accurate surrogate model. Several techniques can be
used to predict the behavior of the turbine from a limited set of model evaluations such
as: interpolation techniques, response surface techniques, polynomial chaos expansion
(PCE), Gaussian process (Kriging) and machine learning techniques.

A quadratic response surface technique based on a circular central composite design
has been used to represent the response of a wind turbine to five environmental input
parameters [3]. The probability density function (PDF) of the fatigue load in different
components of the NREL 5 MW reference turbine has been studied as function of
the PDF of four inputs: mean wind speed, yaw error, wind shear exponent and wind
veer parameter [4]. A Kriging surrogate has been used as a function of wind speed
and turbulent standard deviation to predict the 50 year extreme loads on a 5 MW
wind turbine [5]. Two different regression-tree wind turbine surrogates have been
developed for power production [6] and for equivalent fatigue loads [7]; these surrogates
use machine learning techniques to predict the output of the turbine as a function of
wind speed, turbulence intensity and shear exponent.

Polynomial chaos expansion is a methodology used to efficiently propagate input
uncertainties through a non-linear model. This methodology consists in building a
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polynomial response surface to capture the global dependency of the output as a func-
tion of the uncertain inputs. PCE is widely used in the uncertainty quantification field
because of its simplicity and fast convergence in comparison to a full MC simulation
based on the original model [8, 9, 10, 11, 12]. Furthermore, adaptive PCE training al-
gorithms can be used to obtain a sparse surrogate that minimizes the number of terms
that have multiple variable dependency, making the surrogates extremely efficient re-
sponse surfaces in multiple dimensions [13, 14, 15]. In the case of smooth continuous
models with multiple input variables, sparse polynomial chaos expansion methodology
is the most efficient technique to build the surrogates in terms of the number of model
evaluations required, the number of input dimensions they can handle and the rate of
convergence [13].

One of the main difficulties in building a surrogate of an aeroelastic wind turbine
model is the fact that the turbulent inflow realization (TIR, i.e. turbulent structures
in the flow field) causes variations in the different wind turbine model outputs: such
as power, thrust, fatigue and extreme loads in the different components of the tur-
bine. This can be restated as: an aeroelastic wind turbine model has stochastic/non-
deterministic outputs. Many studies have analyzed the difficulties of studying fatigue
and extreme loads under different turbulent inflow realizations [16, 17, 18, 5, 3]. Differ-
ent TIR activate different dynamics of the structure and have different control system
responses; therefore are an important source of uncertainty in the prediction of the
outputs of the model [16]. The high variability in the model response to certain tur-
bulent inflow structures has also been shown to be problematic when MC simulation
was used to predict lifetime averages of fatigue loads on a floating wind turbine [2].

1.1. Response to the problem

The aim of the present study is to demonstrate a method for building a quick and
accurate surrogate of a wind turbine model that predicts the turbine response as a
function of multiple stochastic input variables that describe the turbulent inflow on
a site (x). The surrogate for the turbine model is a set of two independent sparse
polynomial response surfaces that allow to predict the variability caused by different
input variable distributions and by different turbulent inflow field realizations (TIR).
One response surface characterizes the expected output with respect TIR: gg(x) =~
Err(y|x). The other one describes the standard deviation of the output with respect
TIR: §s(x) ~ +/Vrr(y|x); which is a model that predicts the uncertainty in the
turbine response due to different turbulent structures hitting the turbine. Finally, a
sample can be obtained from the normal distribution constructed using the mean and
the standard deviation surrogates in order to make a prediction of the variability in
the output at a given input point:

7(x) ~ Normal(gg(x), ys(x)) (1)

The final surrogate y(x) can then be used to obtain distributions of the wind
turbine power and loads in a given year whose input parameters (or wind/sea, or
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wind/geological) follow the distribution used to train the surrogate PDF(x). Since the
surrogate is a response surface it can also be used to predict the distribution of the
outputs when the input distributions is close but not exactly the distribution used for
training the surrogate. This setup is considered a multi-leveled uncertainty propaga-
tion and it is the scenario that occurs when there is uncertainty in the parameters that
characterize the WS distribution for example. This approach is necessary to estimate

the uncertainty in annual energy production and lifetime averaged equivalent fatigue
load.

1.2. Article overview

A general overview of the PCE methodology in multiple dimensions is presented
in section 2. This section describes the Rosenblatt transformation, the design of ex-
periments used to define the training simulation points, the approach used to train
sparse polynomial response surfaces and the logistic transformation used to limit the
output. In section 3, the methodology is then applied to the response of the DTU 10
MW reference wind turbine HAWC2 model [19] to turbulent inflow fields characterized
by four input parameters. The four input parameters are the 10-min averaged hub
height wind speed, the turbulent standard deviation of the instantaneous wind speed
in the streamwise component, the shear exponent and the yaw misalignment angle. A
study of how many independent realizations of the turbulent inflow field are required to
achieve a certain error tolerance in the surrogate is presented in the section 3.7. Finally
in section 3.8, the surrogates are used in an example of prediction of the uncertainty
in the annual energy production and the uncertainty in lifetime averaged equivalent
fatigue loads.

2. Methods

This article proposes the use of two different variable transformations to simplify
the polynomial response surface fitting problem, see Figure 2. The first transforma-
tion is the Rosenblatt transformation [20], which is used to de-correlate the set of
D input variables x = (2o, 21,...2p_1) into a set of independent uniform variables,
w = (wp,wy, ... wp_1). The second transformation is a logistic transformation, and it
is used to enforce constraints on the polynomial surrogates [21]. This transformation
enables the use of polynomial surrogates in problems where the output has a minimum
and/or maximum value. Without the logistic transformation the polynomial surrogates
will present oscillations in the regions where the model has a constant output. The
power production of a turbine is an example of a variable with a strict upper constraint
corresponding to the rated power.

2.1. 1D PCE theory

Consider a model with a single uncertain input (z) and a single output (y). PCE
consists in defining a polynomial family that is orthogonal with respect the input
distribution, PDF(z). Orthogonal polynomial families with respect the most important
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Figure 2: Transformation of variables to build efficient polynomial response surface.

distributions are well known, see table 1. For details on how to define new polynomial
basis to an arbitrary input distributions refer to Gautschi et al [22].

Distribution Polynomial Family

Uniform Legendre
Normal Hermite
Exponential Laguerre

Table 1: Classical orthogonal polynomial families.

The orthogonal polynomials are used to build a polynomial approximation of the
output, i.e. a polynomial response surface, see equation 2. Where, ¢;(x) is the !
order orthogonal polynomial, ¢ is its correspondent coefficient and M represents the
truncation order of the PCE.

M
y(@) ~ (@) = S o) @)
1=0

There are two different approaches to determine the ¢; coefficients:

Semi-Spectral projection consists in using quadrature rules to approximate the in-
ner product definition of the coefficient, see eq. 3. Many quadrature rules exist to
approximate the integrals; but all quadrature rules give N,, nodes for model evalua-
tion (z;) and their corresponding weights (w;). Gaussian quadrature rules are widely
used because they are accurate for smooth function integration with respect a weight
function, in this case the PDF(z), see equation 3.

Np,

o= (.00 = [ y(e) én(a) PDF (o LRPIVELTS 3)

In general, semi-spectral projection is an efficient method for low number of input
dimensions, but the number of model evaluations required grows exponentially with
the number of dimensions. Additionally, quadrature rules can be unstable for heavy
tailed PDF's such as the Weibull distribution [22].

Point collocation consists in fitting the polynomial basis to a small sample of model
evaluations. Traditionally, this fit can be done using least squares algorithm, but some
other optimization algorithms can be used to obtain PCE approximations that mini-
mize the number of terms in the surrogate [13, 14, 15]. This techniques are explained in
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the section 2.5. In general, point collocation is robust and the advanced optimization
algorithms are designed to handle large number of dimensions, to avoid over-fitting
and to achieve sparsity in the final surrogate. The present study focuses only in the
point collocation techniques since the number of model evaluations required to fit a
multiple dimensional PCE is smaller [13] than in other methods.

2.2. Rosenblatt transformation

To build the PCE of a model with multiple correlated inputs (x), it is required to
initially transform the correlated input space into an uncorrelated space (w = R7!(x)).
In this article, the Rosenblatt transformation is used because the input distribution of
the turbulent inflow field parameters are usually defined in a sequence of conditional
relationships [20]. Refer to Dimitrov et al [23] and Graf et al [2] for examples of
such distributions used for offshore and floating wind turbine fatigue and extreme load
analysis.

Since all the variables are transformed into uncorrelated unitary uniform variables
then the PCE only requires the use of the Legendre polynomials: y(x) = y(R(w)) =~

g(w).
2.8. Multi-dimensional PCE

A D-dimensional polynomial is constructed as the sum of the product between
individual one dimensional polynomials for each of the D uniform input variables,

W = [wo,...,wp_1]. The D-dimensional surrogate is written using a set of multiple
indexes Z € NP. An element J € Z contains the order of the polynomial in each
dimension: J = [lp,...,I{p-1]. Additionally, the multiple indexes are enumerated,

J < 7 € N. A surrogate that contains N, terms can be written as:

) = y(RW) = 3 € ,(w) @

where an element in the multidimensional polynomial basis is given as:

& (W) = iy (wo) X+ X ¢, (Wp—1) (5)

2.4. Training point selection

The Rosenblatt transformation enables the use of multiple variance reduction MC
sampling techniques to define the training points of a surrogate [24]. Latin hypercube
sampling [25], Sobol sequence [26] and Hammersley sequence [27] are some examples of
such techniques. These techniques are designed to sample from the unitary hypercube
of D dimensions, i.e. the uniform distributed variables: w; ~ PDF(w). Finally, the
Rosenblatt transformation is used to transform each realization in the uniform sample
into the correlated input space, x; = R(w;) ~ PDF(x).

The number of unknown coefficients ¢; in a D-dimensional PCE depends of the
total polynomial order of the PCE. The total order is defined as the maximum sum
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of the one dimensional orders. If the PCE is truncated to a total order M then the
number of unknown coefficients is given by the following combination:

M+D\ (M+D)
Nc—< A >_M!D! (©)

The number of model evaluations should be between 2 or 3 times the number of
unknowns in order to have extra data to test the accuracy of the surrogate and to
implement strategies to avoid over-fitting [13]. Note that the maximum order is only
used to estimate the number of model evaluations. Advanced regression techniques
allow to explore higher order terms [15, 13]. The maximum order M can be increased
in order to achieve higher accuracy surrogates but at the cost of having more model
evaluations and the requirement of assuring that there is not over-fitting.

2.5. Point collocation and the LASSO problem

The least absolute shrinkage and selection operator (LASSO) problem is a modified
least squares optimization problem that adds a term that penalizes the amount of active
terms in the surrogate (terms with non zero coefficients). LASSO is used to achieve
sparsity and to avoid over fitting in the polynomial surrogate. Additionally, the number
of model evaluations required for solving the LASSO problem is smaller in comparison
to a least squares regression that has the same maximum total polynomial order [13].

A LASSO problem can be described as finding the set of coefficients ¢; that mini-
mizes the sum of squared errors plus the sum of the absolute values of all coefficients
(¢ norm regularization term) [15]:

N-1 [N.—1 2 Ne—1
min 3|3 e —ut)| +aS I m
! i=0 L j=0 J=0

where the number of model/surrogate evaluation points N is fixed. Note that the
input and surrogate evaluation points are related by the Rosenblatt transformation
x; = R(w;). The maximum number of possible terms of the surrogate N, is fixed by
selecting a maximum total multi-dimensional polynomial order.

The regularization coefficient o controls the amount of active terms in the final
solution. Smaller values allow to have more active terms while larger values will prefer
final surrogates with few active terms. A sparse surrogate has the advantage of making
the evaluation of the multi-dimensional surrogate faster in comparison to the full least
squares solution; this advantage becomes critical in high number of input dimensions.

There are two algorithms widely used to solve the LASSO problem: coordinate
descent [15] and least angle regression (LAR) [13]. Coordinate decent is used in the
present work because it tends to be more stable for high dimensional problems [14]. The
reason for this is that coordinate descent operates on a given regularization coefficient
instead of exploring the full space of a’s as in LAR algorithm.

Cross-validation is used to select the regularization coefficient o that minimizes
over fitting of the data. A k-fold cross-validation consists in splitting the dataset into

7
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k groups of data. All the points in k-1 groups are used for training and the remaining
group is used for cross-validation. This means that the surrogate fitted using k-1
groups is used to predict the output in each of the elements of the remaining group.
The mean squared error of the prediction of the surrogate is then computed. This
process is repeated leaving out each individual fold and for multiple regularization
parameters. The regularization parameter that gives the lowest mean cross-validation
mean squared errors is then selected to train the whole dataset. This translates as
selecting the sparse model that performs the best by predicting missing data, i.e. that
has less over-fitting.

2.6. Logistic transformation

A logistic transformation is applied to an output of the model in order to avoid
oscillations in the regions where the model is constant. In practice this transformation
is used to impose strict restrictions on the polynomial surrogates. The transformation

consists in applying the logit function, L(p) = ln( ) to the model output at the

t