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Abstract 

Electrophoretic deposition, thermal co-evaporation and RF magnetron sputtering methods are used for 

the preparation of Mn-Co based ceramic coatings for solid oxide fuel cell steel interconnects. Both 

thin and relatively thick coatings (1-15 µm) are prepared and characterised for their potential 

protective behaviour. Mn-Co coated Crofer22APU samples are electrically tested for 5000 hours at 

800°C under a 500 mA cm-2 current load to determine their Area Specific Resistance increase due to a 

growing chromia scale. After tests, samples are analysed by scanning and transmission electron 

microscopy. Analysis is focused on the potential chromium diffusion to or through the coating, the 

oxide scale thickness and possible reactions at the interfaces. The relationships between the coating 

type, thickness and effectiveness are reviewed and discussed. Out of the three Mn-Co coatings 

compared in this study, the one deposited by electrophoretic deposition presents the best protection 

against Cr diffusion and offers long term stability. 

 

Keywords: solid oxide cell, electrophoretic deposition, protective coating, area specific resistance, 

microstructure; 

 

Introduction 

Solid Oxide Fuel Cells (SOFCs) and Solid Oxide Electrolysis cells (SOECs) are efficient chemical 

energy conversion devices. Single cell consist of two porous electrodes: the anode and the cathode 



with a dense ionically conductive electrolyte in-between [1–3]. Single cell has a working voltage of 

~0.7 V, so to improve the output power, several cells have to be connected together by the 

interconnect plates, forming a stack. Currently, metallic alloys have been widely adapted as materials 

for the interconnects. They ensure both a physical and electrical contact with the cells and keep the 

fuel separated from the oxidant gases [4–6]. 

Among the available alloys, chromia-forming ferritic steels are chosen as they form an oxide with a 

sufficient electrical conductivity at high temperatures and have a coefficient of thermal expansion 

(CTE) similar to other cell components [7–10]. Under SOC relevant conditions, Cr2O3 reacts with 

water molecules by forming volatile compounds. These Cr-containing species can poison the air 

electrode and subsequently cause degradation in the stack. The formation of volatile chromium 

compounds, such as CrO3 or CrO2(OH)2 that can precipitate on the cathode surface affecting its 

electrochemical activity should be as low as possible [11–13]. In order to reduce the evaporation and 

limit corrosion rate, protective coatings are typically used on the oxygen side. 

The increase of the Area Specific Resistance (ASR) of the metallic interconnects is caused by the 

growth of the oxide scale during high temperature exposure to both the reducing and oxidizing 

atmospheres. The electrical conductivity of the oxide scale (chromia and (Mn, Cr)3O4) is much lower 

in comparison to the metallic substrate and thus its growth results in monotonically increasing ASR 

values [14]. The oxide scale should not be thicker than 10 μm, otherwise the risk of spallation will 

occur with a further contribution to increase the electrical resistivity of the interconnect. 

Among different potential protective materials, some offer lowering the corrosion rates and some have 

good chromium blocking properties. For example, Molin et al. evaluated a Co3O4/LSM based dual 

layer coating, that successfully limited the corrosion rate of the interconnect but was permeable to Cr 

diffusion. Thus coatings both lowering the chromium diffusion and limiting oxide growth with good 

mechanical properties are required [15–17]. 

Very good protection against Cr evaporation has been reported for the (Mn,Co)3O4 spinel. It has 

sufficient electrical conductivity, compatible CTE and low Cr diffusion. Although this coating has 

been extensively studied and it has been demonstrated to be highly effective in reducing corrosion 

rates, still no clear correlation exists between the coating thickness, preparation methods and the 

protective properties. 

(Mn,Co)3O4 spinel coatings of different thickness have been produced by many different deposition 

techniques: slurry deposition of ceramic powders [15,18–20], electrodeposition followed by oxidation 

[21–23], physical vapor deposition (PVD), thermal oxidation [24,25] and thermal spray [26–29]. 

For the screening of coating materials by different deposition methods, the electrical characterization 

of the coated interconnects is of crucial importance. Coated alloys must possess low initial Area 

Specific Resistance (ASR) and exhibit low ASR increase rate, thus providing low ohmic contribution 

to the stack. The upper limit for the interconnect ASR can be considered equal to ~100 mΩ cm2 [30]. 

Mn-Co spinels have been electrically characterized in different papers [31–37]. A post heat-treatment 



is normally required in processes such as EPD [38] or conventional wet ceramic techniques [39], in 

order to remove organic binders and to sinter deposited particles, while this is not the case for 

sputtering or other thin film deposition methods [40,41]. 

The objective of the present work is to compare three different Mn-Co based coatings on a 

Crofer 22 APU substrate. Coatings are produced by electrophoretic deposition (EPD), RF sputtering 

and thermal co-evaporation methods and evaluated by measuring their electrical properties and 

characterizing their microstructures before and after the long term electrical tests. 

Electrophoretic deposition (EPD) is a versatile and cost-efficient fabrication process extensively used 

for the processing of ceramic coatings [42–45]. This electric field assisted process employs the 

movement of charged particles towards a charged electrode in an electric field [46,47]. EPD technique 

offers the possibility to deposit a wide variety of materials (ceramics, metals, glasses etc.) with a broad 

range of particle sizes (nm to hundreds of µm). This relatively simple technique offers an easy scaling-

up to industrially applicable dimensions [48,49]. EPD offers an easy control of the coating thickness 

and good surface coverage even for complex shapes [50,51]. 

EPD has been previously used to deposit protective coatings based on the Mn,Co spinel. For example, 

Zhang et al. [38] have used the EPD method for the deposition of the (Mn,Co)3O4 spinel coatings on 

T441 steel. They have studied the effects of the applied voltage and sintering on the coating quality 

and ASR. They have found that a sintering with a reducing step is beneficial for lowering of the ASR. 

In another work, Zhang et al. [52] reported on the microstructure, oxidation kinetics, and electrical 

behaviour of Mn–Co spinel coating produced by EPD on Crofer 22 APU steel. They have also used 

the reduction step during the sintering (in argon) to obtain denser samples with low Cr permeation. 

Other authors [22,53] reported on Co and Mn spinel based produced by electrodeposition. 

Electrophoretic deposition technique was also used by M. Mirzaei et al. [54] and Abdoli et al. [55] to 

prepare MnCo2O4 spinel films on AISI 430 stainless steel; the oxidation behavior and electrical 

properties of the coated specimens were studied for a total of 500 hrs. EPD was also employed by Yoo 

et al. [56] to coat (Mn1.5Co1.5)O4 spinel layer and La0.8Sr0.2MnO3 layer on Crofer 22 APU; the ASR 

tests were conducted up to 110 hrs. EPD depositions and relative sintering processing parameters used 

in this study were optimized in a previous work by the same authors [57]. 

Thermal co-evaporation technique was also used to produce a thin Mn1.5Co1.5O4 coating on 

Crofer 22 APU. The main advantage of this technique is the basically uniform deposition over large 

areas combined with a high deposition rate. This technique has been mainly used for the preparation of 

superconductor materials and a previous publication [58] reports the use of this technique to produce 

Mn1.5Co1.5O4 coatings on a Crofer 22 APU substrate. 

RF Magnetron sputtering is a powerful technique for producing different kinds of coatings. It has 

some advantages such as a high deposition rate, easy sputtering of any metal, alloy or compound, the 

formation of high-purity films with high adhesion to the substrates. Mn-Co coatings with thickness of 

800 nm, 1500 nm, 3000 nm were deposited on SUS430 steel by magnetron sputtering. Oxidation 



behaviour and ASR of coated samples were investigated after at 800°C in air up to 1000 hrs. These 

results showed a Mn40Co60 coating 1500 nm thick as the best candidate for long term SOFC 

applications [59]. Magnetron sputtering was also used to fabricate Co/Mn/Cu protective coatings on 

channelled Crofer22APU and F17TNb metallic interconnects [60]. (Co,Mn,Cu)3O4-based protective 

coatings were formed after oxidation; for both Crofer 22 APU and F17TNb substrates, Co–Cu based 

coatings showed the lowest ASR (12–15 mΩ cm2 for a duration of 500–900 hrs). 

In this work three different deposition methods were used to prepare Mn-Co spinel coatings on the 

Crofer 22 APU steel substrates and were evaluated for their long term electrical Area Specific 

Resistance behaviour. After the test, samples were microstructurally characterized. 

 

Experimental 

Crofer 22 APU steel (ThyssenKrupp) coupons of 20 x 40 x 0.3 mm3 were used as substrate materials 

for subsequent coating depositions. Prior to depositions, the Crofer 22 APU substrates were 

ultrasonically cleaned in acetone in order to remove any impurities. 

Thermal co-evaporation Mn-Co thin coatings were prepared by thermal co-evaporation technique 

using a Theva GmbH evaporation system. Mn (99.8% purity) and Co (99.9%), from Chempur GmbH, 

were positioned in two separate boat crucibles (alumina coated tungsten for the Co metal evaporation 

and conventional tantalum boat for the manganese evaporation) and put in the evaporation chamber. 

The co-evaporation process was carried out by resistively heating the respective boat crucibles with 

the applied power. The deposition pressure of  about 2 x 10-5 mbar was maintained by two turbo 

molecular vacuum units during the 30 min of evaporation. The substrate holder was heated at 600°C. 

After the thermal co-evaporation deposition, the samples were annealed in-situ at 800°C for 30 

minutes (O2, 1 atm) in order to form the Mn-Co spinel coating with the selected stoichiometry. 

RF sputtering depositions were processed by a Kolzer DGK36 using a commercial 7 inches diameter 

disk-shaped Mn1.5Co1.5O4 target; the pressure inside the chamber was 3 x 10-4 mbar, a power of 0.5 

kW and a deposition time of 1.5 hrs were used. The deposition was processed on both Crofer 22 APU 

substrates at room temperature and on samples heated at 400°C. 

Commercially available Mn1.5Co1.5O4 spinel powder (mean particle size of 0.36 μm and a specific 

surface area of 12.0 m2/g) was obtained from American Elements (USA). 1 mm thick Crofer 22 APU 

samples were used as substrates for the deposition by EPD. The spinel powder was dispersed in a 

mixture of ethanol and deionized water (volume ratio of 60/40 of EtOH/H2O) with a solid content of 

37.5 g L-1. The suspension was homogenized by placing in an ultrasonic bath for 15 minutes (Bandelin 

Sonorex, Germany). For each deposition, new suspensions were used. A 316 stainless steel sheet with 

similar dimensions to the Crofer 22 APU substrate was used as the counter electrode in the EPD cell. 

The distance between both electrodes was kept constant at 10 mm which results in electric field 

strength of 50 V cm-1. For optimized deposits, 20 secs of deposition time was used. Coated samples 



were removed from the suspensions after switching off the voltage and were subsequently dried at 

room temperature in air for 24 h. 

Mn1.5Co1.5O4 coated Crofer 22 APU samples were sintered at 1000°C for 2 hours (heating rate 10°C 

min-1) in static air atmosphere to obtain a homogeneous Mn1.5Co1.5O4 layer. 

The Area Specific Resistance of the spinel coated and uncoated Crofer 22 APU alloys was measured 

at 800°C in stagnant air with an applied current density of 500 mA cm-2. The setup used for the ASR 

measurement is described in more details in [61]. In order to measure voltage drop on a single 

interface, platinum wire was welded to the alloy, which served as an “internal” reference electrode. A 

second electrode (flattened platinum wire) was placed on the La0.85Sr0.15MnO3 (LSM) contacting plate 

which was spray-coated with LSM contact layer in order to ensure a good contact with the sample 

surface. The voltage drop (used for calculation of the ASR) was measured between the alloy 

(reference electrode) and the LSM plate (second platinum wire) placed on the alloy. For current 

distribution, bottom and top LSM plates were contacted by a gold foil. Current density was monitored 

by measuring a voltage drop on a reference resistor. For comparison purposes, an uncoated 

Crofer 22 APU was measured in the same setup. 

X-ray diffractometry (XRD) analysis of the as-prepared samples was performed using Bruker D8 

Advance system with CuKα radiation. Measurements were carried out in a standard 2θ configuration at 

room temperature in the range 20°-80°, with 0.01° step and 2 seconds/step counting time. 

Scanning electron microscopy (SEM) observations have been performed using a table-top Hitachi 

TM3000 microscope or high resolution field emission microscope Zeiss Supra35 equipped with an 

energy dispersive x-ray analysis based on Bruker SDD detectors. For quantification, Quantax70 or 

Esprit 1.9 software from Bruker was used. Both the surfaces and cross sections were analyzed. For 

preparation of the cross-sections, samples were embedded in epoxy (EpoFix, Struers, Denmark), cut 

and polished down to 1 µm diamond paste finish. 

Specimens for transmission electron microscopy (TEM) investigations (lamellas) were prepared using 

Zeiss NEON CrossBeam 40 EsB Focus Ion Beal (FIB) instrument. Lamellas were cut from chosen 

regions of polished cross-sectional specimens. The TEM investigations were carried out using FEI 

Tecnai G2 (Selected Area Electron Diffraction - SAED) and a FEI Titan Cubed G2 60-300 - a probe 

Cs corrected (S)TEM for analytical high resolution equipped with ChemiSTEM EDX system based on 

a 4 windowless Silicon Drift Detectors (Super X) – (High Angle Annular Dark Field – Scanning 

Transmission Electron Microscopy (HAADF) and energy dispersive X-ray spectrometry (EDS)). 

Phase identification was performed by means of electron diffraction and EDS. The SAED patterns 

were interpreted using JEMS (Java Electron Microscopy Software) software. 

 

Results and Discussion 

Microstructures of the as produced coatings 



Coatings in the as-produced state were analysed by x-ray diffractometry and by scanning electron 

microscopy of the surfaces and polished cross-sections. 

 

Surface XRD analysis results, presented in Figure 1, show the presence of (Mn,Co)3O4 spinel phase on 

all samples. Thin coatings, though processed only at room temperature or at 400°C, showed similarly 

crystallized layers. Both the cubic MnCo2O4 and tetragonal Mn2CoO4 phases have been detected as 

expected for the Mn1.5Co1.5O4 composition. At room temperature Mn1.5Co1.5O4 is a mixed spinel, 

consisting of these two phases. During heating to high temperatures, it transforms to a purely cubic 

MnCo2O4 phase. Full transformation to the cubic phase can occur around 400°C [62]. Some peaks in 

the spectra from the EPD sample can be possibly ascribed to the Cr2O3. However its peaks overlap 

with the spinel peaks. Additionally, due to some possible Cr, Mn diffusion, peaks are slightly shifted 

in comparison to the reference positions. The major difference between the spectra of the thin coatings 

and the EPD coating is the presence of a strong peak from the alloy for the thin coatings, whereas for 

the thicker EPD coating this peak has relatively low intensity. 

 

Surface SEM images of the as-prepared coatings are presented in Figure 2 A-D. The EPD coating 

looks quite porous on the surface, exhibiting well-connected grains with size around 1 micron. Figure 

2 B and C, presenting samples obtained by RF sputtering (with un-heated and heated substrates, 

respectively), shows a dense structure covering uniformly the whole sample surface. At low 

magnification image, due to the small coating thickness, irregularities of the substrate can be still 

visible. At higher magnification images octahedral grains on the surface are evident; these octahedral 

crystals are smaller than 1 micron in both cases, with slightly sharper shape (edges) on the heat-treated 

sample. The sample prepared by thermal co-evaporation (Figure 1 D) shows very fine grains, hard to 

observe with high resolution SEM. Grains are smaller than 50 nm and also cover the surface very well. 

On the low magnification SEM image some small “pinholes” on the surface are visible for this 

sample. 

 

 

Analysis of coatings cross sections in the as-prepared state, shown in Figure 3 A-D, indicates a clear 

difference in thickness of the EPD and the other coatings. The EPD coated sample, shown in Figure 

3 A, has a 15 micron thick Mn-Co layer with a more porous layer in the outer part. A dense layer is 

clearly visible in the inner coating area, which is in direct contact with the oxide scale formed on the 

Crofer 22 APU during the heat treatment at 1000 °C for 2 hours in air (necessary for coating 

densification). This reaction layer is typical for air processed coatings [61,63]. As determined by point 

EDS analysis, the formed oxide is composed purely of chromium oxide (Cr 35.6 at.%, O 56.4 at.%). 

The thickness of this layer after sintering is ~1.5 µm. The reaction layer that formed at the top the 

chromia has a similar thickness. Point analysis detected ~20 at.% Mn, ~20 at.% Co and 1 at.% of Cr, 



the rest being oxygen (with some potential contribution from the surrounding layers due to the small 

interaction volume). 

Thin coatings, showed in Figure 1 B,C,D, have thicknesses between 1 µm and 1.5 µm. Both sputtered 

samples (C and D) contain a small amount of isolated micro pores ~0.1 μm in size, that are likely 

formed as a consequence of gas entrapment during the deposition. A transversal crack is present in the 

coating produced by sputtering on the substrate at room temperature. Furthermore the inner area is 

more porous than the outer one; this can be likely due to a predominance of the shadowing effect 

during sputtering deposition. Heating of the substrate during the deposition is mainly aimed at 

increasing the surface diffusion coefficient of atoms, enabling re-arrangement and homogenization of 

the growing film, also avoiding the growth of a columnar microstructure. Heating seems to lead to 

denser coatings (Figure 3 D) with a more uniform internal structure and a thin oxide layer (< 100 nm) 

at the steel/coating interface. 

The thermal co-evaporation method produced a Mn-Co coating with an average thickness of 1 micron, 

as shown in Figure 3 B. Coatings with a composition close to Mn:Co 50:50 at.% were obtained, 

corresponding to Mn1.5Co1.5O4 nominal composition, as a result of metallic Mn-Co coating conversion 

into the spinel by sintering at 800 °C for 30 min in air. The Mn1.5Co1.5O4 coating adhered well to the 

Crofer 22 APU substrate. 

Summarizing, three different methods were used to deposit 4 types of Mn-Co spinel protective 

coatings with a nominal composition Mn1.5Co1.5O4. Coatings differ in thickness and in microstructure, 

the potential differences in their protective behaviour are attractive for evaluation. 

 

Electrical conductivity tests 

Figure 4 shows the Area Specific Resistance (ASR) data recorded during the long term electrical 

characterization carried out at 800°C for 5000 hrs. 

 

Initially, for the first ~400 hours all resistances decrease rapidly due to formation of the interface 

between the steel/coating and the contacting plate. Sintering of the LSM plates occurs over time and 

thus they increase their conductivity, more rapidly in the beginning. Additionally some creep/re-

arrangement of the sprayed contact layer might take place. These initial phenomena are much larger 

than the possible initial increase of the ASR due to the oxide growth. For the thermal co-evaporation, 

sputtering and a not coated sample, after this ~400 hours an increase in the ASR value starts. For the 

sample with a sputtered coating with a heated substrate a very rapid increase in the ASR occurred. For 

the EPD coated sample, increase is visible only after ~2500 hours. This difference in time might be 

due to possible interaction of the MCO spinel with the LSM contact layer, densification of the MCO 

spinel due to mechanical load etc. It has been observed previously in other coated samples measured 

in the same setup [61]. It shows the importance of performing long term ASR measurements, where 



for good performing samples the increase of the ASR due to chromia growth might be visible only 

after initial equilibration and setting effect. 

ASR increase rate for the un-coated and thin spinel coated samples (not including the heated-sputtered 

sample) seems to be similar. Only the EPD coated sample shows visibly slower increase rate. After 

5000 hours of oxidation, ASR value for the poorly performing samples is 35-45 mΩ cm2, whereas for 

the EPD coated samples it is ~22 mΩ cm2. The rate of increase of the ASR, calculated by linear fitting 

of the curves between 2000-5000 hours, gives a value of 3.9 mΩ cm2/1000h for thermal co-

evaporation, sputtering and un-coated samples and a value of 1.2 mΩ cm2/1000h for the EPD coated 

sample. Degradation rate has been thus lowered by a factor of 3x. Assuming a simple linear 

extrapolation of the values up to 40000 hours, the EPD coated sample would have a total ASR of 

about 60 mΩ cm2, so below the presumed limit. 

Among the coated samples, only the EPD coated ones showed a promising performance. Application 

of other coatings did not result in a slowing down of the ASR increase, which was relatively close to 

the un-coated samples, pointing at possible too low initial thickness to ensure an effective and 

protective action. 

 

Post mortem characterization after 5000 hours at 800°C 

After the ASR measurement, it was possible to disassemble the whole ASR stack into separate pieces 

and thus examine surfaces and cross-sections of the individual coated samples. Figure 5 shows SEM 

images of sample surfaces after the 5000 hour experiments. Additionally, surface chemical 

composition has been analysed by EDS (at a low magnification of 250). White particles visible on all 

surfaces are leftovers from the LSM contacting plates. 

Analysis of the EPD coated sample shows a porous surface similar to the initial surface. Chemical 

composition shows presence of Mn, Co and a minor amount of Cr (~1 at.%) is also detected. The ratio 

of Mn/Co has increased from the initial 1:1 to 27:20 in atomic %. Sample has therefore picked up 

some Mn from either the steel or more possibly from the LSM contacting plate, which is a much larger 

Mn reservoir. 

 

 

EDS analyses of the thin coatings show that they contain a high amount of chromium. The EDS signal 

does not come from the steel substrate, as in this case also iron would be present. In the case of the 

sputtered samples, the surface of the not-heated one looks smooth whereas the surface of the sample 

deposited with a heated substrate shows a rough surface composed of large crystallites few 

micrometers in diameter. Chemical composition of both these samples is quite similar, Co is present 

only in ~4 at.%, whereas Cr content is ~16 at.%. Also the high Mn content, ~20 at.% and ~25 at.%, for 

the not heated one and heated respectively, must originate from the LSM plate. These samples seem to 

form a mixed Mn:Cr:Co spinel, which have relatively low electrical conductivities, comparable to 



chromia [64] and are not considered protective against chromium evaporation. The sample coated by 

thermal co-evaporation shows similar structure and chemical composition, also rich in Cr and with 

only ~4 at.% Co present. The uncoated sample shows presence of ~22 at.% Cr and 17.5 at.% Mn, 

originating from the surface Mn,Cr spinel, with a possible contribution from the underlying chromia. 

The surface analysis of the electrically tested samples reveals that only the EPD coated spinel has 

blocked the outer diffusion of Cr, though the coating was relatively porous. Other coatings have 

reacted heavily with Cr and Mn, changing their stoichiometry considerably. Reactivity has been 

further studied by analysis of sample cross sections by scanning electron and transmission microscopy. 

Sample cross sections after the test are shown in Figure 6 A-E. On the uncoated sample oxide 

thickness is determined to be on average ~3.5 µm. On top of the oxide an LSM contacting layer is still 

present on the surface. It must be noted, that LSM can by itself provide some corrosion protection 

properties, slowing oxide growth rate [65,66]. The interactions of the oxide scale and the contact layer 

used for the ASR measurement cannot be avoided [28,67]. As measured by the point EDS analysis, 

the oxide on the uncoated sample is composed of an inner Cr2O3 and an outer mixed Mn, Cr spinel 

with the composition Cr 30 at.%, Mn 20 at.% and rest O. Due to a small volume, the composition of 

the mixed spinel might contain some contribution from the surrounding layers. These two oxides are 

roughly the same in thickness. 

 

Cross section of the EPD coated sample (Figure 6 B) shows similar microstructure to the as-prepared 

coating. Oxide did not grow considerably during the ASR measurement; it reached a thickness of 

2.5 µm on average, increasing from the initial 1.5 µm. Oxide thickness caused by the long term 

exposure on the EPD coated sample was lower than on the not coated sample, even including the 

initial oxide thickness caused by the high temperature sintering. The coating structure looks similar to 

the initial one, with a dense reaction layer next to the oxide. At some places this reaction layers seems 

to penetrate deeper into the porous coating than in the as-sintered state. For this sample, the oxide 

scale is a pure Cr2O3, with internal pockets containing some Mn and forming an internal Mn,Cr spinel. 

Composition of the Mn, Co spinel is very similar to the one detected from the surface analysis. 

Average composition reveals 27 at.% Mn and 19 at.% Co with only a minor amount of Cr (< 0.5 

at.%). Mn is distributed uniformly throughout the coating. 

Thin coatings, shown in Figures 6 C, D, E present different microstructure after the oxidation test. Due 

to a thick internal oxide formed by Cr2O3 (thickness ~6-8 µm) and external oxide Mn,Cr,Co, they are 

clearly less protective than the EPD coating. Depending on the measurement point, on all thin coated 

samples mixed composition Mn,Cr spinels with ~4 at.% of Co are detected (Mn1.5Cr1.5O4, Mn2CrO4, 

MnCr2O4 based), also confirming the surface analysis. At many points no Co presence was detected at 

all, implying that a pure Mn,Cr spinel formed. With a total thickness of the oxide ~16 µm, these 

poorly conductive oxides contribute negatively to the ASR. Possible explanation about the protective 



behaviour of the EPD coatings and poor performance of the thin coatings are discussed in following 

paragraphs. 

In order to better understand the evolution of the prepared Mn1.5Co1.5O4 coatings after the 5000 hrs at 

800°C and to investigate possible reactions and elemental diffusion, a more detailed analyses of these 

samples are reported in Figures 7, 8 and 9. 

Figure 7 presents the cross section image with EDS point analyses, EDS elemental maps for Cr, Mn, 

Co, Fe and O and a line scan of a thermal co-evaporated sample after the 5000 hours electrical 

measurement. Microstructures of other thin coatings after the test were similar. 

 

 

Analysis of Figure 7 A and B, reveals that Cr is present both in the oxide scale and in the outer Mn,Co 

coating. Mn seems enriched at the outer interface of the coating, where it has been in contact with the 

LSM plate. This is confirmed by the line scan, in which the Mn signal increases towards the surface. 

This Mn enrichment influence the spinel composition, which contain less Co than in the initial state 

and also contain chromium, diffused from the steel/chromia. Chromium content is gradually 

decreasing from the chromia to the surface. From around 25 at.% in the spinel next to chromia (point 

6), to ~10 at.% at the surface (point 2). Iron is contained only in the alloy. Some Mn also forms most 

likely a stable MnCr2O4 spinel below chromia (point 4). 

All thin coatings studied in this work did not show protective behaviour. They looked quite similarly 

with high Cr content in the coating and also with a high Mn content. Possible explanation for this poor 

behaviour, postulated in this work, is that in the presence of a large reservoir of Mn (from the LSM 

plate), acting as a source of Mn, that diffuse into the coating changing its composition and structure. 

Otherwise there is no other large source of Mn, and the gradient in composition towards the LSM plate 

supports it. Probably, small thickness and very small particle size and not well defined grains reacted 

strongly with the Mn, destabilizing its structure and allowed for the diffusion of Cr. The protective 

spinel became mostly a mixed Mn, Cr, Co spinel, which loses its good electrical conductivity. This 

seems to be confirmed by other studies performed on Mn, Co, Cr spinels [14,64,68]. 

Figure 8 presents cross section image with EDS point analyses, EDS elemental maps for Cr, Mn, Co, 

Fe and O and a linescan of the electrophoretically deposited sample after 5000 hours electrical 

measurement. In this case Mn is also enriched, however to a smaller extent than in the thin coatings. 

This was also visible in the EDS analysis of the surface of the exposed samples, presented in Figure 

5 A. The average ratio of Mn:Co is ~27:20 at.%. This has not led to any visible microstructural 

changes, as the density of the exposed samples seem similar to the as-sintered sample. Only a minor 

amount of Cr is found in the coating. In the inner part of the dense reaction layer between the coating 

and the chromia the Cr content is ~1.5 at.%, whereas in the rest of the coating it drops to below 1 at.% 

on average (within a detection limit of EDS, though a small peak was definitely detected). Also some 

internal MnCr2O4 spinel exist below the chromia. There are some voids visible below chromia, that are 



believed to be the result from Cr and Mn elements outward diffusion or caused by the mechanical 

polishing of the sample. 

 

 

In the case of the EPD prepared spinel coating, it provided a protective behaviour for the alloy over 

the testing period. This has also been observed by other authors [31,67]. Contact with a Mn source did 

not lead to a negative spinel compositional change. From the beginning, spinel had a well formed 

relatively large particles that underwent sintering in air, and then they picked up Mn from the LSM 

during the long term oxidation exposure. Thickness of the EPD coating is much higher than for the 

thin coatings, so the smaller amount of Mn increase still means a relatively large flux of the total Mn 

diffused, possibly comparable with the total amount of Mn diffused into the thinner coatings. Reaction 

layer that formed during the sintering protected the rest of the coating from an outward Cr diffusion. It 

also caused slight oxide growth over this 5000 hour period, possibly due to limiting oxygen diffusion. 

In order to study possible chromium diffusion in more details, advanced transmission electron 

microscopy evaluation has been performed on this sample. 

A TEM image, showing the FIB lamella of the Crofer 22 APU-oxide scale-Mn1.5Co1.5O4 coating 

together with the STEM-EDS maps for Co, Cr, Mn, Fe and O are reported in Figure 9. The Cr 

distribution map across the Mn1.5Co1.5O4-Crofer 22 APU cross section showed that the coating 

essentially blocked the outward diffusion of Cr after the thermal ageing at 800°C for 5000 hours. The 

oxide scale is rich in Mn in the inner layer (~0.5 µm), while it is mainly composed of chromia in the 

outer part; this observation is confirmed by the EDS analyses reported in Table 1, in particular by EDS 

analyses in areas 2 and 3, respectively. A large pore is visible at the Crofer 22 APU substrate/oxide 

scale interface; these kind of voids and porosities (as previously shown in Figure 8) may result from 

Cr and Mn and also Fe, elements outward diffusion or from the preparation of the FIB lamella. EDS 

maps confirms that some Fe, together with Cr and Mn, is present in the inner part of the oxide scale. 

Composition of Area 2 is close to the expected MnCr2O4 composition for the internal spinel. 

 

 

The presence of ~7 at.% Cr, together with a higher Co:Mn > 1 are detected by EDS in areas 4 and 10, 

which are in the spinel coating at the boundary area with the oxide scale. The ratio (Co+Cr)/Mn is ~2. 

It seems that a small diffusion of Cr into the reaction layer stabilizes the cubic phase of the spinel next 

to the chromia. In the spinel regions rich in Mn (tetragonal spinel) and rich in Co (cubic spinel) are 

clearly visible, as discussed earlier on the spinel composition at room temperature. 

The formation of a reaction layer has been previously shown by other studies [14,69]. This reaction 

layer could be constituted by a mixed spinel (Mn,Co,Cr)3O4 and was due to the inter-diffusion of 

elements from (Cr) and toward the steel (especially O and Co). These compounds are undesirable 

because of their low electrical conductivity [12]; however in the present study the thickness of this 



layer is very low (~0.5 µm), especially considering the long duration of the ASR test. Magdefrau et al 

detected a similar layer with a thickness around 4 µm after an exposure for 1000h at 800°C [69]. 

 

 

In addition to STEM-EDS, selected area electron diffraction (SAED) patterns were analysed in 

selected areas (patterns not shown here) with help of JEMS software. The performed analysis suggests 

the presence of mixture of Mn2CoO4 and MnCo2O4 phases in the investigated areas. Nevertheless it 

should be noted that MnCoCrO4 can also co-exist. All those phases have a very similar 

crystallographic structure: the same space group number (Fd-3m) and similar lattice parameters (a = 

8.4 and 8.3 nm) [70]. As a result, diffraction patterns from those phases look the same. EDS analysis 

of some of the investigated areas showed small Cr enrichment, so it is possible that one of the phases 

that exists in the areas 4 and 10 will be MnCoCrO4. Furthermore, these areas are rich in Co and this 

behaviour can be explained by an inward diffusion of Co towards the chromia layer; this “reaction 

layer” seems to have a positive effect in reducing Cr volatilization and diffusion to the rest of the 

coating. The remaining areas (6, 7, 8 and 9) belong to the Mn-Co spinel. Different bright and dark 

areas correspond to Co and Mn rich areas, respectively; this observation is confirmed by the SAED 

analyses (collected in areas 7 and 8, respectively), thus confirming the presence of the MnCo2O4 and 

Mn2CoO4 phases. From analysis of the elemental maps in Figure 9, it seems that the Mn2CoO4 spinel 

phase is represented to a higher extent than MnCo2O4 spinel. That observation would be in-line with 

the Figure 8, where on a more macroscopic scale, Mn enrichment has been noticed, which led to 

formation of more Mn2CoO4 phase than initially. 

EDS mappings of the EPD prepared Mn1.5Co1.5O4-Crofer 22 APU, taken both by SEM and TEM on 

the cross sections after the 5000 hours test, confirmed that the ~15 µm thick Mn1.5Co1.5O4 protective 

coating effectively prevented the outward migration of Cr, thus proving the Cr retention efficiency of 

the spinel coating. The coating produced by EPD reduced the oxide scale growth rate and blocked 

outward diffusion of Cr from the oxide scale that grew between the coating and the steel substrate 

during the 5000 hrs long-term tests. As a technological relevance, the EPD technique can be used to 

coat shaped substrates, thus offering a solution for coating real interconnects for practical applications. 

On the other hand, the thin coatings obtained by thermal co-evaporation and RF sputtering techniques 

were found to react heavily with Mn from the LSM contacting plate and Cr from the alloy/chromia. 

Even if initially dense coatings could be obtained by these techniques, their effectiveness in Cr 

retention capability and limiting the growth of the oxide scale, with a consequent influence on the 

ASR values, was found to be limited. Furthermore, the intrinsic nature of the sputtering process, where 

sputtered ions randomly reach the surface of the substrate, can lead to inhomogeneous thickness of the 

coating. This will be especially important if shaped (e.g. real interconnect) surfaces have to be coated. 

During the sputtering deposition, shadowing effects can potentially have a significant influence on the 

coating deposition on the sidewalls and on the bottom of a channel. The geometric effect of the 



interconnect substrate can play a critical role also for the thermal co-evaporation technique, where the 

coating in terms of homogeneity for complex surfaces should be improved for example by rotating the 

substrate during deposition. 

 

 

 

Discussion on chemical reactivity of the coatings with LSM 

It has been noticed in this work, that the presence of the external Mn source (LSM contact plate in our 

case) can have an important effect on the behaviour of the coatings. The issue of Mn diffusion leading 

to compositional change of the coating can possibly precedent loose of the protective properties (for 

thin films) and can have a profound effect on the long term resistance of coatings in direct contact with 

the contacting elements (containing Mn). Moreover, as has been shown in this work, also thick 

coatings change their chemical composition due to Mn pick up. It seems however, that larger volume 

of the thick spinel coating tolerate it well in this 5000 hours exposure. Possible Mn diffusion from the 

external sources into the coating during high temperature exposure constitute a very important 

difference between measuring the corrosion properties of the isolated coated samples (e.g. pure 

thermogravimetric experiments) and samples in contact with reacting external layers. One can also 

possibly measure electrical conductivity with the use of less reactive layers, e.g. platinum, but always 

some interaction will occur. Studies of these effects are important in terms of real components for 

stacks. This is evidenced in this study and should be considered when designing and evaluating 

ceramic protective coatings. 

Schematics of a possible reactivity of the thin and thick coating are shown in Figure 10. In the case of 

the coatings not in contact with an external Mn source (Figures 10 A and C), the coating does not 

change its chemical composition considerably during the exposure. Small diffusion of Cr from 

chromia can occur and some further evolution of the reaction layer is also expected [61,63]. For thin 

films, also mainly growth of chromia scale is expected [58]. Behaviour of coatings changes in the 

presence of an external Mn source, as shown schematically in Figures 10 B and D. For the thick 

coating, some Mn diffuses into the porous spinel coating. In addition, chromia growth occurs, but Cr is 

mainly contained in the chromia and to a small extent in the reaction layer (~0.5µm) and in the coating 

(< 1 at.%). Based on TEM-EDS/SAED, the dense reaction layers seems to be a cubic Co rich spinel 

and Cr content in the porous coating is very low (< 0.5 at.%). 

For the thin coatings, extensive diffusion of Cr from the alloy/chromia into the initial coating occurs, 

in addition to Mn diffusion from the LSM plate. A thick (~16 µm after 5000h at 800°C) mixed 

Mn,Cr,Co spinel forms. It has been highly “diluted” by diffusing Mn and Cr, so that the Co content is 

very low (~4 at.% instead of the initial ~20 at.%). Both the low initial thickness of the thin coatings 

(small volume) and small grain size due to low temperature preparation (faster diffusion through grain 

boundaries) might play a role in rapid degradation of the spinel. 



 

 

Conclusions 

Out of the three Mn-Co spinel coatings compared in this study, the one deposited by EPD presented 

the best protection against Cr diffusion, contributing to the lowest ASR value and lowest increase rate. 

After 5000 hours of oxidation, ASR values for the RF sputtering and thermal evaporation coated 

samples were 35-45 mΩ cm2, whereas for the EPD coated samples ASR reached ~22 mΩ cm2. 

Concerning the degradation rate, it was found to be lowered by a factor of 3x in the case of EPD 

coated samples. 

SEM and TEM post mortem analyses confirmed that the spinel coating deposited by EPD reduced the 

oxide scale growth rate and blocked the outward diffusion of Cr from the oxide scale that grew 

between the coating and the steel substrate during the 5000 hrs tests. Even if dense coatings were 

obtained by RF sputtering and thermal evaporation techniques, their effectiveness in Cr retention 

capability and hindering the growth of the oxide scale, with a consequent influence on the ASR values, 

were found to be limited. The loss of the protective properties for the thin films was possible due to 

inward Mn diffusion (enhanced by the small thickness as well as by the submicron grain size) and a 

consequent significant compositional modification, leading to formation of a mixed Mn, Cr, Co spinel 

and a consequent increase of electrical resistance. 
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Figure 1. XRD patterns of the as-coated alloys. 

 

 

Figure 2. Surface SEM images of the as-prepared Mn-Co spinel coatings. 

 



 

Figure 3. Cross section SEM images of the as-prepared Mn-Co spinel coatings. Please note a different 

magnification of Figure A. 

 

 

Figure 4. Area Specific Resistance measurement of samples at 800°C under a current load of 

500mA cm-2. 



 

Figure 5. Surface analysis of the samples after the ASR measurement. 

 

 

Figure 6. Cross section SEM images of all samples after 5000 hours electrical measurement. 

  



 

 

Figure 7. Cross section image (A) and EDS Cr-Mn-Co-Fe-O elemental maps (B) with a EDS linescan 

(C) of a thermal co-evaporated sample after 5000 hours measurement. Compositions in A are given in 

at.%. 

 

 

 

Figure 8. Cross section image (A) and EDS Cr-Mn-Co-Fe-O elemental maps (B) with a EDS line scan 

(C) of the electrophoretically deposited sample after 5000 hours measurement. Compositions in A are 

given in at.%. 

 



 

Figure 9. Transmission electron microscopy image of FIB lamella with EDS elemental analysis. 

Composition of marked areas is given in Table 1. 

 

 

Figure 10. Schematic representation of reactivity of thin and thick Mn-Co coatings. 

 

  



Table 1. Chemical composition of areas studied by TEM-EDS shown in Figure 9. 

Area 
Fe 

[at.%] 

Cr 

[at.%] 

O 

[at.%] 

Mn 

[at.%] 

Co 

[at.%] 

1 74.9 22.3 1.3 0.2 1.1 

2 - 36.9 43.8 19.1 - 

3 - 52.7 47.3 - - 

4 <1 7.8 36.4 21 33.8 

5 <1 1.1 36.6 40.8 20.4 

6 <1 <0.5 32.9 29.4 36 

7 <1 <0.5 35.8 25.5 37.5 

8 <1 <0.5 36 42 20 

9 <1 <0.5 36 23 37 

10 <1 7.4 36 20 34 
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