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Abstract 47 

Levels of oxidative stress can be affected by a range of compounds including toxins and 48 

pharmaceuticals. Antioxidants are important protective compounds which counteract the 49 

damaging effects of oxidative stress. Glutathione (GSH) is one of the main antioxidants for many 50 

organisms, and can be synthesized from administered N-acetylcysteine (NAC). NAC has 51 

therefore often been used in a wide range of taxa to manipulate levels of GSH. Our objective was 52 

to validate this approach in a wild temperate teleost fish model, the brown trout (Salmo trutta). 53 

We used intracoelomic injections of NAC in saline and vegetable shortening, at two different 54 

concentrations (100 and 400mg/kg), with the appropriate controls and shams, under controlled 55 

laboratory settings. We found that NAC failed to elicit an increase in GSH over three time 56 

periods and concluded that NAC is not an effective method to enhance GSH levels in teleost fish 57 

using the concentrations and vehicles tested here. We emphasize the importance of validation 58 

studies across all new species/taxa when possible and suggest that more investigation is required 59 

with regards to NAC manipulation in fish if this approach is to be used.  60 

 61 

Keywords: glutathione, N-acetylcysteine, teleost fish, saline, validation studies, vegetable 62 

shortening 63 

 64 

Introduction 65 

Antioxidants, and more generally oxidative stress, have received much attention in recent years. 66 

The field of oxidative ecology has emerged with the growing body of evidence that oxidative 67 

stress processes are linked with life history strategies, coping mechanisms associated with 68 

environmental alterations, and pathogenesis (Kehrer 1993; Beaulieu et al. 2013; Speakman et al. 69 
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2015). Reactive oxygen species (ROS) are continuously generated through mitochondrial 70 

respiration (Halliwell and Gutteridge 2015) as well as by the actions of various hormones and 71 

neurotransmitters (Finkel 1998). The presence of ROS, if unquenched, can be highly detrimental 72 

to cellular macromolecules, and cause oxidative stress (Halliwell and Gutteridge 2015). Of all 73 

the forms of ROS, hydrogen peroxide (H2O2) is of particular interest as it is one of the most 74 

stable and long-lived ROS (Kress et al. 1995). 75 

N-acetylcysteine (NAC) is a known thiolic antioxidant, and is a precursor to glutathione 76 

synthesis as it provides cysteine groups for -glutamylcysteine synthetase, an essential enzyme 77 

required or the generation of glutathione (Pena-Llopis et al. 2003; Gutierrez-Praene et al. 2012). 78 

NAC also protects against cellular damage through its direct reaction with ROS and cannot be 79 

obtained from diet (Aruoma et al. 1989). NAC manipulation has been used in a wide range of 80 

taxa (mammals (Reid et al. 1994; Tomkiewicz et al. 1994); amphibians (Giniatullin and 81 

Giniatullin 2003); birds (Valdivia et al. 2001)) in an attempt to manipulate glutathione levels. All 82 

studies dedicated to NAC manipulation in fish thus far have focused on the investigation of its 83 

protective effects against pesticides and pathogens under controlled laboratory conditions (e.g., 84 

Pena-Llopis et al. 2003; Sevgiler et al. 2006; Puerto et al. 2009; Üner et al. 2009; Gutierrez-85 

Praena et al. 2012), but none have documented its potential effects on wild populations. 86 

Moreover, to our knowledge, no studies have tested vegetable shortening as a carrier. Vegetable 87 

shortening is commonly used when manipulating wild fish from temperate regions (such as the 88 

brown trout) because the vehicle will solidify and hence prolong the effects of the injected 89 

substance. 90 

Given that studies in the wild involving NAC manipulation have yet to be performed, our 91 

aim was to determine the best method to administer NAC in a wild population of brown trout 92 
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under a highly controlled laboratory setting in an attempt to induce an increase in glutathione. 93 

Our goal was to bring a more experimental approach to a body of literature that is dominated by 94 

correlations (i.e., this approach would provide us with a way of manipulating antioxidants in 95 

wild fish, which may help us understand the role of oxidative stress processes in an ecological 96 

context). We tested saline and vegetable shortening as vehicles for intracoelomic NAC 97 

injections. We hypothesized that saline injections containing NAC would be more readily 98 

absorbed given that NAC is highly soluble in water, and therefore predicted that glutathione 99 

(GSH) would become elevated more quickly than in the vegetable shortening-treated fish. 100 

Furthermore, we predicted that the increase in GSH using saline would be short-lived, given that 101 

NAC will be absorbed more rapidly than with the vegetable shortening. We also hypothesized 102 

that vegetable shortening injections containing NAC would take longer to be absorbed given that 103 

vegetable shortening solidifies after the injection, and thus predicted that elevated GSH may take 104 

longer to appear, but that its presence will be long-lasting in comparison to saline-injected fish. 105 

 106 

Material and Methods 107 

On July 1st, 2016, wild juvenile brown trout (n = 240) were captured from the Kastbjerg stream, 108 

Jutland, Denmark, using backpack electrofishing (Scubla ELT 60 II GI; 300 volts). Fish were 109 

transported to the laboratory facilities in a 100L tank of fresh oxygenated stream water, and were 110 

randomly attributed to one of three identical 4000L tanks (n = 80 per tank). The tanks had a 111 

constant circulating flow of fresh oxygenated water, held at a constant temperature of 112 

13.50.4C (average temperature in the wild typically fluctuates between 10 and 15C during the 113 

summer). All fish were kept at a 17:7 light:dark photoperiod (representative of daylight in 114 
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Denmark during the summer months), and fed daily with mosquito larvae, starting one day after 115 

the manipulation. 116 

Fish were left to acclimate for 24 hours, prior to manipulation. Fish were anesthetized 117 

using a solution of benzocaine (0.03g l-1 ethyl-p-aminobenzoate; Sigma) in water, then weighed 118 

(0.01g), measured for total length (0.1cm), and tagged using a 12mm PIT tag (Texas 119 

Instruments, RI-TRP-RRHP, 134Hz, 0.01g mass in air, Plano, Texas, USA). Fish were randomly 120 

assigned to one of seven treatment groups: (1) control, (2) sham-saline, (3) sham-shortening, (4) 121 

100mg/kg NAC in saline (sal-low), (5) 100mg/kg NAC in vegetable shortening (veg-low), (6) 122 

400mg/kg NAC in saline (sal-high), and (7) 400mg/kg NAC in vegetable shortening (veg-high), 123 

each group containing 30 fish (10 fish from each tank). In addition, some fish were simply left in 124 

the tank (i.e., totally undisturbed), and remained untouched until sampling (i.e., not tagged, 125 

weighed or measured) so as to detect tagging effects if necessary, despite evidence that tagging 126 

has minimal impacts on salmonids (Larsen et al. 2013). Control fish were recovered in a 60L 127 

tank of fresh water following tagging. NAC-treated fish received an intracoelomic injection of a 128 

suspension of physiological saline (0.59% NaCl in pure water) or vegetable shortening (100% 129 

vegetable shortening, Crisco, OH, USA) mixed with N-acetylcysteine (NAC; Sigma-Aldrich, St. 130 

Louis, MO, USA, Product A7250) using a dosage of 0.01 mL vehicle (concentration of 0.01g or 131 

0.04 NAC per mL) per 1 g of fish (equivalent to 100 or 400 mg kg-1, respectively). Sham fish 132 

were injected with only 0.01mL g-1 saline or vegetable shortening. NAC-treated fish were 133 

recovered separately from control and sham fish to prevent cross-treatment contamination of 134 

NAC. Once recovered, all fish were returned to the tank. 135 

After 3 days, all fish from tank 1 (10 fish from each treatment group) were anesthetized 136 

and weighed as per the above description. Fish were sampled for blood (0.1ml) from the caudal 137 
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vasculature using a 25-gauge heparinized needle. Fish were then immediately euthanized using a 138 

lethal percussion. All samples were immediately flash-frozen with liquid nitrogen, and then 139 

stored at -80C until analyzed. The same sampling technique was used at 6 and 9 days post-140 

treatment using fish from tank 2 and 3, respectively. This method was used to avoid disturbing 141 

fish until sampling. These standardized techniques were approved by the Danish Animal 142 

Experiments Inspectorate (License Number: 2013-15-2934-00808). 143 

Glutathione (GSH) was measured in red blood cells (RBCs) samples using a glutathione 144 

assay as described in Birnie-Gauvin et al. (2017). This assay measures total glutathione (TGSH) 145 

and oxidized glutathione (GSSG). The concentration of reduced glutathione (GSH), the 146 

antioxidant, can then be derived from these values. Final values of GSH were reported in µM. 147 

Statistical analyses were conducted using JMP v12.0.1 (SAS Institute Inc., 148 

Buckinghamshire, UK). A two-way ANOVA followed by a Tukey post hoc was used to evaluate 149 

differences in mass changes among the seven treatment groups, as well as differences in 150 

glutathione concentration. 151 

 152 

Results 153 

Fish initially weighed between 22.8 and 28.0g. Fish in each treatment and day did not 154 

differ in condition initially (F6,179 = 0.94, p = 0.47). An interaction between treatment and day 155 

was detected for change in mass (F12,179 = 2.12, p = 0.0178, Table 1) such that sal-high fish 156 

gained the most mass on day 3. Generally, fish progressively decreased in mass over the course 157 

of the study. Time had a significant effect on glutathione concentration, such that day 6 had 158 

significantly elevated glutathione in comparison to days 3 and 9 (F2,206 = 20.01, p < 0.0001).  159 

This elevation was observed in all groups including the control fish and the shams.  On day 5 of 160 
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the study, 6 and 3 fish, from tanks 2 and 3 respectively, were found dead. These fish all belonged 161 

to the sal-high treatment group. Additionally, one fish from the veg-low group was found dead in 162 

tank 3 as a result of jumping out of the tank. No other mortality occurred and at sampling all fish 163 

were vigorous. 164 

 165 

Discussion 166 

 The objective of our study was to validate the use of N-acetylcysteine (NAC) as a method 167 

to increase glutathione (GSH) in a teleost model; the brown trout. Based on the literature we 168 

anticipated that we would see an increase in GSH with NAC injections. However, our results fail 169 

to demonstrate that NAC elicited such a response, given that no differences were observed 170 

among treatments. These findings pose a set of important concerns with regards to the use of 171 

NAC in teleost fish. 172 

 While a number of studies have claimed the protective effects of NAC against oxidative 173 

stress processes via an increase in glutathione synthesis (Peña-Llopis et al. 2003; Gutiérrez-174 

Praena et al. 2012), none that we know of have properly validated this in fish. A common caveat 175 

to these types of experimental studies is in fact the lack of appropriate controls, shams, or 176 

validations (Cooke et al. in press). In the majority of studies currently in the literature, either 177 

shams or controls are missing, making it rather difficult to interpret results and draw conclusions. 178 

Many of the studies investigating the protective effects of NAC have been performed on human 179 

patients with various illnesses (e.g., Horowitz et al. 1988; Prescott et al. 1989) or other 180 

mammalian models such as the rat (e.g., Moussawi et al. 2009). It is therefore possible that the 181 

physiological mechanisms by which NAC acts in mammals differ from those in fish. 182 

Alternatively, it is possible that the effects of NAC take longer to appear in tissues in wild brown 183 



 8 

trout given that antioxidant capacity and glutathione concentrations are already high (Birnie-184 

Gauvin et al. 2017). No differences were observed in the control, shams and untagged fish, when 185 

compared to treated fish, suggesting that NAC injections had no effect on GSH at all. 186 

Additionally, the increase in GSH observed in all groups at day 6 is likely not the result of the 187 

NAC injections themselves, given that control, shams and untagged fish showed the same 188 

increase. It is also highly unlikely that laboratory conditions caused the observed day 6 increase, 189 

given that temperature, lighting, flow and overall fish conditions were monitored at least 4 times 190 

a day. 191 

 Though NAC injections failed to increase GSH, a number of fish from the sal-high group 192 

were found dead on day 6 (from both the day 6 and day 9 tanks), suggesting that high 193 

concentrations of NAC absorbed at a rapid rate may have lethal impacts in fish. Similar results 194 

were found in a study on rats where low doses of NAC had protective effects against 195 

lipopolysaccharide toxicity, but high doses had the opposite effect and even increased mortality 196 

(Sprong et al. 1998). While it is possible that keeping wild fish in captivity has caused unknown 197 

physiological alterations where glutathione synthesis could be affected, previous studies have 198 

demonstrated that after 24h in captivity, wild salmonids are typically calm with normal baseline 199 

levels of cortisol in comparison to captive-bred counterparts (e.g., Lepage et al. 2000; Patterson 200 

et al. 2004; Portz et al. 2006). Alternatively, GSH may have increased prior to the first sampling 201 

period at 3 days. Peña-Llopis et al. (2003) detected an increase in GSH as early 12 hours post-202 

injection with saline, though only sham fish were used in this study (no controls), making it 203 

difficult to properly interpret the results. Another alternative hypothesis as to why GSH increased 204 

in all treatments on day 6 is coincidental fluctuations in normal GSH levels. Further investigation 205 
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is required to better understand natural patterns of GSH as well as the mechanistic basis for NAC 206 

in fish. 207 

 Validation studies, such as the present one, are crucial components of proper 208 

experimental science. We therefore urge other groups to take a similar approach to test the 209 

fundamental concepts applied to their study, and for each new species, when possible. We 210 

conclude that further studies are required to investigate whether NAC injection is an adequate 211 

method to manipulate glutathione levels in teleost fish. We acknowledge that other vehicles or 212 

concentrations could have yielded different findings, but the ones used here are common carriers 213 

for other taxa. It may be worthwhile to explore other manipulation methods such of those that 214 

involve dietary manipulation (e.g., NAC infused in food items) or use of mini-osmotic pumps. 215 

Clearly, additional detailed validation work is needed before NAC is used to manipulate 216 

oxidative status in wild fish. Given the interest in bringing a more experimental approach to 217 

oxidative ecology, such validations are pressing. Until then, we caution against using NAC to 218 

manipulate oxidative status in teleosts. 219 
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Table 1. Change in mass of treated brown trout. Average change in mass (g) for each 332 
treatment groups, across sampling days (SEM). Sample sizes are shown in parentheses. 333 
Treatment (and day had significant effects on changes in mass (Tukey post-hoc, p < 0.001). 334 
Asterisk represents significant difference from control of the same day. 335 
 336 
 337 
 338 
 Sampling day 

Treatment 3 6 9 

Control -0.380.18 (10)  -0.920.20 (10) -0.830.21 (10) 

Veg 0.160.14 (10) -0.250.22 (10) -0.890.19 (10) 

Veg-low 0.220.29 (10) -0.360.17 (10) -1.130.26 (9) 

Veg-high 0.180.20 (10) -0.550.27 (10) -1.020.30 (10) 

Sal -0.280.21 (10) -0.970.23 (10) -1.560.27 (10) 

Sal-low -0.330.17 (10) -1.040.25 (10) -1.160.17 (10) 

Sal-high 1.540.23 (10)* 0.100.21 (4) -1.010.28 (7) 

  339 
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Figure 1. Levels of glutathione in treated brown trout. Glutathione concentration (µM)  340 
SEM, across treatments and days. Time had a significant effect at day 6 on all treatments (Tukey 341 
post-hoc, p < 0.0001).  342 
 343 
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