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Abstract. In this paper we investigate parametric decay of an electromagnetic

pump wave into two electrostatic daughter waves, particularly an X-mode pump wave

decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and

a warm lower hybrid wave. We describe the general theory of the above parametric

decay instability (PDI), unifying earlier treatments, and show that it may occur in

underdense and weakly overdense plasmas. The PDI theory is used to explain the

anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the

ASDEX Upgrade tokamak. The theory may also account for similar observations

during CTS experiments in stellarators, as well as in some 1st harmonic electron

cyclotron resonance and O-X-B heating experiments.

Keywords : PDI, UHR, UH, LH, CTS, ECRH, Electron Bernstein Wave

1. Introduction

A parametric decay instability (PDI) is the result of three-wave interactions by which

an incident (pump) wave decays to two daughter waves. PDIs may occur in some media

under the influence of pump radiation with sufficiently high energy density, e.g. in

plasmas heated/diagnosed by gyrotron radiation. Energy and momentum conservation

in the three-wave processes impose the selection rules that the sum of the daughter wave

frequencies and wave vectors should be that of the pump wave, resulting in frequency-

shifted radiation which interferes with millimetre-wave diagnostics such as electron

cyclotron (EC) emission and collective Thomson scattering (CTS). This is of particular

concern in future fusion reactors which cannot be easily diagnosed by other means.

In this work we focus on parametric decay of an electromagnetic pump wave into two

electrostatic daughter waves, specifically the case of an X-mode pump wave decaying into

a warm upper hybrid (UH) wave (a limiting form of an electron Bernstein wave) and a

warm lower hybrid (LH) wave near the upper hybrid resonance (UHR) of the pump wave.

We generalise the results of [1–3] and discuss their relation to other treatments [4,5]. The
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main motivation is observations of strong PDI-like sidebands during CTS experiments

at the ASDEX Upgrade tokamak [6] and the LHD stellarator [7, 8].

Early PDI theory for unmagnetised and magnetised plasmas was pioneered by [9,10]

and extended to include collisional effects, which usually determine the PDI threshold in

homogeneous plasmas, by [11]. Piliya and Rosenbluth separately showed that the PDI

threshold could be significantly higher for an inhomogeneous plasma due to convective

losses of the daughter waves from the region where the PDI selection rules are satisfied

[12–14]. The above results indicate that PDIs are only likely to occur near resonances,

e.g. the UHR, and cut-offs of the pump radiation at the gyrotron powers available in

typical experiments, due to field enhancement effects in these regions [15]. An important

exception to this rule, which has received some attention recently, occurs in regions

of non-monotonic plasma profiles where the daughter waves may become trapped,

reducing the PDI threshold to a level closer to that of a homogeneous plasma [16];

the backscattering instability is another example of this type [17].

PDIs near the UHR have been studied theoretically by a number of authors. The

first work on direct parametric decay of an electromagnetic pump wave into warm UH

waves and LH waves was [4], which found the growth rate of this PDI in the limit of long

daughter wave wavelengths relative to the ion Larmor radius, a condition rarely satisfied

in magnetically confined fusion plasmas. Direct parametric decay of an electromagnetic

pump wave into a warm UH wave and a strongly damped low-frequency electrostatic

quasi-mode, which is particularly relevant in tokamaks, was first considered by Ott, Hui

and Chu [18] who concluded that it would be unlikely to occur for gyrotron radiation.

However, their treatment neglected field enhancement effects and used a non-standard

parametric dispersion relation. Using the standard parametric dispersion relation, and

accounting roughly for field enhancement near the UHR, Porkolab [2] showed that the

PDI in which an X-mode pump wave decays into a warm UH wave and an LH quasi-mode

could occur during 1st harmonic X-mode EC resonance heating (ECRH) on the Versator

II tokamak, as later confirmed experimentally [3]. The theoretical part of the present

paper mainly deals with generalising the results from [1–3]. Further theoretical work

on direct parametric decay of electromagnetic pump waves to electrostatic daughter

waves near the UHR is presented in [5, 19, 20]. Other theoretical papers focus on

parametric decay of warm UH waves, generated by linear mode conversion, into other

warm UH waves and electrostatic low-frequency waves [17, 21] or into electromagnetic

high-frequency waves and electrostatic low-frequency (LH) waves [22, 23]. Many of the

theoretical results have been reproduced in numerical simulations [24–27].

A PDI at the UHR was first observed in mercury vapour tube discharges through

the excitation of LH oscillations by sufficiently strong microwave radiation [28]. Similar

observations were reported for linear hot-cathode helium discharges [29] and the FM-I

spherator [30]. This type of PDI was also observed in connection with 1st harmonic

ECRH of optically thin plasmas in the Versator II, FT-1 and TCA tokamaks [3,31,32],

as well as in the Wendelstein 7-A stellarator [33, 34]. These results were reviewed

by [35, 36]. In ionospheric modification experiments, the presence of a so-called down-
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shifted maximum feature in the stimulated electromagnetic emission spectra has been

attributed to a related PDI [23]. PDIs near the UHR involving LH daughter waves have

additionally been used to confirm the occurrence of O-X-B heating in overdense plasmas

of the Wendelstein 7-AS stellarator [37,38] and the MAST spherical tokamak [39].

This paper is arranged as follows. In Section 2, we review the general theory of

PDIs for electromagnetic pump waves decaying into electrostatic daughter waves in a

homogeneous plasma and its generalisation to weakly inhomogeneous plasmas, providing

a unified treatment and re-examining the existing literature. In Section 3, we specialise

to PDIs near the UHR, investigating the conditions under which these may occur and

generalising the theories of parametric decay into warm UH and warm LH waves of [1–3].

Finally, we investigate the above PDI in ASDEX Upgrade and compare the theoretical

predictions with experimentally observed CTS spectra in Section 4.

2. PDI Theory

In this section we present the basic theory of parametric decay of an electromagnetic

pump wave to electrostatic daughter waves in a magnetised plasma. Apart from allowing

us to introduce the concepts needed when discussing PDIs near the UHR, this is

motivated by the existence of large number of different, not always consistent, treatments

in the literature, e.g. [4, 5, 10, 11, 18–20, 35, 40], which seem to warrant some discussion

and clarification. Our treatment follows that of [1] quite closely.

The main parametric three-wave processes are decay of the pump wave into two

daughter waves and scattering of the pump wave by one of the daughter waves, as

illustrated in figure 1; PDIs are associated with the decay process, but in order to

interpret PDI spectra, and to have a complete theory, it is necessary to consider the

scattering process as well. Processes involving more than three waves may also occur,

but these represent higher-order effects. Energy and momentum conservation in the

three-wave processes impose selection rules for the frequencies, ω, and wave vectors, k,

of the involved waves,

ω2 = ω0 − ω1, k2 = k0 − k1, ω3 = ω0 + ω1, k3 = k0 + k1, (1)

where subscript 0 refers to the pump wave, subscript 1 refers to the low-frequency

daughter wave, and subscripts 2 and 3 refer to the down- and up-shifted high-frequency

daughter waves, respectively. A PDI will generally only occur if the selection rules can be

satisfied by linear modes of the plasma, as the pump power necessary for a PDI to occur

under normal circumstances increases with the damping rate of the daughter waves;

however, in some cases the low-frequency daughter wave may be a heavily damped

quasi-mode. The above considerations lead to an idealised PDI frequency spectrum,

seen in figure 2, which is a hallmark of PDIs.
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Figure 1. Diagrams show-

ing the most important paramet-

ric three-wave processes; to the

left, decay of the pump wave

(ω0, k0) into a low-frequency

wave (ω1, k1) and a down-shifted

high-frequency wave (ω2 = ω0 −
ω1, k2 = k0 − k1); to the right,

scattering of the pump wave by

a low-frequency wave exciting an

up-shifted high-frequency wave

(ω3 = ω0 + ω1, k3 = k0 + k1).

Figure 2. Idealised frequency

power spectrum excited by a PDI.

Apart from the pump peak (ω0),

a low-frequency daughter peak

(ω1) and high-frequency daughter

peaks, one down-shifted (ω2) and

one up-shifted (ω3), occur. Peaks

are generally observed when ω1,

ω2 and ω3 coincide with linear

modes.

2.1. Motion of an Electromagnetically Driven Plasma Particle

To describe the PDI of interest we first consider the motion of a single plasma particle

with mass mσ and charge qσ, located at position r(t) and moving with a velocity

v(t) = dr(t)/dt at time t. The particle is acted on by a steady homogeneous magnetic

field B and a plane electromagnetic pump wave with an electric field Re[E0 eik0·r(t)−ω0t]

and a magnetic field Re[B0 eik0·r(t)−ω0t]. We assume the particle to be non-relativistic

and invoke the dipole approximation for the electromagnetic pump wave, k0 ≈ 0, which

allows us to neglect the effect of the wave magnetic field and to write the wave electric

field as Re(E0 e−iω0t); the dipole approximation is generally permissible due to the high

phase velocity (long wavelength) of the electromagnetic pump wave compared with

the electrostatic daughter waves, but may be relaxed if necessary [19]. Taking the

background magnetic field along the z-axis, B = Bez, the equation of motion becomes

dv(t)

dt
= ωcσv(t) × ez + Re

(
qσE0

mσ

e−iω0t

)
, (2)

where ωcσ = qσB/mσ is the cyclotron frequency (with sign) of species σ. (2) is

a set of inhomogeneous, linear, ordinary differential equations, the general solution

of which is a given by a particular solution of the inhomogeneous problem and a

general solution of the homogeneous problem. The general homogeneous solution is

cyclotron motion of the particle in a constant magnetic field, i.e. the characteristics

used for determining the linear response of a collisionless plasma. PDIs originate from

the particular inhomogeneous solution which can be found by substituting the ansatz
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vpσ(t) = Re(vp0σ e−iω0t) into (2), solving for vp0σ, and integrating once more with respect

to t, looking for a solution of the form rpσ(t) = Re(rp0σ e−iω0t),

rpσ(t) = Re

(
ivp0σ
ω0

e−iω0t

)
, vp0σ =

qσ
mσ

 (iω0E0x − ωcσE0y)/(ω
2
0 − ω2

cσ)

(ωcσE0x + iω0E0y)/(ω
2
0 − ω2

cσ)

E0z/ω0

 . (3)

The free energy responsible for driving PDIs is the kinetic energy associated with this

motion. The complex displacement vector, rp0σ = ivp0σ/ω0, agrees with the one given

in (3) of [19] for electrons.

2.2. Kinetic Theory of PDIs in Homogeneous Plasmas

The goal of this subsection is to derive the temporal PDI growth rate, γ, for the

case of small amplitude electrostatic daughter waves in a homogeneous, charge neutral

plasma. This problem has previously been considered by a number of authors, e.g.

in [4, 5, 10, 11, 18, 35, 40], and we shall point out when our results agree/disagree with

some this earlier work. PDIs with electrostatic daughter waves are governed by the

Boltzmann-Poisson system with external fields B = Bez and Re(E0 e−iω0t),

∂fσ(r,v, t)

∂t
+ v · ∂fσ(r,v, t)

∂r
+

[
− qσ
mσ

∂φ(r, t)

∂r
+ ωcσv × ez

+Re

(
qσE0

mσ

e−iω0t

)]
· ∂fσ(r,v, t)

∂v
=

[
∂fσ(r,v, t)

∂t

]
col

, (4)

∂

∂r
· ∂φ(r, t)

∂r
= − 1

ε0

∑
σ

qσnσ(r, t), (5)

where fσ(r,v, t) is the distribution function of species σ, nσ(r, t) =
∫
all v

fσ(r,v, t) dv

is the number density of species σ, φ(r, t) is the electrostatic potential associated with

the daughter waves, [∂fσ(r,v, t)/∂t]col is the collision operator of species σ, and ε0 is

the vacuum permittivity. Evidently, the pump wave introduces an explicit dependence

on t which makes the above equations more complicated than the usual Boltzmann-

Poisson system in a magnetised plasma. However, by going into frames oscillating with

the velocity induced by the pump wave for each species σ, vpσ(t), inertial forces will

cancel the explicitly t-dependent pump term, Re[(qσE0/mσ) e−iω0t]. In these frames the

position is defined as x = r− rpσ(t), the velocity is defined as u = v − vpσ(t), and the

Boltzmann equation becomes

∂Fσ(x,u, t)

∂t
+ u · ∂Fσ(x,u, t)

∂x
+

[
− qσ
mσ

∂Φσ(x, t)

∂x

+ ωcσu × ez

]
· ∂Fσ(x,u, t)

∂u
=

[
∂Fσ(x,u, t)

∂t

]
col

, (6)

where Fσ(x,u, t) = fσ(r,v, t) is the distribution function, Φσ(x, t) = φ(r, t) is the

electrostatic potential associated with the daughter waves, and [∂Fσ(x,u, t)/∂t]col =

[∂fσ(r,v, t)/∂t]col is the collision operator, all in the frame of species σ. This is a

standard form of the Boltzmann equation used in the kinetic description of electrostatic
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waves. Since we are assuming the amplitude of the daughter waves to be small

and the unperturbed plasma to be homogeneous and charge neutral, we can carry

through an order 1 perturbation analysis for electrostatic waves in which we take

Fσ(x,u, t) = F
(0)
σ (u) + F

(1)
σ (x,u, t), Φσ(x, t) = Φ

(1)
σ (x, t), and neglect products of the

perturbation terms with superscript (1). The general result of this procedure is a local,

linear relation between the Fourier-Laplace transforms of the perturbed number density

N
(1)
σ (x, t) =

∫
all u

F
(1)
σ (x,u, t) du and Φσ(x, t). Defining the Fourier-Laplace transform

as g̃(k, ω) =
∫
allx

[
∫∞
0
g(x, t) eiωt−ik·x dt] dx, with k being a real wave vector and ω being

a complex frequency related to a daughter wave mode, we may thus write

qσÑ
(1)
σ (k, ω) = −ε0k2χσ(k, ω)Φ̃σ(k, ω), (7)

where χσ(k, ω) is the linear susceptibility of species σ for the mode characterised by

(k, ω); in writing this, we have set the perturbations to zero at t = 0. The temporal

growth rate of the PDI in a homogeneous plasma is given by the imaginary part of

ω, γ = Im(ω), and is the quantity in which we are ultimately interested. χσ(k, ω) is

determined by F
(0)
σ (u) and [∂Fσ(x,u, t)/∂t]col, which are considered to be a Maxwellian

distribution and a particle conserving Krook collision operator in this paper:

F (0)
σ (u) =

N
(0)
σ

π3/2v3Tσ
e−u

2/v2Tσ ,

[
∂Fσ(x,u, t)

∂t

]
col

= νσ

[
N

(1)
σ (x, t)

N
(0)
σ

F (0)
σ (u)− F (1)

σ (x,u, t)

]
,

(8)

where N
(0)
σ is the unperturbed number density of species σ, vTσ =

√
2Tσ/mσ is the

thermal velocity of species σ, with temperature Tσ, and νσ is a phenomenological collision

frequency of species σ, which we shall equate with the Coulomb collision frequency of

species σ as is customary [41]. For the above F
(0)
σ (u) and [∂Fσ(x,u, t)/∂t]col, χσ(k, ω)

becomes [11],

χσ(k, ω) =
2ω2

pσ

k2v2Tσ

1 + ω+iνσ
kzvTσ

∞∑
n=−∞

In(k2⊥r
2
Lσ) e−k

2
⊥r

2
LσZ

(
ω+iνσ−nωcσ

kzvTσ

)
1 + iνσ

kzvTσ

∞∑
n=−∞

In(k2⊥r
2
Lσ) e−k

2
⊥r

2
LσZ

(
ω+iνσ−nωcσ

kzvTσ

) , (9)

with k2⊥ = k2x + k2y being the wave number perpendicular to B, ω2
pσ = q2σN

(0)
σ /(ε0mσ)

being the plasma frequency of species σ, rLσ = vTσ/(
√

2|ωcσ|) defining the Larmor radius

of species σ, In being the order n modified Bessel function of the 1st kind, and Z being

the Fried-Conte plasma dispersion function. In case of the ions we shall also employ

χσ(k, ω) for an unmagnetised plasma with the same F
(0)
σ (u) and [∂Fσ(x,u, t)/∂t]col [41],

χσ(k, ω) =
2ω2

pσ

k2v2Tσ

1 + ω+iνσ
kvTσ

Z
(
ω+iνσ
kvTσ

)
1 + iνσ

kvTσ
Z
(
ω+iνσ
kvTσ

) ; (10)

the justification for this is discussed in Subsection 3.2.

The problem now is to express Φ̃σ(k, ω), which is evaluated in a different frame for

each species, in terms of the potential in the lab frame. This may be done by using the
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definition of the Fourier-Laplace transform to write,

Φ̃σ(k, ω) =

∫
allx

[∫ ∞
0

Φσ(x, t) eiωt−ik·x dt

]
dx =

∫
all r

[∫ ∞
0

φ(r, t) eiωt+ik·rpσ(t) dt

]
e−ik·r dr,

(11)

which reduces the problem to evaluating eik·rpσ(t) and the Fourier-Laplace integrals.

Evaluation of eik·rpσ(t) is facilitated by noting that, from (3) and the fact that k is

real, k · rpσ(t) = Re[i(k · vp0σ/ω0) e−iω0t] = µσ sin(ω0t − βσ), where µσ and βσ are the

amplitude and phase angle of k · vp0σ/ω0, respectively. Using a Fourier series identity,

we then find eik·rpσ(t) = eiµσ sin(ω0t−βσ) =
∑∞

n=−∞ Jn(µσ) ein(ω0t−βσ), where Jn is the order

n Bessel function of the 1st kind. With this, the Fourier-Laplace integrals of (11) may

be evaluated, and (7) written as

qσÑ
(1)
σ (k, ω) = −ε0k2χσ(k, ω)

∞∑
n=−∞

Jn(µσ) e−inβσ φ̃(k, ω + nω0). (12)

By Fourier-Laplace transforming the Poisson equation with a charge neutral

unperturbed plasma, (∂/∂r) · [∂φ(r, t)/∂r] = −(1/ε0)
∑

σ qσN
(1)
σ (r − rpσ(t), t), we

similarly find

φ̃(k, ω) =
1

ε0k2

∑
σ

∞∑
n=−∞

Jn(−µσ) e−inβσqσÑ
(1)
σ (k, ω + nω0). (13)

(12) and (13) constitute a set of linear equations describing the coupling between various

electrostatic Fourier-Laplace modes due to the pump wave. These equations form a

general basis for the theory of PDIs with small amplitude electrostatic daughter waves

in a homogeneous plasma within the dipole approximation. They were also derived

or used as a starting point by [11, 35, 40]; [11] generalised the result to inhomogeneous

plasmas. µσ = |k · vp0σ|/ω0 describes the coupling strength between different Fourier-

Laplace modes and is a central quantity in PDI theory; inserting vp0σ from (3),

µσ =
|qσ|
mσω2

0

√√√√√
[
Im(kxE0x+kyE0y)+(ωcσ/ω0)Re(kxE0y−kyE0x)

1−(ωcσ/ω0)2
+ kz Im(E0z)

]2
+[

Re(kxE0x+kyE0y)−(ωcσ/ω0) Im(kxE0y−kyE0x)

1−(ωcσ/ω0)2
+ kz Re(E0z)

]2 , (14)

which shows the general proportionality to |qσE0|k/(mσω
2
0), as well as the dependence on

polarisation of the pump wave, the direction of k, and ωcσ/ω0, for the coupling between

electrostatic Fourier-Laplace modes at different frequencies in the presence of the pump

wave. βσ in (12) and (13) does not have any particular physical significance and may be

changed by shifting point at which t = 0. It is clear from (12) and (13) that only modes

differing by integer multiples of ω0 interact. This is a manifestation of the frequency

selection rule for parametric processes; in particular, the three-wave interactions are

related to the n = ±1 terms. No coupling between modes with different k exists due to

the dipole approximation, k0 ≈ 0. To recover the selection rules of (1) from the above

equations, we use the fact that the requirement of real φ(r, t) and N
(1)
σ (x, t) results

in φ̃(k, ω) = φ̃∗(−k,−ω∗), Ñ (1)
σ (k, ω) = Ñ

(1)∗
σ (−k,−ω∗) and χσ(k, ω) = χ∗σ(−k,−ω∗),

allowing the signs of k and Re(ω) to be changed for any given mode.
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Specialising (12) and (13) to the case of an electron (σ = e) and ion (σ = i)

plasma, when ωci/ω0 6≈ 1 for any ionic species, we find µi/µe ≤ O(me/mi) � 1 which

allows us assume a linear ion response, µi ≈ 0, for moderate values of µe. With this,

Jn(±µi) = δn0, and (12) and (13) become∑
i

ZiÑ
(1)
i (k, ω) = −ε0k

2

e

∑
i

χi(k, ω)φ̃(k, ω), (15)

Ñ (1)
e (k, ω) =

ε0k
2

e
χe(k, ω)

∞∑
n=−∞

Jn(µe) e−inβeφ̃(k, ω + nω0), (16)

φ̃(k, ω) =
e

ε0k2

[∑
i

ZiÑ
(1)
i (k, ω)−

∞∑
m=−∞

Jm(−µe) e−imβeÑ (1)
e (k, ω +mω0)

]
, (17)

where e is the elementary charge, Zi = qi/e is the charge number of the ionic species

i, and all ionic terms of (12) have been summed. As the unknown quantities in the

above equations are
∑

i ZiÑ
(1)
i (k, ω + nω0), Ñ

(1)
e (k, ω + nω0) and φ̃(k, ω + nω0), the

addition of multiple ionic species does not complicate the problem with a linear ion

response, provided that χi,e(k, ω) may still be determined. Substituting (17) into (15)

and (16), and using Neumann’s addition theorem to simplify the double sum in (16),∑∞
n=−∞

∑∞
m=−∞ Jn(µe)Jm(−µe) e−i(n+m)βeÑ

(1)
e (k, ω + (n+m)ω0) = Ñ

(1)
e (k, ω), we find[

1+
∑
i

χi(k, ω)

]∑
i

ZiÑ
(1)
i (k, ω) =

∑
i

χi(k, ω)
∞∑

n=−∞

Jn(−µe) e−inβeÑ (1)
e (k, ω+nω0), (18)

[1 + χe(k, ω)]Ñ (1)
e (k, ω) = χe(k, ω)

∞∑
n=−∞

Jn(µe) e−inβe
∑
i

ZiÑ
(1)
i (k, ω + nω0). (19)

These equations constitute the general basis for describing PDIs with electrostatic

daughter waves in electron-ion plasmas within the dipole approximation when ωci 6≈ ω0.

Similar equations were derived by [4,11,40]; the expressions in [11] additionally contain

terms related to plasma inhomogeneities, and the double sum in (11) of [40] vanishes

by Neumann’s addition theorem.

In the limit of weak coupling, µe � 1, (18) and (19) may be solved by considering

only the (n = 0,±1)-terms, giving a general parametric dispersion relation found in

[4,35,40]; [4] only considers the (n = 0,−1)-terms. However, since we are interested in a

gyrotron pump wave, which satisfies ω0 ∼ |ωce| � ωpi, ωci, we can ignore the ion response

at frequencies comparable to ω0, as was done by [10, 11]. Associating ω with the low-

frequency daughter wave, we can thus write
∑

i ZiÑ
(1)
i (k, ω+nω0) ≈

∑
i ZiÑ

(1)
i (k, ω)δn0,

with which (19) becomes

Ñ (1)
e (k, ω + nω0) =

χe(k, ω + nω0)

1 + χe(k, ω + nω0)
J−n(µe) einβe

∑
i

ZiÑ
(1)
i (k, ω). (20)

Plugging this into (18), remembering that Jn(−µe)J−n(µe) = J2
n(µe), we arrive at a

dispersion relation describing PDIs for pump waves of arbitrary amplitude in the EC
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frequency range,

1 +
∑
i

χi(k, ω) =
∑
i

χi(k, ω)
∞∑

n=−∞

J2
n(µe)

χe(k, ω + nω0)

1 + χe(k, ω + nω0)
, (21)

also found in [10]. In the weak coupling limit, generally relevant to gyrotron radiation

(which has power levels . 1 MW) [42], the Bessel functions may be Taylor expanded

to order µ2
e (J2

0 (µe) ≈ 1 − µ2
e/2, J2

±1(µe) ≈ µ2
e/4, the remaining terms are negligible),

yielding

1+
∑
i

χi(k, ω)+χe(k, ω)=
µ2
e

4

∑
i

χi(k, ω)

[
2− 1 + χe(k, ω)

1 + χe(k, ω − ω0)
− 1 + χe(k, ω)

1 + χe(k, ω + ω0)

]
;

(22)

the identity−χe(k, ω)/[1+χe(k, ω)]+χe(k, ω±ω0)/[1+χe(k, ω±ω0)] = 1/[1+χe(k, ω)]−
1/[1+χe(k, ω±ω0)] has been used to rewrite the terms in the bracket on the right hand

side. Introducing the dielectric function ε(k, ω) = 1 +
∑

i χi(k, ω) + χe(k, ω), noting

that ε(k, ω±ω0) ≈ 1 +χe(k, ω±ω0), and neglecting the first term in the bracket on the

right hand side of (22), we arrive at the weak coupling parametric dispersion relation,

ε(k, ω) = −µ
2
e

4

∑
i

χi(k, ω)[1 + χe(k, ω)]

[
1

ε(k, ω − ω0)
+

1

ε(k, ω + ω0)

]
. (23)

This form illustrates the coupling between the low-frequency daughter wave,

characterised by (k, ω = ω1 + iγ), the down-shifted high-frequency daughter wave,

characterised by (k, ω − ω0 = −ω2 + iγ), and the up-shifted high-frequency daughter

wave, characterised by (k, ω + ω0 = ω3 + iγ), due to the finite amplitude of the

pump wave (through µ2
e). The coupling will be extremely small, and the low-frequency

daughter wave response almost linear (ε(k, ω) ≈ 0), for the usual case of µe � 1, unless

ε(k, ω ± ω0) ≈ 0. Thus, the high-frequency modes should correspond (almost) to linear

plasma modes, which also justifies neglecting the first term in the bracket on the right

hand side of (22). If ε(k, ω) ≈ 0 remains valid, a PDI (γ > 0 in a homogeneous plasma)

may occur for µe � 1, confirming the correctness of the simplified picture in figure 2.

Parametric dispersion relations equivalent to (23) are found in [20, 40]; note that

the one given by [40] is derived assuming an LH pump wave, and thus based on

some rather different assumptions. The parametric dispersion relation from [19] agrees

with (23) within the dipole approximation. The general weak coupling parametric

dispersion relation in (28a) of [35] agrees with our (23) for χi(k, ω ± ω0) ≈ 0 and

χe(k, ω ± ω0) ≈ −1, as we have assumed. However, in going from (28a) to (28b), [35]

assumes |χe,i(k, ω)| � |χe,i(k, ω ± ω0)|, which causes 1 + χe(k, ω) → χe(k, ω) in its

version of (23), generally reducing the validity of the subsequent formulae to PDIs with

low-frequency daughter waves satisfying the quasi-neutrality condition |χe(k, ω)| � 1;

this is particularly not satisfied by warm LH wave propagating nearly perpendicularly to

B, which is the case of interest in the present paper. The parametric dispersion relation

from [4] also agrees with (23) for χi(k, ω ± ω0) ≈ 0 and χe(k, ω ± ω0) ≈ −1 if only

the down-shifted high-frequency daughter wave is considered. Ott, Hui and Chu [18]
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derive their parametric dispersion relation from rather different arguments about the

ponderomotive force acting on the electrons and the related density perturbations

experienced by the ions. The final result does, however, resemble (23) if the substitutions

1 + χe(k, ω) → χe(k, ω) and
∑

i χi(k, ω) → 1 +
∑

i χi(k, ω) are made; the variational

approach of [5] appears to produce the same result in the weak coupling and dipole

limit, as shown in Subsection 3.2. The results of [5, 18] do not agree with the previous

ones, and thus a re-examination of these and related expressions, e.g. the one in [43],

may be of interest. We note that all expressions agree for low-frequency daughter waves

satisfying the quasi-neutrality conditions |χi,e(k, ω)| � 1, but that (23) is preferable for

pump waves in the EC frequency range where this condition may not be satisfied.

(23) does still not give γ explicitly and must in general be solved numerically.

However, by using the earlier results we can obtain relatively simple expressions for the

limiting cases of most interest. We consider the down-shifted high-frequency mode to

be on resonance, ε(k,−ω2 +iγ) ≈ 0, and neglect the contribution of the up-shifted high-

frequency mode, which is permissible if the damping rates of the high-frequency modes

are small compared to ω1. In this case we can take Re[ε(k,−ω2)] = 0 and expand

ε(k,−ω2 + iγ) around (k,−ω2), using ε(k,−ω2) = ε∗(−k, ω2), to find ε(k, ω − ω0) ≈
−i{∂Re[ε(−k, ω)]/∂ω}|ω=ω2 [γ+ Γ(−k, ω2)], where the linear damping rate of the down-

shifted high-frequency mode is Γ(−k, ω2) = Im[ε(−k, ω2)]/{∂ Re[ε(−k, ω)]/∂ω}|ω=ω2 .

Plugging the above results into (23), and isolating γ + Γ(−k, ω2), gives

γ + Γ(−k, ω2) = −µ
2
e

4
Re

{
i
∑

i χi(k, ω)[1 + χe(k, ω)]

ε(k, ω){∂ Re[ε(−k, ω)]/∂ω}|ω=ω2

}
=
µ2
e

4

|
∑

i χi(k, ω)|2Im[χe(k, ω)] + |1 + χe(k, ω)|2
∑

i Im[χi(k, ω)]

|ε(k, ω)|2{∂ Re[ε(−k, ω)]/∂ω}|ω=ω2

. (24)

The above equations lead to two different expressions for γ depending on the conditions

satisfied by the low-frequency mode. The two cases are known as resonant and non-

resonant PDIs, respectively. For resonant PDIs, the low-frequency mode is also weakly

damped, ω1 � Γ(k, ω1), and we can take Re[ε(k, ω1)] = 0 and expand ε(k, ω1 + iγ)

around (k, ω1) to find ε(k, ω) ≈ i{∂Re[ε(k, ω)]/∂ω}|ω=ω1 [γ + Γ(k, ω1)], with which (24)

may be rewritten as

[γ + Γ(k, ω1)][γ + Γ(−k, ω2)] = −µ
2
e

4

∑
i Re[χi(k, ω1)]{1 + Re[χe(k, ω1)]}

{∂ Re[ε(k, ω)]/∂ω}|ω=ω1{∂ Re[ε(−k, ω)]/∂ω}|ω=ω2

,

(25)

where the order 0 expressions, χe(k, ω) ≈ Re[χe(k, ω1)] and χi(k, ω) ≈ Re[χi(k, ω1)],

have been used in the numerator; (25) is similar to (A2) from [4] for χi(−k, ω2) ≈ 0

and χe(−k, ω2) ≈ −1. This quadratic equation for γ is easily solved (showing only the

possibly positive root),

γ =
1

2

[√
[Γ(k, ω1)− Γ(−k, ω2)]2 −

µ2
e

∑
i Re[χi(k, ω1)]{1 + Re[χe(k, ω1)]}

{∂ Re[ε(k, ω)]/∂ω}|ω=ω1{∂ Re[ε(−k, ω)]/∂ω}|ω=ω2

− Γ(k, ω1)− Γ(−k, ω2)

]
, (26)
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and the PDI threshold (γ > 0) in a homogeneous plasma may be expressed as the

condition

µ2
e > −

4 Im[ε(k, ω1)] Im[ε(−k, ω2)]∑
i Re[χi(k, ω1)]{1 + Re[χe(k, ω1)]}

. (27)

For non-resonant PDIs, the low-frequency mode is not weakly damped (ε(k, ω1) 6≈ 0),

and the right hand side of (24) may be approximated by its value at ω = ω1 without

the assumption of small Im[χe(k, ω)] and Im[χi(k, ω)],

γ =
µ2
e

4

|
∑

i χi(k, ω1)|2Im[χe(k, ω1)] + |1 + χe(k, ω1)|2
∑

i Im[χi(k, ω1)]

|ε(k, ω1)|2{∂ Re[ε(−k, ω)]/∂ω}|ω=ω2

−Γ(−k, ω2); (28)

an equation similar to (28) is used as a starting point by [2]. (28) yields the homogeneous

plasma PDI threshold,

µ2
e >

4 Im[ε(−k, ω2)]|ε(k, ω1)|2

|
∑

i χi(k, ω1)|2Im[χe(k, ω1)] + |1 + χe(k, ω1)|2
∑

i Im[χi(k, ω1)]
. (29)

It is seen that both the resonant and the non-resonant PDIs in a homogeneous plasma

need the pump wave amplitude (|E0| ∝ µe) to exceed a certain threshold, principally

determined by the daughter wave damping, in order to occur. However, while the

resonant PDI threshold increases with both the low- and high-frequency daughter

wave damping, through Im[ε(k, ω1)] and Im[ε(−k, ω2)], the non-resonant PDI threshold

increases with damping of the high-frequency daughter wave, but does not occur without

damping of the low-frequency daughter wave. The above observations point to an

important difference between the resonant and non-resonant PDIs. The resonant PDI

can be seen as a pure wave-wave interaction, in which the beating of one daughter

wave with the pump wave amplifies the other daughter wave and vice versa [44]. This

results in a fairly symmetric treatment of the two daughter waves, which is generally

adequately described by fluid models. The non-resonant PDI can rather be seen as a

wave-particle interaction, in which energy is transferred from the pump wave to the

high-frequency daughter wave through nonlinear Landau damping of the low-frequency

daughter wave [45]. This results in a treatment of the high-frequency daughter wave

which is virtually independent of the low-frequency daughter wave and generally requires

a kinetic description.

2.3. PDIs in Inhomogeneous Plasmas

Although we have now derived thresholds for PDIs in homogeneous plasmas, these are

generally far below the thresholds observed in real inhomogeneous plasmas. The main

reason for this is that the k selection rule for the waves involved in a PDI is only

approximately satisfied in a small region through which a significant amplification of

the thermal background daughter waves has to occur in order for the PDI to have

measurable consequences. Within the geometric optics approximation, we may convert

the temporal growth rate in a homogeneous medium into a local spatial growth rate

γ/vg(k, ω) along the ray, where vg(k, ω) = |{∂ Re[ε(k, ω)]/∂k}/{∂ Re[ε(k, ω)]/∂ω}| is

the magnitude of the group velocity (the speed of energy transport along the ray). From
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this, the power gain of the high-frequency daughter waves in the case of non-resonant

PDIs, G = ln(Pout/Pin), may be calculated as [18,46],

G =

∫
ray

2γ(r(s),k(s), ω1, ω2)

vg(r(s),−k(s), ω2)
ds, (30)

where the integral is over a segment of the ray of the high-frequency daughter wave

for given initial conditions and s is a parameter characterising length along the ray.

Assuming that γ is only significant in a small region around the point s = sr, at which

the selection rule is exactly satisfied for a particular low-frequency quasi-mode, and that

the ray only traverses this region once, we can write

G ≈ 2γ(r(sr),k(sr), ω1, ω2)`(sr)

vg(r(sr),−k(sr), ω2)
, (31)

with `(sr) being the length along the ray around sr with significant γ. A threshold is

obtained by requiring G to be sufficiently large. For instance, [13] defines the threshold

to be G > 2π, corresponding to Pout/Pin > 535, which we shall also use, keeping in mind

that PDIs may be observable for slightly lower values of G. Note that the threshold

may be significantly reduced if the amplification region is traversed several times by

the ray of the high-frequency daughter wave without significant damping between the

individual passes. This may happen if the high-frequency daughter wave is trapped

due to a non-monotonic plasma profile around the amplification region [16] or in the

case of a backscattering instability [17]. However, γ > 0 represents the lowest possible

threshold in all cases.

For the case of a resonant PDI in a plasma slab with monotonically varying

parameters along the x-direction and daughter waves propagating along the x-direction,

[12–14] showed that, within the WKB approximation,

G =
2πγ2(xr, kx(xr), ω1, ω2)l

2(xr, ω1, ω2)

vg(xr, kx(xr), ω1) vg(xr,−kx(xr), ω2)
. (32)

Here x = xr is the x-value at which the selection rules are exactly satisfied,

l2(xr, ω1, ω2) = 1/|{[∂kx(x, ω1)/∂x]|x=xr − [∂kx(x, ω2)/∂x]|x=xr}| is the length scale

over which the kx(x)-selection rule is well satisfied, and we have retained the dipole

approximation, k0(x) ≈ 0. This G is seen to be quite similar to the one for non-

resonant decay from (31); the main difference is that the high-frequency and low-

frequency daughter waves enter G in a symmetric fashion, as expected for the resonant

PDI, and that l(xr), unlike `(sr), is not arbitrary. While the application of (32) to

a realistic 3D plasma may not provide the actual threshold, since it only addresses

wave propagation along a gradient with a constant direction, it should still provide an

order of magnitude estimate of the resonant PDI threshold in a non-monotonic plasma.

For the non-resonant PDI, a similar estimate may be obtained by only considering

propagation along the x-direction and setting `(sr) ≈ l(xr, ω1, ω2), such that (31)

becomes G ≈ 2γ(xr, k(xr), ω1, ω2)l(xr, ω1, ω2)/vg(xr,−kx(xr), ω2).
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3. PDIs near the UHR

So far, PDIs involving gyrotron radiation with ω0 ∼ |ωce| have been discussed in a

rather general fashion; we now specialise to the case of PDIs near the UHR. As is

known from the theory of cold electromagnetic plasma waves, X-mode radiation has a

principal resonance (k0 → ∞, or vg(k0, ω0) → 0, for k0 ⊥ B) at the UH frequency,

ω2
UH = ω2

ce+ω2
pe, with a propagating X-mode only existing on the side where ω0 < ωUH .

Under normal circumstances, X-mode radiation encountering the UHR is converted

linearly into an electron Bernstein/warm UH wave [38], the dispersion relation of which

we derive below. However, PDIs are also likely to occur near the UHR because |E0| (and

hence µe) of the X-mode radiation becomes significantly enhanced compared with its

normal value for gyrotron radiation, due to a low group velocity and full-wave effects [15]

combined with the fact that linear Landau and cyclotron damping remains small, unless

ωUH ≈ n|ωce| for n ∈ N [38]. In this paper we focus on direct parametric decay of the

X-mode radiation into electrostatic daughter waves before the linear mode conversion

to warm UH waves takes place as was done by [1–5]; this requires propagating daughter

waves to exist in the region where ω0 < ωUH . For PDIs of the linearly converted warm

UH waves see [17, 21,22].

This work is, as previously mentioned, primarily motivated by the observation of

strong anomalous scattering during some CTS experiments at the ASDEX Upgrade

tokamak [6]; observations resembling the ones from ASDEX Upgrade have also been

made during CTS experiments at the LHD stellarator [7, 8]. The CTS spectral power

density obtained in one of these experiments (ASDEX Upgrade discharge 28286) is seen

in figure 3. The figure shows peaks with frequency shifts of approximately 850 MHz

relative to the gyrotron frequency (ω0/(2π) = 104.93 GHz) developing at t = 2.100 s and

becoming well separated from the strong signal at small frequency shifts for t ≥ 2.500 s.

The frequency shift slightly exceeds the LH frequency of approximately 700 MHz at the

UHR of the gyrotron radiation in the experiment (for reference, the plasma parameters

are N
(0)
e ≈ 2.8 × 1019 m−3, Te ≈ 300 eV and B ≈ 3.35 T at this location), and the

occurrence of the peaks is additionally strongly correlated with a significant amount

of power reaching the UHR in X-mode. The latter point is illustrated in figure 4 (the

details of which are discussed below) through traces of the CTS probe rays, done using a

code based on analytical approximations to the relativistic dispersion relation developed

in [47,48], at various times in the discharge: virtually no X-mode radiation reaches the

UHR in the main plasma at the early time point, t = 1.300 s, while a smaller fraction

of the X-mode beam may reach it at the intermediate time point, t = 2.100 s, and a

significant fraction of the X-mode beam will reach it at the late time points, t ≥ 2.500 s.

Note, however, that the traced CTS probe ray does not reach the UHR in the main

plasma before t = 2.900 s.

As seen in figure 4, the UHR is only accessible to X-mode radiation launched from

its high-field side in tokamak plasmas due to the location of the R cut-off. For CTS

applications, access to the entire plasma volume is desired, so the 105 GHz gyrotron
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Figure 3. CTS spectral power density (in eV, as is customary [6]) around the gyrotron

frequency ω0/(2π) = 104.93 GHz, marked by the full line, in ASDEX Upgrade discharge

28286. At the early time point, t = 1.300 s, no peaks are observed; at the intermediate

time point, t = 2.100 s, peaks with frequency shifts of approximately 850 MHz, marked

by dashed lines, start developing; at late time points, t ≥ 2.500 s, these peaks become

well-separated from the signal at small frequency shifts.

radiation is launched in O-mode from the low-field side. Thus, in order for power to reach

the UHR, a reflection of the injected O-mode radiation from the high-field side wall,

in which the reflected radiation is at least partially converted to X-mode, is necessary;

a similar mechanism was invoked by [32] to explain generation of fast ions during 1st

harmonic O-mode ECRH, with a low-field side launch, at the TCA tokamak.

To understand the trajectories of the rays in figure 4, as well as the characteristics

of the PDIs later on, we plot the development of the N
(0)
e - and Te-profiles obtained from
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Figure 4. Traces of the central rays of the 105 GHz O-mode radiation injected

from the low-field side (blue line) and the 105 GHz X-mode radiation reflected

from the high-field side vessel wall (red line), projected into the (R, z)-plane of

the cylindrical tokamak coordinate system, in ASDEX Upgrade discharge 28286 at

t = {1.300 s, 2.100 s, 2.500 s, 2.900 s, 3.300 s, 3.700 s}. The green, purple, and orange

lines indicate the locations of the UHR, the ECR, and the R cut-off, respectively; no

propagating X-mode exists in the shaded areas; the background contours are closed

magnetic flux surfaces indicating the position of the main plasma. At t = 1.300 s,

virtually none of the reflected X-mode radiation reaches the UHR, while part of the

reflected X-mode radiation may reach it at t = 2.100 s. For t ≥ 2.500 s, most of

the reflected X-mode radiation reaches the UHR, although the traced central beam

ray does not reach it in the main plasma before t = 2.900 s. These observations are

consistent with the 850 MHz shifted peaks in figure 3 being caused by a PDI occurring

at the UHR. Rays have been traced using a code based on analytical approximations to

the relativistic dispersion relation developed in [47,48]. The N
(0)
e - and Te-profiles have

been generated using IDA [49] and the magnetic ASDEX Upgrade equilibria obtained

using the CLISTE code [50].
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Figure 5. Development of N
(0)
e and Te versus the normalised poloidal flux coordinate,

ρpol, in ASDEX Upgrade discharge 28286. The IDA profiles are marked by full lines,

while the dotted lines represent the flat central profiles used to estimate the uncertainty

resulting from the poorly diagnosed plasma centre.

integrated data analysis (IDA) [49] versus the normalised poloidal flux coordinate, ρpol
(ρpol = 0 at the plasma centre and ρpol = 1 at the last closed flux surface, magnetic

equilibria are calculated using the CLISTE code [50]), for t = {2.900 s, 3.300 s, 3.700 s}
in figure 5. Evidently, N

(0)
e is peaked around the plasma centre, resulting in the large

refraction taking place here. However, the central peaking of N
(0)
e is an extrapolation, as

no measurements of the plasma parameters for ρpol < 0.2 were possible in the discharge.

In order to address this issue, rays have also been traced for flat central N
(0)
e and Te

profiles, marked by dotted lines in figure 5. These rays differ from the ones shown in

figure 4 by suffering virtually no refraction at the plasma centre, but the PDI relevant

conclusions, and the plasma parameters at the UHR (encountered at ρpol ≈ 0.8), remain

the same; the only difference is that the CTS probe ray encounters the UHR in the main

plasma for t ≥ 2.500 s with the flat profiles. To have a rough estimate of the experimental

uncertainty of the PDI threshold and frequency shift, all subsequent calculations are

carried out for both the peaked and the flat profiles shown in figure 5; analyses are only

performed for t ≥ 2.900 s.

For PDIs to occur near the UHR by the mechanism described above, a non-

negligible fraction of the reflected power, F , should be coupled into the main plasma

in X-mode and, additionally, absorption at the EC resonance (ECR) should not be

excessive. These points are also addressed by the ray traces, since the evolution of the

wave polarisation along the O-mode and X-mode rays, as well as during the high-field

side wall reflection, determines F , while the total optical thickness of the O-mode and

X-mode rays, τ = −G, determines the fraction of power transmitted through the ECR,

e−τ . The total power reaching the UHR is approximately P = F e−τP0, with P0 being

the gyrotron power. Figure 6 shows F , e−τ and F e−τ for the CTS probe rays reaching

the UHR in the main plasma (t ≥ 2.900 s). F is calculated as the square norm of the

projection of the reflected ray polarisation vector along the X-mode polarisation vector
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Figure 6. Fraction of reflected power coupled to the plasma in X-mode, F , fraction

of power transmitted by the plasma, e−τ , and fraction of power reaching the UHR in

X-mode, F e−τ , versus t in ASDEX Upgrade discharge 28286.

at the ECR or the last closed flux surface, depending on which of these is encountered

first; the high-field side wall is treated as a locally plane, perfectly reflecting mirror. As

seen in figure 6, F ≈ 0.1 in all cases where the CTS probe ray reaches the UHR in the

main plasma. τ is calculated using a relativistic model and is found to have moderate

values, min(e−τ ) = 0.265, meaning that absorption at the ECR is non-excessive in all

cases. Accounting for both τ and F , the amount of gyrotron power reaching the UHR in

X-mode is P = F e−τP0 ≈ 0.04P0, corresponding to P ≈ 8 kW for the nominal gyrotron

power, P0 = 200 kW, in the experiment. This power level is of an order of magnitude

where PDIs may be expected to occur near the UHR in a tokamak [3], allowing them to

account for the CTS spectrum in figure 3. We note that both F and e−τ are quite

sensitive functions of the toroidal gyrotron injection angle in the ASDEX Upgrade

equilibria considered: when the gyrotron radiation is injected poloidally, virtually none

of the reflected radiation is coupled to the plasma in X-mode, F ≈ 0, but the ECR is

optically thin, e−τ ∼ 1; as the toroidal gyrotron injection angle increases, F grows while

e−τ decays, and when the numerical value of the toroidal gyrotron injection angle exceeds

approximately 10◦, the ECR becomes optically thick, e−τ ≈ 0. The combination of these

effects results in max(F e−τ ) ≈ 0.04 which coincides with the toroidal gyrotron injection

angle of approximately −5◦ used throughout the discharge. The above observations

provide simple experimental prescriptions for suppressing PDIs at the UHR in 105

GHz O-mode CTS experiments at ASDEX Upgrade. However, it is noted that PDI

suppression by a completely poloidal injection requires both the width of the gyrotron

beam and its angular divergence to be very small, while PDI suppression by a large

toroidal injection angle requires B to be large enough for the ECR to occur between the

high-field side wall and the UHR, ideally inside the last closed flux surface; the latter

prescription has successfully suppressed PDIs in 105 GHz O-mode CTS experiments at

ASDEX Upgrade [6].
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3.1. Electrostatic Daughter Waves at the UHR

To study PDIs near the UHR we derive dispersion relations for the electrostatic

daughter waves likely to be involved in such instabilities. First, we note that, when

|(Re(ω) − nωce)/(kzvTe)| > 2 (i.e. Re(ω) 6≈ nωce, for all n ∈ Z), be = k2⊥r
2
Le � 1,

k2z/k
2
⊥ � 1, and νe/Re(ω)� 1, the electron χσ(k, ω) in (9) may be approximated by [1]

χe(k, ω) ≈ −
ω2
pe

ω2 − ω2
ce

−
3ω2

peω
2
cebe

(ω2 − ω2
ce)(ω

2 − 4ω2
ce)

+
ω2
pe

ω2

[
ω2
ce

ω2 − ω2
ce

+ i2
√
π

ω3

|kz|3v3Te
e−ω

2/(k2zv
2
Te)

]
k2z
k2⊥

+ i
ω2
pe(ω

2 + ω2
ce)

(ω2 − ω2
ce)

2

νe
ω
. (33)

For the high-frequency daughter waves, the ion response is negligible and the dispersion

relation, Re[ε(−k, ω2)] ≈ 1 + Re[χe(−k, ω2)] = 0, may be written as

1−
ω2
pe

ω2
2 − ω2

ce

−
3ω2

peω
2
cebe

(ω2
2 − ω2

ce)(ω
2
2 − 4ω2

ce)
+

ω2
peω

2
ce

ω2
2(ω2

2 − ω2
ce)

k2z
k2⊥

= 0. (34)

This is a cubic equation for ω2
2 in terms of k and the plasma parameters which can

be solved using standard algebraic techniques. However, for the cases of interest the

terms involving be and k2z/k
2
⊥ are small. Ignoring these, the order 0 dispersion relation

becomes ω2
2 ≈ ω2

UH , i.e. the dispersion relation gives a non-propagating oscillation at

the UH frequency. Expanding (34) to order 1 in be and k2z/k
2
⊥ around ω2 = ωUH , we

find

ω2
2 ≈ ω2

UH − ω2
pe

[
be

1− ω2
pe/(3ω

2
ce)

+
ω2
ce

ω2
UH

k2z
k2⊥

]
. (35)

The above dispersion relation describes the previously mentioned limiting form of

electron Bernstein waves known as warm UH waves, since ω2 is close to ωUH and depends

on Te through be, which are the principal high-frequency daughter waves in PDIs near

the UHR. It is similar to the dispersion relation used by [1,21,22] to study PDIs near the

UHR, and reduces to the one used by [4] for kz = 0 and the one used by [2] for ω2
pe � ω2

ce.

The dispersion relation has a cut-off (k = 0) at ω2 = ωUH , and propagating waves only

exist for ω2 < ωUH when ω2
pe < 3ω2

ce, while they exist for ω2 > ωUH when ω2
pe > 3ω2

ce

and kz = 0. Thus, we see that a PDI in which the X-mode pump wave (with ω0 < ωUH)

decays directly to two electrostatic daughter waves, as we are considering, will only

be feasible when ω2
pe < 3ω2

ce, limiting our theory to underdense and weakly overdense

plasmas (ωpe/|ωce| <
√

3), which are found in conventional tokamaks, as well as many

stellarator experiments. When ω2
pe > 3ω2

ce, as in spherical tokamaks or most ionospheric

studies, it is necessary to consider PDIs for the linearly converted warm UH waves

themselves, which requires consideration of the backscattering type of instability [17].

The above dispersion relation is invalid when ω2
pe ≈ 3ω2

ce, where the UHR coincides with

the 2nd harmonic ECR, ω2 ≈ ωUH ≈ 2|ωce|, violating the assumptions used for deriving

(35); in fact, PDIs may be inhibited in a narrow band around ωUH = n|ωce| for all n ∈ N
due to bandgap effects, as observed in ionospheric modification experiments [23].
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For reference we note that the group velocity of the warm UH waves, given by

vg(k, ω2) = [∂ω2
2(k)/∂k]/(2ω2), may be found by exploiting the azimuthal symmetry of

(35) in k-space,

vg(−k, ω2) =
ω2
pe

k⊥ω2

{[
be

1− ω2
pe/(3ω

2
ce)
− ω2

ce

ω2
UH

k2z
k2⊥

]
e⊥ +

ω2
ce

ω2
UH

kz
k⊥

ez

}
, (36)

where e⊥ = k⊥/k⊥. The relatively small value of vg(−k, ω2), especially for kz = 0, is

important for reducing the PDI threshold in inhomogeneous plasmas. Note also that,

even though k2z/k
2
⊥ � 1, vg(−k, ω2) may have a significant z-component for kz 6= 0.

Finally, we calculate Γ(−k, ω2) ≈ Im[χe(−k, ω2)]/{∂ Re[χe(−k, ω)]/∂ω}|ω=ω2 using the

lowest order approximation, ∂ Re[χe(k, ω)]/∂ω ≈ 2ωω2
pe/(ω

2 − ω2
ce)

2, from (33),

Γ(−k, ω2) ≈
√
π

(ω2
2 − ω2

ce)
2

|kz|k2⊥v3Te
e−ω

2
2/(k

2
zv

2
Te) +

ω2
2 + ω2

ce

2ω2
2

νe ≈
ω2
2 + ω2

ce

2ω2
2

νe; (37)

the last approximation follows from the fact that ω2
2/(k

2
zv

2
Te) is generally a large quantity,

making the first (Landau damping) term extremely small and showing that warm UH

waves are mainly damped by collisions; Landau damping is included due to its possible

importance in damping the low-frequency daughter waves discussed below.

There is a larger number of possible low-frequency electrostatic daughter waves

which may be excited by PDIs near the UHR, since the bulk of the frequency shift

necessary to satisfy the selection rule is provided by the warm UH wave. However,

because the low-frequency daughter waves should also be able to satisfy the k-selection

rules, we confine our attention to the cases where (33) is still a valid approximation for

χe(k, ω), taking the limit |ω|2 � ω2
ce,

χe(k, ω) ≈
ω2
pe

ω2
ce

−
3ω2

pe

4ω2
ce

be +
ω2
pe

ω2

[
−1 + i2

√
π

ω3

|kz|3v3Te
e−ω

2/(k2zv
2
Te)

]
k2z
k2⊥

+ i
ω2
pe

ω2
ce

νe
ω
. (38)

Note that this expression imposes a very strict condition on the smallness of k2z/k
2
⊥ (since

generally ω2
pe/|ω|2 � 1) and that it does not satisfy the low-frequency quasi-neutrality

condition, |χe(k, ω1)| � 1, which is assumed by [35]. In general, χi(k, ω) should be

determined from an expression like (9), but νi/νe = O(
√
me/mi) � 1 [51], so we can

ignore collisions completely for the ions. It is, however, not possible to expand χi(k, ω)

in bi = r2Lik
2
⊥, as was done for χe(k, ω) in be, since r2Li/r

2
Le = miTi/(Z

2
imeTe)� 1, which

implies that bi � be � 1, not imposing any particular restriction on bi. One can assume

bi to be small, as was done by [4], but generally it is necessary to evaluate (9), with

νi ≈ 0 and k2z/k
2
⊥ � 1, including a large number of terms from the sum over n due to the

potentially large value of bi, in order to obtain χi(k, ω). If this is combined with χe(k, ω)

from (38), the dispersion relation for pure ion Bernstein waves, which has a root between

each integer value of ωci, is obtained. The present paper is mainly concerned with high-

order pure ion Bernstein waves, leading to frequency shifts on the order of ωpi (∼ 1 GHz

in the ASDEX Upgrade main plasma), where χi(k, ω) may be evaluated in the limit

of Re(ω) � ωci and bi � 1; remember that ω2
pi/ω

2
ci = [mi/(Zime)]ω

2
pe/ω

2
ce in a simple

plasma, so ωci � ωpi for ωpe ∼ |ωce|. Here, the basic behaviour can be obtained by
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considering the ions to be unmagnetised, since their trajectories are essentially straight

lines on the relevant temporal and spatial scales (respectively, 1/ω1 ∼ 1/ωpi ∼ 200 ps and

1/k⊥ ∼ rLe/
√
be ∼ 30µm near the UHR in the considered ASDEX Upgrade discharge),

although the details at integer values of ωci and interpretation of the Landau damping

involve some subtleties [51,52]. For unmagnetised ions we may insert χσ(k, ω) from (10)

with νσ ≈ 0, and find

χi(k, ω) ≈
2ω2

pi

k2v2T i

[
1 +

ω

kvTi
Z

(
ω

kvT i

)]
≈ −

ω2
pi

ω2

[
1 +

3k2v2Ti
2ω2

− i2
√
π

ω3

k3v3T i
e−ω

2/(k2v2Ti)

]
≈ −

ω2
pi

ω2

[
1 +

3Ti
ZiTe

|ωce|ωci
ω2

be − i2
√
π

ω3

k3⊥v
3
T i

e−ω
2/(k2⊥v

2
Ti)

]
, (39)

where the first approximation follows from an asymptotic expansion of Z, valid for

Re(ω)/(kvTe) >
√

2 [1], and the second approximation follows from setting k ≈ k⊥,

which is permissible due to the requirement k2z/k
2
⊥ . ω2

pi/ω
2
pe � 1, imposed by the use

of χe(k, ω) from (38) for |ω| ∼ ωpi. Note that |ωce|ωci ∼ ω2
pi for ωpe ∼ |ωce|, ensuring

that the be-term in (39) is indeed of order be � 1, unless ωpe � |ωce| or Ti � ZiTe.

We now obtain the dispersion relation of the low-frequency daughter waves in a simple

plasma, Re[ε(k, ω1)] = 1 + Re[χi(k, ω1)] + Re[χe(k, ω1)] = 0, by inserting χe(k, ω) from

(38) and χi(k, ω) from (39),

1 +
ω2
pe

ω2
ce

−
ω2
pi

ω2
1

− 3

(
ω2
pe

4ω2
ce

+
Ti
ZiTe

ω2
pi|ωce|ωci
ω4
1

)
be −

ω2
pe

ω2
1

k2z
k2⊥

= 0. (40)

This quadratic equation for ω2
1 in terms of be and k2z/k

2
⊥ can be solved by the standard

approach. However, just as for the high-frequency daughter waves, we note that the be
and k2z/k

2
⊥-terms represent corrections, and that, ignoring these, the order 0 solution

is ω2
1 ≈ ω2

ceω
2
pi/ω

2
UH = ω2

LH , i.e. a non-propagating oscillation at the LH frequency,

ωLH , which is a resonance for cold electromagnetic plasma waves. Now, expanding (40)

to order 1 in be and k2z/k
2
⊥ around ω1 = ωLH , also using the simple plasma identities

ω2
pe/ω

2
pi = mi/(Zime) and |ωce|ωci/ω2

LH = ω2
UH/ω

2
pe, the dispersion relation of the low-

frequency daughter waves is found to be,

ω2
1 ≈ ω2

LH

[
1 + 3

(
ω2
pe

4ω2
UH

+
Ti
ZiTe

ω2
UH

ω2
pe

)
be +

mi

Zime

k2z
k2⊥

]
, (41)

which describes so-called warm LH waves. The above dispersion relation was obtained

in [1] and is similar to the one used by [2] for ω2
pe � ω2

ce and the electrostatic version

given by [52] for ω2
pe � ω2

ce. Evidently, the warm LH waves have a cut-off at ω1 = ωLH
and propagating waves only exist for ω1 > ωLH , meaning that the frequency shift of the

high-frequency daughter waves for PDIs with warm LH low-frequency daughter waves

should always exceed ωLH . It is also clear that the above dispersion relation requires

k2z/k
2
⊥ . Zime/mi � 1, which is a strict requirement on the smallness of k2z/k

2
⊥ indeed.

Following [1–3], we shall employ (41) when discussing both the resonant and the non-

resonant PDIs. However, in the non-resonant case the mode leading to the largest γ,

or the largest G, may deviate somewhat from the one given by the above dispersion

relation, as the underlying assumption of |Im[ε(k, ω1)]| � |Re[ε(k, ω1)]| is not generally
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satisfied here. This effect should not significantly change the results of the following

analysis, and we further note that finding an unstable mode, even if it is not the most

unstable one, will still imply the existence of a PDI, thus giving an upper bound of

the PDI threshold. Nevertheless, a detailed study of the dispersion relation in the non-

resonant case, and its consequences for the predicted ω1, may be of some interest for

future work.

As was done for the warm UH waves, we compute the group velocity, vg(k, ω1) =

[∂ω2
1(k)/∂k]/(2ω1), of the warm LH waves,

vg(k, ω1) =
ω2
LH

k⊥ω1

{[
3

(
ω2
pe

4ω2
UH

+
Ti
ZiTe

ω2
UH

ω2
pe

)
be −

mi

Zime

k2z
k2⊥

]
e⊥ +

mi

Zime

kz
k⊥

ez

}
. (42)

Similar to vg(−k, ω2), vg(k, ω1) is relatively small for kz = 0, resulting in a low resonant

PDI threshold in inhomogeneous plasmas, but acquires a significant z-component for

kz 6= 0, even when k2z/k
2
⊥ � Zime/mi. Note also that vg(k, ω1) and vg(−k, ω2) are

parallel for kz = 0 and ω2
pe < 3ω2

ce, making the backscattering instability impossible in

this case. We finally calculate Γ(k, ω1) = Im[ε(k, ω1)]/{∂ Re[ε(k, ω)]/∂ω}|ω=ω1 , using

that ∂ Re[ε(k, ω)]/∂ω ≈ ∂ Re[χi(k, ω)]/∂ω ≈ 2ω2
pi/ω

3,

Γ(k, ω1) ≈
√
π

ω2
1

k2⊥v
2
T i

[
ω1

k⊥vT i
e−ω

2
1/(k

2
⊥v

2
Ti) +

Ti
ZiTe

ω1

|kz|vTe
e−ω

2
1/(k

2
zv

2
Te)

]
ω1 +

ω2
pe

2ω2
ce

ω2
1

ω2
pi

νe, (43)

which shows that warm LH waves are subject to ion Landau damping (first term),

electron Landau damping (second term), and electron collisional damping (third term).

3.2. Parametric Decay into Warm UH and Warm LH Waves

We now have all the ingredients necessary for studying PDIs in which the X-mode

pump wave decays into a warm UH wave and a warm LH wave near the UHR.

We restrict our attention to cases with kz = 0 since a small, but finite, k2z/k
2
⊥

will rapidly increase convective losses parallel to B without altering the propagation

perpendicular to B appreciably; a discussion including finite kz within the dipole

approximation is found in [1]; if the dipole approximation is abandoned, at least

one of the daughter waves must have finite |kz| ∼ |k0z| . 3 cm−1 (k2z/k
2
⊥ . 10−4)

to satisfy the selection rules in the ASDEX Upgrade discharge under consideration,

but this should not significantly alter the results of the following analysis in the non-

resonant case [2] or in the resonant case, if kz ≈ k0z for the warm UH wave here.

Our goal is first to evaluate be from the selection rules, to determine the conditions

under which the PDI is resonant and non-resonant, and the limits of validity for

this analytical approach. In order to allow easier manipulation, we rewrite (41) and

(35) as ω1 = ωLH
√

1 + A1be ≈ ωLH(1 + A1be/2) and ω2
2 = ω2

UH − ω2
peA2be, with

A1 = 3{ω2
pe/(4ω

2
UH) + [Ti/(ZiTe)]ω

2
UH/ω

2
pe} and A2 = 1/[1 − ω2

pe/(3ω
2
ce)], respectively.

Then, from the selection rules, ω2
2 = (ω0 − ω1)

2 ≈ (ω0 − ωLH)2 − A1(ω0 − ωLH)ωLHbe,

and we find

be ≈
ω2
UH − (ω0 − ωLH)2

A2ω2
pe − A1(ω0 − ωLH)ωLH

≈ ω2
UH − ω2

0 + 2ω0ωLH
A2ω2

pe − A1ω0ωLH
, (44)
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where the last approximation follows by neglecting the ω2
LH-terms, since ωLH � ω0, ωpe.

Clearly, the assumption that be � 1 is only valid for ω2
0 ≈ ω2

UH , i.e. near the UHR of

the gyrotron, where (44) gives be = O(ω0ωLH/ω
2
pe) � 1; however, even here problems

arise for ω2
pe � ω2

ce, as ω0 � ωpe and A1 � Ti/(ZiTe) in this case. To quantify the limits

of validity of the above theory, as well as the conditions under which the resonant and

non-resonant PDIs occur, we calculate,

ζ2i =
ω2
1

k2⊥v
2
T i

=
ZiTe
2Ti

ω2
1

ωci|ωce|be
≈ ZiTe

2Ti

ω2
pe

ω2
UH

(
A2ω

2
pe − A1ω0ωLH

ω2
UH − ω2

0 + 2ω0ωLH
+ A1

)
, (45)

since this parameter determines the relative importance of the real and imaginary

parts of the ion susceptibility, χi(k, ω1) ≈ (ω2
pi/ω

2
1)[−1 − 3/(2ζ2i ) + iL(ζi)] with

L(ζi) = 2
√
πζ3i e−ζ

2
i , and the limit of the validity of this approximate form through

the requirement ζ2i > 2; the non-resonant PDI occurs for L(ζi) ∼ 1, while the resonant

PDI occurs for L(ζi)� 1. A simple expression for ζ2i in terms of the plasma parameters

is obtained by setting ω0 ≈ ωUH in (45),

ζ2i ≈
ZiTe
4Ti

ω2
pe

ω2
UH

(
A2ω

2
pe

ωUHωLH
+ A1

)
≈ ZiTe

4Ti

√
mi

Zime

ω3
pe/|ωce|3

(1 + ω2
pe/ω

2
ce)[1− ω2

pe/(3ω
2
ce)]

+
3

4
; (46)

the last approximation follows from the identity ω2
pe/(ωUHωLH) =

√
mi/(Zime)ωpe/|ωce|

and neglect of the first term of A1 = 3{ω2
pe/(4ω

2
UH)+ [Ti/(ZiTe)]ω

2
UH/ω

2
pe} in comparison

with A2ω
2
pe/(ωUHωLH), while the second term of A1 is kept due to its importance at

small ωpe/|ωce|. A contour plot of L(ζi) and the line at which ζ2i = 2 for a deuterium-like

plasma, mi/(Zime) = 3.67× 103, versus ωpe/|ωce| and ZiTe/Ti is seen in figure 7. From

the figure, it is clear that the PDI will be non-resonant for moderate values of ωpe/|ωce|
and ZiTe/Ti, resonant for large values, and that the analytical approximation breaks

down for sufficiently small values. For t ≥ 2.900 s in ASDEX Upgrade discharge 28286,

the UHR is encountered at ωpe/|ωce| ≈ 0.5 by the CTS probe rays, and the plasma

is further modelled as a pure deuterium plasma (Zi = 1, mi/me = 3.67 × 103) with

Ti = Te, placing the expected PDI in the non-resonant region of figure 7.

Now that the basic questions related to the selection rules have been answered, we

turn our attention to the problem of determining γ and the PDI threshold conditions

for the non-resonant and resonant cases. Except when determining be and ζi, the lowest

order approximations (ω1 ≈ ωLH and ω2 ≈ ωUH) are used and the be-terms neglected,

resulting in the following approximate expressions,

χi(k, ω1) ≈
ω2
UH

ω2
ce

[−1 + iL(ζi)] , 1 + χe(k, ω1) ≈
ω2
UH

ω2
ce

(1 + iCe) , (47)

ε(k, ω1) ≈ i
ω2
UH

ω2
ce

[L(ζi) + Ce],
∂ Re[ε(k, ω)]

∂ω

∣∣∣
ω=ω1

≈ 2ω2
UH

ω2
ceωLH

,
∂ Re[ε(−k, ω)]

∂ω

∣∣∣
ω=ω2

≈ 2ωUH
ω2
pe

,

where Ce = (ω2
pe/ω

2
UH)νe/ωLH � 1. Note that |ε(k, ω1)| is indeed small in the resonant

case, L(ζi)� 1, and non-negligible in the non-resonant case, L(ζi) ∼ 1. An approximate

version of µ2
e may also be obtained from (14) by noting that the X-mode is a quasi-

electrostatic cold UH wave, and thus linearly polarised, near the UHR (ω0 ≈ ωUH).
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Figure 7. Contour plot of L(ζi) and the black line at which ζ2i = 2 versus ωpe/|ωce| and

ZiTe/Ti, with ζ2i from (46) for a deuterium-like plasma, mi/(Zime) = 3.67×103. Areas

where the PDI is resonant and non-resonant are marked with text boxes. The analytical

approximation breaks down below the ζ2i = 2 line. In the experiment ωpe/|ωce| ≈ 0.5

and ZiTe/Ti ≈ 1, placing the PDI in the non-resonant region.

From this it follows that all components of E0 have the same phase, and further taking

k = k⊥ex, we find

µ2
e ≈

e2k2⊥
m2
e(ω

2
0 − ω2

ce)
2

(
|E0x|2 +

ω2
ce

ω2
0

|E0y|2
)
≈ be

ω2
ce

ω2
pe

(
ε0|E0x|2

N
(0)
e Te

+
ω2
ce

ω2
UH

ε0|E0y|2

N
(0)
e Te

)
, (48)

which is similar to the µ2
e given by [2]. (48) shows that µ2

e is generally a small quantity of

order be � 1, as assumed when deriving the parametric dispersion relation; exceptions

occur when ω2
pe � ω2

ce or when the pump wave energy density (∼ ε0|E0|2) is much larger

than the thermal energy density (∼ N
(0)
e Te), and the weak coupling approximation

breaks down, at the UHR. The above expression is clearly maximised for |E0x| = |E0⊥|,
i.e. E0⊥ ∝ k, giving us the following µ2

e, useful for deriving the maximum γ,

µ2
e ≈ be

ω2
ce

ω2
pe

ε0|E0⊥|2

N
(0)
e Te

. (49)

With (37), (47) and (49), we are now in a position to determine γ for the non-resonant

PDI from (28),

γ≈ be
8

1 + L(ζi)Ce
L(ζi) + Ce

ε0|E0⊥|2

N
(0)
e Te

ωUH−
ω2
UH + ω2

ce

2ω2
UH

νe≈
be

8L(ζi)

ε0|E0⊥|2

N
(0)
e Te

ωUH−
ω2
UH + ω2

ce

2ω2
UH

νe, (50)

where Ce � 1 ∼ L(ζi) has been used in the last approximation. From this we may

easily determine the non-resonant PDI threshold in a homogeneous plasma (γ > 0),

|E0⊥|2 >
4L(ζi)

be

(ω2
UH + ω2

ce)νe
ω3
UH

N
(0)
e Te
ε0

, (51)

which is the generalisation of the expression given by [3] to finite ωpe/|ωce| and L(ζi) 6= 1

obtained in [1] (the non-resonant γ, which is the one of relevance, is approximately 3 ns−1

near the UHR in the considered ASDEX Upgrade discharge).
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Noting that Γ(k, ω1) ≈ [L(ζi)ωLH + (ω2
pe/ω

2
UH)νe]/2, we can also determine γ for

the resonant PDI from (26),

γ ≈ 1

2

√(L(ζi)

2
ωLH −

ω2
ce

ω2
UH

νe

)2

+
be
4

ε0|E0⊥|2

N
(0)
e Te

ωUHωLH −
L(ζi)

2
ωLH − νe

 , (52)

and the corresponding resonant PDI threshold in a homogeneous plasma,

|E0⊥|2 >
4[L(ζi) + Ce]

be

(ω2
UH + ω2

ce)νe
ω3
UH

N
(0)
e Te
ε0

, (53)

which is very similar to that of the non-resonant PDI, but since we are now in the region

of L(ζi)� 1, its value is generally much smaller. For negligible damping, (52) becomes

γ ≈ 1

4

√
be
ε0|E0⊥|2

N
(0)
e Te

ωUHωLH , (54)

which is similar to the γ obtained by [4] for ωci � ωpi, while being ω2
UH/ω

2
pe times that

reported by [5,27] within the weak coupling and dipole approximations, indicating that

their approach reproduces a parametric dispersion relation similar to that of [18] here.

While the homogeneous PDI thresholds are of some interest, the actual thresholds

are generally determined by inhomogeneities. For the resonant PDI well above

the homogeneous threshold we can ignore damping and use γ from (54), while the

magnitudes of the group velocities of the daughter waves for k ⊥ B become vg(k, ω1) ≈
A1beωLH/k⊥ and vg(−k, ω2) ≈ A2beω

2
pe/(ωUHk⊥), such that (32) gives

G ≈ π

8A1A2

ω2
UH

ω2
pe

l2

r2Le

ε0|E0⊥|2

N
(0)
e Te

, |E0⊥|2 > 16A1A2

ω2
pe

ω2
UH

r2Le
l2
N

(0)
e Te
ε0

; (55)

the threshold is determined by the condition G > 2π, and all quantities are to be

evaluated at x = xr. Before an exact threshold can be obtained from the above

expression, we need to determine

1

l2
=

∣∣∣∣[∂kx(x, ω1)

∂x

∣∣∣
x=xr
− ∂kx(x, ω2)

∂x

∣∣∣
x=xr

]∣∣∣∣= 1

2
√
berLe

∣∣∣∣[∂be(x, ω1)

∂x

∣∣∣
x=xr
− ∂be(x, ω2)

∂x

∣∣∣
x=xr

]∣∣∣∣ ,
(56)

where the last equality follows from kx = k⊥ =
√
be/rLe (for k = k⊥ex) and the fact that

the selection rules are exactly satisfied at x = xr. The x-derivatives of be(x, ω1) = [ω2
1 −

ω2
LH(x)]/[A1(x)ω2

LH(x)] and be(x, ω2) = [ω2
UH(x)− ω2

2]/[A2(x)ω2
pe(x)] may be evaluated,

neglecting terms proportional to the small quantities [ω2
1 − ω2

LH(x)]/[A1(x)ω2
LH(x)] and

[ω2
UH(x)− ω2

2]/[A2(x)ω2
pe(x)],

∂be(x, ω1)

∂x
≈ − 1

A1(x)ω2
LH(x)

dω2
LH(x)

dx
= − 1

A1(x)

[
ω2
ce(x)

ω2
UH(x)

1

LN(x)
+

ω2
pe(x)

ω2
UH(x)

2

LB(x)

]
,

∂be(x, ω2)

∂x
≈ 1

A2(x)ω2
pe(x)

dω2
UH(x)

dx
=

1

A2(x)

[
1

LN(x)
+
ω2
ce(x)

ω2
pe(x)

2

LB(x)

]
; (57)
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LN(x) = N
(0)
e (x)/[dN

(0)
e (x)/dx] = N

(0)
i (x)/[dN

(0)
i (x)/dx] and LB = B(x)/[dB(x)/dx]

are the density and magnetic field strength gradient scale lengths, respectively. Plugging

these expressions into (56), we find

1

l2
≈ 1√

be

∣∣∣∣( ω2
ce

A1ω2
UH

+
1

A2

)
1

2rLeLN
+

(
ω2
pe

A1ω2
UH

+
ω2
ce

A2ω2
pe

)
1

rLeLB

∣∣∣∣, (58)

and thus the resonant PDI threshold in an inhomogeneous plasma is

|E0⊥|2 >
8√
be

ω2
pe

ω2
UH

∣∣∣∣(A2ω
2
ce

ω2
UH

+ A1

)
rLe
LN

+

(
A2ω

2
pe

ω2
UH

+
A1ω

2
ce

ω2
pe

)
2rLe
LB

∣∣∣∣N (0)
e Te
ε0

. (59)

For the non-resonant PDI well above the homogeneous threshold, we may

neglect collisional damping and find γ ≈ {be/[8L(ζi)]}[ε0|E0⊥|2/(N (0)
e Te)]ωUH , while

vg(−k, ω2) ≈ A2beω
2
pe/(ωUHk⊥) still holds, such that (31) yields

G ≈ k⊥`

4A2L(ζi)

ω2
UH

ω2
pe

ε0|E0⊥|2

N
(0)
e Te

, |E0⊥|2 >
8πA2L(ζi)

k⊥`

ω2
pe

ω2
UH

N
(0)
e Te
ε0

, (60)

where the threshold is again determined by the condition G > 2π. This is the

generalisation of the non-resonant inhomogeneous PDI thresholds given by [2,3] obtained

in [1]. By setting ` ≈ l, we obtain an explicit expression for the non-resonant PDI

threshold in an inhomogeneous plasma,

|E0⊥|2 >
8πL(ζi)

b
3/4
e

ω2
pe

ω2
UH

√
A2

∣∣∣∣( A2ω2
ce

A1ω2
UH

+ 1

)
rLe
2LN

+

(
A2ω2

pe

A1ω2
UH

+
ω2
ce

ω2
pe

)
rLe
LB

∣∣∣∣N (0)
e Te
ε0

. (61)

Now that theoretical electric field PDI thresholds for decay of the cold X-mode pump

wave into warm UH and LH daughter waves have been determined for both the resonant

and non-resonant cases, we may determine the gyrotron power threshold near the UHR

in the ASDEX Upgrade discharge considered earlier.

4. Investigation of PDIs near the UHR in ASDEX Upgrade

4.1. Field Enhancement near the UHR

The main problem in going from the electric field thresholds to gyrotron power

thresholds is to connect |E0| to P0 for various gyrotron settings at various points in

the plasma. Away from the UHR, this may be done relatively simply if we assume

the beam to have a narrow Gaussian profile around the CTS probe ray. With this

assumption, we can evaluate all wave propagation related quantities on the CTS probe

ray, and E0 may be written as,

E0(ρ, s) = |E0(0, s)| e−ρ
2/W 2(s)e0(r(s),k0(s), ω0), (62)

where ρ is the shortest distance to the CTS probe ray, occurring at the point

s along the CTS probe ray, while W (s) and e(r(s),k0(s), ω0) define the beam

width and the geometric optics (X-mode) unit polarization vector at the point

on the CTS probe ray characterised by s, respectively. The relation between
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|E0(0, s)| and P0 is found by first taking the wave energy at a given s to

propagate at the group velocity of the corresponding point on the CTS probe

ray, vg(r(s),k0(s), ω0). The total wave energy density, U(ρ, s), is determined in

a similar manner: U(ρ, s) = M(r(s),k0(s), ω0)|E0(ρ, s)|2, where M(r,k, ω) =

e∗0(r,k, ω) · [∂M(r,k, ω)/∂ω] · e0(r,k, ω), with M being the Maxwell operator from

[51]. Now, the intensity of the beam is I(ρ, s) = U(ρ, s)vg(r(s),k0(s), ω0) =

M(r(s),k0(s), ω0)vg(r(s),k0(s), ω0)|E0(0, s)|2 e−2ρ
2/W 2(s) and the total total power at a

given s, P (s) = F e−τ(s)P0, is found by the integral P (s) = 2π
∫∞
0
ρ I(ρ, s) dρ, assuming

a large radius of curvature of the CTS probe ray compared with W (s), from which

|E0(0, s)| =

√
2F e−τ(s)P0

πW 2(s)vg(r(s),k0(s), ω0)M(r(s),k0(s), ω0)
. (63)

For electromagnetic waves in a vacuum, vg = c and M = ε0/2, (63) coincides with the

well-known expression for a Gaussian beam; (63) also agrees with the result of [16] for

propagation of a Gaussian beam parallel to the density gradient (and perpendicular to

B) in a plasma slab, using vg andM for cold X-mode radiation. W (s) is undetermined

by the above discussion, but since we are only interested in an estimate of E0, we take

it to be that of a free-space Gaussian beam, W 2(s) = W 2
0 + 4c2(s− s0)2/(ω0W0)

2, with

W0 = 2.29 cm and s0 = 85.4 cm (for s = 0 at the gyrotron launch point) characterising

the beam waist and focal point of the ASDEX Upgrade gyrotrons, respectively; more

accurate values of W (s), as well as E0 itself, away from the UHR may be obtained

using beam tracing codes such as TORBEAM [53] or WKBeam [54]. Note that the

beam parameters are unchanged by the reflection from the high-field side wall, as it is

modelled by a locally plane mirror.

(63) clearly shows field amplification at points with low group velocity, e.g. near the

UHR, and |E0| is additionally seen to be proportional to
√
F e−τ(s)P0/W (s), which is

physically sensible. It does, however, just as clearly break down at the exact UHR, where

vg → 0 and |E0(0, s)| → ∞, due to the failure of the geometric optics approximations at

this point. Very close to the UHR we are thus forced to implement a full-wave solution

in order to obtain meaningful results; this paper uses a simple 1D model, also used in [1],

to estimate the field enhancement in the above region. The model, inspired by [15], is

based on the cold plasma fluid equations, but includes collisional damping to limit |E0|
at the UHR.

The procedure used for determining the field enhancement is as follows: first, the

CTS probe ray is traced, from which F , τ , and E0(0, s) (away from the UHR) are

calculated. At a point close to the UHR, r(sf ), the ray tracing is stopped and the

plasma parameters, used in the 1D full-wave treatment, are extracted along a line

parallel to k0(sf ) at this point. Finally, E0(0, s) is calculated close to the UHR by

solving the 1D full-wave equations for an X-mode wave and equating the amplitude

to that obtained from ray tracing at r(sf ). Details of the implementation are found

in [1]. Once the above quantities have been calculated, E0(ρ, s) may be found from

(62): E0(ρ, s) = E0(0, s) e−ρ
2/W 2(s).
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It is clear that the above procedure contains a somewhat arbitrary step, namely the

selection of the point at which the switch from ray tracing to the 1D full-wave solution

is made and the length of the domain in which the 1D full-wave equations are solved.

The choice of the transition point has some influence on the precise field profile near the

UHR, but the exact domain length appears to be unimportant, so long as the UHR is

present within the domain. The CTS probe ray may change direction rather abruptly

at the transition between the ray tracing and the 1D full-wave regions, and no account

can be made of the precise geometry and resulting refractive effects in the 1D full-wave

model. Despite these shortcomings, the method is sufficient for obtaining the estimates

in which we are interested. In the following, the transition between ray tracing and the

1D full-wave treatment is made at the same grid point of the X-mode ray (only changed

for the peaked profile at t = 3.600 s) and the length of the 1D full-wave domain is 3

cm (except at t = {3.600 s, 3.700 s} for the peaked profiles, where it is 2.5 cm). These

parameters are chosen to ensure that the UHR is encountered and that the results are

physically reasonable, i.e. avoiding artificial infinite field enhancements resulting from

fast decay of the amplitude in the evanescent region and limited numerical accuracy.

Figure 8 contains logarithmic plots of |E0⊥(0, s)|/|E0(0, 0)|, calculated using the

method described above, along the reflected X-mode ray at t = 2.900 s shown in figure

4 (s = 0 on the high-field side wall); these plots are illustrative of the field enhancement

obtained in all cases. The left pane of figure 8 displays |E0⊥(0, s)|/|E0(0, 0)| along the

entire ray; apart from field enhancement near the UHR at s ≈ 20 cm, it also shows

the behaviour around the ECR at s ≈ 7 cm. The right pane of figure 8 displays

|E0⊥(0, s)|/|E0(0, 0)| close to the UHR, and particularly shows the reduction of the

pump wavelength (increase of k0) as the UHR is approached, expected from cold plasma

theory. A similar effect was not observed by [1] due to an error in the association of

|E0⊥| with s in the 1D full-wave code used in that work. The transition between ray

tracing and the 1D full-wave model is clearly visible in both panes, since the plane

wave-like variation on the scale of the wavelength along the ray is factored out of E0 in

the geometric optics approximation, while such a factorisation is generally not possible

in the full-wave case and therefore not carried out; the amplitude of |E0⊥(0, s)| does,

however, vary relatively smoothly across the transition, as it should. A very large field

enhancement, |E0⊥(0, s)|/|E0(0, 0)| ≈ 2 × 103, is obtained at the UHR (just before the

evanescence region) in all cases, pointing to this being the maximum field enhancement

allowed by collisions, which is confirmed by its reduction when the collision frequency

increased keeping all other quantities constant.

4.2. PDI Thresholds and Frequency Shifts

Now that we have a model for |E0⊥(0, s)| as a function of P0 around the UHR, we

proceed to determine the homogeneous and inhomogeneous thresholds for resonant and

non-resonant PDIs using (51), (53), (59), and (61), with be and ζi given by (44) and

(45), respectively. The calculation is only carried out along the CTS probe ray, as the
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Figure 8. Logarithmic plots of the field enhancement along the ray of the reflected X-

mode radiation for the peaked N
(0)
e - and Te-profiles at t = 2.900 s in ASDEX Upgrade

discharge 28286.

lowest thresholds are expected to occur along it. Since (51) and (53) are essentially

identical in the region L(ζi) ∼ 1, where Eq. (51) is valid, only the homogeneous

threshold given by (53) is plotted, where νe is identified with the electron(-ion) Coulomb

collision frequency in a simple plasma given by [51]. LN and LB are calculated from the

variation along the CTS probe ray, taking the angle between k0 and B into account,

consistent with the treatment of the plasma parameter gradients in the 1D full-wave

model [1]. The value of |E0⊥| used in (53), (59) and (61) also needs some consideration

due to the rapid variation of |E0⊥| close to the UHR. We are modelling the PDI as

occurring over a distance l(sr) around the point sr at which the selection rules are

exactly satisfied, and since G ∝ |E0⊥|2 for both the resonant and non-resonant PDI

in an inhomogeneous plasma, it is therefore appropriate use |E0⊥|2 averaged over an

interval of length l(sr) around sr, denoted by 〈|E0⊥|2〉, in (59) and (61); 〈|E0⊥|2〉 is also

used in (53), as this threshold is mainly included to assess the importance of collisional

damping on the PDI threshold. For simplicity, 〈|E0⊥|2〉 is calculated in an interval

s ∈ [sr−l(sr)/2, sr+l(sr)/2] at each sr along the CTS probe ray. Once 〈|E0⊥|2〉 is known

for a given P0, the gyrotron power threshold, P th
0 , is easily obtained using the fact that

〈|E0⊥|2〉 ∝ P0: P
th
0 = [〈|Eth

0⊥|2〉/〈|E0⊥|2〉]P0, with 〈|Eth
0⊥|2〉 representing the right hand

sides of (53) (homogeneous), (59) (inhomogeneous resonant) and (61) (inhomogeneous

non-resonant); the resulting gyrotron power thresholds are denoted P th,hom
0 , P th,res

0 and

P th,nonres
0 , respectively.

Figure 9 shows logarithmic plots of P th,nonres
0 , P th,res

0 and P th,hom
0 in watt, as well

as
√
〈|E0⊥(0, s)|2〉/|E0(0, 0)|, close to the UHR at t = 2.900 s for the ray in figure 4;

it is illustrative of all cases. Evidently, P th,hom
0 is always much lower than P th,nonres

0

and P th,res
0 , which is necessary for the neglect of collisions in the calculation of these.

As expected from the discussion of figure 7, the PDI is non-resonant in the considered

ASDEX Upgrade equilibrium, with P th,nonres
0 being almost two orders of magnitude

larger than P th,res
0 . Further, P th,nonres

0 , P th,res
0 and P th,hom

0 increase slightly, while
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Figure 9. Logarithmic plots

of the power thresholds and root

mean square field enhancement

along the ray of the reflected X-

mode radiation for the peaked pro-

file in ASDEX Upgrade discharge

28286 at t = 2.900 s.

Figure 10. Gyrotron power

threshold, P th
0 , versus t in ASDEX

Upgrade discharge 28286. P th
0 ∼

100 kW in the shown part of the

discharge and generally below the

nominal gyrotron power, P0 =

200 kW.

√
〈|E0⊥(0, s)|2〉/|E0(0, 0)| decreases slightly, at the transition from ray tracing to the

1D full-wave model due to the inclusion of wave lobes (compare with figure 8) and all

quantities display a flat region around the point of maximum field enhancement at the

UHR; the lengths of the above features indicate that l ∼ 1 mm near the UHR. The

minimum non-resonant gyrotron power threshold in figure 9 is P th
0 ≈ 100 kW, which is

on the order of the nominal experimental gyrotron power of 200 kW. We thus expect the

PDI to occur for the peaked N
(0)
e - and Te-profiles at t = 2.900 s, allowing it to account

for the peaks observed in figure 3 at this time point.

Figure 10 shows P th
0 , determined in a manner similar to that from figure 9, for

t ≥ 2.900 s. Clearly, P th
0 ∼ 100 kW in all cases, and the presented theory thus predicts

the occurrence of a PDI in the analysed part of the discharge, where peaks are also

observed in figure 3. In order to assess if it is reasonable to associate the observed

peaks with the aforementioned PDI, we plot the predicted high-frequency daughter

wave frequencies, ω0± ω1 = ω0± ωLH
√

1 + A1be, along with the observed CTS spectra,

for t ≥ 2.900 s in figure 11; the LH frequencies at the points of P th
0 are also plotted for

reference. Evidently, the dipole PDI theory overestimates the peak frequency shift of

approximately 850 MHz, giving values in the range (1.18± 0.03) GHz, while the simple

estimate of the LH frequency underestimates it, giving values in the range (695±8) MHz.

The dipole PDI theory does, however, provide an upper bound on the frequency shift

of the peak, and the LH frequency a lower bound. The latter point may be understood

from the fact that warm LH waves have ω1 ≥ ωLH according to their dispersion relation,

(41), while the former may be understood if we assume the warm UH wave to be forward

scattered by the pump wave, following a line of inquiry similar to that of [5], such that

k1 = |k2−k0| (and hence the relevant be) is maximised in the dipole limit, where k0 = 0,
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Figure 11. Predicted high-frequency daughter wave frequencies (orange dashed lines)

and the gyrotron frequency shifted by the LH frequencies at the points of P th
0 (green

dashed lines), along with the experimental CTS power spectra for t ≥ 2.900 s in ASDEX

Upgrade discharge 28286.

assuming k2 > k0. The above considerations indicate that it is reasonable to associate

the observed peaks with parametric decay of the (reflected) X-mode pump wave into a

warm UH wave and a warm LH wave. Additionally, the upper and lower bounds on the

frequency shift of the PDI peaks are important for the design of notch filters to protect

millimetre-wave diagnostics against these. However, in order to determine the precise

frequency shift of the peak top, a theory of the above PDI taking non-zero k0, as well as

possible deviations from the resonant warm LH wave dispersion relation, into account

is necessary.
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5. Conclusions and Outlook

In this paper we have investigated parametric decay of an electromagnetic pump wave

into two electrostatic daughter waves, particularly an X-mode pump wave decaying

into a warm UH wave and a warm LH wave. This PDI has been shown to occur for

ωpe <
√

3|ωce|, and analytical |E0⊥|2-thresholds have been derived for homogeneous and

inhomogeneous plasmas in the resonant and non-resonant cases. The theory has been

applied to CTS experiments at ASDEX Upgrade where 105 GHz O-mode radiation is

injected from the low-field side, reflected by the high-field side wall, and part of the

reflected radiation is coupled back into the plasma in X-mode, reaching the UHR where

the above PDI may occur. The gyrotron power threshold of the above PDI is estimated

to be ∼ 100 kW, and is generally below the nominal gyrotron power of 200 kW used in

the CTS experiment, indicating that the above PDI does indeed occur. This is further

supported by the fact that the frequency shifts of the observed sidebands are reasonably

close to the LH frequency and the value predicted by dipole PDI theory, which serve

as lower and upper bounds of the frequency shifts, respectively. We note that the

fraction of power reaching the UHR in X-mode in the experiment is a rather strong

function of the toroidal gyrotron injection angle, peaking at approximately 0.04 close

to the experimental value of −5◦, and falling to virtually zero for poloidal injection

and toroidal injection angles numerically greater than 10◦; both these regimes allow

the PDI to be suppressed. PDI suppression at virtually poloidal injection is caused

by a negligible fraction of reflected power being coupled to the plasma in X-mode,

meaning that it should in principle always be possible to achieve PDI suppression by

this method, but also that the method will only be applicable to narrow gyrotron beams

of small angular divergence. PDI suppression at large toroidal injection angles relies on

the ECR becoming optically thick, which requires B to be large enough for the ECR to

be located between the high-field side wall and the UHR, ideally inside the last closed

flux surface. The latter method sets fewer restrictions on the gyrotron beam and has

been successfully applied to suppress the PDI in 105 GHz O-mode CTS at ASDEX

Upgrade; it does, however, restrict the B operation space. It is stressed that the PDI

only occurs at the modest power levels of the reflected X-mode radiation (∼ 10 kW) due

to strong field enhancement close to the UHR which may be determined by a full-wave

calculation.

There are several lines of inquiry which warrant further investigation. We have

employed the dipole approximation, k0 ≈ 0, in deriving the PDI growth rates, which

appears to be the cause of the discrepancy between the predicted and observed PDI

frequency shifts, and an investigation involving non-zero k0 is thus of interest; related to

this, a treatment accounting for the deviation from the resonant LH dispersion relation

(41) in the non-resonant case is also of interest. Further, it is of interest to repeat the

PDI analysis for magnetised ions, with χσ(k, ω) from (9) and νσ ≈ 0, corresponding to

general pure ion Bernstein low-frequency daughter waves. Another point of interest is

to investigate the sidebands observed during CTS experiments at LHD [7,8] in order to
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determine whether or not they may be explained by the theory employed to explain the

sidebands during CTS experiments at ASDEX Upgrade. Additionally, confirmation of

a gyrotron power threshold and the existence of warm LH daughter waves, along with

ion heating generated by these [31–34], during CTS experiments at ASDEX Upgrade

would provide further evidence for the theory; experiments of this type are planned for

the 2017/2018 ASDEX Upgrade experimental campaign. The geometric optics and 1D

full-wave models used to estimate E0 should also be compared with a full-wave solution

taking the real geometry into account in order to assess their validity; such a full-wave

solution would further allow us to investigate the cases in which the CTS probe ray

does not reach to UHR in the main plasma, but where a significant fraction of the

beam power may still do so. Finally, it would be of interest to perform fully nonlinear

simulations of an X-mode beam encountering the UHR, e.g. using a particle-in-cell code

like EPOCH [55], as done by [27] for a piecewise linear slab geometry, but employing a

more realistic plasma profile in order to assess the actual frequency shift, growth rate

and saturation level of the PDI in different experiments.
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K, Thumm M and the W VII-A team 1984 Plasma Phys. Control. Fusion 26 1433

[34] Erckmann V, Janzen G, Kasparek W, Müller G, Räuchle E, Schüller P G, Schwörer K, Thumm M,
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