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Tomographic Reconstruction Methods for

Decomposing Directional Components

Rasmus Dalgas Kongskov� Yiqiu Dong�

August 30, 2017

Abstract

X-ray computed tomography technique has many di�erent practical ap-
plications. In this paper, we propose two new reconstruction methods that
can decompose objects at the same time. By incorporating direction in-
formation, the proposed methods can decompose objects into various di-
rectional components. Furthermore we propose a method to obtain the
direction information in the objects directly from the measured sinogram
data. We demonstrate the proposed methods on simulated and real samples
to show their practical applicability. The numerical results show the di�er-
ences between the two methods and e�ectiveness as dealing with �bre-crack
decomposition problem.

1 Introduction

X-ray computed tomography (CT) is a highly used non-invasive imaging tech-
nique. Applications of this technique ranges from biological and chemical science,
to structural and material science, where the resolution also varies from large scale
(meters) to micro-scale (nano-meters). In CT technique, reconstruction methods
play a fundamental role, and very often after reconstruction we need segment
or decompose the objects into di�erent components. In this paper, we focus on
directional objects, whose textures are mainly along one direction. One impor-
tant example of directional objects is �bres, such as optical �bres, glass �bres,
carbon �bres, etc. When analyzing �bre materials, CT scanners can be used to
investigate interior properties, for example irregularities, see [21, 23, 12]. A spe-
ci�c irregularity that is often sought for in �bre materials are cracks. Both the
�bres and the cracks can be regarded as directional components. Based on this
application, we will propose new methods for reconstructing and decomposing
directional components simutaneously.

The CT technique is based on the X-ray attenuations as X-rays pass through
objects. According to Lambert-Beers law, the measured data, i.e. the sinogram,
can be considered as line integrals on the attenuation coe�cients of the object
[5]. In the continuous setting, we call this integral as Radon transform, and in
the discrete setting we can write it as a linear equation:

Az � b; (1)
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where A 2 RN�M2

represents the CT process, z 2 RM2

represents the object to
be reconstruct, and b 2 RN denotes measured noisy data. The data is measured
with N� scanning angles and Nt detector bins, wihch gives N = N�Nt. For
simplicity we consider 2D parallel beam geometry, the work introduced in the
paper can be easily extended to fan beam geometry. In addition, we assume that
the scanning angles are fully around the objects.

The most widely used reconstruction method for CT isFiltered Back-Projection
(FBP) [20], which is based on the analytical formulation of inverse Radon trans-
form. Therefore, FBP implicitly assumes to have continuously measured data
from the whole 180� angular range. FBP is very e�cient, and with su�cient
measurements low noise level the method provides good results. But when we
deal with noisy data and underdetermined system, FBP will introduce many ar-
tifacts. In order to overcome the drawback from FBP and be able to deal with
noisy and/or limited data, variational methods have been used for many inverse
problems including CT reconstruction, see [1, 24] for more details. In this pa-
per, we assume that the sinogram data are corrupted by additive white Gaussian
noise, which ends up with the following variational model

min
z

1

2
kAz� bk2

2 +R(z): (2)

In (2) R(z) is called as regularization term, which incorporates the prior infor-
mation on the objects. Many regularization techniques have been proposed, and
one of the most commonly used for imaging problems is total variation (TV). TV
was �rst introduced in [22] for image restoration and afterwards was used for CT
reconstruction in e.g. [8, 25].

In order to decompose the objects into several components, image decomposi-
tion methods was �rst proposed in [6] by using in�mal convolution. The idea is to
de�ne two convex functionals J1 and J2 with respect to two components z1 and
z2 according to their properties, respectively, then by solving the optimization
problem

inf fJ1(z1) + J2(z2)g s.t. z = z1 + z2

to obtain decomposition results. Based on di�erent applications, many image
decomposition methods were proposed, e.g. [17, 9, 26, 2, 3, 10, 11]. Recently, this
technique is also applied to CT problems to decompose the reconstruction into
the object component, limited data artifacts and noise component [16].

In this paper, we propose two methods to decompose the objects into direc-
tional components. One method is motivated from the microlocal analysis results
in [19], and decomposes the objects by splitting the sinogram directly. In order
to suppress artifacts from limited data, variational methods with proper regular-
izations are introduced. The other method is based on image decomposition by
using the in�mal convolution. We compare the two methods by discussing their
theoretical di�erences, and also demonstrate their performance through empirical
examples. In addition, to de�ne the directional components, we also introduce a
method to estimate the main direction of an object directly from its sinogram.

The paper is organized as follows. In section 2 we review a regularization
technique proposed in [14] for incorporating direction information. Furthermore,
we propose a method to estimate the main direction of an object directly from its
sinogram data. In section 3 we introduce the sinogram splitting method, where by
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splitting the sinogram we are able to obtain components along di�erent directions.
In section 4 a image decomposition method by using directional regularization
is proposed to decompose directional components. Numerical experiments are
carried out in section 5, and in section 6 conclusions are drawn.

2 Directional regularization in CT reconstruction

We start this section by reviewing a directional regularization, called as directional
total variation (DTV), proposed in [4, 14, 13]. This regularization is one kind of
anisotropic TV, and very e�ective for reconstructing directional objects, whose
textures are mainly along one speci�c direction. Afterwards taking CT scanning
geometry into account we propose a method to estimate the main direction of
objects directly from the sinogram data.

2.1 Directional regularization

In order to incoporate direction information, a directional regularization, called
as directional total variation (DTV), was introduced for image denoising and
deblurring in [4, 14, 13]. DTV builds on the prior that the object is piece-wise
constant and its textures are along one main direction. For an image z 2 RM�M ,
its DTV can be de�ned as

DTV�;a(z) =
X
i;j

jR��a(rz)i;j j2;

where

R� =

�
cos � � sin �
cos � sin �

�
and �a =

�
1 0
0 a

�
; (3)

denote the rotation matrix with the angle � 2 (0; 2�] and the scaling matrix
with the paramter a 2 (0; 1], respectively. In addition, the gradient operator
r : RM�M ! R2M�M is de�ned as

rz =

�
rx1z
rx2z

�
and (rz)i;j =

�
(rx1z)i;j
(rx2z)i;j

�
where rx1

and rx2
denote the derivatives along the two dimensions x1 and x2,

respectively, and can be obtained by applying a forward �nite di�erence scheme
with symmetric boundary condition, i.e.,

(rx1
z)i;j =

�
zi+1;j � zi;j ; if i < M;
0; if i = M;

and (rx2
z)i;j =

�
zi;j+1 � zi;j ; if j < M;
0; if j = M:

In Figure 1, we give an example to illustrate how the DTV regularization
performs when reconstructing directional objects from CT data. In this example,
the underdetermined rate, i.e., N

M2 , equals 2
3 , and the data are corrupted by 1%

additive white Gaussian noise. We compare the result by using the DTV regular-
ization in eqn:varprop with the one from FBP and the one by using total variation
(TV) as regularization. It is obvious that the DTV result is superior both quan-
titatively (based on the peak signal-to-noise ratio, psnr in short, measure) and
visually.
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Figure 1: Comparison on simulated CT reconstruction problem. Regularization
parameters for the ‘2-TV and ‘2-DTV methods are tuned to maximize the peak-
signal-to-noise ratio (psnr). The parameters in DTV are chosen as a = 0:15 and
� = 20�.

2.2 Direction estimation from sinogram data

In order to use DTV as regularization we have to select the parameters a and �.
Based on the results in [14] with a good direction estimation a = 0:15 usually
provides good results. In this section, we focus on the main direction estimation,
and propose a method to estimate it directly from sinogram data.

In [13] a direction estimator based on Fourier transform was proposed. This
estimator is according to the fact that 2D Fourier basis functions can be seen as
images with a signi�cant main direction. Therefore, if the textures of the image
are mainly along one direction, the magnitude of the coe�cients corresponding
to the Fourier basis along the same direction will be relatively large. Although
this estimator is robust with respect to the noise, it requries the information
in image domain. But in CT reconstruction, we only have sinogram data. To
avoid estimating the main direction � from the reconstruction, we introduce a
new direction estimator based on CT scanning geometry.

Since CT scan is around the objects, the measurements are strongly related
with the scanning angle. If we consider the case that the scanning angle is rel-
atively close to the main direction �, then the projections will be through the
objects or through the gaps among the objects. Hence, the measurements along
� will be oscillating. Then, we can utilize 1D Fourier transform to check if the
measurements along each scanning angle are oscillating, and the largest magni-
tude of the Fourier coe�cients should correspond to the main direction. The
detailed algorithm for estimating the main direction is given in algorithm 1. Note
that this direction estimator is not limited to parallel-beam tomography, since a
similar oscillating signal also appears when the fan-beam geometry is used.

In order to show the performance of our direction estimator, we test it on
a simulated phantom and a real object from [12]. In both cases we simulate
the projections and the noise. In Table 1 we list the estimated direction under
di�erent level of additive Gaussian noise, �, and in Figure 2 we show the two
objects with their sinograms. Furthermore, we indicate the estimated direction
from the noise-free sinogram and the sum of the magnitudes along each angle from
algorithm 1. Based on these empirical tests it is clear that up to 20% Gaussian
noise the new direction estimator is robust with respect to the noise.
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Algorithm 1 Main Direction Estimator

1: Input the sinoogram data b and the measurement angles f�mg.
2: Compute 1D Fourier transform along each angle �m:

b̂!;m =

Nt�1X
l=0

bl;me�
2��!l
Nt :

3: Calculate the sum of the magnitudes along each angle �m and �nd its maxi-
mizer:

h = argmax
m

X
!

jb̂!;mj:

4: Return the main direction � = �h.

� (%) 0 1 3 5 10 20 30 40
Phantom 20.1 20.1 20.1 20.1 20.1 20.1 20.1 31.7

Real 81.5 81.7 81.5 80.9 81.7 79.5 -1.1 -34.9

Table 1: Direction estimation results for the phantom and real objects shown in
�g. 2. Note that the exact main directino for the phantom is 20�.

3 Sinogram Splitting Method

Microlocal analysis (MLA) have been used to determine which singular features
such as edges we can expect to recover in a range of continuous tomography prob-
lems. In [19] the relation between singularities in a function f and singularities
in its Radon transform Af is described. The paradigm that is described in [19]
is further outlined in [15] as follows:

A detects singularities of f perpendicular to the line of integration ("visible"
singularities), but singularities of f in other ("invisible") directions do not

create singularities of Af near the line of integration.

The fact that singularities only propagate when X-rays are perpendicular to
them inspired us to split the sinogram in order to decompose the objects into
several components along di�erent directions. Here, each splitted part of the
sinogram is related to an object component where the directions of the singu-
larities, in the object-domain, are limited. In the following, we focus on a two-
component split, which can be easily extended to decompose any integer amount
of components with di�erent directions.

Assume the two object components are u and w, and both are in RM2

. The
textures of u are mainly along the directions with the angles �u 2 RK , and
w mainly contains the textures along the other angles �w 2 RN�K . Based
on MLA, in order to reconstruct the textures in certain angles, we need the
measurements along the same angles. Then, we split the sinogram and the system
matrix according to �u and �w and obtain:

Auu � bu and Aww � bw; (4)

where Au 2 RKNt�M2

and Aw 2 R(N�K)Nt�M2

are the splitted matrices, and
bu 2 RKNt and bw 2 R(N�K)Nt are the splitted noisy sinograms. Here, we
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Figure 2: Left: the objects with estimated direction from the noise-free sino-
gram. Right: the noise-free sinogram overlayed with the plot of the sum of the
magnitudes.

assume that K is a natural number and larger than 1 in order to avoid recon-
structing u from only one angle measurements.

To solve the linear systems in (4), we can use FBP. Since FBP is based on
the analytical solution of the Radon transform in continuous setting, it requires
to scan the objects from all angles and to have enough projections for each an-
gle. With limited angle problems, the data according to the missing angles are
implicitly �lled by 0. For the systems (4) it is identical to the assumptions:

Auw = 0; and Awu = 0: (5)

On one hand, due to the arti�cial singularities in the sinograms at the transition
between the measured data and the assumed 0-data, artifacts will appear in both
u and w; on the other hand, according to the assumptions we have�

Au
Aw

�
(u + w) �

�
bu
bw

�
; (6)

which means that u+w is reconstructed from the whole sinogram, and the limited
angle artifacts in u and w will be cancelled.

Besides the limited angle artifacts appearing in reconstruction results from
FBP, FBP is also very sensitive to the noise in the sinogram. In order to obtain
good reconstructions from noisy data with limited angles, we can use variational
methods by incorporating prior information on the individual components. Based
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on the linear systems (4) we get the following two variational models for recon-
structing u and w:

min
u�0
kAuu� buk2 +Ru(u); (7)

min
w�0
kAww � bwk2 +Rw(w); (8)

where the regularization termsRu andRw should depend on the prior information
on each component. For example, for the �bre-crack decomposition problem, the
prior for the �bre-component is that it is piecewise constant and its textures
mainly follow one direction �, however, the prior for the crack-component is that
it is independent on the direction, piece-wise constant and sparse. Based on these
priors we suggest the following regularizations:

Ru(u) = �uDTV�;au(u);

Rw(w) = �wTV(w) + �kwk1;

where �u and �w are positive regularization paramters, which control the balance
between the �t to the data and the smoothing from the regularizations. With
these two regularizations, the both optimization problems in (7) and (8) are
convex, and many convex optimization methods can be used to solve them.

4 Image Decomposition Method

In [3, 10], texture-cartoon decomposition methods built on in�mal convolution
technique are proposed. Based on this work, in this section we introduce another
method to decompose directional components from sinogram data.

In many applications �bre-structures are analyzed with the aim to detect
cracks and/or other types of deterioration. Whereas the texture of the �bre mate-
rial follows one main direction �, the deteriorated parts are mainly perpendicular,
or close to perpendicular, to the main direction. Moreover the deteriorated parts
are sparse in the object. Based on these observation we propose the following
decomposition model:

min
u�0;w

1

2
kA(u + w)� bk2

2 + �
�

DTV�;au(u) + �DTV�?;aw(w)
�

+ �kwk‘1 ; (9)

where u 2 RM2

represents the �bres, w 2 RM2

the crack part, and �; �; � > 0 are
regularization parameters. The model (9) is convex, which is desirable when we
want to �nd a solution to the minimization problem. Furthermore the sparsity
constraint is not only a reasonable regularization method for w, it also makes (9)
strictly convex, i.e. the minimizer will be unique.

We have introduced two di�erent methods for combined decomposition and
reconstruction, sinogram splitting method and image decomposition method, and
now we sum up the relations and di�erences between two methods. The sinogram
splitting method has a risk to reconstruct incorrect attenuation coe�cient values
due to split one full scanning problem into two limited angle problems, which
are much more complicated for solving. If we use variational methods in (7)
and (8) to reconstruct the components, the results are not summable. On the
other hand, if we use FBP, based on (6) the components are summable, and
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Figure 3: Left: �bre-crack phantom with �bres along the direction 20� and cracks
in a circular pattern. Right: simulated noise-free sinogram.

the results are identical to decompose the objects under the constraint (5). In
addition, comparing with Ru and Rw in (7) and (8), the regularization in (9)
plays di�erent role. In (7) and (8) the main purpose of utilizing regularization
technique is to remove the limited angle artifacts that occur due to splitting the
sinogram, but in (9) the regularization is used for decomposing the components.

5 Numerical Experiments

In this section we demonstrate the performance of the methods introduced in
section 3 and 4 two simulated X-ray CT problems. In order to set the stage
for the numerical experiments we �rst give some discretization and experiment
details which are valid for the following tests.

We solve the variational optimization problems by using the Primal-Dual-
Hybrid-Gradient (PDHG) method proposed in [7] with the stopping rule

jJ (�k+1)� J (�k)j
jJ (�k)j

< 10�5;

where J denotes the objective function. For (9) we solve the subproblems with
respect to u and w alternately by using PDHG method. All of the algorithms
are implemented in Matlab, where we use the parallel beam GPU code described
in [18] from the ASTRA toolbox, see [28, 27], to calculate Radon transform and
its adjoint operator.

5.1 Sinogram splitting method

For the sinogram splitting method we compare the two reconstruction techniques
presented in section 3, namely FBP and the variational method. Both recon-
struction methods are tested on a simulated �bre-crack phantom shown in �g. 3,
which has cracks in a 360� circular pattern in order to illustrate the performance
of decomposition. In the test, the sinogram is simulated with Nt = 256 detector
bins, N� = 171 scanning angles and the reconstruction grid-size is M = 256,
which make the underdetermined rate as N

M2 = 2
3 . Further, the sinogram is cor-

rupted with 1% additive white Gaussian noise. In Figure 4 we compare the two
methods with a split parameter K = 11 and centered by the estimated main
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Figure 4: Comparison of two sinogram-splitting methods introduced in section 3.

direction from algorithm 1. For the variational method on splitted sinogram, we
choose the optimal �u and �w based on visual inspection, i.e., the reconstructed
u has clear edges within similar intensity range as the ground truth and w has a
homogeneous background and sharp crack edges.

In Figure 4 we see that both reconstructed �bre components (u) are visually
similar, but the colorbar shows that the intensity range by FBP has an o�set of
arround 0.5. Comparing the reconstructed crack components (w) it is obvious
that the result from FBP is much more noisy than the one from the variational
method. In addition, all of the cracks are located in the crack components, which
is due to a highly directional object and a good choice of the range-width index
K = 10. An interesting observation is that the cracks along the main direction
are also presented in crack components, and the reason is that the boundaries of
the crackes which are perpendicular to the main direction are presented in bw.

To show the role of the parameter K, in Figure 5 we show the results from
the variational method with di�erent values of K. It is clear that a small K will
result in some �bre elements fallen in the crack-component, whereas a large K
will result in some cracks apprearing in the �bre component. The choice of K
should be according to prior knowledge about the objects, e.g. if the object is
highly directional a relatively low value will be su�cient.

5.2 Image decomposition method

In the image decomposition model (9) several parameters need to be given. The
main direction angle � for �bre component is estimated by algorithm 1, and au
is �xed as 0.15 based on the empirical tests in [14]. For the crack component, �?

is orthogonal to the main direction, and aw = 0:5 in order to allow to decompose
the cracks that are not strictly perpendicular to the main direction and still avoid
ending up as TV. In order to avoid one feasible set from the two DTV terms fully
covering the other, � should satisfy au < � < 1

aw
, i.e. 0:15 < � < 2. In the

9



0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

Figure 5: In
uence of K on the results from the sinogram splitting method using
DTV-regularized reconstruction.

numerical tests, we tune the parameters �, � and � such that the psnr value of
u + w to the ground truth z is maximum.

In Figure 6, we show the reconstruction results with di�erent � values. To
avoid that the sparsity constraint in
uencing the results, we �x � = 10�6. It is
obvious that a small � will result in more details as well as noise in the crack
component and a large � will leave many cracks in the �bre component.

In Figure 7, we demonstrate the improvement of including the sparsity con-
straint in the image decomposition method by comparing the results from � =
10�6 and � = 10�4. From the results we see a clear improvement on both com-
ponents by using larger �. The intensity range for the �bre-component is much
more accurate and cracks have much sharper edges. The improvement is also
re
ected by a slight increase of the psnr value.

5.3 Comparison of the sinogram splitting method with the
image decomposition method

Comparing the results shown in Figure 4 and 7, we can see that the sinogram
splitting method delivers a much more complete split between the �bres and
the cracks along any given direction. From the sinogram splitting method the
crack component contains a non-homogeneous background and some artifacts.
Furthermore, some cracks are wider than they should be, which is due to the
limited scanning angles and the smoothness from the regularization. The im-
age decomposition method performs better on decomposing the cracks along the
perpendicular direction to � because of the regularization. When the sparsity
constraint is enforced, we can see that the background of the crack component is
homogeneous, while the edges of the cracks are still sharp.

Next, we compare the two methods on a real sample object, which is a carbon
�bre sample and shown in Figure 8. The sample is with the size M = 426, and
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Figure 6: Comparison of the decomposition results from di�erent � by using the
image decomposition method.

we simulate Nt = 426 detector bins and N� = 284 scanning angles with 1%
Gaussian noise in the sinogram. In Figure 9 we show the results from FBP-based
and variational-based sinogram splitting method as well as image decomposition
method. The regularization parameters are tuned based on visual inspection,
where we prioritize the decomposition of cracks. In addition, in the sinogram
splitting method the range-width index K is set as 120, which is much larger
than the one in Figure 4. The reason is to avoid �bre textures appearing in the
crack component.

From Figure 9, we can see that the results from the FBP-based sinogram
splitting method are clearly in
uenced by noise and limited angle artifacts. In
the results from the variational-based sinogram splitting method the edges of �-
bres along the main direction are sharp, but other edges are blurry due to the
limited scanning angles. In addition, the crack component su�ers from a non-
homogeneous background and the stair-casing artifacts, which makes it di�cult
to distinguish cracks. Comparing with the results from the sinogram splitting
method, the image decomposition method produces sharper edges in the �bre
component and decompose the parts that could be categorized as cracks to the
crack component. Especially, the homogeneous background in the crack compo-
nent will bene�t distinguishing cracks.

6 Conclusions

We propose two new tomographic reconstruction methods and aim to decom-
pose components including textures along di�erent directions. We compare the
two methods by discussing their theoretical di�erences, and also propose a new
method for estimating the main object direction directly from measured com-
puted tomography data. The proposed methods are compared empirically on
both simulated phantom and real object. The simulated phantom tests serves as
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Figure 7: Comparison of the decomposition results from di�erent � by using the
image decomposition method. Here, we set � = 0:7 and � = 0:0038.

Figure 8: Carbon �bre sample from [21].

a general performance tests of the methods. In these tests we demonstrate what
can be achieved with the proposed methods. The real data sample tests show
how well these methods perform in practice.
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