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Abstract—The trend towards electrification of the heating
sector in many cases leads to the replacement of fossil-fueled
heating systems with electric heat pumps. This may result to
significantly higher consumption and potentially violations of the
distribution grid operational limits. We propose a day-ahead
optimization strategy to assess the cost of imposing capacity
limitations in the total consumption of individual buildings, as
well as aggregations of buildings. We show that such capacity
limitations lead to an increase for the buildings operational costs,
which can be interpreted as the value of these limitations. Based
on such calculations, the aggregator can value capacity-limitation
services to the distribution system operator. Moreover, the value
of aggregation is also highlighted, since it leads to lower costs
than imposing the same total capacity limitation on individual
buildings.

Keywords— Commercial buildings aggregation, demand re-
sponse, DSO services, line capacity limit.

I. INTRODUCTION

The electrification of the heating sector poses a number of
challenges to the operation of power systems. One of these
challenges is the increased loads in the low voltage grids by
resources with large consumptions, such as electric heat pumps
(HPs) or electric vehicles (EVs). Moreover, the potential profits
from the aggregation of such resources and the participation in
the power markets via aggregators is gradually being realized.
These aggregators are responsible for controlling such loads
and represent them towards the system operator and the power
markets. A topic of significant undergoing research is the
impact of these loads to the distribution grids [1]. Traditionally,
distribution grids have been designed with large operating
margins and in most cases line congestions are rare, but are
expected to occur more frequently when significant numbers
of HPs or EVs are installed and controlled via aggregators.

There is a large variety of approaches for handling conges-
tions and voltage problems in the distribution grids, such as
time-of-use tariffs [2], distribution locational marginal pricing
[3] and contracted capacity limits [4]. In this study we focus
on the last approach, which is a relatively mature method,
easy to implement and with limited requirements in terms
of monitoring and communication. A number of distribution
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system operators (DSOs) charge their customers based on a
contracted capacity, so that they can have some guarantees on
the maximum consumption. Moreover, the increased shares
of controllable distributed energy resources (DERs) in the
distribution grids may lead the DSOs to trade DSO services
with the aggregators to ensure the safe grid operation and avoid
expensive upgrades. It is therefore useful for aggregators, who
manage large loads on behalf of their customers, to have a
method to calculate the optimal contracted capacity or the
value of DSO services based on load limitations, which in the
general case can be time-varying and involve both a minimum
and a maximum consumption.

Physical line capacity limits (to the point of connection with
the grid) can be also exceeded in buildings where substantial
new large loads are installed, such as EV charging stations and
large HPs. In this paper we focus on a realistic case, where the
gas-boiler based heating system of a commercial building is
supplemented with HPs. We propose an optimization strategy
in order to quantify the cost of a capacity limitation on
individual and aggregated buildings. This limit can be either
physical (the total load exceeding the actual line capacity under
certain conditions) or artificial and imposed by the DSO. In
the first case, the aggregator can use this method to evaluate
whether it is more economical to operate under a reduced
flexibility or to upgrade the connection. In the second case,
the aggregator can calculate the cost of an imposed capacity
limitation and pay or trade the optimal capacity.

Our work is inspired by [5], where a capacity-controlled
demand side management paradigm is proposed and each
customer is assigned a capacity limit by the aggregator, which
the customer is responsible to respect. The authors do not
focus on optimizing the day-ahead (DA) schedule, but rather
construct a demand curve for the aggregated capacity limit
against a shadow price, which corresponds to the discomfort
cost of curtailing load. The aggregator uses this curve to bid
in the DA market and minimize the cost of purchasing the
required energy for its customers.

In our case we propose an optimal bidding strategy in the
DA market, considering the uncontrolled load uncertainty, i.e.
the consumption excluding heating which cannot be controlled
or curtailed. The use of on-off HPs, which must switch off in
case of large uncontrolled load values, significantly changes
the problem. We formulate it as a mixed integer stochastic
problem (MISP) with recourse decisions, to obtain an optimal
day-ahead schedule against load uncertainty. We then calculate
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the average expected costs under various DA prices and
varying capacity limitations, to value the cost incurred by the
reduced flexibility.

The remainder of the paper is organized as follows. In
Section II we introduce the building model and the determin-
istic mixed-integer optimization problem to minimize costs.
In Section III we introduce the uncontrolled load uncertainty
and we present the two-stage MISP, whereas in Section IV we
present the simulation results considering a varying capacity
limit for a single building. In Section V we present results
for an aggregation of 3 buildings and we show the benefit
of aggregated capacity limits compared to imposing them on
individual buildings. Finally, in Section VI we discuss the
applicability of the proposed method and the direction of our
future work.

II. DETERMINSTIC BUILDING SCHEDULING

In this section we introduce the building model used in our
study, as well as its deterministic DA scheduling. The focus
of this paper is on presenting a methodology to evaluate the
cost of line capacity limitations on the operation of buildings,
and therefore a simple representation of the heat demand and
temperature dynamics is used. We assume that the evolution
of a building’s lumped temperature T at each time step t can
be described by

Tt+1 = aTt + (1− a)(Tout,t +QtR), (1)

where a = e−∆t/(RC), R is the thermal resistance, C is the
thermal capacitance, Tout is the outside temperature, ∆t is the
discretization time step, and and Qt is the heat provided to the
building in kW. We must note here that ∆t is the discretization
time-step duration for the building model and the decision
variables, and is in general different than the hourly time-
steps of the market; in this study we use ∆t = 15 minutes.
This differentiation is necessary because the variability of the
uncontrolled load and the imposed restrictions on the heat
pumps’ operation cannot be captured by hourly time steps.
We thus introduce np (which in our study is equal to 4) as a
normalization factor to transform power into energy.

We denote by uk,t the binary state of the k−th HP at time
step t, and by Qb

t the heat provided by the boiler. The total
heat provided in the building is calculated by

Qt =

NHP∑
k=1

uk,tPnomη + ηbQ
b
t , (2)

where NHP is the number of HPs, Pnom is the nominal capacity
of the HPs, and η is the coefficient of performance (COP)
of the HPs; the boiler capacity is denoted by Qnom and the
efficiency by ηb. For notation simplicity and without loss of
generality we consider buildings equipped with HPs of the
same nominal capacity and COP. Temperature must be always
kept within the specified limits

Tmin,t ≤ Tt ≤ Tmax,t. (3)

To simplify the analysis and interpretation of the results,
we assume that no heat storage tank exists, or that its size

is so small that it can be neglected. The total HP and the
uncontrolled load (Pt) consumption are limited by the line
capacity limit Pcap, resulting in the following constraint

NHP∑
k=1

uk,tPnom + Pt ≤ Pcap (4)

It must be noted that Pt is given as an input in the deterministic
case and is always smaller than Pcap, since line congestion
was impossible prior to the installation of the HPs. The
deterministic cost-minimization problem over an optimization
horizon of NT operational time steps and N hours for a
single building can be expressed as the following mixed integer
problem

min
u,Qb

(1/np)

N∑
j=1

 jnp∑
t=m

Qb
tch + λj

jnp∑
t=m

NHP∑
k=1

uk,tPnom

 (5)

where m = (j − 1)np + 1, and λt and ch express the DA
electricity price and the natural gas cost respectively, both in
DKK/kWh. While the double summation over time may seem
counter-intuitive, it is required due to the hourly resolution of
the DA electricity prices and the imbalance costs. Problem (5)
must be solved subject to constraints (1)-(4), as well as

uk,t ∈ {0, 1}
0 ≤ Qb

t ≤ Qnom.
(6)

Notice that the (fixed) terms for the uncontrolled load Pt do
not appear in the objective function of the deterministic case
because they do not affect the solution, whereas the fixed term
1/np in the objective function can be omitted.

III. TWO-STAGE DAY-AHEAD STOCHASTIC OPTIMIZATION
OF AN AGGREGATION OF BUILDINGS

A. Load uncertainty and recourse decisions
The decision making process of the aggregator and the way

load uncertainty is modelled and unveiled defines to a large
extent the formulation of the stochastic optimization problem.
At first, the aggregator must decide upon the scheduling of the
gas boiler and buy the electric energy from the DA market (the
stochastic uncontrolled load and the load corresponding to the
consumption of the HPs), but at the same time position itself
in an optimal manner against the load uncertainty realization.

During operation, depending on the uncontrolled load real-
ization, one or more HPs may be forced to switch off due to
the line capacity limit, or can be switched on if the realized
uncontrolled load is low enough. Moreover, an energy imbal-
ance between the DA schedule and the actual consumption
is penalized by forcing the aggregator to buy/sell the energy
deficit/surplus at the regulating-power price. The aggregator
(or the buildings, depending upon the control architecture) can
take recourse decisions and act on the realized load scenarios.
In our case these decisions include the re-scheduling of the HPs
and the gas boiler, whereas the DA schedule remains fixed.

We differentiate between the N hourly time steps (24 in
our case) for the DA energy schedule and the corresponding
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DA prices, as well as the hourly imbalance costs, and the
operational NT time steps (96 in our case) for the HPs and
the gas boiler, as well as the uncontrolled load uncertainty.
This differentiation is necessary because the variability of
the uncontrolled load, the imposed restrictions on the HPs
operation, and the temperature dynamics cannot be captured
well by hourly time steps. As a result, the operational time step
in this study will be 15 minutes, and the average consumption
over 4 steps will be considered for the imbalance cost.

B. Two-stage stochastic optimization formulation

The aggregator faces a multistage optimization problem,
because the uncertainty unfolds at each time-step and the
recourse decisions affect the decision variables at the remain-
ing optimization horizon, due to the time-coupling caused
by the temperature dynamics and the hourly imbalance-cost
granularity.

If the uncertainty is represented by a finite number of sce-
narios at each time-step, then the resulting multi-stage mixed-
integer stochastic optimization problem becomes a particularly
challenging program. We can imagine the uncertainty as a
decision tree with the time steps of the optimization horizon
as nodes; the aggregator observes the uncertainty at time-step
t, considers the states at the previous time-step t−1 and takes
actions to minimize the expected future cost by solving an
optimization problem for the remaining time steps; this results
in a very large nested optimization problem for a 96 steps
optimization horizon.

If a relatively large number of buildings is considered, then
the resulting problem is very hard to solve, at least in a central-
ized manner. In [6], an extension of the Benders decomposition
algorithm is proposed, in order to decompose and solve such
problems. A commonly used method to simplify the problem is
to reduce it to a two-stage stochastic integer program cite [7],
[8] and derive the DA schedule (purchased energy and gas-
boiler scheduling) by considering scenarios which represent
the uncertainty for the whole optimization horizon.

C. Problem formulation

Assuming perfect DA price forecast and no disturbances
affecting the buildings’ temperatures, the aggregator bids in
the DA market with the objective of minimizing its costs under
uncertain uncontrolled loads. The aggregator’s costs consist of
the electricity costs, the natural gas consumption costs, and the
imbalance costs, incurred by the mismatch between the total
DA scheduled consumption and the actual total load of all the
buildings. In this study we assume that the aggregator can buy
or sell the energy deviation resulting from its DA schedule at
the spot price, but is penalized by a factor proportional to the
DA price, as will be discussed later.

The DA decisions are the bidded DA schedule PDA ex-
pressed in kW, the schedules of the HPs u, and the boilers load
Qb expressed in thermal kW. For Nb buildings, Nb,i HPs in
each building i, N time steps for purchasing energy in DA, and
NT operational time steps, PDA ∈ RNb×N , u ∈ RNb,i×Nb×NT ,
and Qb ∈ RNb×NT .

Each scenario ω has a probability of occurrence πω and
corresponds to a set of realized P it,ω consumptions for each
time-step t at each building i. The recourse decisions include
the decisions to switch a heat pump on (ui,+k,t,ω for HP k will
then become equal to 1) or off (ui,−k,t,ω will become 1) and the
re-scheduling of the boilers (Qb,i,rc

t,ω ). To simplify notation we
introduce the term Pact(t, i, ω) for the actual consumption of
building i at time step t and scenario ω

Pact(t, i, ω) =

Ni∑
k=1

(uik,t + ui,+k,t,ω − u
i,−
k,t,ω)P inom + P it,ω. (7)

The optimization problem then takes the following form

min
W

N∑
j=1

Nb∑
i=1

P iDA,jλj +(1/np)

jnp∑
t=m

Qb,i
t ch


+
∑
ω∈Ω

πω

(1/np)

NT∑
t=1

Nb∑
i=1

Qb,i,rc
t,ω ch +

N∑
j=1

Nb∑
i=1

B(j, i, ω)


(8a)

s.t. uik,t, u
i,+
k,t,ω, u

i,−
k,t,ω ∈ {0, 1} (8b)

0 ≤ Qb,i
t ≤ Qinom (8c)

Pact(t, i, ω) ≤ P icap (8d)

uik,t + ui,+k,t,ω ≤ 1, ui,−k,t,ω ≤ u
i
k,t (8e)

T it+1,ω = aiT it,ω + (1− ai)(T iout,t +Qit,ωR
i) (8f)

T imin,t ≤ T it,ω ≤ T imax,t (8g)

Qit,ω =

Ni∑
k=1

(uik,t + ui,+k,t,ω − u
i,−
k,t,ω)P inomη

i

+ (Qb,i
t +Qb,i,rc

t,ω )ηib (8h)

Qinom −Q
b,i
t ≥ Q

b,i,rc
t,ω ≥ −Qb,i

t (8i)

where W contains all the optimization variables and Ω is the
set of all the scenarios. The indexes for the constraints are
omitted for simplicity. The imbalance of hour j is calculated
by subtracting the total realized load (averaged over 4 time
steps) from the hourly DA schedule and this value is multiplied
by a factor ρj , which is a fraction of the DA price. B(j, i, ω)
expresses the scenario-specific cost over each hourly time step
j and is given by

B(j, i, ω) =

P iDA,j − (1/np)

jnp∑
t=m

Pact(t, i, ω)

λj
+λjρj

∣∣∣∣∣∣P iDA,j − (1/np)

jnp∑
t=m

Pact(t, i, ω)

∣∣∣∣∣∣
(9)

B consists of 2 terms. The first one represents the excess
or deficit of the energy consumption, which is sold back or
bought to/from the system on the spot price. The second term
penalizes such imbalances with ρj times the spot price. Logical
constraints (8e) ensure that a HP which was DA-scheduled
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TABLE I: Building Parameters

Parameter Description Value
ηb (-) Boiler efficiency 0.9
η (-) COP 3
ρ (-) Imbalance penalty factor 0.2

Qnom (kW) Boiler capacity 100
Pnom (kW) HP capacity 12
Tmin (◦C) Minimum temperature 21.5
Tmax (◦C) Maximum temperature 22.5

to be on can only be turned off and a HP scheduled to be
off can only be turned on. Constraints (8c) and (8i) ensure
that the boiler always operates within the allowed limits, (8d)
enforces the line capacity limit, and the rest are the per-
scenario constraints similar of the deterministic problem. We
must note at this point that the inclusion of an absolute-value
term in (9) results in a non-linear mixed integer problem
(NLMIP). However, it is straightforward to reformulate the
problem by replacing the absolute value and imposing a set
of linear constraints, thus retaining the linear structure of the
problem.

IV. TEST CASE FOR A SINGLE BUILDING

In this section we investigate the effect of a varying line
capacity limit in the operating costs of a single building. We
used real-consumption data of a Danish school building and
fitted the RC parameters to obtain similar heat consumption
values. 10 scenarios for the uncontrolled load were used, 3 of
which are shown for illustrative purposes in Fig. 1. A relatively
large load variability can be observed between 08.00 : 18.00,
whereas this variability is considerably lower during the rest
of the day. The building is equipped with 2 HPs and we use
constant temperature limits. The HP characteristics were taken
from [9] and the parameters are presented in Table I.

Fig. 1: 3 different scenarios showing the uncontrolled load
consumption during a day.

We conducted extensive simulations with typical DA prices
for Eastern Denmark [10] and winter temperature patterns,
while considering 10 different uncontrolled load scenarios. For
our simulations we used the Matlab-YALMIP interface [11]
and the Gurobi solver [12]. We observed that the value of

the stochastic solution is relatively small; in other words, the
resulting cost by solving the MISP for each scenario realization
is similar to the one obtained by solving the deterministic MIP,
considering the expectation (mean values) of the uncontrolled
load from the 10 scenarios.

This is attributed to 2 reasons. First, under perfect heat-
demand forecast, the building is able to react to the uncertainty
realization with a very small cost. Consider the case where
a low uncontrolled load scenario is realized; one or more
HPs (originally scheduled as off) can now operate and thus
decrease the gas cost incurred by the use of the boiler. Second,
imbalance costs are calculated as hourly energy imbalances,
which can be compensated better in the course of 4 operational
steps.

To illustrate the benefit of solving the MISP, we considered 2
different outside temperature scenarios and modified constraint
(8g) to make it scenario-dependent. Scenarios 1− 10 refer to
the first temperature realization (and 10 different uncontrolled
load realizations) and scenarios 11 − 20 to the second. In all
cases, as seen in Fig. 2, the cost achieved by the stochastic
problem is smaller compared to the deterministic (where the
expected values of the outside temperature and uncontrolled
load are used), due to the smaller imbalance costs.

In reality, the actual operating range for the HPs at time step
t is not Pcap − P it,ω for a scenario ω. In fact this value is the
upper bound of the operating range because within period t,
the uncontrolled load will take instantaneous values which are
at least equal to P it,ω . Depending on the type of protection,
a large peak sustained for more than a specific duration may
require a heat pump to switch off, which will remain off for a
given period due to the lockout effect. Such lockout durations,
prohibit the frequent switching of the compressors to avoid
wear of the equipment. This large variability in the sub-minute
range is very common and we believe that it may significantly
affect the operation of on-off HPs and the heating costs. We
intend to investigate the effect of such fast load variations,
based on real measurements, in our future work.

Fig. 2: Daily costs for the deterministic and stochastic prob-
lems with ρ = 0.5, ch = 1.5 DKK/kWh and Pcap = 60 kW.

Next, we focused on the effect Pcap on the average daily
costs. We used 20 random daily spot prices profiles and a typ-
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ical winter temperature pattern; we used an hourly imbalance
cost as is the current practice. The actual electricity costs are
much higher due to the presence of taxes and fees and the
existence of various charging schemes for gas and electricity,
i.e. different fees per DSO or different taxes depending on the
use of electricity, makes the evaluation harder. For this reason
we use the spot prices for electricity and 3 scenarios for gas
prices (without additional tariffs and taxes).

The resulting average daily costs are shown in Fig. 3, where
a cost reduction with the increase of Pcap is observed, as
expected. The capacity limit ranges from 50−70 kW, because
a limit equal to 50 kW guarantees that the uncontrolled load
consumption is always met without curtailment, whereas the
upper limit of 70 kW is set as the maximum possible total
consumption. We can see that the results are very sensitive to
the gas price, because a strict line limit leads to the use of the
gas boiler when the uncontrolled load is high. It is interesting
to note that in all cases a Pcap > 65 kW offers no additional
cost reduction and is essentially free for the aggregator. For
smaller limits, the reduced flexibility results in higher expected
costs and therefore can be evaluated and sold to the DSO as
a capacity limit.

Fig. 3: Average daily costs for a varying capacity limit and for
3 different gas prices.

V. LINE LIMITS IN AGGREGATIONS OF BUILDINGS

In this section we investigate the effect of line limitations in
aggregations of buildings. To reduce the computational burden
we only consider 3 uncontrolled load scenarios with equal
occurrence probabilities, and more specifically the ones shown
in Fig. 1: a ’low’, a ’medium’, and a ’high’ load scenario.
For these simulations we fixed ch = 2.5 DKK/kWh, hourly
imbalances with ρ = 0.2, and we calculated the average daily
costs for 20 different DA price profiles.

We used an aggregation of 3 similar buildings and first we
imposed individual capacity limits, ranging from 50 to 70 kW.

Next, we imposed an aggregated capacity limit by modifying
constraint (8d) so as to correspond to the total load of the 3
buildings. If we assume no correlation between the realizations
of the uncontrolled load scenarios, we can identify 10 distinct
scenarios (for identical buildings), out of the 27 combinations.
However, the probability πω of each scenario is not equal to
0.1, but is calculated by dividing the number of combinations
which result to a specific scenario with the total number of
combinations.

The resulting costs are shown in Fig. 4, where the average
daily costs of the 3 buildings are shown under individual
capacity limits and an aggregated capacity limit. Again we
observe that the costs decrease as the capacity limit increases,
due to the increased flexibility and utilization of the HPs,
instead of the more expensive gas boiler. We can also notice the
performance improvement when a capacity limit is imposed
in the aggregation (e.g. 150 kW), instead of the individual
buildings (in that case 50 kW each). Therefore, the cost for
the aggregator is smaller when the aggregated consumption is
limited, because it can utilize its capacity among the buildings
more economically. The cost difference for the unconstrained
operation (total Pcap > 210 kW) corresponds to the smaller
imbalance costs achieved

Fig. 4: Average daily costs for 3 buildings with individual
line limits (blue colour) and an aggregated line limit (orange
colour).

VI. DISCUSSION AND CONCLUSION

We have presented a method for assessing the cost of
imposing a capacity limit in the operation of the electrified
heating system of individual buildings, as well as aggregations
of buildings. We formulated the cost minimization problem as
a MISP considering the imbalance costs and evaluated the cost
of imposing capacity limits. We showed that the cost of such
operational constraints can be quantified and the aggregator
can use such a method to decide upon its optimal capacity lim-
itation contract with the DSO or potentially sell such capacity
products, which are very likely to appear in the future in the
light of the increasing penetration and controllability of DERs.
Moreover, we showed that aggregated capacity limits result in
reduced costs; it would be therefore more economical for both
an aggregator and DSO to trade such products, if the potential
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operational goals (voltage limits and grid congestions) allow it.
Of course, in this case the location of the buildings (or DERs)
is crucial, so that they can be aggregated under a common
connection point, e.g. a feeder or a bus.

In our future work we will use more accurate models to
represent buildings’ dynamics, the various uncertainties in the
heat demand, DA prices and load variability, as well as their
potential interactions. We will also focus on the intra-quarterly
fast load variations which we expect to have a significant
impact on the individual line limits, but will increase the value
of aggregation, due to the load-smoothing effects. We believe
that capacity products are a relatively simple, reliable and easy
to implement measure for the DSOs to operate their grids
within secure limits, when the share of controllable loads with
large power capacities, such as EVs, increases. It is therefore
useful to investigate methods of evaluating the cost of imposing
capacity limitations.
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