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Abstract. Rolling deformation results in the transformation of a lath martensite structure to a 

lamellar structure characteristic to that of IF steel cold-rolled to medium and high strains. The 

structural transition takes place from low to medium strain, and electron backscatter diffraction 

analysis shows that the frequency of medium angle boundaries with misorientation angles of 5-

10º decreases with increasing strain, while the frequencies of boundaries with angles in the 

ranges of 1-5º and 10-25º increase, resulting in the evolution of a bimodal misorientation angle 

distribution. The microstructural evolution and the strength are characterized for lath martensite 

rolled to a thickness reduction of 30%, showing that large changes in the misorientation take 

place, while the strain hardening rate is low.  

1. Introduction  

Martensitic transformation (MT) is an efficient grain refinement process, which introduces high 

densities of high angle boundaries, low angle boundaries and dislocations. Ferrous martensite shows a 

variety of morphologies [1-3], namely lath, butterfly, lenticular and thin plate shapes. Among these, lath 

martensite (LM) has the most obviously industrial significance because it appears in quenched 

commercial steels, such as plain low-carbon steels, low-carbon and low-alloy steels, maraging steels, 

and interstitial free (IF) steels [3-5]. In low carbon (below 0.4 wt % C) steels, the martensitic structure 

is divided at decreasing scale into packets, blocks, sub-blocks and laths, as shown in figure 1. In the case 

of the K-S orientation relationship, there are 24 variants (from V1 to V24), with different direction and 

parallel plane relationships in the martensitic structure (see reference [2] for the definition of the 24 

variants). A packet consists of parallel blocks [3], and the laths in the blocks of a given packet can have 

up to 6 variants (e.g. V1-V6), with different parallel direction relationships on the same conjugate 

parallel close packed plane [2, 3, 6]. Each block consists of laths of two specific K-S variant groups 

(sub-blocks), which are misoriented by small angles of about 10 degrees, such as V1 and V4, V2 and 

V5, and V3 and V6 [2, 3]. 

Plastic deformation (PD) is another efficient grain refinement process that can further improve the 

mechanical properties of metallic materials. A combination of MT and PD can further enhance the grain 

refinement, however, the hardening behavior of LM is different from that of the ferrite structure, 

especially at low strains [7]. Huang et al. found that the hardness of deformed LM increases by < 10% 

after cold rolling to 30%, whereas the hardness of deformed ferrite (with different original grain sizes) 

38th Risø International Symposium on Materials Science                                                                  IOP Publishing
IOP Conf. Series: Materials Science and Engineering 219 (2017) 012033    doi:10.1088/1757-899X/219/1/012033

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:zqlv@ysu.edu.cn
http://creativecommons.org/licenses/by/3.0


increases by 60 ~ 80% after a similar deformation strain [7]. There is a transition range at low strains (< 

30%) where the work hardening is limited. It is therefore important to analyze the structural evolution 

of martensite during the early stages of cold rolling. 

The present study follows previous research [7], with an aim of characterizing the deformed LM 

martensite at low strains (up to 30% rolling reduction) using electron backscatter diffraction (EBSD). 

The structure evolution is analyzed based on the changes of misorientation angles, as obtained from the 

EBSD data, and the evolution of mechanical properties with deformation is discussed.     

 

 

 

Figure 1. Schematic illustration showing a typical lath martensite structure in low carbon (0-0.4%) steels. 

2. Material and experimental procedures 

An IF steel (0.0026 C, 1.48Mn, 0.046Ti, 0.015Al, 0.0026 B, Fe balance, mass %) was used in this study. 

After austenitizing at 1473 K for 0.6 ks, specimens were quenched into iced brine to obtain a LM 

structure. The specimens with LM structure were cold rolled (CR) to 10% and 30% thickness reductions. 

Microstructures were characterized using a Zeiss Supra-35 scanning electron microscope (SEM) 

equipped with an Oxford Instruments EBSD detector. The SEM was operated at 20 kV. For the EBSD 

measurements, the samples were prepared by mechanical grinding and polishing with a final step using 

1.0 μm diamond paste. The samples were then electrochemically polished at 30 kV for 20s in a methanol 

solution with 10 vol% perchloric acid. The EBSD maps were taken using a step size of 0.2 µm. 

Orientation data were collected using the Channel 5 acquisition software. Misorientation angles were 

calculated for statistical analysis where the misorientation angles of < 1º were excluded considering the 

angular resolution of the EBSD technique. To allow reliable statistics data for more than 1000 

misorientation angles were collected in different areas of the EBSD maps for each sample.   

3. Results and discussion 

3.1 Un-deformed martensite  

Here we use an inverse pole figure (IPF) coloring in the EBSD maps to show the microstructure of the 

initial sample without deformation, as shown in figure 2. The boundaries of the prior austenite grains 

(black lines), packets (blue lines) and blocks (red lines) can all be identified; an example is shown in 

figure 2b.  
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Figure 2. EBSD map of the un-deformed as-transformed martensite. 

 

Figure 3a shows the distribution of misorientation angles between the 24 variants in the un-deformed 

LM. The misorientation angles between neighboring points were collected within individual prior 

austenite grains in the areas marked by A, B and C in figure 2a. Figure 3b lists the misorientation angles 

between V1 and other variants (V2-V24) forming the K-S orientation relationship [2]. If martensite 

variants are randomly distributed during the lath martensite formation process, boundaries with 

misorientation angles of > 15º should be much more frequent than boundaries with misorientation angles 

of <15º, as shown in figure 3b. However, the measured frequency of high angle boundaries is much 

smaller than the frequency of medium angle boundaries in the present case, as shown in figure 3a. The 

percentage of misorientations between 5-10º is about 24 %, which indicates the presence of a high 

number of sub-block boundaries (such as pairs with V1 and V4, V2 and V5, and V3and V6) in the LM, 

in agreement with previous observations [2,3,7]. 

 

 

Figure 3. Misorientation angle distribution in un-deformed martensite: (a) from EBSD maps, excluding 

prior austenite grain boundaries; (b) between V1 and other variants (V2-V24) based on the K-S 

orientation relationship. 

 

The misorientation angles between neighboring points were also measured in different blocks (such 

as areas D, E and F as marked in figure 2a). The resulting misorientation distribution based on all the 

measurements is shown in figure 4. The experimental results show the presence of sub-block boundaries 
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represented by a weak peak at 7º to 8º in the un-deformed LM, which agrees with previous findings [7]. 

The percentage of misorientations below 5º, related to the lath boundaries, is 70%, and that from 5º to 

15º, related to sub-block boundaries, is 30%. 

 

Figure 4. Misorientation distribution in blocks of un-deformed LM (excluding block boundaries). 

3.2. Deformed microstructure  

Figure 5 shows example EBSD maps of deformed martensite after 10% and 30% cold rolling. The 

rolling introduces some deformed structure, seen in area H of figure 5a and in area M of figure 5b, and 

is most pronounced in the 30% cold-rolled sample, where a certain structural alignment can be observed. 
The effect of cold rolling to low-strain on the shape of the prior austenite grains is observed to be small. 

  

 

Figure 5. EBSD maps of cold rolled martensite: (a) 10% and (b) 30% thickness reduction. 

 

Figure 6 shows the misorientation distribution from EBSD maps of the deformed LM after 10% and 

30% cold rolling. The misorientation angles between neighboring points area again collected only from 

within the prior austenite grains. 
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Figure 6. Misorientation distribution of deformed LM: (a) 10% CR. and (b) 30% CR. 

 

The distributions of misorientation angles measured within different blocks at the two rolling 

reductions (such as areas G, H, I, and M in figure 5), considering all misorientations >1º, are illustrated 

in figure 7. The results show that high misorientation angles appear after 10% and 30% cold rolling. 

Misorientation angles up to 17º are observed in the 10% CR sample and to about 21º in the 30% CR 

sample. The percentage of misorientations below 5º is 68%, from 5º to 10º about 27%, and above 10º 

about 5% in the 10% cold-rolled sample. In the 30% CR sample, the percentage of misorientations below 

5º is 74%, from 5º to 10º about 20%, and above 10º about 6%. The frequency of medium angles (5-10º) 

gradually decreases with increasing rolling reduction, and is accompanied by an increase in the 

frequency of lower (1-5º) and higher (> 10º) angles in the blocks.  

 

 

Figure 7. Misorientation distribution in blocks of deformed martensite (a) 10 % CR, (b) 30 % CR. 

4. Discussion 

The changes in structure and strength of lath martensite when cold rolled up to 80% (εvM = 1.86) have 

been analyzed in a recent paper [7]. It was found that the martensite structure broke down and 

transformed into a lamellar cell block structure characteristic of plastically deformed bcc and fcc metals 

[8-11]. It was also found that changes in strength are small for reductions up to 30%, followed by a stage 
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of almost constant hardening rate typically characteristic of stage IV hardening [12]. The previous 

structural analysis based on transmission electron microscopy (TEM) is in the present study replaced by 

the EBSD analysis, covering only the transition region up to a rolling strain of 30%. In parallel to the 

structural analysis, the changes in flow stress and hardness have been determined. The structural analysis 

shows significant changes in the distribution of misorientation angles across dislocation boundaries that 

subdivide the martensite structure, with the fraction of boundaries with misorientation angles 5-10º 

decreasing and the fractions of boundaries of smaller angle (1-5º) and larger angles (10-25 º) increasing 

with increasing cold-rolling reduction, as shown in table 1.  
 

Table 1. Percentage of misorientation angles in different ranges in the LM samples 

Sample 
1-5º 

(%) 

5-10º 

(%) 

10-25º 

(%) 

25-45º 

(%) 

45-65º 

(%) 

Ideal K-S OR 0 0 30.4 0 69.6 

Un-deformed LM 66.7 24.5 3.5 0 5.3 

10% CR 68.9 21.8 3.8 0.1 5.4 

30% CR 71.8 20.1 5.8 0.1 2.2 

 

The misorientation angle distribution thereby evolves towards a bimodal distribution characteristic 

of bcc and fcc metals rolled to medium and high strains [13]. The strength analysis (not shown here) 

shows a relative small increase in hardness and flow stress in the transition region (0-30% thickness 

reduction). The hardening rate is low and of the same order as observed previously in martensite and IF 

steel rolled to reductions in the same range [7]. It can be assumed that the strengthening mechanisms in 

rolled martensite primarily are dislocation strengthening and boundary strengthening. It should be noted, 

however, that the contribution of these mechanisms to the strength cannot be quantified exactly based 

only on EBSD data, as they exclude dislocation boundaries with an angle < 1°. Qualitatively, however, 

the changes in the misorientation angle distribution during rolling suggest that contributions from both 

hardening mechanisms may increase, but not to a large extent. The evolution of structure and strength 

of martensite when rolled up to 30% shows a near balance of hardening and softening mechanisms. The 

hardening mechanisms relate to an increase in the misorientation angle across dislocation boundaries 

and to a decrease in boundary spacing. This will lead to strengthening, which is counteracted by 

dislocation annihilation and boundary removal, e.g. by triple junction motion [14]. The result is a 

remarkable structural change with only a small effect on the strength and the strain hardening behavior. 

The contributions of hardening and softening mechanisms in the transition region are under investigation 

by EBSD and TEM, but a major challenge is the structural heterogeneity caused by the operation and 

interaction of dislocation glide processes, which affects the microstructural evolution, where an example 

is the formation of micro-shear bands observed as S-bands [12,13]. 

5. Conclusions 

An IF steel with a lath martensite structure has been cold rolled 10% and 30% thickness reductions and 

the structural evolution has been followed by EBSD analysis. The following conclusions can be drawn. 

(1) The frequency of medium angle boundaries (5-10º) in martensite blocks decreases with increasing 

strain, while the frequencies of boundaries of smaller angles (1-5º) and of larger angles (> 10º) increase. 

The overall result is the evolution towards a bimodal misorientation angle distribution, characteristic for 

IF steel rolled to medium and large strains. 

(2) The structural morphology changes from a lath martensite structure to a lamellar cell block 

structure characteristic of cold rolled IF steel. The strain hardening rate is low and the experiment 

demonstrates that significant structural changes can take place with only a limited effect on the flow 

stress and hardness. This can be understood in terms of a balance between strain hardening and dynamic 
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softening by recovery. 
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