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Abstract. Railway interlocking systems are responsible to grant exclu-
sive access to a route, that is a sequence of track elements, through a
station or a network. Formal verification that basic safety rules regard-
ing exclusive access to routes are satisfied by an implementation is still a
challenge for networks of large size due to the exponential computation
time and resources needed.
Some recent attempts to address this challenge adopt a compositional
approach, targeted to track layouts that are easily decomposable into
sub-networks such that a route is almost fully contained in a sub-network:
in this way granting the access to a route is essentially a decision local
to the sub-network, and the interfaces with the rest of the network easily
abstract away less interesting details related to the external world.
Following up on previous work, where we defined a compositional ver-
ification method that started considering routes that overlap between
sub-networks in interlocking systems governing a multi-station line, we
attack the verification of large networks, which are typically those in
main stations of major cities, and where routes are very intertwined and
can hardly be separated into sub-networks that are independent at some
degree. At this regard, we study how the division of a complex network
into sub-networks, using stub elements to abstract all the routes that are
common between sub-networks, may still guarantee compositionality of
verification of safety properties.

Keywords: railway interlocking, compositional verification, model checking

1 Introduction

Railway interlocking systems are those systems that are responsible to grant to
a train the exclusive access to a route: a route is a sequence of track elements
that are exclusively assigned for the movement of a train through a station or a

? The authors’ research conducted at DTU Compute was funded by Villum Fonden
and by the RobustRailS project granted by Innovation Fund Denmark, respectively.



network. Granting of a route to a train occurs after a reservation request only if
the track elements that form the route are not occupied by other trains, and if
no conflicting route (that is, no other route that shares track elements with it)
has been reserved by another train.

Errors in granting to a train the access to a route can obviously have catas-
trophic consequences; interlocking systems are therefore ranked as safety-critical
systems, and this demands for high standards in the development of the software
controlling interlocking systems. The standard CENELEC 50128 [2] labels such
software with the highest safety integrity level (SIL4), and highly recommends
the usage of formal methods and formal verification in its development process.

However, full formal verification of interlocking systems demands heavy if
not infeasible computational resources for the phenomenon known as the state
explosion problem, that is, the exponential growth of the state space with the
number of elements in the controlled track layout. The most recent research
in model checking and in applying model checking to the domain of railways
[3,4,5,6,20,10,21] has developed techniques allowing the verification of models
of the interlocking systems controlling quite large and complex networks. For
example, abstraction techniques can be applied at the domain modelling level
before the model checking is performed [10]. Other very efficient techniques ap-
plied to real world railway interlocking systems are bounded model checking [7]
and k-induction [20].

However, formal verification that basic safety rules regarding exclusive access
to routes are satisfied by an implementation is still a challenge for networks of
very large size, due to the exponential computation time and resources needed.

Some recent attempts to address this challenge adopt a compositional ap-
proach, targeted to track layouts that are easily decomposable into sub-networks
such that a route is almost fully contained in a sub-network: in this way grant-
ing the access to a route is essentially a decision local to the sub-network, and
the interfaces with the rest of the network easily abstract away less interesting
details related to the external world. This is the case of [11], where a station
layout is divided into two symmetric components that can be separately verified
using an assume-guarantee reasoning, and of our previous work [12,13], where
we were able to divide a multi-station line into almost independent components
by performing cuts in between the stations.

In this paper we extend our previous work [12,13] to provide a new, more
complex, way of dividing large networks, such as those typically found in main
stations of major cities, where routes are very intertwined and can hardly be
separated into sub-networks that are independent. First, in section 2, we give a
short introduction to the RobustRails verification tools we are using. Next, in
section 3, we elaborate more on the idea of compositional verification and relate
our new work to some past, related work. Then, in section 4 and section 5 we
describe our compositional method with the new cut and make some experiments
using it both for a smaller station and a large, real-world station. Finally, in
section 6, some conclusions are drawn.
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2 Interlocking Systems and Their Verification

In this section we briefly introduce the main notions of interlocking systems: we
actually use the terminology and the assumptions of the new Danish ETCS Level
2 resignalling program, and we refer to [19,13] for a more detailed introduction.
In this context, the specification of a given route-based interlocking system con-
sists of two main components: (1) a railway network, and (2) a corresponding
interlocking table.

A railway network consists of a number of track and track-side elements of
different types4: linear sections, points, and marker boards. A linear section is
a section with up to two neighbours: one in the up end, and one in the down
end. For simplicity, in the examples and figures in the rest of this article, the
up (down) direction is assumed to be the left-to-right (right-to-left) direction.
A point can have up to three neighbours: one at the stem, one at the plus end,
and one at the minus end. The stem and plus ends form the straight (main)
path, and the stem and minus ends form the branching (siding) path. A point
can be switched between two positions: PLUS and MINUS, selecting the main or
siding paths, respectively. Linear sections and points are collectively called (train
detection) sections, as they are provided with train detection equipment used
by the interlocking system to detect the presence of trains. Along each linear
section, up to two marker boards (one for each direction) can be installed. A
marker board can only be seen in one direction and is used as reference location
(for the start and end of routes) for trains going in that direction. There are no
physical signals in ETCS Level 2, but interlocking systems have a virtual signal
associated with each marker board. Train drivers do not visually see the aspect
of virtual signals (OPEN or CLOSED), that is instead communicated to the
onboard computer via a radio network. For simplicity, the terms virtual signal,
signal, and marker board are used interchangeably throughout this paper.

A route is a path from a source signal to a destination signal in the given
railway network. A route is called an elementary route if there are no signals
that are located between its source signal and its destination signal, and that are
intended for the same direction as the route. In railway signalling terminology,
setting a route denotes the process of allocating the resources – i.e., sections,
points, and signals – for the route, and then locking it exclusively for only one
train when the resources are allocated.

An interlocking table specifies the elementary routes in the given railway
network and the conditions for setting these routes. A route is defined by the
following attributes:

– src(r) – the source signal of r,
– dst(r) – the destination signal of r,
– path(r) – the list of sections constituting r’s path from src(r) to dst(r),
– points(r) – the required position of the points along the route r
– signals(r) – the required settings of signals
– conflicts(r) – a set of conflicting routes which must not be set while r is set.

4 Here we only show types that are relevant for the work presented in this article.
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Examples of network layouts and related interlocking tables are deferred to sec-
tion 4.

Typical safety properties required of an interlocking system are that it always
ensures the following safety conditions:

1. No collisions: Two trains must never occupy the same track section at the
same time.

2. No derailments: A point must not be switched, while being occupied by a
train.

All required safety properties are expressed as generic conditions leading to
specific conditions for each specific case of a network. Notice that considering
such typical safety properties, a route defines the maximal subset of elements
whose status affects the safety property, that is, no element outside a route, or,
at most, two conflicting routes, can affect a safety property for that route(s).5

The RobustRailS verification method [17,18,19,20] is a combination of formal
methods and a domain-specific language (DSL) to express network diagrams
and interlocking tables. A tool is provided by the RobustRailS environment to
transform the DSL description into inputs to the model checker, that is, i) a
behavioural model of the interlocking system and its environment, and ii) the
required safety properties given as linear temporal logic formulae.

The RobustRailS tools can be used to verify the design of an interlocking
system in the following steps:

1. A DSL specification of the configuration data (a network layout and its
corresponding interlocking table) is constructed in the following order:
(a) first the network layout,
(b) and then the interlocking table (this is either done manually or generated

automatically from the network layout).
2. The static checker verifies whether the configuration data is statically well-

formed according to the static semantics [19] of the DSL.
3. The generators instantiate a generic behavioural model and generic safety

properties with the well-formed configuration data to generate the model
input of the model checker and the safety properties.

4. The generated model instance is then checked against the generated proper-
ties by the bounded model checker performing a k-induction proof.

The static checking in step (2) is intended to catch errors in the network layout
and interlocking table, while the model checking in step (4) is intended to catch
safety violations in the control algorithm of the instantiated model.

The tool chain associated with the method has been implemented using the
RT-tester framework [14,16].

5 The subset is sometimes extended with overlaps (buffer zones at the end of paths),
and points or signals needed for flank protection, since this is sometimes required
to protect tracks occupied by a train from another train not succeeding to brake in
due space. We do not consider these extra protections in this paper, and we refer to
[15,19] for details and for their modelling.
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3 Compositionality

Interlocking systems typically exhibit a high degree of locality : if we consider
a typical safety property desired for an interlocking system, e.g. that the same
track element shall not be reserved by more than one train at a time, it is likely
that this property is not influenced by a train moving on a distant, or parallel,
track element. Locality of a safety property can be exploited for verification
purposes, so limiting the state space on which to verify it. This principle has been
exploited in [22] to define domain-oriented optimisation of the variable ordering
in a BDD-based verification. Locality can be used also for slicing, as suggested in
[3,9,8,1]: the idea is to consider only the portion of the model that has influence
on the property to be verified, by a topological selection of interested track
elements (therefore closely related to the cone of influence of the property): this
allows for a much more efficient verification of the single property, but comes
at the price of repeating the slicing and the verification for every property, and
of separately checking that verifying slices does actually imply the satisfaction
of desired properties for the whole system. Nevertheless, it appears that when
automated, this process can offer significant time and memory savings.

Compositional verification of interlocking systems also exploits locality: the
network layout is divided into two or more sub-networks, so that the separate
verification of safety properties on the sub-networks can be used to prove safety
properties on the whole network, with a significant advantage in terms of time
and memory; moreover, the verification can be run once on the conjunction
of all safety properties. Adopting a compositional approach actually needs a
proof that the separate verification guarantees the safety properties for the whole
network, and this proof depends on the type of division (from now on, cut) that
is envisaged.

Indeed, in Figure 1 the dotted light green lines show three different cases of
cuts of a network into two small networks:

a) A line connecting several stations is divided into sub-networks, each including
a station; this case has been studied in our previous work [12,13]. We can
see that the cut concerns a single track element, that behaves as source
and destination of routes from/to one of the stations (A1u-L1u, A2u-L1u,
L1d-A1d, L1d-A2d from/to station A, B1d-L1d, B2d-L1d, B3d-L1d, L1u-
B1u, L1u-B2u, L1u-B3u from/to station B). Notice that all these routes are
almost fully contained in one of the sub-networks: in this way granting the
access to a route is essentially a decision local to the sub-network, apart
from the single interface track element that is included in both routes of
the sub-networks. This allows to consider, in the separate verification, the
shared element as an abstraction of all the routes of the Station A when
verifying properties related to Station B, and vice versa.

b) This is the case of a (possibly almost) symmetrical station, that is divided
into two halves, as studied in [11]: the verification of one half takes into ac-
count assume/guarantee conditions at the interface with the other half. The
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Fig. 1: Three example cuts.

verification effort is hence repeated for the two halves, with the extra effort
of proving that assume/guarantee conditions do hold at the interface: local-
ity allows such conditions to be rather simple so that they do not add much
time to the verification. Again, a route is almost fully contained in one of the
two sub-network, and the shared track elements act as an abstraction of the
routes of the other sub-network, although there are several shared elements
(e.g. routes L1u-P3u and L2u-P3u have a single track element shared with
routes L1d-P3d and L2d-P3d).6

c) A more complex case is that of a (terminus) station where more lines (in
this case, two double-track lines) converge from one side (in this case from
the left side) to the station. The layout has to include paths allowing to go
from any input track to any (or almost any) platform, through a sequence
of points that in the figure goes from high tracks to low tracks, and vice
versa. Notice that it is not possible to operate a cut like the ones of the

6 For simplicity we consider here and in the following only the shortest path routes.
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previous cases, since conflicting routes (in the layout in the figure only the
markerboards in the up direction are reported) share more than one track
element.
The dotted light green line shows a kind of cut, that we will call from now
on horizontal cut to distinguish it from the previous cases, that looses the
property that routes are almost fully contained in a sub-network. In the
figure, e.g., routes L1u-P4u, L2u-P4u, L1u-P3u, L2u-P3u, from the high sub-
network to the low sub-network share elements with all the routes having
as destination P3u, P4u or P5u. This means that the kind of abstraction
used in the previous cases can no longer be applied: in a sense, the layouts
of cases a) and b) exhibit a natural place where to apply the cut, so that
there are almost no interactions among the two parts, while the cut points
in c) are chosen quite arbitrarily, just in order to reasonably decompose the
network, but impacting on the middle elements of several routes.

The horizontal cut is the subject of the present paper, where we can show that a
simple form of cut still allows for compositional verification. The research we are
conducting aims in the end to come up with a subdivision process that exploits
the characteristics of the network to provide a set of sub-networks, obtained
with the most appropriate kind of cut, to be verified separately, so that safety
of the whole layout can be deduced by the separate safety verification of the
sub-network.

4 Horizontal Cut

In this section we explain how our compositional approach is done in three steps:

1. decomposition of the network into sub-networks using the horizontal cut,
2. decomposition of the interlocking table for the network by generation of

interlocking tables for the sub-networks, and
3. safety verification for the sub-networks (from step 1) and their associated

interlocking tables (from step 2).

Below, we also discuss and analyse the contents of the decomposed interlocking
tables achieved in step 2 and examine the soundness of the approach. The ex-
planations are done for an example network called ThreeTracksStation, but can
easily be generalised to any network.

4.1 Decomposition of the Network

Fig. 2 shows first the layout of the ThreeTracksStation network. In this example
we cut this network into two sub-networks by making a horizontal cut (the light
green line) at the link between T9 and T10. To each of the two sub-networks
(above and below the cut, respectively), two consecutive linear sections (which
taken together form a stub) are added on the other side of the cut, in order to ab-
stract the whole other sub-network. The new sections have proper markerboards
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in order to satisfy network conditions about the positioning of markerboards at
borders. The two resulting networks, called High and Low7, are shown in Fig. 2.

Fig. 2: Layouts of the ThreeTracksStation network and its sub-networks.

4.2 Decomposition of the Interlocking Table

In the second step, after having decomposed the network into the two sub-
networks High and Low, the interlocking tables associated with these sub-networks
are generated with the RobustRailS tool. The interlocking tables generated for
the full network and for the two sub-networks are shown in Table 1.

7 We reserve the words up and down for the train travel directions.
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Table 1: The interlocking tables for the ThreeTracksStation, High and Low net-
work of Fig.2.
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Abstraction of Routes. We will now describe the relationship between the
routes in the interlocking table for the ThreeTracksStation Network and the
routes in the interlocking tables for the High and Low sub-networks. Figure 3
shows the routes of ThreeTracksStation: actually, for readability, it shows only
up routes, that is, routes that have as source and destination signals in the up
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direction. These routes are shown in different colour and dotting to distinguish
those that are fully contained in one of the two sub-networks, and hence are
maintained substantially unchanged in either High (e.g. route r1) or in Low
(e.g. route r2), and those that go through the cut, that need to be substituted
(abstracted) by (often fewer) routes both in High and Low: Figure 4 shows for
example how route r551 in Low abstracts both r8 and r9 in ThreeTracksStation).

Fig. 3: Up routes of the ThreeTracksStation Network (alternative route r1bis is
not shown).

In general, the set Routes(N) of routes of a network N (in our case Three-
TracksStation) is partitioned in three disjoint sets: RH,RL, Th, which are re-
spectively fully contained in Low, in High and passing through the cut. The cut
defines two abstraction functions γH : Th→ RH ′ and γL : Th→ RL′ that pro-
duce the sets of abstract routes for the Low and High networks respectively. The
abstraction functions are total and surjective. The routes of the sub-networks

Fig. 4: Abstraction of Routes
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are given by (see Fig. 5):
Routes(Low) = RL ∪RL′ and Routes(High) = RH ∪RH ′.

Fig. 5: Relation between the routes of the network and the sub-networks.

Decomposition Relations. Fig. 6 illustrates the decomposition of networks

Fig. 6: Decomposition of networks and interlocking tables. The RouteGen arrows
represent the interlocking table generator.

and tables. Following the upper ”CUT” arrow (representing the horizontal cut
operation), the network is decomposed into two sub-networks for which interlock-
ing tables are then generated. These tables provide a decomposition (following
the lower “CUT” arrow) of the interlocking table that one would generate from
the full network when not using the compositional approach.
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The following rules define the relationship between the two sub-networks and
the full network, as well the relationship between their associated interlocking
tables. Rule 1 defines how the sub-networks are created, rules 2-3 and 4-5 de-
fine the route abstractions into sets RL’ and RH’, and rules 6-10 define the
path, required point and signal settings, and route conflicts of the routes in the
decomposed interlocking tables, in terms of the corresponding data in the full
interlocking table. The rules are instantiated for the ThreeTracksStation exam-
ple. The different sets of elements have as a suffix the name of the sub-network
to which they belong: no suffix means the set belongs to the full network.

1. LinearsLow ∪ LinearsHigh = Linears, LinearsLow ∩ LinearsHigh = ∅
PointsLow ∪ PointsHigh = Points, PointsLow ∩ PointsHigh = ∅
SignalsLow ∪ SignalsHigh = Signals, SignalsLow ∩ SignalsHigh = ∅
The sub-networks Low and High are actually built, respectively, over the
sets of elements:
(LinearsLow ∪ {T51, T52}, PointsLow, SignalsLow ∪ {E51, E52})
(LinearsHigh ∪ {T61, T62}, PointsHigh, SignalsHigh ∪ {E61, E62})

2. all the up routes in the ThreeTracksStation starting from s ∈ SignalsLow

that incur in the cut (that is, in the path have the pair T9,T10, in our case)
are abstracted in the Low sub-network by a route going from s to the stub
signal E51;

3. all the down routes in the ThreeTracksStation arriving to s ∈ SignalsLow

that incur in the cut (that is, in the path have the pair T10,T9) are abstracted
in the Low sub-network by a route going from the stub signal E52 to s;

4. all the down routes in the ThreeTracksStation starting from s ∈ SignalsHigh

that incur in the cut (that is, in the path have the pair T10,T9) are abstracted
in the High sub-network by a route going from s to the stub signal E62;

5. all the up routes in the ThreeTracksStation arriving to s ∈ SignalsHigh that
incur in the cut (that is, in the path have the pair T9,T10) are abstracted
in the High sub-network by a route going from the stub signal E61 to s;

6. the path of the abstract routes contains only the elements to (from) the cut,
plus the added stub elements as destination (source); the path of the other
routes is unchanged.

7. the points of the abstract routes include only the points on the path to (from)
the cut; the points of the other routes are unchanged.

8. each abstract route in the Low (High) sub-network abstracting a route r in
the full network, keeps as its signals that signal of r that was placed in Low
(High), while the signal placed on the opposite side of the cut in High (Low)
is replaced by the stub signal contrary to the direction of the route. The
signals of the other routes are unchanged, except the cases where a signal
is placed on the opposite side of the cut, in which case it is replaced by the
stub signal in opposite direction of the route.

9. the conflicts of an abstract route r ∈ RL′ (RH ′) in the Low (High) sub-
network are given by:

(a) all the maintained routes of Low (High) that are in conflict in Three-
TracksStation with any of the routes abstracted by r;

12



(b) all the abstract routes of Low (High) that abstract routes in Three-
TracksStation in conflict with any of the routes abstracted by r;

10. the conflicts of a route r ∈ RL (RH) in the Low (High) sub-network pre-
served in the cut are given by:
(a) all the maintained routes of Low (High) that are in conflict in Three-

TracksStation with r;
(b) all the abstract routes of Low (High) that abstract routes in Three-

TracksStation that are in conflict with r;

These rules can be easily generalised to the ”horizontal” cut of any network,
including the special case of a network where the cut is on up routes that go
from the high part to the low part.

4.3 Safety Verification

In the third step, after having generated the interlocking tables, the safety verifi-
cation is performed for the sub-networks and their associated interlocking tables,
using the RobustRailS verification tools.8

Table 2 shows metrics, for the separate verification of the Low, the High and
the ThreeTracksStation networks, respectively. Furthermore, the row “Low +
High” shows metrics for the combined compositional verification: the execution
time is the sum of the execution times of Low and High, and the memory usage
is the maximum of the memory usages of Low and High. Time is measured in
seconds and memory in MB. As expected, the results show that the composi-
tional approach is advantageous both in terms of the time and memory usage.

Table 2: Verification metrics for the ThreeTracksStation case study.

Linears Points Signals Routes log10(|S|) Time Memory

Low 6 1 6 4 30.50 3.37 93.8
High 11 5 10 12 77.11 187.26 528.1

Low + High 190.63 528.1

ThreeTracksStation 13 6 12 14 91.31 292.68 698.3

4.4 Soundness of the Approach

The soundness of the compositional approach amounts to the following theorem.

Theorem 1. Given a Network N and its sub-networks H and L obtained by a
horizontal cut, if H and L are separately verified to satisfy safety, then N satisfies
safety too.

8 The verifications were performed on a machine with an Intel(R) Xeon(R) CPU E5-
2667 0 @ 2.90GHz, 64GB RAM, CentOS 6.6, Linux 2.6.32-504.8.1.el6.x86 64 kernel.
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The above considerations on abstracted routes are the ground on which to base
a proof. A formal proof can be made in a similar way to the proof presented in
[13]: safety properties are expressed as universal quantifications over the sets of
linear/point sections, hence, assuming safety is proved for each section of both
sub-networks, we need to prove safety for each section in the original network.
This can be done by case analysis for three cases: for sections only involved in
routes in RL, sections only involved in routes in RH, and sections involved by
through routes in Th. The first two cases immediately follows from the assump-
tion. In the third case, the state of some sections (say, in Low) is actually related
to the state of the stub added to the Low sub-network, that abstracts the state
of sections of High that belong to routes in Th in the full network. We then
reason by contradiction, assuming that the state of some of the latter sections
violates a safety property for the full network, while their abstraction in the stub
of Low does not violate any property in Low. We show that such sections violate
safety for High as well, contradicting the initial hypothesis that safety is proved
for the High network.

5 A more Complex Example

The next example (called Fismn) is inspired by the layout of the main station of
Florence in Italy, and actually refers to a portion roughly of the size of a quarter
of the entire station. The layout shown in Fig.7 has been recovered from Google
Maps, so there is no actual relation between this layout and any implemented real
interlocking system. Nevertheless, this layout realistically represents a feature
that can be found in many large stations, that is a route that traverses all the
other routes for connecting the lower incoming track to the upper exiting track.
In the real Florence station, the next portion of the layout at the right of this
includes the reverse traversing route.

For the Fismn network, we applied the compositional verification approach.
In Fig.7 the dotted green horizontal line represents the operated cut, between
the T30 and T31 points. Note that this cut lies on the low-to-high traversing
path. Also in this case the compositional verification is advantageous for the time
and memory requirements (see Table 3). Notice that the memory consumption
of the Fismn network is actually close to the memory limits (64 GB) so it can
be predicted that a bit larger model cannot be treated unless the compositional
approach is adopted.

Table 3: Verification metrics for the Fismn case study.

Linears Points Signals Routes log10(|S|) Time Memory

Low 28 13 26 56 243.04 12895.35 12176.6
High 25 10 24 66 239.07 8052.92 9517.9

Low + High 20948.27 12176.6

Fismn 49 23 46 124 472.93 51770.64 42483.7
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Fig. 7: The Fismn example layout.

6 Conclusions

We have presented a compositional approach to the problem of model checking
interlocking systems of large railway stations. The approach builds up over pre-
vious work, by proposing a more general way of decomposing a station layout,
that has successfully been applied to a large portion of a real world station.
The approach achieves significant improvements in verification time and mem-
ory usage, taking into account that the aim of the proposed decomposition is to
be able to keep time and memory resources needed for the verification within
feasible limits. In fact the idea is to apply multiple cuts, in order to chop a large
network in tractable chunks, each to be verified separately. This is the main
direction of future work, which will need generalising the decomposition process
and automating it by means of a tool supporting the network cutting process.
In parallel to this effort to provide an automatic verification method for large
networks, some other investigation is still needed, e.g. investigating how coun-
terexamples of a safety verification of the sub-networks carry over to counter
examples of the full network, or extending the approach to deal with peculiar
interlocking safety functions, such as flank protection, or overlap, that have not
yet been considered for the horizontal cut.
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