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Abstract  

Enzymatic reduction of carbon dioxide (CO2) to methanol (CH3OH) can be accomplished using a designed 

set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing 

equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the 

reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic 

conversion of formaldehyde (CHOH) to CH3OH by alcohol dehydrogenase, the final step of the enzymatic 

redox reaction of CO2 to CH3OH, with kinetically synchronous enzymatic cofactor regeneration using either 

glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the 

enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling 

rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify 

the kinetically modelled results. Repetitive reaction cycles were shown to enhance the yield of CH3OH, 

increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system 

I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found 

to be superior to System I with a yield of 8 mM CH3OH, a TTN of 160 and BPR of 24 µmol CH3OH/U·h during 

6 hours of reaction. The study demonstrates that an optimal reaction set-up could be designed from 

rational kinetics modelling to maximize the yield of CH3OH, whilst simultaneously optimizing cofactor 

recycling and enzyme utilization efficiency. This article is protected by copyright. All rights reserved 

 

Keywords: Cofactors, Enzyme catalysis, Kinetics, Regeneration, xylose dehydrogenase, glucose 

dehydrogenase  
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Introduction 

Carbon dioxide (CO2) reduction to methanol (CH3OH) can be accomplished via an assembled multi-enzyme 

system comprised of three dehydrogenases: Formate dehydrogenase (EC 1.2.1.2), formaldehyde 

dehydrogenase (EC 1.2.1.46) and alcohol dehydrogenase (EC 1.1.1.1) (Obert and Dave, 1999). Each 

enzymatic step in this cascade system works in the reverse direction of the natural biological (reversible) 

enzyme catalysed reaction, but by careful attention to the reaction conditions the biological reaction 

equilibrium constants can be shifted by several orders of magnitude to favour CH3OH synthesis (Baskaya et 

al., 2010). Hence, in this designed set-up formate dehydrogenase catalyses conversion of gaseous CO2 into 

formate (HCOOH or HCOO-), formaldehyde dehydrogenase catalyses reduction of the HCOO- to 

formaldehyde (CHOH), and finally alcohol dehydrogenase (ADH) catalyses the conversion of formaldehyde 

into CH3OH (Obert and Dave, 1999). In this system all three enzymes employ the same cofactor, the 

reduced form of nicotinamide adenine dinucleotide (NADH), to supply the reducing equivalents required 

for reaction. Such biocatalytic reduction of CO2 is an attractive option for reducing CO2 emissions because 

of the option for simultaneously providing for a new supply route of current fossil-oil-derived chemicals 

such as CHOH and CH3OH. In addition, the reaction can be accomplished at mild reaction conditions, 

notably at low temperature. However, since each reaction step in the enzymatic cascade system consumes 

one NADH cofactor equivalent, three moles of reduced NADH are required to convert one mole of CO2 to 

CH3OH. This requirement makes effective recycling of reducing equivalents, i.e. cofactor regeneration, 

essential in practice. Various technologies, including coupling of the enzyme system to chemical and 

photochemical (Dibenedetto et al., 2012), electrochemical (Alissandratos and Easton, 2015) or bio-

electrochemical systems (Srikanth et al., 2014; Srikanth et al., 2017) or combinations hereof (Zhang et al., 

2017) have been suggested, but the most common method for accomplishing NADH regeneration for 

dehydrogenase catalysed reactions is by converting the oxidized form of the cofactor (NAD+) directly to its 

reduced form (NADH) in situ by addition of a second enzyme and a second substrate (Hummel and Gröger, 

2014; Luo et al., 2015). In addition to cost-efficiency, cofactor recycling may also prevent enzyme inhibition 

by the cofactor (van der Donk and Zhao, 2013). A feasible approach to accomplish the enzyme catalysed 
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cofactor regeneration is by coupling of the regeneration to other value-added reactions, e.g. as reported 

for other reactions such as reduction of xylose to xylitol (consumes NADH) coupled with oxidation of 

glycerol to dihydroxy-acetone (consumes NAD+) as the cofactor regenerative reaction (Zhang et al., 2011).  

Process optimization of coupled reactions commonly requires laborious experimentation. Considering the 

underlying mechanism of kinetics of each reaction, kinetic models may however be developed to simulate 

the biocatalytic process and predict a defined optimal performance (Braun et al., 2011).  

In this study, the final step of the multi-enzymatic reaction for CO2 conversion to CH3OH, catalysed by ADH, 

was selected as the productive reaction to be coupled with enzymatic in situ NADH cofactor regeneration. 

Two coupling reaction systems were evaluated. System I included ADH and glucose dehydrogenase (GDH) 

and System II included ADH and xylose dehydrogenase (XDH) (Scheme 1). Each system was carefully 

selected to form a profitable setup. The products from each recycling reaction (gluconic acid and xylonic 

acid, respectively) have thus been categorized  by the US Department of Energy to be among the top 30 

potential basic precursors relevant for synthesis of high value chemicals and fuels (Werpy and Petersen, 

2004). To the best of our knowledge, the use of XDH is new in this application.  

For the system to work optimally, the reaction design requires a balancing of the forward reaction rate and 

the cofactor regeneration reaction rate. The hypothesis behind the work undertaken was that an optimal 

compromise of reaction variables, i.e. ratio of enzymes, substrates, and initial NADH concentration could 

be identified to maximize the yield of CH3OH, total turnover number (TTN) and biocatalytic productivity 

rate (BPR) in the enzymatic reaction with NADH regeneration.  

Hence, the overall objective of the study was to identify the optimal reaction conditions for ADH catalysis 

to favour and maximize enzyme catalysed conversion of CHOH to CH3OH with efficient in situ cofactor 

regeneration and simultaneously optimize the utilization of the enzymes to achieve high yield of CH3OH. 

The approach was to apply mathematical models derived from the ordered bi-bi mechanism of ADH 

(Findrik et al., 2005) to describe the forward and reverse kinetics of the productive and regenerative 

enzyme reactions in a batch reactor, and on this basis conduct rationally designed repetitive batch 

experiments to verify the optimal reaction conditions. 
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Materials and Methods 

Materials 

Alcohol dehydrogenase (ADH, EC 1.1.1.1) from Saccharomyces cerevisae, glucose dehydrogenase (GDH, EC 

1.1.1.118) from Pseudomonas sp. (1 Unit of GDH converts 1 μmole β-D-glucose per minute in the presence 

of NAD+), nicotineamide adenine dinucleotide (NAD+, NADH), pure CHOH (analytical standard), D-glucose, 

D-xylose, D-gluconic acid, D-xylonic acid, Trizma base and hydrochloric acid (37%) were purchased from 

Sigma-Aldrich (Saint Louis, MO, USA). Xylose dehydrogenase (XDH, EC 1.1.1.175) was obtained from 

Megazyme (Co. Wicklow, Ireland) (1 Unit of XDH converts 1 μmole of NADH to NAD+ per minute in the 

presence of β-D-xylose). All enzyme and substrate solutions were prepared using 0.1 M Tris-HCl buffer (pH 

= 7.0) unless otherwise stated. 

Determination of kinetics parameters 

Determination of kinetic parameters was based on the forward and reverse reactions of the enzymes. 

NADH/NAD+, D-Glucose, D-xylose, CHOH and CH3OH, and enzyme stock solutions (ADH, GDH, XDH) were 

prepared in 100 mM Tris-HCl buffer (pH 7). Each reaction was performed in a cuvette with a total volume of 

2 ml. The initial reaction velocities were calculated from rates of NADH consumption or formation by 

monitoring the absorbance at 340 nm using a UV-VIS spectrophotometer, Ultrospec 2100 pro (GE 

Healthcare, Little Chalfont, UK). The range of concentrations applied in the experiments is summarized in 

Table S1 (supplementary). The kinetic parameters were obtained from Hanes-Woolf plots. 

Stability of enzymes 

Enzymes (ADH, GDH and XDH) were incubated separately in 100 mM Tris-HCl buffer (pH 7) with different 

concentrations of CHOH (10, 20 and 40 mM) using a thermomixer (Eppendorf, Hamburg, Germany) at room 

temperature (23 °C) and shaken at 300 rpm. At set time intervals, an amount of incubated enzyme was 

sampled for its respective assay (Table S2) containing NADH for activity determination. The conversion to 

the reduced or oxidized form of NADH was recorded by monitoring the absorbance at 340 nm in a UV-VIS 

spectrophotometer, Ultrospec 2100 pro (GE healthcare, Little Chalfont, UK). For each enzyme the 

denaturation constant, kD was determined assuming first order exponential decay (Leuchs et al., 2013). 
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Batch reactor experiment 

Coupled reactions of System I or System II were conducted in 1.5 ml Eppendorf tubes using a thermomixer 

(Eppendorf, Hamburg, Germany) set at room temperature (23 °C) and shaken at 300 rpm. The 

concentration of substrate and enzyme were prepared in 100 mM tris-HCl buffer (pH 7.0) according to the 

optimum parameters combination from the simulation. The reaction was started by adding initial 

concentration of 50 µM of NADH. At timed intervals, 200 µl of the solution was sampled. Each reaction was 

heat deactivated for sugar analysis. For measuring methanol, samples were analyzed directly at the timed 

interval without deactivation. It is worth noting that all the Eppendorf tubes placed on the sample holder 

were covered with aluminium foil to prevent UV light penetration. 

Repetitive batch experiment 

Repetitive batch experiments were performed in 25 ml flasks, covered with aluminium foil, at room 

temperature (23 °C). At time intervals, 100-200 µl samples were withdrawn from the reactor. A new 

amount of substrates were added in the reactor after the initial levels were converted. Substrates added 

were dissolved in a small amount of buffer to compensate the volume loss in the previous cycle. 

Mathematical model for the coupled reaction 

The kinetic modelling of acetophenone reduction with NADH regeneration in the batch reactor was based 

on models of Findrik et al. (2005). Three kinetic equations were considered (Table S3): r1 model the 

conversion of CHOH to CH3OH (forward), r2 model the conversion of CH3OH to CHOH (reverse) and r3 model 

the conversion of D-glucose to D-gluconic acid or D-xylose to D-xylonic acid (forward). Commercially-

available software, MATLAB with the ODE45 function was used for solving the kinetic model together with 

mass balance equations and using the parameters determined for individual reactions. 

Performance index 

Besides TTN, the performance index for the regenerative reaction was used to observe the biocatalytic 

productivity rate. The definitions are: 

TTN = (Product formed (mol))/(Total cofactor added in the reaction (mol)) 

BPR (µmol CH3OH/U·h) = (Yield of CH3OH (µM))/((Total concentration of enzymes (U/ml)·Reaction time (h)) 
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Analytical methods 

The methanol concentration of the samples was analyzed by gas chromatography – mass spectrometry 

(GC-MS) using a Hewlett Packard HP 6890 gas chromatograph interfaced to a HP5973 Mass Selective 

Detector (Agilent, Denmark). Samples (1 µl) were injected in split mode (1:20) using an HP 7683 

autosampler (Agilent, Denmark). The source and rod temperatures were 230 °C and 150 °C, respectively. 

The products were separated using a 0.32 mm i.d. x 25 m PLOT fused silica column coated with PORAPLOT 

U at a thickness of 0.10 µm (Analytical, Denmark). The carrier gas was He at a flow rate of 1.2 ml/min. 

Separation of products was achieved using a temperature program from 70 °C to 200 °C at 10 °C/min. The 

applied ionization energy was 70 eV. Full mass spectra were recorded every 0.3 s (mass range m/z 40 – m/z 

450). Products were identified using NIST search engine version 2.0 f. (Agilent, Denmark).  

In order to differentiate between the stable isotope methanol content and the natural methanol content 

extracted ion chromatograms (EIC) were collected. A selected ion pair was used for quantification and here 

m/z 31/33 was chosen for EIC analysis.  

Glucose, xylose, gluconic acid and xylonic acid were quantified by high performance anion exchange 

chromatography with pulsed amperometric detection (HPAED-PAD) using a Dionex ICS-5000 system 

(Dionex Corp., Sunnyvale, CA) equipped with a CarboPac PA1 guard column (4 x 50 mm) and a CarboPac 

PA1 analytical column (4 x 250 mm) with a flow rate of 1 mL/min.   

Isocratic elution took place at 0.5 mM NaOH for 40 min. Afterwards, the column was washed for 10 min 

with 500 mM NaOH and re-equilibrated with 0.5 mM NaOH for 10 min. with a post column addition of 500 

mM NaOH at a flow rate of 0.2 mL/min. External standards of D-glucose, D-xylose, D-gluconic acid and D-

xylonic acid were used for quantification. 

 

Results and Discussion 

Kinetics assessment 

The kinetics parameters were determined individually for each enzyme reaction from classic, systematic 

enzyme kinetics experiments, including the ADH catalysed reactions (CHOH → CH3OH and CH3OH → CHOH) 
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and both of the NADH regenerative reactions, the data obtained are summarized Table 1. For ADH the 

higher Km for CH3OH than for CHOH indicates that CH3OH may indeed accumulate in the reaction. From the 

data in Table 1 it is also evident that the Km for both NAD and the co-substrate is much higher for GDH than 

for XDH hinting that XDH may be kinetically more suitable for NADH regeneration than GDH. The kinetic 

parameters were employed in a mathematical enzyme kinetics model for kinetic rate determination of 

both the forward NADH consuming reaction and the NADH co-factor regenerating reactions in System I and 

II (Table S1).  

Stability of enzymes and cofactors 

Information on the enzyme stability at the required reaction conditions is a crucial prerequisite for 

determining the robustness of the enzymes during reaction and to design the experimental setup for an 

optimum process operation. The first step was therefore to investigate the stability of enzymes in CHOH. It 

is the simplest aldehyde, known as a toxic metabolite which may cause irreversible inhibition of enzyme 

proteins by reacting with amino acid side chains forming covalent adducts. NADH is stable in base but labile 

in acid, whereas NAD+ is labile in base (Chenault and Whitesides, 1987). UV light has been demonstrated to 

increase the rate of decay of NADH (Wykes et al., 1975), hence, the experiment set up was designed to 

prevent direct UV exposure, and  with reaction at pH 7. ADH is stable at 10 and 20 mM CHOH for at least 13 

hours before it loses half of the activity. Increasing CHOH to 40 mM requires only 13 minutes for the 

activity to drop by 50% (Figure SI). Both GDH and XDH are more stable in CHOH (higher t½) than ADH (Table 

2). Considering the multi-enzymatic reaction of CO2 to methanol and the low solubility of CO2 in water (<1.4 

g CO2/L), CHOH produced from the two consecutive steps (CO2 to CHOOH to CHOH) will not be particularly 

high at ambient temperature; the CHOH concentration was therefore set at 10 mM in the model. 

Biocatalytic process modelling 

The reaction trajectory of nicotinamide adenine nucleotide-dependent dehydrogenases generally follows 

an ordered bi-bi reaction mechanism (Leskovac, 2004; Rudolph and Fromm, 1970). The mechanistic model 

for ADH in redox biocatalysis of CHOH to CH3OH can therefore be illustrated by the nucleotide being the 

first substrate to bind to the enzyme followed by CHOH to form a ternary complex. The main product, 
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CH3OH, then leaves the enzyme after the conversion, followed by the nucleotide, being the last product to 

dissociate. In the case of two substrates, a simplified two-substrate Michaelis-Menten equation combined 

with one product and/or substrate inhibition is usually used (Vasic-Racki et al., 2003). A comprehensive 

model, taking into account both the forward and reverse reactions was therefore developed in MATLAB 

and applied to describe overall reaction rate models in order to relate the kinetics and the substrate and 

product concentrations by the differential system including non-linear functions (Vasic-Racki et al., 2003). 

Selection of regenerative enzymes 

Although the direct reduction of CHOH to CH3OH is non-thermodynamically favoured, it was discovered 

that the ADH catalysed reaction is almost irreversible due to low affinity of CH3OH as substrate (high Km 

value) (Table 1). In the reaction, the regenerative substrate (glucose/xylose) is transformed into its 

respective ketone (glucono-lactone/xylono-lactone) which spontaneously converts to a sugar acid 

(gluconic/xylonic acid). The sugar acid cannot retransform into glucose/xylose at this point and the reaction 

can thus be treated as irreversible, driving the conversion of CHOH to CH3OH.  

Both GDH and XDH had low Km values (Table 1), hence low substrate concentrations are needed and there 

is only low risk of inhibition. 

Simulation approach towards process optimization 

The amounts of enzyme and cofactor have significant influence on the operation cost, thus, the process 

optimization objective is to identify a compromise between efficiency and maximum yield. Besides the 

objective of generating a high yield of CH3OH, the key performance for cofactor recycling was to attain a 

high TTN and high enzyme utilization efficiency by achieving a high BPR. A high CH3OH yield will not 

guarantee a good BPR. There are several variables in the coupled reactions; i.e amount of each type of 

enzyme, substrate concentrations, initial amount of cofactor.  

A reaction time of 6 hours was preset based on the t½ information of each enzyme (Table 2). An initial 

NADH concentration of 0.05 mM was selected; two times the Km value for ADH (Table 2) to ensure 

complete saturation and to ascertain that the enzyme was working at its maximum velocity. Vmax values 
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were simulated as a function of different combinations of substrate concentrations. TTN and BPR were 

calculated according to the yield of CH3OH. 

Initial selection of substrate concentrations for optimization 

The ratios of enzymes to substrates are important to ensure that the reaction reaches equilibrium at a 

designated time. Km of CHOH is higher than the Km for the regenerating substrates (Table 1).  

Basically, a higher Km shows low affinity of the enzyme towards the substrate and hence, requires a high 

substrate concentration for the enzyme to be saturated. On the other hand, a low concentration of 

regenerating substrates is sufficient for the reaction to proceed (lower Km). As mentioned, the 

concentration of CHOH was fixed at 10 mM for both systems I and II. Based on the Km, regenerating 

substrates could be set lower. From the model, increasing glucose and xylose to more than 4 mM did not 

increase methanol yield in 6 hours batch reaction, most likely as a result of the putative substrate inhibition 

effects (substrate inhibition was considered in the model (Table S3)), and accordingly the BPR generally 

decreased with higher regenerating substrate concentration (Figure 1). 

As a direct consequence of the better kinetic parameters of the XDH than the GDH, including notably the 

lower Km values for the monosaccharide oxidation reaction and the NAD+ → NADH reaction (Table 1), the 

BPR levels were consistently better for XDH than for GDH within the similar ranges of CH3OH yields attained 

within the 6 hours reaction on 10 mM CHOH (Figure 1).    

Visualization of system efficiency on an XY plane 

The effect of enzymes activity concentration on TTN and BPR resulting from hundreds of simulations can be 

visualized by projecting the data on XY planes (Figure 2). Considering 2 mM of regenerating substrates to 

be equilibrated with 10 mM CHOH, TTN had an upper limit of 40 while BPR showed an upper limit of 50 

µmol/U·h with System I. For System II, TTN and BPR achieved upper limits of 40 and 63 µmol/U·h, 

respectively. A trade-off between TTN and BPR was evident. Combination of higher productive and 

regenerative enzymes concentrations tended to increase TTN (Figure 2a and e), whereas a high BPR region 

was achieved by combination of lower enzyme concentrations (Figure 2b and f). From intersecting the 

maximum region of TTN and BPR the best compromise of ADH concentration and regenerative enzymes 
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concentrations could be identified; the simulated optimum data point regions are indicated by a cross 

symbol (Figure 2) and  summarized in Table 3. A lower concentration of XDH was ideal in System II (Figure 

2g and h). Combining at least 55 Uml-1 ADH with 0.5 Uml-1 XDH attained the upper limit of TTN. In contrast, 

GDH concentration had to be set at least at 4 Uml-1 to achieve an optimum compromise of TTN and BPR in 

System I (Table 3).  

Model validation in batch reaction 

To evaluate the model, 6 hour time course experiments were conducted by applying the optimum 

combinations of process variables calculated from the model (Table 3). In System I, the model predicted the 

CH3OH concentration well when coupling with 1 and 2 mM of glucose in 6 hours reaction. The conversion 

of glucose reached 100% in 6 hours at the glucose concentrations assessed (Figure 3). Coupling with 3 mM 

glucose produced only 85% conversion. In System II, 100% conversion of the xylose was achieved with 1, 2 

and 3 mM of xylose within 6 hours (Figure 3). 

Model validation in repetitive batch 

Repetitive batch experiments were designed for both systems in order to increase the yield of CH3OH as 

well as to minimize the detrimental effect of CHOH towards the enzymes. The substrates were added at 

specified time intervals to keep the ceiling concentration of CHOH at 10 mM. In System I, initially 2 mM 

glucose and 10 mM of CHOH were added to a 25 ml volume reactor. After 2 hours of reaction (based on the 

reaction completion time, Figure 3), 2 mM glucose and CHOH mixed in a small volume of buffer were 

added, and 3 cycles of reaction were accomplished in 6 hours (Figure 4). In System II, 2 mM of xylose and 

CHOH were added after 1.5 hours, and this resulted in 4 cycles reaction in 6 hours (Figure 5). Comparison of 

the system efficiencies, summarized in Table 4, clearly shows that the approach could enhance the yield of 

CH3OH by at least 2 fold for both systems. System II produced the highest yield with 8 mM CH3OH. This 

CH3OH yield and the doubling of CH3OH formation per se with the co-factor recycling represent a profound 

improvement compared to previous work (e.g. Liu et al. 2015). It is possible that the reusability of the 

enzymes (BPR) may be enhanced by enzyme immobilization as enzyme immobilization may increase yields 

as originally shown by Obert and Dave (Obert and Dave, 1999) and later by others using various enzyme 
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immobilization systems (e.g. Jiang et al., 2003; Xu et al., 2006; Sun et al., 2009; Shi et al., 2012; Cazelles et 

al., 2013; Wang et al., 2014; Ji et al., 2015). The kinetic modeling approach employed in the present work 

may be extrapolated to optimizing such systems as well.     

 

Conclusion 

A kinetic model derived from an ordered bi-bi reaction mechanism for ADH was applied to identify the 

optimum process variables for enzymatic conversion of CHOH to CH3OH by ADH coupled with in situ 

enzymatic NADH cofactor regeneration. Based on well-characterized reaction kinetics the model 

successfully predicted the optimum working concentrations of both productive and regenerative enzymes 

and co-substrates that could equilibrate the maximum concentration of substrates within 6 hours of 

reaction. Good performance of cofactor recycling was indicated with a high TTN whereas high BPR 

portrayed efficient enzyme utilization. A trade-off between TTN and BPR was evident.  

The experimental and simulated data were in excellent agreement indicating that the model could describe 

the behaviour of the bi-enzymatic system. In order to avoid a detrimental effect of CHOH to enzymes as 

well as to increase the yield of CH3OH, repetitive batch setups were designed for both system I and II. The 

setup was demonstrated to increase CH3OH yield by at least 2 fold in comparison with a batch reaction. 

System II employing XDH for NADH regeneration was found to be more efficient than system I producing at 

least 8 mM CH3OH yield, TTN of 160 and BPR of 24 µmol CH3OH/U·h in 6 hours reaction. The findings 

enhance our understanding of how a balanced regeneration of NADH reducing equivalents can be 

accomplished during enzymatic reaction and have implications for development of enzymatic CO2 

conversion to CH3OH. The enzymes used were purchased for biochemical research and had not been 

selected or engineered for optimizing robustness nor had their production been cost-minimized. Hence,  it 

is too early to include cost analyses. The results nevertheless provide a foundation on which continued 

technological advancements can be made to promote further explorations of enzymatic CO2 conversion. 
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Legend to Scheme 1 

Scheme 1. Conversion of CHOH to CH3OH coupled with in situ NADH cofactor regeneration featuring 

System I with glucose dehydrogenase (GDH) and System II with xylose dehydrogenase (XDH). 
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Figure legends 

Figure 1. CH3OH yields (columns) and BPR (black dots) responses to different regenerative substrate 

concentrations that could be equilibrated with 10 mM CHOH in 6 hours reaction; (a) System I (b) System II. 

Figure 2. Projection of TTN and BPR against enzyme concentration for System I (γCHOH = 10 mM, γglucose = 2 

mM) and System II (γCHOH =10 mM, γxylose = 2 mM). 

Figure 3. CH3OH formation in a batch reactor within 6 hours with 10 mM initial CHOH and different 

concentrations of regenerating substrates; (System I) γADH = 55 Uml-1, γGDH = 4 Uml-1, blue circle γGlucose = 1 

mM, red circle γGlucose = 2 mM, green circle = 3 mM, grey line model; (System II) γADH = 55 Uml-1, γXDH = 0.5 

Uml-1, purple circle γXylose = 1 mM, black circle γXylose = 2 mM, orange circle γXylose =3 mM, grey line model. 

Figure 4. CH3OH formation in the repetitive batch reactor of System I (γADH = 55 Uml-1, γGDH = 4 Uml-1, γNADH = 

0.05 mM, γCHOH,1= 10 mM, γCHOH,2 = 9.7 mM, γCHOH,3 = 9.7 mM, γGlucose,1 = 2 mM, γGlucose,2 = 2.3 mM, γGlucose,3 = 

2.3 mM; grey line model, blue circle cycle 1, red circle cycle 2, green circle cycle 3). 

Figure 5. Methanol formation in the repetitive batch reactor of System II (γADH = 55 Uml-1, γXDH = 0.5 Uml-1, 

γNADH = 0.05 mM, γCHOH,1 = 10 mM, γCHOH,2 = 9.7 mM, γCHOH,3 = 9.7 mM, γXylose,1 = 2 mM, γXylose, 2 = 2.3 mM, 

γXylose,3 = 2.3 mM; grey line model, blue circle cycle 1, red circle cycle 2, green circle cycle 3, purple circle 

cycle 4). 
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Table 1. Kinetic parameters for ADH, GDH, and XDH. 

Enzyme Reaction Km  
(mM) 

Vmax 
(µmol/mg·min) 

ADH CHOH → CH3OH 6 6 
NADH → NAD+ 0.025 4.7 
CH3OH → CHOH 100 0.019 
NAD+ → NADH 0.36 0.015 

GDH Glucose → Gluconic acid 2.2 8.8 
NAD+ → NADH 30 6.3 

XDH Xylose → Xylonic acid 9.8x10-4 0.62a) 
NAD+ → NADH 0.04 0.56a) 

a) Unit in µmol/U·min 
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Table 2. Deactivation constant, kD and half-life, t½ of enzymes in 10 mM CHOH. 

Enzyme kD
a) t½ (h) 

ADH 0.0553 ± 0.4042 12.5 

GDH 0.0284 ± 0.0788 24.4 

XDH 0.0079 ± 0.1451 87.7 

a)Deactivation constant 
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Table 3. Optimum range of enzyme and substrate concentrations simulated from the kinetic model 

 
 Optimum pair of 

enzymes 

concentration 

(Uml-1) 

Optimum pair of 

substrates 

concentration 

(Uml-1) 

System I ADH 55 CHOH 10 

GDH 4.0 Glucose 2 

System II ADH 55 CHOH 10 

XDH 0.5 Xylose 2 
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Table 4. Comparison of system efficiencies in different reactor set up in 6 hours reaction, RepBatch is 

Repetitive Batches as shown in Figures 4 and 5. 

System 

efficiency 

System I System II 

Batch RepBatch Batch RepBatch 

CH3OH yield 

(mM) 
2.6 5.6 3.0 8.0 

BPR (µmol 

CH3OH/U·h) 
7.3 15.8 9.0 24.0 

Total turnover 

number (TTN) 
52.0 112.0 60.0 160.0 
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Figure 1(a) 
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Figure 1(b) 
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Figure 2 
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Figure 2 
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Figure 3 
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Figure 3 
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Figure 4 
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Figure 5  
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