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Title of paper: Statistical analysis of solid waste composition data: Arithmetic mean, standard 1 

deviation and correlation coefficients 2 

The core findings of the paper: 3 

 4 

 Data for waste fraction compositions represent closed datasets that require special attention in case of  5 

statistical analysis 6 

 Classical statistics are ill-suited to data for waste fraction compositions 7 

 Isometric log-ratio coordinates enable appropriate transformation of waste fraction compositional data prior to 8 

statistical analysis.  9 

 10 

*Highlights
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Abstract 18 

Data for fractional solid waste composition provide relative 19 

magnitudes of individual waste fractions, the percentages of 20 

which always sum to 100, thereby connecting them 21 

intrinsically. Due to this sum constraint, waste composition 22 

data represent closed data, and their interpretation and analysis 23 

require statistical methods, other than classical statistics that are 24 

suitable only for non-constrained data such as absolute values. 25 

However, the closed characteristics of waste composition data 26 

are often ignored when analysed. The results of this study 27 

showed, for example, that unavoidable animal-derived food 28 

waste amounted to 2.21±3.12% with a confidence interval of (-29 

4.03; 8.45), which highlights the problem of the biased negative 30 

proportions. A Pearson’s correlation test, applied to waste 31 

fraction generation (kg mass), indicated a positive correlation 32 

between avoidable vegetable food waste and plastic packaging. 33 

However, correlation tests applied to waste fraction 34 

compositions (percentage values) showed a negative 35 

association in this regard, thus demonstrating that statistical 36 

analyses applied to compositional waste fraction data, without 37 

addressing the closed characteristics of these data, have the 38 

potential to generate spurious or misleading results. Therefore, 39 

¨compositional data should be transformed adequately prior to 40 

any statistical analysis, such as computing mean, standard 41 

deviation and correlation coefficients. 42 

43 



Page 3 of 35 

 
 

Keywords: 44 

Waste composition 45 

Compositional data analysis 46 

Isometric log ratio 47 

Variation array 48 

49 



Page 4 of 35 

 
 

1. Introduction 50 

 Knowledge of the individual material fractions in waste 51 

represents the basis of any waste management system planning 52 

and development (Christensen, 2011). This information is also 53 

crucial for establishing baselines and evaluating the 54 

effectivness of environmental policies. Generally, the 55 

fractional composition of waste is obtained by conducting 56 

waste fraction composition studies and is usually provided as 57 

weight percentages of selected materials such as paper, plastic, 58 

metal, food waste, etc. (Lagerkvist et al., 2011). Independently 59 

of waste characterisation methods, waste fraction composition 60 

arithmetic mean and standard deviation are usually provided 61 

(European Commission, 2004), thus ignoring the inherent 62 

structure of data for waste fraction compositions (Pawlowsky-63 

Glahn et al., 2015). Here, the standard deviation measures the 64 

‘spread’ of the estimated arithmetic mean (Reimann et al., 65 

2008).  66 

 Waste fraction composition data are ‘closed’ datasets 67 

because of the limited sample space (from 0 to 100 i.e. 68 

percentages). This is known as the ‘constant sum constraint’ 69 

(Aitchison, 1986), where the percentage of one waste fraction 70 

depends on the ratio of the other waste fractions included in 71 

the sampled waste stream. Consequently, the percentages of 72 

waste fractions are linked to each other intrinsically. Therefore, 73 
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univariate analysis (composition of waste fractions analysed 74 

separately) of waste fraction compositions is inappropriate, 75 

because it violates the fundamental assumption of 76 

independence of observations (Pawlowsky-Glahn et al., 2015). 77 

For example, Hanc et al. (2011) studied the composition of 78 

household bio-waste and reported that the yearly percentage of 79 

grass amounted to 27.6±30.8% in single-family areas. The 80 

mean was 27.6% and its standard deviation 30.8%. The 81 

resulting confidence interval (2* standard deviation) of the 82 

mean was the interval (-34.0% ; 89.2%), which covers negative 83 

percentages, although the values cannot be negative in this 84 

case. This problem is described as ‘intervals covering negative 85 

proportions’ (Pawlowsky-Glahn et al., 2015). An increase in 86 

the percentage of one waste fraction leads to a decrease in the 87 

percentage of another fraction and vice versa, because the sum 88 

of the percentage of individual waste fraction is fixed 89 

(Reimann et al., 2008). 90 

 Data for waste fraction compositions refer to 91 

compositional data, which arise in many fields such as 92 

geochemistry (mineral composition of rocks), medicine (blood 93 

composition) and archaeology (ceramic compositions) 94 

(Aitchison, 1994). Here, compositional data carry relative 95 

information or a ratio and add up to a constant (1 for 96 

proportion, 100 for percentage and 10
4
 for ppm (parts per 97 

million)) (Aitchison, 1986; Buccianti and Pawlowsky-Glahn, 98 
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2011). As further examples, chemical compositionwaste water 99 

content, etc. also represent closed datasets (see Aitchison, 100 

1994). 101 

 Arithmetic mean and standard deviation are based on the 102 

assumption that observations follow normal or symmetrical 103 

statistical distribution (Reimann et al., 2008). Numerous –104 

mainly statistical-based – studies show that these estimates are 105 

affected considerably when data exhibit small deviations from 106 

normal distribution (Reimann et al., 2008; Wilcox, 2012). On 107 

the other hand, environmental data including waste fraction 108 

composition are often skewed (Reimann et al., 2008), in which 109 

case the resulting descriptive statitics may be biased and 110 

subsequently lead to wrong conclusions. Nevertheless, most 111 

waste characterisation studies report the arithmetic mean and 112 

standard deviation of waste fraction compositions, ignoring the 113 

natural structure of compositional data (e.g. Hanc et al., 2011; 114 

Edjabou et al., 2015; Naveen et al., 2016).  115 

 Despite the importance of arithmetic mean and standard 116 

deviation estimates in relation to waste composition, no 117 

attempts have been made to address the quality of these 118 

estimates. 119 

 Correlation coefficients between individual waste 120 

fractions are commonly computed in order to investigate 121 

relationships between material fractions in mixed waste (e.g. 122 

Alter, 1989; Hanc et al., 2011; Naveen et al., 2016), but they 123 
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are also used to evaluate the quality and the source of elements 124 

in chemical compositions of municipal solid waste (e.g. Hanc 125 

et al., 2011; Naveen et al., 2016). An illustrative example is the 126 

correlation between food waste and packaging materials such 127 

as paper, board, plastic and metal. For example, Alter (1989) 128 

claimed that an increase in food packaging may decrease food 129 

waste occuring in housholds. In contrast, Williams et al. (2012) 130 

argued that 20 to 25% of food waste generation is due to 131 

packaging. Notwithstanding the relevance of correlation 132 

analysis applied to waste fraction compositions, the 133 

contradictory results of correlation coefficients (see Alter, 134 

1989 and Williams, 2012) still require explanation. 135 

 Overall, computing arithmetic means, standard deviations 136 

and correlation coefficients for material fraction compositions 137 

may lead to biased results (Aitchison, 1994; Filzmoser and 138 

Hron, 2008). Additionally, uncertainty analysis (e.g. Monte 139 

Carlo analysis) of these datasets can be a source of concern 140 

when the issue of independence between material fraction 141 

compositions is either ignored or poorly addressed (Xu and 142 

Gertner, 2008). 143 

 Several studies have attempted to analyse waste 144 

composition data by applying log transformation (Chang and 145 

Davila, 2008; Dahlén et al., 2007) or log-logistic 146 

transformation (Milke et al., 2008). However, the 147 

compositional nature of waste fraction composition remains 148 
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intrinsic for waste fraction composition data. 149 

 The overall aim of this paper is to demonstrate why 150 

fractional waste composition data should be transformed 151 

appropriately prior to statistical analysis. We compared some 152 

commonly encountered classical statistics applied to waste 153 

fraction compositions data and the compositional data analysis 154 

technique based on log-ratio coordinates, by analysing the 155 

fractional compositions of residual household waste in 156 

Denmark. 157 

2 Methods and materials 158 

2.1 Study area and waste sampling analysis  159 

 We analysed residual household waste collected from 779 160 

single-family areas in Denmark. In these residential areas, 161 

paper, board, gardening waste, household hazardous waste, 162 

waste electrical and electronic equipment (WEEE) and bulky 163 

waste were source-segregated. 164 

 The residual household waste was generated over a one-165 

week period, collected directly from households and kept 166 

separately for each household. Each waste bin was labelled 167 

with the address of the household from where the waste was 168 

collected. The waste bins were sealed tightly, to prevent 169 

mixing of waste during transportation to the sorting facility. 170 

Each household waste bin was weighed and sorted separately, 171 

thereby enabling us to obtain data for residual household waste 172 

for each house. 173 
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 Collected residual household waste was sorted manually 174 

into the following waste fractions (Table 1): (1) avoidable 175 

vegetable food waste (AV), (2) avoidable animal-derived food 176 

waste (AA), (3) unavoidable vegetable food waste (UV), (4) 177 

unavoidable animal-derived food waste (UA), (5) paper & 178 

board (Paper or Pa), (6) plastic packaging (Plastic or Pl), (7) 179 

metal packaging (Metal or Me) and (8) other waste fractions 180 

(Others or Ot). In the present study, ‘paper’ refers to paper and 181 

board packaging. ‘Others’ refers to all other waste materials 182 

not included in the first seven waste fractions in Table 1. 183 

Avoidable food waste constitutes food and drinks that could 184 

have been eaten but instead have been disposed of. It consists 185 

of avoidable animal-derived (AA) and vegetable (AV) food 186 

waste. Unavoidable food waste is food that is not edible under 187 

normal conditions (Edjabou et al., 2016) and consists of 188 

unavoidable animal-derived (UA) and vegetable (UV) food 189 

waste. The detailed sub-fractions included in these waste 190 

fractions are presented in Table 1. 191 

 In this study, waste fraction composition represents the 192 

fractional composition of waste fractions expressed in 193 

percentage terms. Waste fraction generation rates are the mass 194 

of individual waste fractions in kg per capita per week. 195 

 196 

Here (Table 1) 197 

 198 
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 199 

2.2 Overview of statistical analysis: classical statistical 200 

analysis 201 

For this study, we computed (1) the arithmetic mean 202 

(Mean) of waste fraction compositions, (2) log-transformed 203 

(log-Mean), and its  back-transformed (exp(log-Mean)) shown 204 

as Mean-log. We also computed standard deviation (SD), log-205 

transformed (SD-log) and coefficient of variation (CV).  206 

Noticeably, any covariance matrix has in its diagonal 207 

the variance (‘var’) of each variable. The sum of this diagonal, 208 

also known as the ‘trace’ of the matrix, is equal to total 209 

variance (Härdle and Simar, 2015) and holds in raw and log 210 

transformed of waste fraction composition datasets. Therefore, 211 

for each dataset (waste fraction compositions and log 212 

transformed), we calculated the total variance and the 213 

percentage thereof. 214 

We also investigated the relationship between waste 215 

fractions by applying Pearson’s correlation analysis to raw and 216 

log-transformed data for waste fraction compositions (in 217 

percentage) and generation rates (kg waste fraction per capita 218 

per week). However, this paper focuses mainly on the waste 219 

fraction composition dataset. 220 

2.3 Compositional data analysis: isometric log-ratio 221 

approach  222 

 We applied statistical analysis to isometric log-ratio (ilr) 223 
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coordinates, computed based on the sequential binary partition 224 

(SBP) (Egozcue et al., 2003). This approach transforms data 225 

for waste fraction compositions into an unconstrained, real 226 

dataset, thus enabling the use of classical statistics (Filzmoser 227 

and Hron, 2008). This, for example, may mean that instead of 228 

a dataset with a list of percentages that should always sum up 229 

to 100 for each observation, the isometric log-ratio transforms 230 

waste fraction composition data into a list of values that are 231 

independent and should not sum up to a constant.  232 

 Similar to classical log transformation, the isometric log-233 

ratio requires that the data should not contain ‘zero values’. 234 

For this study, a waste ‘zero value’ means that a household did 235 

not generate any waste during this sampling week. Thus, we 236 

assumed that zero values were due to the experimental design, 237 

mainly the ‘time limit’ of the sampling campaign. For this 238 

reason, zero values were replaced, using ‘imputation based on 239 

the log-ratio expectation-maximisation (EM) algorithm’ 240 

(lrEM) in the zCompositions package (Palarea-Albaladejo and 241 

Martín-Fernández, 2015), which comprises four steps: (1) 242 

dataset selection, which can be the waste fraction composition 243 

(percentage) or generation rate (kg waste fraction per capita 244 

per week). For this study, we used the waste fraction 245 

generation rate; nevertheless, the function lrEM is based on 246 

compositional data analysis technique and therefore ensures 247 

equivalent results regardless of datasets. (2) The descriptive 248 
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analysis of the zero values was performed using the function 249 

zPattern in the zCompositions package. As a result, a graphical 250 

representation of the relative frequencies of zero for each 251 

waste fraction is provided. (3) Threshold (the detection limit) 252 

values should be defined prior to zero replacement. A single 253 

value for all waste fractions or varying values can be selected. 254 

For this study, a single threshold value was set at 10 g, which 255 

is the minimum weight of the weighing scale used for the 256 

waste sampling campaign. (4) The new dataset contained non-257 

zero values. In practice, the function lrEM substitutes an 258 

observation x with a value of zero by a random observation y 259 

in the interval between zero and the threshold value (see 260 

Palarea-Albaladejo and Martín-Fernández, 2015, for detailed 261 

mathematics underpinning zCompositions). 262 

 Seven coordinates (ilr1) were computed corresponding to 263 

D-1 numbers of partitions. Here, D was eight, namely the 264 

number of waste fractions shown in Table 1. The first ilr 265 

coordinate was computed by dividing the eight fractions into 266 

two groups: food waste and non-food waste. Subsequently, 267 

each of the two groups was divided further until each group 268 

was represented by one single waste fraction, as indicated in 269 

Table 2, where (+1) refers to the group in the numerator, while 270 

(-1) is the group appearing in the denominator. 271 

 272 

Here (Table 2) 273 
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 274 

 The ilr coordinates were computed based on the formulas 275 

shown in Eqs. (1-7). Eq. (1) computed the coordinate (ilr1) 276 

between food waste and non-food waste. Eqs. (2-4) computed 277 

the coordinates ilr2 (vegetable versus animal food waste), ilr3 278 

(avoidable versus unavoidable vegetable food waste) and ilr4 279 

(avoidable versus unavoidable animal-derived food waste). 280 

Furthermore, the coordinate ilr5 (paper and metal versus plastic 281 

and other) was calculated in Eq. (5), the coordinate ilr6 282 

between paper and metal was derived in Eq. (6) and the 283 

coordinate ilr7 between plastic and other in Eq. (7). 284 

285 
 (1) 286 

 (2) 287 

 (3) 288 

 (4) 289 

 (5) 290 

 (6) 291 

 (7) 292 

Here, LN stands for the natural logarithm, and the other 293 
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abbreviations refer to the waste fractions presented in Table 1. 294 

Pa refers to paper and board, Pl to plastic packaging, Me to 295 

metal packaging and Ot to other. 296 

The CoDa technique uses the geometric mean of the dataset, 297 

which is the ‘back-transformed’ value of the ilr-arithmetic 298 

mean and is calculated as follows: 299 

 (8) 300 

where gm(x) is the geometric mean and D is the number of 301 

waste fractions (xi) involved. The natural logarithm is 302 

abbreviated as LN(xi) and its inverse is abbreviated as exp(xi). 303 

 The back transformation of the isometric log-ratio 304 

coordinates is calculated simply by reversing the original 305 

transformation (Egozcue et al., 2003). The general formula for 306 

the back transformation of the isometric log-ratio coordinate 307 

(ilr
-1

) is provided as follows (Felipe et al., 2016):  308 

   (9)  309 

where ilr
-1

 is the back transformation, x is the simulated value 310 

for the transformation (ilr), ψ is the matrix constructed from 311 

the sequential binary partition given in Eqs (1 to 7) and C is 312 

the closure operation that provides a closed dataset.  313 

 Total variance (totvar(x)) is introduced to provide a global 314 

measure of spread (Pawlowsky et al., 2008) and measures the 315 

variation between individual waste fraction compositions 316 

included in the dataset. Total variance is computed as: 317 
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 (10) 318 

 The relationship between pairs of waste fractions is 319 

analysed by means of a variation array, calculated as: 320 
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 The variation array (Aitchison, 1986) was introduced to 323 

provide a solution to the problem of computing correlation 324 

coefficients for compositional data. We computed the variation 325 

array using both waste fraction compositions and generation 326 

rates. 327 

2.4 Software for data analysis 328 

 First, the data were explored and zero values imputed 329 

using the R package ‘zCompositions’ (Palarea-Albaladejo and 330 

Martín-Fernández, 2015). The ilr coordinates and their back 331 

transformation, as well as variation array, were computed with 332 

CoDaPack (Thió-Henestrosa and Comas-Cufi, 2011). 333 

Thereafter, the most commonly used methods employed for 334 

describing and analysing waste data, such as mean, standard 335 

deviation, coefficients of variation and correlation tests 336 

(European Commission, 2004), were carried out in R (R Core 337 

Team, 2017). Among other packages implemented in R, the 338 

‘StatDA’ (Filzmoser, 2015) software package was used for 339 
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plotting. 340 

 341 

3 Results  342 

3.1 Exploration of data for waste fraction compositions 343 

 Figure 1 displays the graphical output of the zero values 344 

analysis. The columns show the analysis of zero values by 345 

waste fraction. The data in Figure 1 can be grouped into two 346 

parts. The first is a rectangle, containing squared boxes 347 

coloured in dark grey, where waste fractions have zero values, 348 

and light grey for non-zero values. The number of squared 349 

boxes per column is the total combinations of zero values for 350 

each household involved as a function of waste fraction. The 351 

second is bar plots on the top (in dark grey), which show the 352 

percentage frequency of zero values by waste fraction, whereas 353 

bar plots on the right (in light grey) present the percentage 354 

frequency of non-zero values for all possible combinations of 355 

household and waste fractions. For example (see bar plots on 356 

the top in dark grey), the percentage frequency of zero was 357 

5.35% for avoidable vegetable food waste (see first column), 358 

and 2.94% for unavoidable food waste (see second column). 359 

Regarding bar plots on the right-hand side of the rectangle (in 360 

light grey), 64.45% of observations (households) have non-361 

zero values for all waste fractions (first line), and 8.31% are 362 

non-zero values, except for the avoidable animal derived-food 363 

waste fraction.  364 
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 365 

 366 

Here (Figure 1) 367 

 368 

 Subsequently, the zero value detected was replaced prior 369 

to computing the log-ratio coordinates and undertaking normal 370 

log transformation. For example, the minimum values for the 371 

four food waste fractions (zero values) were replaced by 5.7 g 372 

for avoidable vegetable food waste, 5.8 g for unavoidable 373 

vegetable food waste, 2.8 g for avoidable animal-derived food 374 

waste and 1.6 g for unavoidable animal-derived food waste. 375 

Note that here the replaced values are between zero and 10 g. 376 

A comparison of the datasets before and after zero replacement 377 

showed quite a similar distribution, demonstrating that the 378 

distribution of the dataset is preserved despite containing many 379 

zero values (SM Figure 1, SM Tables 2 and 3).  380 

 Figure 1 also presents a detailed overview of household 381 

waste fraction generation patterns; for example, only 1.3% and 382 

0.3% of the households did not generate plastic packaging or 383 

paper, respectively. Noticeably, for vegetable food waste, only 384 

5.2% and 2.9% of the households (see Figure 1, vertical bars) 385 

did not generate AV and UV, respectively. On the other hand, 386 

the percentage of households that did not generate animal-387 

derived food waste was 15.2% for AA and 14.6% for AU (see 388 

Figure 1, vertical bars). These data indicate that vegetable food 389 
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waste occurred more often than animal-derived food in Danish 390 

houses. 391 

 392 

3.2 Mean and standard deviation of waste fraction 393 

compositions  394 

 The distribution of the waste fraction compositions for all 395 

households is shown in Figure 2. Asymmetry is evident in the 396 

boxplot of each waste fraction, because the distance from the 397 

median (horizontal bar in the rectangular box) to the fifth 398 

percentiles (bottom horizontal bar (Figures 2 and 4) or vertical 399 

bar on the left (Figure 3)) is smaller than the distance between 400 

the median to the 95
th

 percentiles (upper horizontal bar 401 

(Figures 2 and 4) or vertical bar on the right (Figure 3)), as 402 

shown in Figure 2. Thus, the data for each waste fraction were 403 

positively skewed and also contained potential outliers, which 404 

are defined as unusually large or small values in a sample of 405 

observation (Wilcox, 2012). Here, outliers are shown in Figure 406 

3 as circles above the upper horizontal bar, and these outliers 407 

lead to bias in the arithmetic mean and inflate the standard 408 

error. Thus, robust statistical techniques have been developed 409 

to deal effectively with this problem, though these methods are 410 

not included in this study. 411 

 A detailed analysis of vegetable food waste (AV and UV) 412 

is provided in Figure 3 as an example. Figures 3a and 3b 413 

illustrate a combined histogram and boxplot of waste fraction 414 
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composition and log transformation for avoidable vegetable 415 

food waste, while Figures 3c and 3d represent unavoidable 416 

vegetable food waste in the same regard. These figures reveal 417 

asymmetric distribution despite log transformation. 418 

Conversely, the ilr coordinates are distributed symmetrically 419 

(see Figure 4).  420 

 421 

Here (Figure 2) 422 

 423 

Here (Table 3) 424 

 425 

Here (Figure 3) 426 

 427 

 The arithmetic means (Mean) based on waste fraction 428 

compositions sum up to 100, whereas the arithmetic means 429 

based on log-transformed (Log-mean) data sum up to 14. As a 430 

result, the means of the log-transformed data are difficult to 431 

interpret and apply because of the change in scale (USEPA, 432 

2006). This problem could be solved by Mean-log’, which is 433 

obtained by ‘back transforming’ the log-transformed mean 434 

(Mean-log=exp(Log-Mean-log)). The arithmetic mean, log-435 

mean and mean-log were computed from an asymmetric 436 

dataset, which led to biased parameter estimation and incorrect 437 

results (Reimann et al., 2008; Wilcox, 2012).  438 

On the contrary, the ‘Mean-ilr’ (mean based on isometric log-439 
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ratio coordinates) (see Table 3) was computed from 440 

symmetrical data, thus suggesting that the log-ratio coordinates 441 

enable a data analyst to obtain symmetric distribution of data, 442 

as shown in Figure 4. Importantly, while log-ratio 443 

transformation enables one to remove the constant sum 444 

constraint, the ‘Mean-ilr’ for waste fractions sums up to 100. 445 

Similar to classical statistics, robust methods have been 446 

developed for the statistical analysis of compositional data 447 

(Templ et al., 2011), though these methods are not included in 448 

this study. 449 

 450 

Here (Figure 4) 451 

 452 

 The standard deviation, total variance and percentage of 453 

variance estimates were calculated and are shown in Table 4. 454 

The results indicate that the standard deviation values for the 455 

raw waste fraction composition are very high compared to 456 

their corresponding arithmetic mean (Mean in Table 3). In 457 

particular, the standard deviation of animal-derived food waste 458 

(AA and AV) and metal packaging are higher or equal to the 459 

corresponding arithmetic mean, thereby generating very high 460 

variation value coefficients (e.g. 155% for metal packaging, 461 

141% for unavoidable animal-derived food waste, 99% for 462 

avoidable animal-derived food waste). The resulting 463 

confidence intervals (Mean ± 2* SD) were (-6.78; 20.74) and 464 
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(-4.03; 8.45) for AA and AV, respectively, including negative 465 

percentages. These results highlight some of the pitfalls of 466 

computing standard deviations for waste fraction 467 

compositions. Moreover, the estimated percentages of 468 

variances for waste fractions varied when the raw dataset for 469 

waste fraction compositions (% Var) was log-transformed (% 470 

Var-log). The highest variance percentages were found for the 471 

fractions other (%Var= 31.43%) and avoidable animal-derived 472 

food waste (%Var-log=33.24%) in raw and log-transformed 473 

datasets, respectively. On the other hand, the lowest variance 474 

percentages were found for unavoidable animal-derived food 475 

waste (%Var=1.47%) and other (%Var-log=2.74%) in the raw 476 

and log-transformed datasets, correspondingly. These 477 

incoherent results indicate that while log transformation could 478 

indeed help to achieve normality, the calculated variance 479 

becomes impossible to compare after transformation, as 480 

demonstrated by Filzmoser et al. (2009).  481 

 Overall, it is questionable whether standard deviation 482 

values are informative in the case of most sets of waste 483 

composition data, due to the dual issues of non-normality and 484 

the constant-sum constraint. First, the standard deviation 485 

ignores the compositional nature of waste fraction composition 486 

data (composition of waste fractions should add up to 100). 487 

Second, most coefficients of variation (CV %) provided in 488 

Table 4 are extremely high, thus restricting their application in 489 
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environmental modelling (Ciroth et al., 2013). As a solution, 490 

total variance (see Eq. 9) that measures overall data 491 

homogeneity (or variation) can be calculated (Pawlowsky et 492 

al., 2008). Here, total variance expresses variation in the 493 

dataset for each waste fraction. Thus, the contribution of each 494 

waste fraction to total variation is provided in percentage terms 495 

(clr-Var %), as shown in Table 4. 496 

 497 

Here (Table 4) 498 

 499 

 Based on the compositional data analysis technique, total 500 

variance (totvar) from Eq. (9) amounted to 9.25, as shown in 501 

Table 4. The waste fraction contributing to the highest 502 

variation in the dataset was avoidable animal-derived food 503 

waste (24.73%), followed by unavoidable animal-derived food 504 

waste (18.84%) and metal packaging (14.81%), suggesting that 505 

the generation of these fractions by Danish households varies 506 

substantially.  507 

 On the other hand, paper (5.27%) and plastic packaging 508 

(5.53%) made a small contribution to total variance. A possible 509 

interpretation for this finding could be that metal packaging 510 

materials are source-sorted by a wider variety of households 511 

than paper and plastic packaging, and therefore they do not 512 

vary much in the fraction that ends up in residual household 513 

waste bins. However, a characterisation of total household 514 
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waste including source-segregated waste (e.g. paper, metal, 515 

plastic) could provide a better interpretation of these results, 516 

thereby demonstrating that total variance enables the analyst to 517 

compare systematically variations among waste fraction 518 

compositions, which is difficult for classical standard deviation 519 

and coefficient of variation estimates. 520 

3.3 Relationship between waste fractions: Pearson’s 521 

correlation test 522 

 Table 5 presents the pairwise correlation coefficients 523 

between waste fractions, computed using datasets of (1) 524 

percentage composition (Percentage %) and (2) generation 525 

rates (kg/capita/week). A negative correlation coefficient 526 

between waste fractions means an inverse relationship, 527 

whereas a positive correlation coefficient means these fractions 528 

vary in the same direction (when the value of one waste 529 

fraction increases, the value of the other fraction increases too, 530 

and vice versa). Moreover, while a correlation coefficient of 531 

value ±0.5 shows a strong relationship between the two waste 532 

fractions, a value of 1 means a perfect correlation. A 533 

correlation coefficient is statistically significant when the p-534 

value is less than 0.5. 535 

 536 

Here (Table 5) 537 

 538 

 Based on the waste fraction generation rates, we found a 539 
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positive and significant correlation coefficient between ‘Other’ 540 

and the seven remaining waste fractions, as shown in Table 5. 541 

In contrast, we found negative and significant correlation 542 

coefficients between these fractions when the Pearson’s 543 

correlation test was applied to waste fraction compositions 544 

(Percentage %).  545 

 Figure 5 illustrates the results of the correlation test 546 

applied to waste fraction composition data. Figure 5 shows that 547 

the Pearson’s correlation test applied to the waste fraction 548 

generation dataset provided a positive correlation coefficient 549 

between avoidable food waste (UA, UV, AA and AV) and 550 

plastic packaging. These results are consistent with those of 551 

Williams et al. (2012), suggesting that a reduction in plastic 552 

packaging materials may lead to a reduction in avoidable 553 

vegetable food waste. In contrast, the results of the Pearson’s 554 

correlation applied to the waste fraction compositions dataset 555 

showed a negative correlation between the same waste 556 

fractions, except for UA. These results are in good agreement 557 

with those obtained by Alter (1989), and similar results were 558 

obtained when the Pearson’s correlation test was applied to 559 

log-transformed data. Note here that the signs and the values of 560 

the correlation coefficients depend on the datasets, even 561 

though a Pearson’s correlation test was applied to log-562 

transformed data (SM Table 1). These results pose an 563 

interpretation dilemma. First, a reduction in plastic packaging 564 
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may contribute to food waste reduction, due to the positive 565 

correlation between these waste fractions, although, on the 566 

other hand, an increase in the use of plastic packaging may 567 

contribute to a reduction in household food waste because of 568 

the negative correlation coefficient. Moreover, while these 569 

correlation coefficients were statistically significant, their 570 

estimates were somewhat different (see Figure 4 and Table 5). 571 

 572 

Here (Figure 5) 573 
 574 

3.4 Variation array with CoDa  575 

 The variation array was computed using Eq. (10) and is 576 

shown in Table 6. Note that the same variation array was 577 

obtained when using either the waste fractions generation rates 578 

(kg/capita/week) or waste fraction compositions (percentage 579 

%), and therefore the relationship between waste fractions is 580 

interpreted independently of waste datasets. 581 

 The variation array is divided into two triangles. The 582 

upper triangle shows ratios or proportionalities between waste 583 

fractions as pairwise log-ratio variances (variance ln(Xi/Xj) 584 

(see Eq. (12)). The lower triangle presents the pairwise log-585 

ratio means (Mean ln(Xj/Xi) (see Eq. (13)). Here, the 586 

numerator is denoted by columns (Xi), and denominator (Xj) is 587 

illustrated by rows. Moreover, the sign (+ or −) of the log-ratio 588 

mean values indicates the direction of the ratio between the 589 
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relevant fractions. 590 

 591 

Here (Table 6) 592 

 593 

 Log-ratio variance values highlighted in grey (the value is 594 

close to zero) indicate an almost constant ratio, whereas log-595 

ratio variance values in bold and highlighted in grey (usually 596 

value is closed to zero) can be assumed to be zero, suggesting 597 

an absolutely constant ratio (Pawlowsky-Glahn et al., 2015). 598 

On the other hand, log-ratio variance values that are very much 599 

higher than zero are highlighted in red, and these indicate no 600 

relationship between the two relevant fractions, because their 601 

ratios vary significantly. 602 

 For example, the mean log-ratio between plastic 603 

packaging and paper and board was negative {(mean 604 

(log(Plastic/Paper))= -1.4)} (here, Plastic is Xj from a row in 605 

Table 6 and Paper is Xi from a column in Table 6), indicating 606 

that the households placed more mass of plastic packaging 607 

than paper and board waste into their residual waste bins. 608 

Furthermore, the variance in their log-ratio is small (0.77), 609 

suggesting a strong relationship between these fractions. This 610 

relationship has a negative ratio, which can be calculated as 611 

follows: 612 

 plastic/paper=exp(-1.4)=0.25 613 

This result suggests that the ratio between discarded (1) plastic 614 
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and (2) paper and board in residual household waste is constant 615 

and estimated at 0.25. This information could be used for 616 

future developments in waste generation, i.e. to identify the 617 

effects of new regulations and policies addressing packaging 618 

materials.  619 

 The results shown in Table 6 indicate that the mean log-620 

ratio between avoidable animal-derived food waste and 621 

unavoidable vegetable food waste was negative (-1.35). 622 

However, the variance in their log-ratio was high (4.21), 623 

thereby suggesting that the compositions of these fractions are 624 

not proportional. In this case, the ratio between these fractions 625 

is not constant. 626 

 Overall, the compositions of these pairs of waste fractions 627 

are highly dependent: (1) unavoidable vegetable food waste 628 

(UV) and paper (Paper), (2) paper (Paper) and plastic 629 

packaging (Plastic) and (3) plastic packaging (Plastic) and 630 

other waste fractions (Other). However, no relationship 631 

between avoidable food waste fractions (AV and AA) and 632 

material packaging (paper, plastic and metal) was identified. 633 

For example, from the results in Table 7, it is apparent that the 634 

ratio between avoidable animal-derived food waste and 635 

packaging materials (plastic, paper and metal) is highly 636 

variable (very high log-ratio variance painted in red). 637 

Similarly, the ratio between avoidable vegetable food waste 638 

and packaging materials (plastic, paper and metal) is not 639 
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constant. These values indicate no constant ratios between 640 

these fractions, signifying that there is no relationship between 641 

these fractions based on the analysis of residual waste taken 642 

from the 779 households. 643 

 644 

4. Discussion 645 

 From the data in Table 3, arithmetic means of waste 646 

fractions composition were influenced by the fact that the 647 

assumption of normal distribution was violated (see Figure 4). 648 

These results are consistent with previously published studies, 649 

which concluded that the arithmetic mean is an inappropriate 650 

means of estimating central values of compositional data 651 

(Filzmoser et al., 2009; Pawlowsky-Glahn et al., 2015; van den 652 

Boogaart et al., 2013). Consequently, any evaluation (e.g. 653 

prevention, reduction or recycling of waste) or modelling (e.g. 654 

life cycle assessment) based on the arithmetic mean of waste 655 

fraction composition may lead to potentially wrong 656 

conclusions, because they are based on erroneous estimates. 657 

While the log transformation of waste composition may help 658 

solve the problem of normality, its value is limited because it 659 

relies on a univariate method, which ignores that the 660 

compositions of waste fractions account for the limited data, 661 

i.e. from 0 to 100.  662 

 The results from the variation array were not in agreement 663 

with those from the Pearson’s correlation tests applied to both 664 
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raw and log-transformed data. The correlation test applied to 665 

waste fraction generation rates provided positive correlation 666 

coefficients. On the other hand, negative correlation 667 

coefficients were obtained when the correlation analysis was 668 

applied to the composition of waste fractions in percentage 669 

terms. The positive correlation coefficients were due to the size 670 

of the mass effect of waste fractions (kg/capita/week), 671 

explaining why most waste fractions are positively and 672 

significantly correlated with each other. The size effect of mass 673 

was removed by calculating the correlation coefficient based 674 

on the percentage composition of waste fractions. This then 675 

generated negative correlation coefficients because of the 676 

constant sum constraint (Aitchison, 1986; Pearson, 1897). As a 677 

solution, the relationship between food waste fractions and 678 

material packaging can be evaluated by the variation array 679 

through a compositional data analysis technique. Log-ratio 680 

coordinates remove the constant sum constraint and enable the 681 

determination of the relationship between waste fractions, 682 

independently of the unit. Another advantage of the variation 683 

array is that the pairwise ratio between waste fractions could 684 

be back-transformed to a desired unit and adequately 685 

interpreted while preserving the structure of the original data 686 

(Filzmoser and Hron, 2008; Pawlowsky-Glahn et al., 2015). 687 

The advantage in this approach is that the variation array of 688 

both waste datasets (percentage composition and mass per 689 
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waste fraction per household) generates the same results 690 

because of the log-ratio transformation. 691 

 Computing the arithmetic mean (mean-ilr), total variance 692 

and variance array based on CoDa technique is a not 693 

straightforward undertaking. However, numerous tools that do 694 

not require advanced programming skills are freely available 695 

(Templ et al., 2011; Thió-Henestrosa and Comas-Cufi, 2011; 696 

van den Boogaart, 2008). Therefore, we urge practitioners and 697 

researchers within solid waste management to address 698 

adequately the constant sum constraint problem when 699 

analysing solid waste composition data (Filzmoser et al., 700 

2009).  701 

 702 

5. Conclusions 703 

 This study is a first attempt to address the problem 704 

associated with the statistical analysis of waste fraction 705 

composition data. Based on a systematic comparison of the 706 

arithmetic mean and standard deviation applied to waste 707 

fraction composition data, it was demonstrated that these 708 

statistical parameters may generate erroneous and misleading 709 

results when applied to fractional percentages (i.e. percentage 710 

of paper, board, food waste, etc.). Moreover, correlation 711 

coefficients based on raw or general transformation of data 712 

depend strongly on the type of waste dataset. As a solution, 713 

isometric log-ratio coordinates approximate the symmetrical 714 
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distribution of data and remove the total constant sum 715 

constraint, which restricts the application of classical statistics 716 

to waste fraction composition. As a result, statistical analysis 717 

applied to log-ratio coordinates generates consistent results 718 

independently of the selected data type. The arithmetic means 719 

of waste fractions, based on the isometric log-ratio, summed 720 

up to 100. The variation array provides a ratio between waste 721 

fractions and offers consistent conclusions regardless of the 722 

data type. 723 
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 17 

Table 1: List of residual waste fractions and components 18 

included 19 

Waste fractions Components 

Avoidable vegetable food waste (AV1) Cooked food (e.g. rice, pasta, potatoes, etc.) 

 
Fresh fruit, fresh carrots and potatoes, bread, cereals 

Avoidable animal-derived food waste (AA1) Cooked eggs, rest of food containing meat, fish, etc. 

 

Canned meat and fish, 

Unavoidable vegetable food waste (UV1) Residues from fruits, vegetables, coffee grounds 

 Eggs not cooked, dairy products, not cooked meat and fish, etc. 

Unavoidable animal-derived food waste (UA1) Leftovers containing meat, fish, skins and bones, etc. 

 

Cheese rinds, eggs shells, other non-edible mixed animal and 

vegetable products 

Paper and board (Paper:Pa1) 
Advertisements , Books & booklets, Magazines & Journals, 

Newspapers 

 
Office paper, Phonebooks, Miscellaneous paper, Corrugated boxes 

 
Beverage cartons, Folding boxes,  Miscellaneous board  

Plastic packaging (Plastic:Pl1) Packaging plastics, such as PET/PETE, HDPE, PVC/V , 

 

 LDPE/LLDPE, PP, PS, others, etc  

Metal packaging (Metal;Me1) Metal packaging containers (ferrous and non-ferrous) 

 

Composites 

Others (Ot1) Gardening waste, glass packaging, other/special glass,  

 
Table and kitchen ware glass, Non-packaging metals 

 
Non-packaging plastic, plastic film 

 

Miscellaneous combustible waste, inert (other non-combustible), 

special waste 
1
 Refers to abbreviation of waste fractions in equations and 20 

figures and other tables in the present paper 21 

 22 

 23 

Table 2: Signs code of the sequential binary partition applied 24 

to the residual household waste fractions: Balance code, (+1) 25 

means that the fraction is assigned to the first group 26 

(numerator), (-1) to the second group, and 0 the fraction is not 27 

included in the partition in this balance  28 

Coordinates 
 Residual household waste fractions   

AVa UVb AAc UAd Papere Metalf Plasticg Otherh  

ilr1 +1 +1 +1 +1 -1 -1 -1 -1  

Ilr2 +1 +1 -1 -1 0 0 0 0  

Ilr3 +1 -1 0 0 0 0 0 0  

Ilr4 0 0 +1 -1 0 0 0 0  

Ilr5 0 0 0 0 +1 +1 -1 -1  

Ilr6 0 0 0 0 +1 -1 0 0  

Ilr7 0 0 0 0 0 0 +1 -1  
a
Avoidable vegetable food waste 29 

b
Unavoidable vegetable food waste 30 

c
Avoidable animal-derived food waste 31 

d
Unavoidable animal-derived food waste 32 

e
Paper and board; 

f
Metal packagin.; 

g
Plastic packaging; hgrouped waste 33 

fraction (see Table 1 for waste fractions) 34 

. 35 

 36 
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Table 3: Comparison of arithmetic means computed based on 37 

raw data (Mean), log transformed data (Log-Mean), back-38 

transformed data (Mean-log) and back-transformed isometric 39 

log-ratio mean (Mean-ilr) 40 
Waste fractions Classical statistics  CoDa-technique 

 Meana Log-meanb Mean-logc Median  Mean-ilrd 

Avoidable vegetable food waste 15.57 2.32 10.14 13.84  13.3 

Unavoidable vegetable food waste 17.03 2.47 11.87 15.22  15.5 

Avoidable animal-derived food waste 6.98 1.13 3.09 5.11  4.0 

Unavoidable animal-derived food waste 2.21 -0.06 0.94 1.08  1.2 

Paper and board 20.79 2.91 18.28 18.52  23.9 

Metal packaging 2.12 0.09 1.09 1.44  1.4 

Plastic packaging 5.51 1.50 4.49 4.76  5.9 

Other 29.80 3.28 26.59 26.30  34.8 

Total 100.00 13.63 76.49 86.27  100.0 

Wet waste kg per household per week 10.41  8.80 9.52  
 

Wet waste kg per person per week 4.00  3.45 3.42  
 aArithmetic mean from raw data, 41 

bArithmetic mean for log-transformed data;  42 
cArithmetic mean based on back-transformation of the log-transformed data; 43 
dArithmetic mean for ilr coordinates, which is back-transformed 44 

 45 

 46 

Table 4 Comparison of standard deviation values based on 47 

waste fraction compositions data set (SD) and variance (% 48 

Var); log-transformed (SD-log) and variance of log-49 

transformed (% Var-log) absolute contribution of each waste 50 

fractions (SD-clr) to total variance, and the percentage 51 

distribution of the total variance (SD-clr) (n=779) 52 

Waste fractions Classical statistics CoDa-technique 

 
SD %Var SD-log %Var-log SD-clr %Var-clr 

Avoidablevegetablefoodwaste 10.76 17.52 3.49 12.55 1.1 13.16 

Unavoidablevegetablefoodwaste 11.51 20.05 2.99 9.21 1.03 11.56 

Avoidableanimal-derivedfoodwaste 6.88 7.16 5.68 33.24 1.51 24.73 

Unavoidableanimal-derivedfoodwaste 3.12 1.47 4.46 20.5 1.32 18.84 

Paperandboard 10.9 17.98 1.68 2.91 0.7 5.27 

Metalpackaging 3.29 1.64 3.76 14.57 1.17 14.81 

Plasticpackaging 4.26 2.75 2.04 4.29 0.72 5.53 

Other 14.41 31.43 1.63 2.74 0.75 6.09 

Totalvariance(totvar) 660.76 100.00 97.05 100.00 9.23 100.00 

 53 
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Table 5 Correlation matrix from Pearson correlation test and 54 

significance levels of raw data shown in Figure 2 (r: range:-55 

1.00 to +1.00) 56 
Waste fractions AVd UVe AAf UAg Paperh Metal i Plastic j Other Datasets 

Avoidable vegetable food waste 
(AV) 

1.00 *** *** *** *** . *** *** Percentage % 
1.00 *** *** ** *** . *** *** kg/capita/week 

Unavoidable vegetable food waste 

(UV) 

-0.17 1.00 *** 0.00 *** * ** *** Percentage % 

0.23 1.00 *** *** *** * * *** kg/capita/week 

Avoidable animal-derived food waste 
(AA) 

0.16 -0.19 1.00 0.00 *** 0.00 0.00 *** Percentage % 
0.46 0.14 1.00 *** *** 0.00 ** *** kg/capita/week 

Unavoidable animal-derived food  

Waste (UA) 

-0.12 0.02 0.00 1.00 . 0.00 0.00 ** Percentage % 

0.11 0.17 0.14 1.00 * * . * kg/capita/week 

Paper and board 
-0.30 -0.16 -0.21 -0.06 1.00 * 0.00 *** Percentage % 
0.29 0.19 0.18 0.07 1.00 0.00 ** *** kg/capita/week 

Metal packaging 
-0.07 -0.08 -0.03 0.03 -0.09 1.00 0.00 0.00 Percentage % 

0.07 0.08 0.04 0.07 0.04 1.00 0.00 *** kg/capita/week 

Plastic packaging 
-0.13 -0.10 -0.05 0.03 -0.04 0.05 1.00 * Percentage % 
0.13 0.09 0.10 0.06 0.11 0.04 1.00 *** kg/capita/week 

Other 
-0.38 -0.41 -0.27 -0.10 -0.26 -0.06 -0.08 1.00 Percentage % 

0.30 0.15 0.21 0.07 0.28 0.14 0.14 1.00 kg/capita/week 
***Very high significance probability higher than 0.001 57 
**High significance probability between 0.001 and 0.01 58 
*Significance probability between 0.01 and 0.05 59 
0.00 no significance-probability higher than 0.05 60 
a amount of waste (wet basis) per household per week 61 
b amount of waste (wet basis) per person per week 62 
c Composition of residual household waste on wet basis.  63 
dAvoidable vegetable food waste 64 
eUnavoidable vegetable food waste 65 
fAvoidable animal-derived food waste 66 
gUnavoidable animal-derived food waste 67 
hPaper; iMetal packaging.; jPlastic packaging; kOther (see Table 1). 68 

Table 6: Variation array of waste fraction compositions 69 

computed using log-ratio transformation of the waste dataset 70 

shown in Figure 2  71 

Waste fractions                                                                                                Variance ln(Xi/Xj) 

 

AV
a
 UV

b
 AA

c
 UA

d
 Paper

e
 Metal

f
 Plastic

g
 Other

h
 

AV
a
 

 
2.53 3.11 3.83 2.10 3.09 2.15 2.18 

UV
b
 0.16 

 
4.21 3.00 1.52 2.93 1.77 1.83 

AA
c
 -1.19 -1.35 

 
5.14 3.54 4.49 3.43 3.62 

UA
d
 -2.38 -2.54 -1.19 

 
2.49 3.63 2.50 2.61 

Paper
e
 0.59 0.43 1.78 2.97 

 
2.08 0.77 0.64 

Metal
f
 -2.23 -2.39 -1.04 0.15 -2.82 

 
1.92 2.07 

Plastic
g
 -0.81 -0.97 0.37 1.57 -1.40 1.41 

 
0.80 

Other
h
 0.96 0.81 2.15 3.34 0.37 3.19 1.78 

 
                        Mean ln(Xj/Xi) Total variance 

aAvoidable vegetable food waste 72 
bUnavoidable vegetable food waste 73 
cAvoidable animal-derived food waste 74 
dUnavoidable animal-derived food waste 75 
ePaper and board; fMetal packagin.; 76 
 gPlastic packaging;  77 
hgrouped waste fraction (see Table 1 for waste fractions) 78 

 79 

  80 
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 17 

Figure capitations 18 

 19 

 20 

Figure 1: Identification of zero value patterns in residual 21 

household waste dataset subdivided into eight waste fractions 22 

(see Table 1) and consisting of 779 observations (households). 23 

Vertical bars (in dark grey) represent percentage of count 24 

number of zero values for each waste fractions; Horizontal 25 

bars (light grey) indicate the percentage of count number of no 26 

zero value for each combination of eight waste fractions in the 27 

households-33 zero values patterns were observed.  28 

 29 

 30 

Figure 2: Percentage distribution of the composition of residual 31 

household waste fractions on wet mass basis (see Table 1 for 32 

abbreviation). 33 

 34 

 35 

Figure 3: Combined histogram and boxplot of raw (a) and log-36 

transformed (b) avoidable vegetable food waste; and raw (c) 37 

and log-transformed (d) unavoidable vegetable food waste.  38 

 39 

 40 

Figure 4: Boxplot showing the distribution of ilr coordinates 41 

(number of coordinates equals to number of waste fractions 42 

(D=8) minus 1)  43 

 44 

 45 

Figure 5: Results of Pearson correlation test between plastic 46 

packaging and food waste fractions (AV, UV, AA, and UA), 47 

based on (i) percentage (%) and (ii) kg mass of waste fractions.  48 

 49 
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Supplementary materials (SM) 

Supplementary materials contain detailed food waste data used for calculations. SMs are divided 

into tables (Table SM) and figures (Figure SM). 

  



Supplementary materials (SM) –Tables 

 

SM Table 1 Correlation matrix from Pearson` correlation test and significance levels of log-

transformed data(r: range:-1.00 to +1.00) 

 AVd UVe AAf UAg Paperh Metal i Plastic j Other Datasets 

Avoidable vegetable food waste 

(AV) 

1 * *** 0 *** . 0 *** Percentage % 

1 *** *** *** *** *** *** *** kg/capita/week 

Unavoidable vegetable food waste 

(UV) 

0.08 1 0 *** 0 0 0 *** Percentage % 

0.41 1 *** *** *** *** *** *** kg/capita/week 

Avoidable animal-derived food 
waste (AA) 

0.34 0 1 0 *** . 0 *** Percentage % 
0.53 0.27 1 *** *** *** *** *** kg/capita/week 

Unavoidable animal-derived food  
Waste (UA) 

-0.01 0.13 0.02 1 0 * ** ** Percentage % 
0.23 0.29 0.2 1 *** *** *** *** kg/capita/week 

Paper and board 
-0.21 -0.05 -0.14 0.01 1 0 0 *** Percentage % 

0.41 0.38 0.31 0.22 1 *** *** *** kg/capita/week 

Metal packaging 
0.07 0.01 0.06 0.09 -0.05 1 *** . Percentage % 

0.34 0.24 0.27 0.21 0.28 1 *** *** kg/capita/week 

Plastic packaging 
-0.04 -0.04 0.04 0.11 0.02 0.18 1 * Percentage % 

0.4 0.29 0.36 0.25 0.38 0.38 1 *** kg/capita/week 

Other 
-0.31 -0.37 -0.22 -0.1 -0.27 -0.06 -0.08 1 Percentage % 

0.38 0.23 0.29 0.18 0.43 0.3 0.38 1 kg/capita/week 
***Very high significance probability higher than 0.001 
**High significance probability between 0.001 and 0.01 
*Significance probability between 0.01 and 0.05 

() no significance-probability higher than 0.05 
a amount of waste (wet basis) per household per week 
b amount of waste (wet basis) per person per week 
c Composition of residual household waste on wet basis.  
dAvoidable vegetable food waste 
eUnavoidable vegetable food waste 
fAvoidable animal-derived food waste 
gUnavoidable animal-derived food waste 
hPaper; iMetal packaging.; jPlastic packaging; kOther (see Table 1). 

SM Table 2 Summary of waste fraction generation rates data set before zero values replacement  

 min max mean Standard deviation 

Avoidable vegetable food waste (AV) 0.000 12.435 1.760 1.654 

Unavoidable vegetable food waste (UV) 0.000 21.750 1.687 1.457 

Avoidable animal-derived food waste (AA) 0.000 9.314 0.755 0.891 

Unavoidable animal-derived food Waste (UA) 0.000 5.450 0.210 0.344 

Paper and board 0.050 14.519 2.042 1.616 

Metal packaging 0.000 13.415 0.213 0.556 

Plastic packaging 0.000 19.415 0.524 0.753 

Other 0.194 25.747 3.063 2.583 

 

SM Table 3 Summary of waste fraction generation rates data set after zero values replacement 

 
min max mean Standard deviation 

Avoidable vegetable food waste (AV) 0.006 12.435 1.760 1.653 

Unavoidable vegetable food waste (UV) 0.006 21.750 1.687 1.457 

Avoidable animal-derived food waste (AA) 0.003 9.314 0.756 0.891 

Unavoidable animal-derived food Waste (UA) 0.002 5.450 0.210 0.344 

Paper and board 0.050 14.519 2.042 1.616 

Metal packaging 0.002 13.415 0.213 0.556 

Plastic packaging 0.007 19.415 0.524 0.753 

Other 0.194 25.747 3.063 2.583 

 



SM Figure 1: Comparison of waste data sets before and after zero values replacement 
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