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Abstract 

Brown algae are rich in polyphenolic compounds, phlorotannins, which have been found to possess 

high in vitro antioxidant capacity, especially DPPH radical scavenging activity, due to the high 

number of hydroxyl groups. Whereas, the overall antioxidant capacity of brown algae extracts has 

been widely studied, the antioxidant capacity of individual phlorotannins has been rarely explored. 

The aim of this study was to determine the structure dependant antioxidant capacity of 

phlorotannins from Icelandic brown algae, Fucus vesiculosus. The antioxidant capacity of 

individual phlorotannins was determined by an on-line method using liquid chromatography and an 

electrochemical detector followed by quadrupole Time of Flight mass spectrometry (UHPLC-DAD-

ECD-QTOFMS). Tentative structural elucidation of 13 phlorotannin isomers from EAF was 

obtained by LC-DAD-QTOFMS, ranging from 374 to 870 Da. On-line determination of antioxidant 

capacity of the individual phlorotannins generally showed that low molecular phlorotannins 

exhibited higher antioxidant capacity and that the capacity decreased with polymerisation. 
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1. Introduction 

New research confirms the antioxidant potential of Icelandic brown algae Fucus vesiculosus 

extracts as natural antioxidants in fish muscle and foods enriched with fish oil, to limit oxidation of 

marine polyunsaturated fatty acids, like EPA and DHA (eicosapentaenoic and docosahexaenoic 

acid), in these types of products (Halldorsdottir, Sveinsdottir, Gudmundsdottir, Thorkelsson, & 

Kristinsson, 2014; Hermund, Yesiltas, Honold, Jónsdóttir, Kristinsson, & Jacobsen, 2015; Honold, 

Jacobsen, Jònsdòttir, Kristinsson, & Hermund, 2016; Karadag et al, 2016; Hermund et al., 2016).  

Phlorotannins, the major polyphenolics in brown algae, have been found to possess high in vitro 

antioxidant activity (Koivikko, Loponen, Honkanen, & Jormalainen, 2005; Wang, Jónsdóttir, & 

Ólafsdóttir, 2009). These compounds are a subgroup of tannins, which are formed by the 

polymerization of phloroglucinol units (PGU) (1,3,5-trihydroxybenzene, Mw 126 Da) (Ragan & 

Glombitza, 1986). Low molecular weight (LMW) phlorotannins between 4 and 8 PGUs, have been 

found to be predominant in F. vesiculosus (Steevensz et al., 2012; Heffernan, Brunton, FitzGerald, 

& Smyth, 2015; Kirke, Smyth, Rai, Kenny, & Stengel, 2017). However, studies have also shown 

the presence of highly polymerised phlorotannins of up to 16 PGUs (~2000 Da) (Heffernan et al., 

2015; Kirke et al., 2017). According to Martínez and Castañeda (2013) phlorotannins can be 

divided into three major groups: 1) fucols, 2) phloroethols and 3) fucophloroethols. Fucols are 

phlorotannin polymers in which the PGUs are connected only by C-C (phenyl linkage) bonds in 

meta position. Phloroethols consist of PGUs, which are linked only by C-O-C (aryl-ether) bonds. 

Linear phloroethols can have ortho-, meta- or para-oriented biphenyl ether bridges. 

Fucophloroethols are a mixture of both bi-aryl and aryl-ether bonds allowing a variety of 

compounds in linear, branched and heterocyclic fashions. Due to the high complexity of 

phlorotannin structures only few studies have dealt with their characterization and identification. 

Phlorotannin levels in seaweed extracts are commonly expressed as total phenolic content (TPC) 
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using assays like the Folin-Ciocalteu assay. This assay involves oxidation of phenolic rings by 

phosphotungstic and phosphomolybdic acids, resulting in formation of a blue complex which can 

be detected spectrophotometrically (725-765nm) (Singleton & Rossi, 1965). However, Folin-

Ciocalteu assay is not specific for phlorotannins and will also include other reducing substances 

present in the seaweed extracts. Hence, more in-depth studies of identification and characterization 

of phlorotannins are needed.  

The availability of advanced chromatographic and mass spectrometric techniques gives the 

possibility for tentative identification of phlorotannins. Wang et al. (2012) and Heffernan et al. 

(2015) both characterized phlorotannins extracted from F. vesiculosus using such techniques. 

Heffernan et al. (2015) used Liquid Chromatography with tandem MS for profiling fractions of 

phlorotannins from brown algae. Wang et al. (2012) performed simple purification of 80% (v/v) 

ethanol extract derived from F. vesiculosus by liquid-liquid partitioning, using ethyl acetate, to 

obtain fractions rich in phlorotannins. Hereafter, semi-preparative column chromatography were 

applied on the fractions before high performance liquid chromatography (HPLC) electrospray (ESI) 

coupled to MS and MS/MS analysis and tentative identification of phlorotannins was obtained. 

Colorimetric assays were then applied on the phlorotannin fractions to study antioxidant properties 

such as radical scavenging activity in order to gain information on how polymerization and 

molecular size influence the antioxidant capacity. Colorimetric assays such as 2,2-diphenyl-1-

picrylhydrazyl radical scavenging assay (DPPH), is typically used to determine the antioxidant 

capacity of antioxidants. However, on-line cyclic voltammetry approach can measure the ability of 

individual compounds to donate electrons and thus provides information of their antioxidant 

capacity. Plaza, Kariuki and Turner (2013) studied the antioxidant contribution of phenolic 

compounds from apples by coupling an electrochemical detector (ECD) to an HPLC. They found 

no significant difference (p < 0.05) between using this method for determining antioxidant capacity 
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or the colorimetric antioxidant assays, indicating that the cyclic voltammetry results (oxidation 

potential) can be interpret in the same way as radical scavenging capacity from e.g. DPPH. With 

this method, it would be possible to determine the antioxidant capacity of individual phlorotannins, 

and thereby provide an in-depth knowledge of how phlorotannins contribute to the overall 

antioxidant capacity of seaweed extracts.  

The aim of this study was to evaluate the structure dependant antioxidant capacity of phlorotannins 

by a fast screening method. This was performed on a purified phlorotannin-rich fraction from 

Icelandic brown algae F. vesiculosus, which previously has shown great potential as natural 

antioxidant in food emulsions (Hermund et al, 2015). The individual phlorotannins and their 

antioxidant capacity were identified and characterized by HPLC-DAD-ECD-QTOFMS analysis of 

EAF. 

 

2. Materials and Methods  

2.1. Chemicals and Reagents 

All chemicals were of analytical grade. Formic acid and acetic acid were from Merck (Darmstadt, 

Germany). Phloroglucinol standard was purchased from Sigma-Aldrich (St. Louis, MI, USA). The 

ultrapure water used was obtained from a Milli-Q (Millipore, Billerica, MA, USA) instrument. 

 

2.2. Algae material, solvent extraction, partitioning and fractionation 

Solvent extraction and partitioning were performed by Matís in Iceland according to Wang et al. 

(2012). The seaweed (Fucus vesiculosus L.) was collected from intertidal water in the Hvassahraun 

coastal area near Hafnarfjordur, southwestern Iceland, in September 2011. At the collecting site the 

seaweed was washed with clean seawater to remove salt crystals, epiphytes and sand attached to the 

surfaces of the samples and transported to the laboratory. The samples were carefully rinsed with 
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tap water and wiped with paper towel. The samples were freeze-dried, pulverised into powder and 

stored at -80°C prior to extraction. 

An 80% (v/v) aqueous ethanol extract (EE) was obtained by dispersing five grams of freeze-dried 

algal powder in 100 mL 80% (v/v) ethanol and incubated in the platform shaker (InnovaTM 2300, 

New Brun- swick Scientific, Edison, NJ) for 24 h at 200 rpm and at room temperature. The mixture 

was centrifuged at 2168g for 10 min at 4°C and filtered (20-25 µm particle retention) to obtain a 

liquid extract. EE was subjected to liquid-liquid partitioning to yield semi-pure phlorotannin-rich 

fractions on the basis of polarity. The solvent partitioning was performed by collecting 100 mL EE 

and concentrating it to a small volume by N2 evaporation. The concentrate was partitioned with n-

hexane, ethyl acetate, and n-butanol, successively, yielding four fractions including n-hexane-, ethyl 

acetate-, and n-butanol-soluble fractions and the aqueous residues. Solvent were evaporated from 

the fraction and the remains were freeze-dried. The ethyl acetate fraction (EAF) was used in this 

study because of the high TPC associated with this fraction. This is in agreement with Wang et al. 

(2012) who found ethyl acetate to be efficient in concentrating/enriching phlorotannins from crude 

F. vesiculosus extracts. EAF was stored at -80°C until further required. Prior to analysis the 

powders was dissolved in demineralised water. 

 

2.3. HPLC-DAD-ECD analysis 

Instrumentation. The method setup was based on a similar method used for polyphenols and 

phenolic acids (Plaza et al., 2013; Safafar, Myerson Van Wagenen, Møller, &  Jacobsen 2015). It 

consisted of an UltiMate-3000® HPLC system (Dionex, Thermo Fisher, Germering, Germany) with 

a photodiode array detector (DAD). The detection wavelengths used were: 200, 280, 350, 370, and 

520 nm. An ECD instrument (Bioanalytical System Inc., West Lafayette, IN, USA) was attached 



  

7 

 

just after the DAD to do online amperometric detection. The setup has been described in Plaza et al. 

(2013).  

Chromatographic separation. Separation was obtained on a Phenomenex Prodigy 3 µm ODS 3 

150x2mm column. The mobile phase consisted of ammonium formate buffer (A) (pH 3, 20 mM 

formic acid), 60 mM (NH4HCOO/HCOOH) in water; and acetonitrile (B) (20 mM formic acid). 

The mobile phases were purged with nitrogen to remove oxygen. The gradient elution analysis 

program was as follows: 0-2 min, 0% (B); 2-16 min, increasing to 40% (B); 16-18 min, increasing 

to 100% (B), with 17 min of post-time at a flow rate of 0.3 mL/min. All compounds had eluted 

within the first 17 min and therefore the chromatograms are of this duration. The column 

temperature was set at 25°C, the injection volume was 2 µL, and the vial tray was held at 4°C. For 

instrument validation, phloroglucinol standard (1 mg/mL for HPLC) and the associated retention 

time were used as a control. All analyses were conducted in triplicates. 

 

2.4. UHPLC-DAD-QTOFMS analysis  

Instrumentation. Ultra-high performance liquid chromatography-DAD-quadrupole time of flight 

mass spectrometry (UHPLC-DAD-QTOFMS) was performed on an Agilent Infinity 1290 UHPLC 

system (Agilent Technologies, Santa Clara, CA, USA) equipped with a DAD coupled to an Agilent 

6545 QTOF MS equipped with Agilent Dual Jet Stream electrospray ion source (Kildgaard et al., 

2014). MS and MS/MS were performed at m/z 100-1600 and auto-MS/MS was done at 10, 20, and 

40 eV. Hexakis (2,2,3,3-tetrafluoropropoxy)phosphazene (Apollo Scientific Ltd., Cheshire, UK) at 

921.23 was used as lock mass in positive and negative mode as the [M+H]+ and  [M+HCOO]− ions 

respectively. 

Chromatographic separation. Separation was obtained similar to the method used for HPLC-DAD-

ECD analysis with some alterations. The gradient elution analysis program was as follows: 0-2 min, 
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0% (B); 2-16 min, increasing to 40% (B); 16-18 min, increasing to 100% (B), with 17 min of post-

time at a flow rate of 0.3 mL/min. All compounds had eluted within the first 17 min and therefore 

the chromatograms are of this duration. The column temperature was set at 25°C, the injection 

volume was 2 µL. For instrument validation, phloroglucinol standard (0.1 mg/mL for LC) and the 

associated retention time were used as a control.  

 

2.5. Data analysis 

The areas (nAs) of the ECD responses for the EAF were calculated (mean±SD). UHPLC-DAD-

QTOF data analysis was performed in MassHunter 6.00 where the base peak chromatograms (BPC) 

were made with major background ions subtracted. For finding known phlorotannins the Find-By-

Formula function in Masshunter was used searching for the following singly charged adducts: ESI+, 

[M+H]+ and [M+Na]+; ESI−, [M−H]−, [M+HCOO]−.  

 

3. Results and discussion 

3.1. Structural elucidation of phlorotannins 

The Extracted Ion Chromatograms (EIC) of deprotonated molecular ions ([M-H]-) from the most 

common phlorotannins found in literature (eckol (m/z 371.0409), fucophloroethol (m/z 373.0565), 

7-phloroeckol (m/z 495.0569), fucodiphloroethol (m/z 497.0725), phlorofucofuroeckol (m/z 

601.0624), fucotriphloroethol (m/z 621.0886), dieckol (m/z 741.0733), and fucophloroethols with 

six (m/z 745.1046), and seven phloroglucinol units (PGUs) (m/z 869.1207)), were used for the study 

of phlorotannins in EAF by UHPLC-DAD-QTOFMS. Furthermore the elemental compositions 

were verified by the accurate mass (± 5 ppm) and isotopic patterns.  

In Fig. 1. the Base Peak Chromatogram (BPC) of EAF is shown together with the UV 

chromatogram and EICs of the selected ions. In the EICs, some peaks were overlapping due to 
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insource fragmentation (i.f.) giving false/positive results when consulting MS-data, e.g. one peak in 

EIC of m/z 373 was found to be an insource fragmentation of m/z 497. When taking this into 

account the EICs revealed well-defined and abundant ions of 11 (1-11) compounds tentatively 

corresponding to phlorotannins and corresponding with the UV chromatogram, and two compounds 

(12-13), which were only found in trace amounts and were not so well-defined, neither by UV. 

There were no responses in the UV chromatogram, which did not correspond to the studied ions.  

The MS study of the ions allowed the detection of several isomers. The isomers were studied in 

negative ionization mode to investigate the fragmentation patterns with the aim of getting closer to 

an exact structural identification of the isomers.  

Compounds 6, 7 and 8, in negative mode, showed similar fragmentation patterns in which some 

ions are characteristic of phlorotannins fragmentation, e.g. for compounds with losses of one and 

two water molecules (-18.0101 (m/z 603.0778) and -36.0209 (m/z 585.0670), respectively), loss of 

1 PGU and water (-126.0324, -18.0101 (m/z 477.0454)), and loss of 2 PGUs and water, as well as 

the presence of deprotonated molecular ion of phloroglucinol (m/z 125.0133). Thus, these three 

compounds are suggested to be phlorotannins composed of five PGUs, possibly isomers of 

fucotriphloroethol. In the supplementary material (Fig. S1), the structure of fucotriphloroethol 

(linear) and suggested fragmentation of this phlorotannin are shown. It is most likely that the loss of 

one and two water occurs first, followed by fragmentation from the ether-end due to the higher 

lability of this bond compared to the phenyl-linkage. 

In Table 1 the fragmentation patterns in negative mode of the 13 identified phlorotannin compounds 

(including isomers) are listed. Isomers of phlorotannins trimers with [M-H]- at m/z 373 (compound 

1-3) were observed, which correspond tentatively to fucophloroethol. Isomers of phlorotannins 

tetramers with [M-H]- at m/z 497 (compound 4-5) were observed, which correspond tentatively to 

fucodiphloroethol. Furthermore, isomers with [M-H]- at m/z 745 (compound 9-11) and m/z 869 
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were tentatively identified as fucophloroethols with six or seven PGUs, respectively. Hydrogen 

migration was observed (noted as either +2 or -2 in Table 1) in some of the fragments. Even though 

the fragmentation patterns of the isomers showed some differences, indicating structural diversity, it 

was not possible to make further elucidation of the structures. Further structural identification of the 

isomers would require severe purification of the extracts as well as NMR (nuclear magnetic 

resonance). Heffernan et al. (2015) also using MS and no NMR, found that F. vesiculosus contained 

phlorotannins in the range of 3 to 16 PGU, with the most abundant phlorotannins at a low molecular 

weight range, e.g. m/z 497 (4PGU), m/z 745 (6PGU) and m/z 869 (7PGU).  

 

3.2. Structure dependent antioxidant capacity of phlorotannins 

Along with the identification of phlorotannins in EAF, on-line detection of the antioxidant capacity 

of individual phlorotannins was carried out by HPLC-DAD-ECD. It was possible to detect 

compound 2 to 11 by UV (Fig. 2). However, for some compounds it was not possible to distinguish 

the ECD response, e.g. compound 3 and 9 have different composition, but could not be separated in 

the ECD, hence the ECD response of these two compounds were not determined. Non-separable 

ECD responses of compounds with the same composition were though determined. Hence, 

determination of antioxidant capacity of individual phlorotannins was only carried out for 

compound 2 to 11, excluding compound 3 and 9, by calculating the ECD response (nAs). The 

results are shown in Table 1.  

Shibata, Ishimaru, Kawaguchi, Yoshikawa and Hama (2008) and Audibert, Fauchon, Blanc, 

Hauchard, and Ar Galla (2010) studied the antioxidant activity of semi-purified extracts of 

phlorotannin fractions, of different molecular weight range, obtained from brown algae. They found 

that with increased molecular weight of the isolated phlorotannin fractions the antioxidant 

capacity(DPPH radical scavenging) decreased.  
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The present study is the first of its kind to evaluate antioxidant capacity of individual phlorotannins 

and not just fractions with phlorotannins in a specific molecular weight range. Compound 2, an 

isomer of fucophloroethol (3 PGUs) showed the highest antioxidant capacity, and the capacity 

seemed to decrease with increased polymerization of phlorotannins (Table 1). However, there was 

one exception as Compound 6 consisting of 5 PGUs showed higher antioxidant capacity than 

phlorotannins consisting of 4 PGUs (Compound 4 and 5).  

These results indicate that it is the availability of hydroxyl groups more than the polymerization, 

which determines the antioxidant capacity of the phlorotannins. It can be hypothesised that large 

phlorotannin polymers might fold in a way, which encloses the OH-groups inside the structure, and 

therefore poorer antioxidant capacity of large phlorotannins was observed. However, the enclosed 

structure and unavailable OH-groups are dependent on the branching of the phlorotannins, therefore 

one isomer of phlorotannin consisting of 5 PGUs showed higher antioxidant capacity compared 

with other isomers, which might be branched in a different way that favours folding of the 

compound in a way which decreases their antioxidant capacity. As mentioned, this has to be 

verified with additional NMR analysis. 

 

4. Concluding Remarks  

Tentative structural elucidation of 13 phlorotannin isomers from EAF was obtained by UHPLC-

DAD-QTOFMS ranging from 374 to 870 Da. It was not possible to determine the structural 

differences between isomers, though the fragmentation patterns obtained showed clear differences 

presumably due to different branching of the phlorotannins. On-line determination of antioxidant 

capacity of the individual phlorotannin generally showed that low molecular weight phlorotannins 

exhibited higher antioxidant capacity and also that the capacity decreased with polymerisation. This 
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method could be used as a fast screening of complex seaweed extracts to identify the presence of 

highly antioxidative phlorotannins, e.g. isomers of fucophloroethol (3 PGUs). 
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Highlights 

• Tentative structural elucidation of 13 phlorotannin isomers from Fucus vesiculosus 
• On-line determination of antioxidant capacity of 9 individual phlorotannins  

• Generally the antioxidant capacity decreased with polymerization 
• Structure dependant antioxidant capacity was found 
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Table 1. Elementary composition, retention time, UV (nm), [M-H]-, MS2 [M-H]- data and ECD responses (nAs) for compound (C) 1 to 13 
from EAF 

C 
Elementary 
Composition 

RT 
(min) 

UV 

(nm) 
[M-H]- ppm MS/MS fragmentation pattern 

ECD  

[nAs] 

1 

C18H14O9 

3.256 
205, 
274sh 

373.0564 -0.27 
355.0448 (-H2O) , 329.0184, 311.0554, 305.0575, 287.0556, 269.0460, 243.0689, 229.0135  
(-1PGU, - H2O), 214.2045, 207.0282, 181,0493, 165.0192, 139.0370, 125.0244 

- 

2 7.048 
210, 
272sh 

373.0560 -1.34 
355.0459 (-H2O), 329.0659, 305.0661, 287.0558, 261.0764, 243.0667, 231.0286 (-1PGU, -H2O,  
+2), 216.0062, 205.0506, 189.0558, 165.0191, 149.0239, 141.0187, 124.0157 (-1) 

63.10±1.54

3 9.324 213 373.0590 6.70 
329.0381, 311.0579, 259.0246, 247.0243 (-1PGU), 229.0140 (-1PGU, -H2O), 219.0287, 201.0190, 
177.0211, 161.0223, 141.0191, 125.0248 

- 

4 

C24H18O12 

8.335 
208, 
273sh 

497.0729 0.80 
479.0619 (-18), 453.0814, 435.0720, 413.0511, 395.0395, 371.0411 (-1PGU), 353.0307  
(-1PGU, -18), 335.0200 (-1PGU, -2H2O), 325.0353, 309.0404, 287.0191, 267.0305, 247.0242 (-
2PGU, +2), 229.0145 (-2PGU, -H2O, +2), 219.0299, 203.0348, 191.0346, 165.0190, 139.0032 

5.63±0.59 

5 8.471 210, 
271sh 

497.0717 -1.61 
479.0612 (-H2O), 453.0792, 435.0693, 411.0718, 395.0363, 371.0404 (-1PGU), 353.0292 (-PGU,  
-H2O), 339.0500, 327.0507, 309.0390, 283.0250, 267.0305, 247.0242 (-2PGU, +2), 229.0133  
(-2PGU, -H2O, +2), 205.0496, 165.0199, 139.0031, 125.0234 

6 

C30H22O15 

7.535 
211, 
275sh 

621.0880 -0.97 
603.0769 (-H2O), 577.0974, 541.0765, 477.0423 (-1PGU, -H2O), 455.0613, 433.0548, 413.0507, 
373.0526 (-2PGU, +2), 343.0442, 311.0205, 287.0200, 247.0262, 207.0291 (-3PGUs, -2H2O), 
165.0189, 125.0241 

24.63±1.54

7 9.708 
208, 
275sh 

621.0891 0.81 
603.0782 (-H2O), 585.0654 (-2H2O), 559.0864, 537.0660, 479.0607 (-1PGU, -H2O, +2), 433.0539, 
371.0400 (-2PGUs, +2), 353.0301 (-2PGUs, -H2O, +2), 335.0194 (-2PGUs, -2H2O, +2), 309.0401, 
283.0233, 249.0403, 229.0140, 205.0503 (-3PGUs, -2H2O, -2), 163.0404, 139.0034 

2.52±0.16 

8 9.964 
212, 
273sh 

621.0879 -1.13 
603.0778 (-H2O), 585.0670 (-2H2O), 559.0875, 519.0539, 477.0454 (-1PGU, -H2O), 433.0565, 
413.0302, 393.0224, 371.0398 (-2PGUs, +2), 339.0502, 309.0391, 283.0272, 245.0079  
(-3PGUs, +2), 205.0492 (-3PGUs, -2H2O, -2), 139.0029  

1.32±0.18 

9 

C36H26O18 

9.423 212 745.1058 1.61 
727.0949 (-H2O), 701.1124, 659.0818, 579.0816, 537.0685, 477.0475 (-2PGU, -H2O, +2),  
411.0348, 355.0414, 311.0225 (-3PGU, -3H2O, -2), 249.0416, 205.0158 (-4PGU, -2H2O), 163.007 

- 

10 11.009 
212, 
272sh 

745.1046 0.00 
727.0935 (-H2O), 665.0639, 619.0747 (-1PGU), 585.0676 (-1PGU, -2H2O, +2), 559.0870, 517.0385, 
477.0472 (-2PGU, -H2O, +2), 441.0237, 389.0308, 353.0292, 309.0442, 231.0295, 205.0120 (-1PGU, 
-36), 177.0194, 139.0052  

0.96±0.04 

11 11.112 212 745.1049 0.40 
727.0943 (-H2O), 709.0858 (-2H2O), 619.0735 (-1PGU), 583.0538 (-1PGU, -2 H2O), 525.5692, 
477.0478 (-2PGU, -18, +2), 443.0338, 371.0425, 339.0503, 263.0168, 229.0121, 203.0354 (-4PGU, -
2H2O, -2), 177.7941, 139.0033 

12 C42H30O21 11.732 - 869.1238 3.57 
851.1094 (-H2O), 833.0920 (-2H2O), 727.0922 (-1PGU, -H2O, +2), 693.0811, 641.0496, 601.0574  
(-2PGU, -H2O, +2), 567.0528, 513.0421, 497.0697, 477.0392, 409.0238, 353.0272, 337.0401, 

- 
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229.0136, 204.8425 (-5PGU, -2H2O, +1), 139.0014 

13 12.190 - 869.1198 -1.04 
851.1086 (-H2O), 775.0068, 744.0918 (-1PGU, +1), 689.0585, 619.0710 (-2PGU, +2), 583.0460  
(-2PGU, -2H2O, +2), 511.0480, 459.0351, 426.0419, 373.0522, 338.0352, 303.3885, 229.0143, 
175.0369 

- 

 

 


