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Abstract 

A designed biocatalytic cascade system based on reverse enzymatic catalysis by formate 

dehydrogenase (EC 1.2.1.2), formaldehyde dehydrogenase (EC 1.2.1.46), and alcohol 

dehydrogenase (EC 1.1.1.1) can convert carbon dioxide (CO2) to methanol (CH3OH) via formation 

of formic acid (CHOOH) and formaldehyde (CHOH) during equimolar cofactor oxidation of NADH 

to NAD+. This reaction is appealing because it represents a double gain: (1) reduction of CO2 and 

(2) an alternative to fossil fuel based production of CH3OH. The present review evaluates the 

efficiency of different immobilized enzyme systems and reaction designs that have been explored 

for optimizing this sequential enzymatic conversion of CO2 to CH3OH, including multilayer 

microcapsules, bead scaffolds, cationic nanofibers, and membrane systems. The recent progress 

within efficient cofactor regeneration, protein engineering of the enzymes for robustness, and 

advanced uses of membrane systems for enzyme reuse and product separation are assessed for 

large scale implementation of this biocatalytic reaction cascade. Industrial realization of enzymatic 

CO2 to CH3OH conversion including the option for reaping of formaldehyde and formate during the 

reaction warrants innovative development. There is a particular need for development of i) better 

enzymes; ii) improved understanding of enzyme structure function aspects of reverse catalysis by 

dehydrogenases, iii) quantitative kinetic models of the enzymatic cascade reaction during 

simultaneous cofactor regeneration, iv) robust systems for regeneration of reducing equivalents.  

Keywords: CO2 conversion, biocatalysis, multi-enzyme, cofactor regeneration, productivity, 

efficiency 
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1. Introduction 

Global anthropogenic carbon dioxide (CO2) emissions recently reached a record of high level of 

35.7 billion tons per year and is still increasing [1]. According to the Intergovernmental Panel on 

Climate Change (IPCC), the resulting atmospheric concentrations of CO2, along with methane and 

nitrous oxide, are unprecedented in at least the last 800,000 years and believed to be the dominant 

cause of global warming. As a consequence, the period from 1983 to 2012 was likely the warmest 

30-year period of the last 1400 years in the Northern hemisphere [2]. The emissions of CO2 are 

mainly a result of fossil fuel combustion as well as discharges from thermoelectric power plants, 

refineries, cement plants and steel mills [2]. Recently, a global agreement to reduce such 

emissions to achieve zero net greenhouse gas emissions and pursue efforts to limit the 

temperature increase to max. 1.5 °C during the 21st century was negotiated at the 2015 United 

Nations Climate Change Conference, COP 21, in Paris, France [3].  

In addition to developing measures for reducing greenhouse gas emissions, utilization of CO2 as a 

feedstock for producing chemicals and fuels is an attractive strategy to diminish CO2 emissions. 

Hence, options for sustainable conversion of CO2 into chemicals and fuels with zero or even 

negative emissions should be considered. CO2 can indeed be scavenged directly from industrial 

greenhouse gas emission processes (or with time presumably captured directly from the air) and 

converted into basic chemicals and fuel chemicals that are otherwise obtained from fossil oil 

chemistry. Biocatalytic conversion offers a sustainable low temperature approach for such 

conversions. Several biological processes involve an enzymatic CO2 fixation or a conversion step 

with the Calvin cycle being the most dominant for CO2 conversion in nature [4], but sequential 

enzymatic reduction of CO2 to methanol (CH3OH) does not occur in nature. However, already in 

1993 and 1994 Yoneyama et al. [5,6] demonstrated that CO2, in a CO2-saturated phosphate buffer 

solution, could be biocatalytically converted to CH3OH. They employed electrolysis and conversion 
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via formaldehyde in the presence of formate dehydrogenase (EC 1.2.1.2) and methanol 

dehydrogenase (EC 1.1.99.8) using pyrroloquinoline quinone (or methyl viologen) as electron 

mediator [5,6]. Subsequently, it was shown that the enzymatic conversion of CO2 to CH3OH can 

also be accomplished in solution in a cascade system set up of three different dehydrogenases in 

the presence of an electron donor, namely reduced nicotinamide adenine dinucleotide (NADH) [7]. 

In this designed set-up formate dehydrogenase (FDH, EC 1.2.1.2) catalyses conversion of CO2 

into formate (methanoic acid HCOOH or HCOO-), formaldehyde dehydrogenase (FaldDH, EC 

1.2.1.46) then catalyses reduction of the HCOO- to formaldehyde (CHOH), and finally alcohol 

dehydrogenase (ADH, EC 1.1.1.1) catalyses the conversion of formaldehyde into CH3OH (Fig. 1) 

[7]. Each enzymatic step in this system works in the reverse direction of the natural (reversible) 

enzymatically catalysed reaction, but the biological reaction equilibrium constants can be shifted by 

several orders of magnitude to favour CH3OH synthesis by optimizing the reaction conditions [7,8]. 

The requirement for NADH is due to the electron donor selectivity of the currently used microbial 

enzymes employed in this 3-step enzymatic CO2 to CH3OH reductive cascade system.   

CH3OH is thus produced as a final product, but it is an important aspect of the process that the 

intermediate products of the 3-step cascade reaction, formic acid (CHOOH) and formaldehyde 

(CHOH), are also produced. Currently CH3OH is mainly produced from natural gas through syngas 

(CO and H2), and both CH3OH and CHOH are among the top 10 petrochemicals produced in the 

world and are also basic building block chemicals with vast applications as precursors for 

production of other valuable compounds [9]. Apart from use as a base chemical CH3OH can also 

be used as a fuel itself or as a solvent. CHOOH also has specific separate applications. The 

enzymatic cascade reaction concept is also highly promising for biorefineries, including bioethanol 

processes, where CO2 is an equimolar co-product of the ethanol fermentation.  

Due to the significant and increasing interest in CO2 reduction technology recent reviews have 

emerged focusing on the principles, redox chemistry, mechanisms, and energy of enzymatic CO2 

conversion, including coverage of the major routes of the metabolic CO2 processes in cells [4,10-
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12], and discussion of methodologies and materials employed for enzyme immobilization [11,12]. 

However, the challenge with the application of a cascadic dehydrogenase enzyme reaction system 

for converting CO2 to CH3OH is to employ efficient and robust enzymes and to design a feasible, 

robust and an efficient reaction set-up having high productivity. The system should thus provide for 

maximizing both the biocatalytic production rate on the enzymes (μmolCH3OH/mgenzyme·h) and the 

cofactor utilization efficiency (μmolCH3OH/ mgenzyme · μmolNADH·h). Evidently, immobilization of the 

enzymes to maximize the biocatalytic productivity by ensuring maximal repeated use and 

confinement of the enzymes has been in focus since Obert and Dave [7] demonstrated enhanced 

methanol production when the three dehydrogenases were encapsulated in a porous silica sol-gel 

matrix in a solution with NADH and exposed to CO2 bubbling. Nevertheless, a detailed assessment 

of the practically attained enzymatic productivities and conversion efficacies of different enzyme 

immobilization systems and reaction set-ups is lacking in the literature.  

Our aim is to provide an improved knowledge-base for rationally designing reaction systems for 

efficient enzymatic conversion of CO2 to CH3OH. The present treatise will therefore assess and 

compare the biocatalytic productivity and efficiencies of different immobilized enzyme systems for 

sequential enzymatic reduction of CO2 to CH3OH without the use of electrolysis. We will also 

provide an overview of enzymatic cofactor regeneration systems and address their efficacy. 

Theoretically, the reduction of CO2 to CH3OH requires an electron donor (cofactor) to supply the 

reducing equivalents in equimolar amounts in each step in the reaction. The cofactor level is an 

important issue in order to ensure that a high level of reducing equivalents is maintained to balance 

the forward enzymatic cascade reaction, but cofactor regeneration is also crucially important in the 

reaction design, particularly with NADH, which is costly. In the longer run, enzymes may be 

developed to be able to utilize other cofactors, but currently, NADH is the electron donor for the 

enzymes to catalyze the sequential reduction of CO2 to CH3OH in the forward reaction.  
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2. Enzymatic cascade transformation of CO2 to CH3OH 

In the enzymatic conversion of CO2 to CH3OH by using three dehydrogenases [7] three moles of 

NADH are consumed per mole of CH3OH produced in the forward cascade reaction (Fig. 1). In 

general, yields of CH3OH have been calculated based on the initial NADH added. For example, to 

have a yield of 100%, the number of moles of CH3OH produced is equal to 1/3 of the initial NADH 

added. As mentioned, it was shown early that the overall yield from the enzymatic cascade 

reaction converting CO2 to CH3OH in solution could be significantly enhanced if the reaction was 

performed in a solution with the enzymes entrapped in a silica sol-gel system [7]. The improvement 

was presumably due to the increased local concentrations of the reactants within the nanopores of 

the sol-gel matrix, which apparently resulted in confinement effects and thus improved substrate 

availability for each of the enzymatic steps involved in the sequence [7]. Since then, a large 

number of different enzyme immobilization strategies have been attempted in order to enhance the 

positive impact of the confinement effects and enable maximum enzyme reuse (Table 1). The 

reported research has involved design and preparation of appropriate immobilization carriers, and 

analysis of the resulting reaction kinetics and mass transfer limitations [13-17]. Additional 

improvement was introduced more recently, when the immobilization system also incorporated 

cofactor regeneration [18–22] (to be discussed later).   

In all the reported work employing this enzymatic cascade system, the enzyme immobilization 

systems and reaction set-ups appear to have been empirically designed. Due to the variety of 

immobilization systems, process conditions, NADH levels, and enzyme dosages employed, it is 

difficult to identify the most efficient design. However, a direct comparison of the biocatalytic 

productivities (μmolCH3OH/mgenzyme·h) obtained in different immobilized or non-immobilized enzyme 

systems indicates that the level of NADH added initially may have a significant effect on the 

biocatalytic productivity (Table 1). Hence, as expected, a high initial NADH level appears to 

increase the biocatalytic productivity, as e.g. the total biocatalytic productivity of the systems 
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reported by Xu et al. 2006 [14] and especially the one by Wang et al. 2014 [17] with high NADH 

addition, appears much higher than those reported by Obert and Dave [7] and Jiang et al. [13] 

(Table 1). Some differences in biocatalytic productivity that may be particularly ascribable to 

differences in the immobilization system are obvious, however, since for example different 

nanoparticle immobilization systems produced fair biocatalytic productivities (e.g. 0.874-1.433), 

even with very low initial NADH addition and without cofactor regeneration (Table 1 [18,19]) – but 

at the same time in certain cases the biocatalytic productivities attained without enzyme 

immobilization was on par or better than the productivity with immobilization (Table 1 [13-15,18]).          

The interpretation of biocatalytic productivities is equivocal, however, due to the differences in 

reaction time, enzyme dosages employed in different systems, and whether cofactor regeneration 

was attempted or not (Table 1).  

A comparison of the biocatalytic productivities per initial amount of cofactor added to the cascade 

reaction, i.e. an expanded efficiency factor term (μmolCH3OH/mgenzyme·h·μmolNADH) is therefore a 

better metric to assess CH3OH production efficiency, although differences in reaction times and 

enzyme dosages, and notably immobilized system type and cofactor regeneration obviously 

influence the biocatalytic productivity and efficiency as well (Table 1). Hence, without cofactor 

regeneration an immobilized enzyme system using nanobeads, and only low NADH addition [19] 

gave a better efficiency factor of 9.77 (μmolCH3OH/mgenzyme·h·μmolNADH) than a system with alginate 

beads or protamine-templated titania [15], despite the original biocatalytic productivity being the 

lowest among the three (Table 1). Also, a system with the enzymes immobilized on a nanofiber 

support [18], with modest NADH addition, had as high an efficiency factor (42) as the hybrid 

microcapsules system (41.3) with extremely high initial NADH despite significant differences in 

NADH addition (Table 1). In general, the attained efficiencies, assessed from 

μmolCH3OH/mgenzyme·h·μmolNADH, of the reported systems employing the FDH- FaldDH-ADH cascade 

system to convert CO2 to CH3OH have varied almost 10,000 fold from 0.006-55 (Table 1). With 

the exception of the efficiencies of 41-42 attained in certain immobilized systems without cofactor 
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regeneration (Table 1 [17,18]) immobilized enzyme systems including cofactor regeneration have 

provided the highest efficiency factors, and the use of a nanofiber support or nanoparticles for 

immobilization seems to give highest efficiencies (μmolCH3OH/mgenzyme·h·μmolNADH) of up to 47-55 

even with modest NADH addition (Table 1).  

The available data also show, as evident from e.g. Cazelles et al.’s work [19], that the obtainment 

of a maximal CH3OH yield requires optimization of the enzyme ratio in each step of the multi-

cascade catalysis. A compartmentalized scaffold [17] allows for pore adjustment of each layer and 

hypothetically, the amount of enzyme immobilized on each layer can also be controlled. Co-

encapsulation of cofactor with production and regeneration enzymes but tethering of carbonic 

anhydrase (CA, EC 4.2.1.1 (to be discussed further below)), on a cationic nanofiber system has 

been reported to give the highest efficiency factor of CH3OH formation of 60 among all systems 

reported so far [18]. Tethering of CA is supposed to increase the hydration of CO2, but it is worth 

noting that the addition of the CA only produced a marginal increase in both the original biocatalytic 

productivity on the enzymes and of the efficiency factor when compared in the same nanofiber 

support enzyme immobilization system; hence the CA addition only increased the efficiency factor 

from 55.2 to 60 [18] (Table 1).   

2.1 The enzymes 

2.1.1 Carbonic anhydrase 

Carbonic anhydrase (CA, EC 4.2.1.1) catalyzes the solubilization of CO2 in water. The catalysis by 

CA is known to be very fast, with a kcat value of up to 106, a rate which is almost 10 million times 

faster than the non-catalyzed natural reaction [23]. 

Temperature and the presence of certain contaminants can compromise the performance of CA. In 

fact, the CO2 rich exhaust stream from post combustion may reach over 100°C which can be an 

extreme temperature for CA. High concentrations of amines, traces and contaminants including 
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heavy metal, sulfur and nitrogen oxides have also been found to inhibit enzyme activity [24-27]. CA 

is also sensitive to the highly alkaline environment found in industrial CO2 sorption columns, where 

both denaturation and peptide hydrolysis can occur [28]. To overcome these limitations, protein 

engineering saturated mutagenesis has been used to engineer the β-CA from the extremophile 

Desulfovibrio vulgaris to become highly thermostable, an maintain activity and stability at up to 

107°C in 4.2 M amine solvent (pH > 10) [29]. A pilot scale test system employing the engineered 

CA was able to capture 60% of CO2 from a continuous stream (30-500 liters per minute) of flue gas 

with a 12% CO2 content, and operation for 60 hours in 5 consecutive days gave  no enzyme 

activity loss of CA [29]. In another patent on industrial scale use of CA with real flue gas a liquid 

membrane system containing enzymes was employed [30]. In this system, a liquid layer was 

confined between two membranes (gas permeable) operated at different pressures to drive CO2 

across the membranes. CA could be immobilized on the membrane or be free in the solution. The 

advantage with this system is that the enzyme can facilitate CO2 uptake by rapid conversion to 

bicarbonate, while the liquid film restricts the entry of other gases such as nitrogen and oxygen [30-

32]. Most importantly the protein engineering work on the Desulfovibrio vulgaris CA [29] 

demonstrates that certain enzymes can be engineered to tolerate temperatures above 100 °C and 

an alkaline environment and thus tolerate extended use in a harsh environment.     

2.1.2 Dehydrogenases 

There are two types of formate dehydrogenase (FDH, EC 1.2.1.2); (1) Type 1: A metal-

independent FDH enzyme which catalyzes the reaction from CHOOH to CO2 irreversibly, 

employing nicotinamide adenine dinucleotide (NAD+) as cofactor; (2) Type 2: A metal-dependent 

molybdenum-based (Mo) or tungsten-based (W) FDH enzyme which catalyzes reduction of CO2 to 

CHOOH reversibly [33–36]. In FDH type I the catalytic step features hydride transfer from the C 

atom of CHOOH to the C4 atom of the NAD+ pyridine ring and hydride ion transfer is the rate 

limiting step in the mechanism. The mechanism of FDH type 2, the type employed in the enzymatic 

CO2 to CHOOH conversion (the first report employing the Candida boidinii FDH for this reaction 
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from as early as 1976 [37]) is still debated in particular with respect to how the enzyme reaction 

with CO2 takes place [38–40]. However, it is currently presumed that FDH type 2 catalyzes 

oxidation of CHOOH via transfer of two electrons from the C-H bonds to/from the Mo/W centers 

collaterally with a proton transfer to the selenocysteine or histidine residue of the enzyme (Fig. 2) 

(adapted from [41]). 

Several protein engineering efforts have been directed towards developing an enzyme with better 

CO2 reductase activity than the available wild type formate dehydrogenases. A selenocysteine-

containing, recombinant FDH from Clostridium carboxidivorans strain P7T (expressed and purified 

using an E. coli host cell) was reported to efficiently catalyze the conversion of CO2 to CHOOH 

[42]. Compared to the FDH from Candida boidinii, this FDH from Clostridium carboxidivorans thus 

had a 10-fold-lower binding affinity for NAD+ and at least a 30-fold lower binding affinity for 

CHOOH [42]. These properties make this enzyme a more promising FDH candidate for converting 

CO2 than the more widely employed Candida boidinii enzyme. Other sources of FDH that have 

shown to have preference for CO2 reduction is summarized in Table 2. 

Formaldehyde dehydrogenase (FaldDH, EC 1.2.1.46) and Alcohol dehydrogenase (ADH, EC 

1.1.1.1): FaldDH catalyzes the conversion of CHOH into CHOOH, whereas ADH catalyzes the 

conversion of alcohol to aldehyde/ketone (with reduction of NAD+ to NADH). Table 3 shows an 

overview of the main microorganisms used for the production of the three enzymes involved in the 

biocatalytic conversion of CO2 to CH3OH, including FDH, FaldDH, and ADH along with the kinetic 

parameters of the resulting enzymes. The ADH from Saccharomyces cerevisiae has a higher Km 

value for CH3OH than for CHOH (Table 3), indicating that the enzyme prefers the reverse reaction, 

aldehyde to alcohol. While numerous data have been reported for the kinetics of FaldDH catalyzing 

the forward reaction (CHOH to CHOOH), no data seem available on the kinetics of the reverse 

reaction.  



11 
 

2.2 Immobilization strategies 

The most common cross-linking agent, glutaraldehyde, is sometimes disadvantageous due to 

uncontrollable chemical cross-linking which can affect the active site of the enzyme [43]. Enzyme 

attachment techniques must be designed in such a way that the enzyme activity and functionality 

can be maintained. Unfavorable conformational changes or protein folding resulting from improper 

linkage of the amino acids to the carrier may also limit the accessability of substrates to the active 

site, thus affecting biocatalytic activity [44]. As already mentioned a sol-gel method was applied as 

the earliest immobilization technique for CO2 to CH3OH biocatalysis [7,13] (Table 1). The process 

of synthesizing the sol-gel involves toxic reagents, which presumably were responsible for the 

enzymes activity loss and low yield of CH3OH (only 43% conversion was attained). Layer by layer 

assembly of organic-inorganic hybrid microcapsules was later used as a new strategy to create a 

mild process of an organized immobilization support for the catalysis [17] (Table 1). In addition to 

enhancing the reuse and thus improving the biocatalytic productivity of the enzymes, a main 

objective of compartmentalizing the enzymes were to assemble multiple enzymes in nanometer 

distance as to facilitate substrate/intermediate products diffusion without equilibrating with the bulk 

solution. It is also a hypothetical way to control the amount of enzyme immobilized in/on the 

support. This laborious and complex method improved the NADH based yield by up to 72%. It thus 

seems more simple to facilitate non-covalent immobilization by physical adsorption in membranes 

[22]. This technique, called “fouling-induced immobilization”, involves sequential immobilization of 

the three enzymes in three separate membranes, in such a manner that if each of the enzymes 

used work optimally at different reaction conditions i.e. temperature and pH, the conditions can in 

theory be adjusted in each of the steps separately. The setup is likely to reduce product inhibition 

on each step by removing the product once formed, which could also drive the equilibrium towards 

desired product. Very recently, the enzymes involved in the three different reaction systems 

(CH3OH production, cofactor regeneration and carbonic anhydrase facilitated CO2 capture) were 

loaded together on cationic polyelectrolyte-doped hollow nanofibers fabricated by coaxial 
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electrospinning [18]. Until now, this is the system that has reached the highest biocatalytic 

productivity of all (Table 1), equivalent to ca. 100% yield [18]. In this system, carbonic anhydrase 

was immobilized on the outer surface of the nanofibers, which had been pre-loaded with the three 

dehydrogenases and the cofactor regenerating enzyme. A linear polyelectrolye (polyallylamine 

hydrochloride) which penetrated the shell of the nanofibers provided binding sites for specific 

tethering of the cofactors and helped retain the cofactor inside the lumen via interactions between 

the oppositely charged polyelectrolytes and the cofactor [18]. 

Other common methods of immobilization used for the triade dehydrogenase enzyme system 

include entrapment of enzymes in nanocapsules [19], alginate [45], agarose, cellulose or 

polyacrylamide gel [46]. These methods may hamper high mass transfer for the enzyme catalysis. 

The key to achieve an efficient multicascade biocatalysis with immobilized enzymes thus appears 

to be maintenance of active interactions between enzymes and cofactors enabling socalled 

pseudo-dynamic biocatalysis [47]. 

In theory, immobilizing the three dehydrogenases within a defined small area would shorten the 

diffusion path of the intermediate products (CHOOH and CHOH) to the next enzyme’s active site, 

which in theory would increase the conversion rate. On the other hand, such immediate conversion 

also maintains the substrate levels at a very low concentration, which lowers the individual 

enzymatic rates. It is usually difficult to assess the absolute amount of enzyme available for the 

substrates when several enzymes have been immobilized simultaneously, which in turn makes 

difficult to determine the actual biocatalytic productivity. For example, when constructing a spatial 

multi-enzyme support [16], the real amount of enzyme (FDH) entrapped during construction of the 

support material (precipitation of titania nanoparticles) could not be quantified, and precise 

assessment of the amount of each immobilize enzyme became even more complicated as an 

oligodopa solution was subsequently added to the aqueous suspension of FDH-bearing titania 

nanoparticles, to functionalize the particles with a catechol group. During this step FDH could leak 

out and be either free in the system (risk of being discarded) or conjugated with titanium 
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nanoparticles via the available catechol group (which should conjugate FaldDH instead). From the 

data reported [16] it is unclear to what extent the biocatalytic efficiency improvement was due to 

co-localization effects (FDH and FaldDH conjugated together on the titanium nanoparticles) or due 

to more efficient catalysis of FDH when entrapped in the titanium nanoparticles.  

2.3 Main challenges for large scale implementation 

Currently, there are three main challenges that prevent the exploitation of the multi-enzyme 

conversion of CO2 to CH3OH at larger scale. Probably the most difficult is to identify 

microorganisms that produce enzymes that can catalyze the reverse (reduction) efficiently. For 

example, cultivation of acetogens for expressing FDH with high affinity towards CO2 uptake is not 

immediately applicable for implementation at an industrial scale due to the strict anaerobic growth 

conditions required [48]. Production of CHOOH by using acetogens or methanogens [49] can 

moreover only be accomplished if further metabolic turnover of CHOOH is arrested by using 

expensive and toxic additives such as a sodium ionophore or methyl viologen [50]. The major 

second challenge to make the system work efficiently concerns the cofactor regeneration enzyme 

system. The kinetics of the reaction has to be adjusted to the needs of the main reaction, and none 

of the enzymes participating in the regeneration can be inhibited by the intermediate products. 

Another challenge frequently mentioned in the reported literature relates to the efficient hydration 

of CO2 in water. In this case though, it is well known that pressure plays a critical role, and that 

higher pressure is greatly helpful in solubilization of CO2 in water [51]. Co-immobilization of CA is 

also a good option to help hydration of CO2. 

3. Enzymatic cofactor regeneration 

Since the whole idea of cofactor regeneration is about reducing the cost associated with the 

cofactor addition, the enzymes, reagents and equipment used for cofactor regeneration should 

ideally be inexpensive, easily manipulated and stable under the operational conditions. The 

intermediate products and unreacted co-substrate from the main reaction should not interfere with 
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the regenerative system or enzyme, which should be able to regenerate the cofactor without 

generating intermediates [52,53]. Three methodological principles of enzymatic cofactor 

regeneration have been used: substrate-coupled, enzyme-coupled and closed loop (Fig. 3). 

3.1 Substrate-coupled cofactor regeneration 

The substrate-coupled system uses the enzyme already involved in the main production reaction to 

simultaneously foster the regenerative reaction. Such an enzyme uses both reduced and oxidized 

forms of the cofactor, and is able to catalyze the target product formation from one substrate to 

produce a new product from a second substrate, whilst simultaneously regenerating the cofactor 

(Fig. 3). An example of this type of reaction is the biocatalytic reduction of ketones. The same 

enzyme, a bacterial ADH, which catalyses the target reduction of the ketone substrate, is thus 

used for the dehydrogenation of isopropanol under the formation of acetone and regeneration of 

NADPH [54]. In this context, it is difficult to achieve thermodynamically-favorable reaction 

conditions for both reactions in the same reaction medium. Therefore, to overcome the limitation, 

high concentration of substrate is introduced to drive the reaction forward, which can in turn, in 

some cases, inactivate the enzyme [54].  

3.2 Enzyme-coupled cofactor regeneration 

Another principle is the enzyme-coupled system, which is the most widely reported method of 

cofactor regeneration. This methodology employs a second enzyme and a second substrate to 

accomplish the cofactor regeneration (Fig. 3). In this way, large thermodynamic driving forces for 

both reactions can be attained, since the second enzymatic regeneration reaction is irreversible or 

nearly irreversible, providing a strong drive for NADH (or NADPH) regeneration [54-56]. To date, 

biotransformations coupled with enzymatic cofactor regeneration, i.e. the enzyme-coupled 

regeneration principle, have shown the best results in terms of attaining high total turnover number 

TTN (Table 4). Coupling of the FDH reaction with glucose dehydrogenase as a NADH regenerative 

reaction system is a widely used example of an enzyme-coupled system in CO2 conversion [52], 
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but several other examples exist (Table 4). In both batch and continuous enzymatic membrane 

systems cofactor turnover numbers in the order of magnitude of 100,000 have thus been attained – 

mostly with glucose dehydrogenase (of different microbial origin) - but a similar high TTN has been 

reported using ADH from horse liver in a substrate-coupled system (Table 4). In general, yields of 

the primary reaction and notably the cofactor TTN vary greatly, and no immediately obvious 

differences or advantages of one system versus another, e.g. continuous versus batch enzymatic 

membrane reactor systems seem evident from the available data (Table 4).  

High productivity rate of the main conversion reaction product, e.g. above 500-600 g·L-1·d-1, have 

been attained with several of the coupled enzymatic systems, but the high productivities have not 

always been accompanied by high TTN – and vice versa (Table 4). Unfortunately, only limited work 

has apparently been done on optimizing the systems by balancing the kinetics of the main reaction 

with the kinetics of the regeneration reaction or on transferring knowledge from one recycling 

system to another.  Some of the common regenerating enzymes and the reactions employed in 

enzyme-cofactor regeneration systems, beyond FDH and ADH, have been listed in Table 5 [57]. 

Recently, phosphite dehydrogenase has been reported as a new alternative reaction for NADH 

generation, besides requiring inexpensive phosphite as the substrate and phosphate as the co-

product (that subsequently can be part of the buffer solution), the reaction is also strongly 

thermodynamically driven [58].  

3.3 Closed-loop cofactor regeneration 

Reaction-internal closed loop regeneration refers to when the product of the production reaction 

(intermediate product), is also the substrate for the second reaction (Fig. 3). The feasibility of the 

method was first demonstrated by the transformation of (L)-lactate via pyruvate to L-alanine [56]. In 

order to reach a complete conversion at least one step must be irreversible, as the coupling of two 

reversible enzymatic steps will normally result in an incomplete formation of the product [52]. 

Although this method is complicated, it can reach zero waste regeneration since the second 

substrate is not needed.  
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3.4 Regeneration in membrane reactor  

An ideal design of a reactor for efficient cofactor regeneration reactor design should avoid mass 

transfer resistance as to pave access to both “regenerative” and “productive” enzymes. A 

membrane reactor is a good option because it can function as selective barrier able to retain the 

enzyme by size exclusion. In a continuous process, product isolation is made simpler with a 

membrane reactor, which in turn will drive the reaction forward; which has special relevance when 

the enzymes have a tendency to catalyse the reaction in the reverse way. On the other hand, 

cofactors are small molecules and it is difficult to retain on the membrane without significant loss. 

Cofactor and products are normally similar in size (molecular weight), in which case the use of the 

membrane reactor is not as convenient [59]. In case the products from the main reaction are 

smaller than the cofactor size, a membrane with small pores will improve retention, but in that case 

the flux through the membrane will be limited [60]. Efforts have been made to increase the particle 

size of the cofactor by covalently linking them to large water soluble polymer, such as polyethylene 

glycol (PEG), polyethylenimine (PEI), polyacrylic acid (PAA), dextran and polylysine, in such a way 

that the cofactor can be retained by the membrane while the products can pass [61,62]. The native 

or larger (linked) cofactor can be retained in the reactor either by size exclusion or by charge 

repulsion [54, 63-65]. However, overall retention effectiveness is very much dependent on 

molecular weights, structure and charge densities of all species occurring in the solution i.e. 

products, substrates, salts and other chemicals in the reaction media.  

3.5 Immobilization of enzymes and cofactors  

Another alternative to retain cofactors is by immobilizing them, e.g. in nanoscaffold or other 

structures [66-69]. Immobilization of the cofactor together with the enzymes involved in the main 

reaction often leads to easy recycling and allows a more flexible reactor design. Current studies on 

this line have successfully attempted to immobilize oxidoreductases and the cofactor together on 

or in a nanoparticles scaffold, within the same or different particles. NAD+ has been also 

immobilized in carbodiimide activated silica nanoparticles for L-lactate production using formate 
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dehydrogenase and keto-reductase [69]. Effective shuttling between covalent enzyme-cofactor 

bound in nanosized, porous silica glass (Fig. 4), involving lactate dehydrogenase, glucose 

dehydrogenase and NADH was proven to be effective by tuning the length of the spacer 

(glutaraldehyde and PEG) and the pore size of the glass [66]. Dynamic particle collisions by 

Brownian motion resulted in good biocatalytic activity and enhanced reaction rate when a magnetic 

field was applied [46,67]. Likewise, tethered cofactors (NAD+ and NADH) on chitosan coated, 

magnetic nanoparticles platforms were tested with ADH (using benzyl alcohol and acetaldehyde as 

substrates), and resulted in higher TTN over the free system [68]. Immobilization in nanocarriers is 

also emerging drastically. Comprehensive reviews on potential and functional nanoparticles 

carriers have been published recently [69,70]. Advanced development includes silica like 

dendrimer with hierarchical pores that can accommodate different sizes of enzymes in multi-

enzyme cascade [71] and self-assembly of protein-inorganic “nanoflowers” [72].  

Contemplation of the available data for the sequential enzymatic conversion of CO2 to CH3OH, 

including the immobilized systems designed to optimize the conversion, clearly show that the 

concept of using only three enzymes, FDH, FaldDH, and ADH (Fig. 1), in sequence for the forward 

reaction is workable, i.e. even without CA involvement to help bring the CO2 into solution, but the 

regeneration of reducing equivalents, or cofactor regeneration, is crucial for feasibility of the 

system. However, very little research appears to have been done on optimizing the cofactor 

regeneration in the biocatalytic CO2 to CH3OH cascade, and kinetic models that could help identify 

the selection of the desirable reaction set-up with high total turnover number of cofactor 

regeneration are not available, despite the crucial significance of efficient NADH regeneration 

demonstrated already (e.g. as shown in Table 1). In addition, it appears that more robust enzymes 

are needed for the concept reaction to be workable to reduce industrial CO2 emissions – 

conceptually the workabilility of molecular evolution of CA to work under harsh conditions of 

temperature and pH has shown that protein engineering may indeed be possible for obtaining 

better enzymes for the CO2 to CH3OH biocatalytic cascade to be feasible in industrial settings.  
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4. Conclusion 

This review shows the conceptual workability of enzymatic CO2 to CH3OH conversion, but also 

highlights that there are bottlenecks to be overcome in order to exploit this type of reaction to 

convert CO2 into valuable chemicals at large scale. Development of efficient enzyme 

immobilization systems, to favor both enzyme stability and reuse, has already been quite 

extensively investigated, and use of nanocarriers or immobilization on separation membranes have 

shown promise in this regard. Enzyme immobilization is a key to drive up the biocatalytic 

productivity of the enzyme cascade. The option for reaping of CHOH and CHOOH during the 

reaction warrants innovative development as so does the cofactor regeneration which appears 

crucial for optimal efficiency. However, the quantitative kinetics of the coupling of a reaction for 

efficient cofactor regeneration has only been scarcely addressed in this regard. In general, the 

enzymes used in the forward CO2 to CH3OH biocatalytic cascade have been wild-type enzymes 

(from different microbial sources) and the available data strongly indicate that there is a significant 

need for identifying or engineering of better enzymes. Notably the evolution of better robustness of 

the enzymes appears crucial for successful exploitation. However, surprisingly limited knowledge is 

available on the structure-function of the relevant dehydrogenases to work in the reverse and the 

kinetics of this type of reactions. Hence, the development of this system for industrial feasibility still 

holds several biochemical engineering challenges. More efforts to develop better enzymes, kinetic 

models, and robust enzyme immobilization systems fit for this particular reaction, as well as 

efficient cofactor regeneration systems are expected in the future. 
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Figures 

 

Fig.1 Biocatalytic transformation pathway of CO2 to CH3OH via stepwise reverse enzymatic 

catalysis by FDH, FaldDH and ADH as first introduced by Obert and Dave [7]. 
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Fig. 2 Reduction of CO2 to CHOO- as proposed mechanism adapted from [41].
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Fig. 3 Principle methods of cofactor regeneration. 
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Fig. 4 Covalent enzyme-cofactor bound in nanosized porous silica glass. Adapted from [66]. 
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Tables 

Table 1 Biocatalytic productivity of enzymatic conversion of CO2 to CH3OH from the available literature. 

 
Optimum reactor  
conditions 

Immobilization matrix 

Biocatalytic 
productivity 

(μmolCH3OH/mgenzyme·h) 

Efficiency factor 

(μmolCH3OH/ mgenzyme·h· 

μmolNADH) x 10-3 

NADH 

Initial 
amount 
(μmol) 

Ref. 

Without cofactor 
regeneration 

2 ml, PBS, pH 7 
3 h, 20°C 

Free system 0.124 0.62 
200 [7] 

Sol-gel  0.324 1.62 

2 ml, PBS, pH 7 
8 h, 37°C 

Free system 0.375 3.75 
100 [13] 

Sol-gel  0.344 3.44 

28 ml, tris-HCl,  
pH 7, 8 h, 20°C 

Free system 3.870 4.12 
940 [14] 

TMOS + alginate (beads) 3.843 4.09 

tris-HCl, pH 7 
8 h, 20°C 

Free system 0.060 and bna [73] 
Capsule in bead scaffold 0.186 

2 ml, tris-HCl, pH 7  
8 h, 35°C 

Free system 0.233 1.16 
200 [15] 

Protamine-templated titania 0.256 1.28 

2 ml, PBS, pH 6.5 
3h, 37°C 

Free system 0.020 0.67 
30 [19] 

Nanoparticle 0.293 9.77 

18 ml, PBS, pH 7  
9 h, 20°C 

Free system 1024 20.5 
50,000 [17] 

Hybrid microcapsules 2066 41.3 

18 ml, PBS, pH 7,  
9 h, 20°C 

Free system 0.339 0.007 

50,000 [22] Co-immobilized 0.315 0.006 

Sequential immobilization 0.424 0.008 

2 ml, PBS, pH 7 
10 h, 20°C 

Free system 15.979 15.9 1000 
[18] 

Nanofiber support 0.874 42 21 

  With cofactor 
regeneration 

reaction 

20 ml, PBS, pH 7 
0.5 h, 20°C 

Free system 1.140 5.7 
200 [20] 

Microparticles 0.760 3.8 

2 ml, PBS, pH 6.5  
3 h, 37°C 

Free system 0.053 1.77 
30 [19] 

Nanoparticle 1.433 47.8 

2 ml, tris-HCl, pH 7 
0.5 h, 20°C 

Free system 0.097 0.001 

10,000 [22] Co-immobilized 0.139 0.014 

Sequential immobilization 0.164 0.016 

2 ml, PBS, pH 7 
10 h, 20°C 

Free system 19.163 19.2 1000 
[18] 

Nanofiber support 1.159 55.2 21 

With cofactor 
regeneration 
reaction+CA 

2 ml, PBS, pH 7,  
10 h, 20°C 

Free system 20.958 20.9 1000 
[18] 

Nanofiber support 1.254 59.7 21 

and – not determined; bna – not available 
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Table 2 FDH from different sources that has high affinity for taking up CO2 as substrate. 

Source Method of expression Yield Ref. 

Syntrophobacter 
fumaroxidans 

Purified from S. fumaroxidans cells 
under anaerobic conditions 

282 s-1 for CO2 reduction  [37] 

Thiobacillus sp. Expressed using an additional C-
terminal hexa-histidine sequence 

0.3 s-1 for CO2 reduction [74] 

Rhodobacter capsulatus Heterologous expression system in 
E. coli 

1.5 s-1 for CO2 reduction [75] 

Syntrophobacter 
fumaroxidans 

Produced in axenic fumarate-
grown cells as well as in cells 
which were grown syntrophically 
on propionate with 
Methanospirillum hungatei as the 
H2 and formate scavenger 

900 µmol CO2 oxidized min-1 mg-

1 enzyme 

 

[33] 
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Table 3 Apparent Michaelis Menten constant, Km, of Formate dehydrogenase, Formaldehyde 
dehydrogenase, and Alcohol dehydrogenase for their respective substrates. 

Enzyme Reaction 
Km 
(mM) 

Vmax 
(μmol/min·mg) 

Source Ref 

Formate 
dehydrogenase 

CO2 → CHOOH 40 na Pseudomonas oxalaticus [76] 

CHOOH → CO2 13 2.2 Candida boidinii    [38] 

Formaldehyde 
dehydrogenase 

CHOOH → CHOH       nd 

CHOH → CHOOH 0.2 8.3 Pseudomonas putida    [77] 

Alcohol 
dehydrogenase 

CHOH → CH3OH 6 6 Saccharomyces 
cerevisae 

measured 
CH3OH → CHOH 100 0.019 
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Table 4 Coupled biotransformations with high total turnover (TTN) for cofactor regeneration.  

Main reaction Regeneration reaction Reactor/capacity 
Yield 
(g·L-1·d-1) 

Cofactor TTN References 

Mannitol dehydrogenase 
(Saccharomyces cerevisiae) 

Fructose →Mannitol 

Glucose dehydrogenase (NADH) 
(Bacillus megaterium) 

Glucose → Gluconic acid 

Continuous 
*EMR 
 

nd 150,000 [54] 

Alcohol dehydrogenase 
(Thermoanaerobium brockii) 
Sulcatone → Sulcatol 

Alcohol dehydrogenase (NADPH) 
(Thermoanaerobium brockii) 
Isopropanol → Acetone 

Continuous 
EMR 
 

nd 4,400 [54] 

Aldose reductase 
(Candida tropicalis) 
Glucose → Sorbitol 

Glucose dehydrogenase (NADPH) 
na 
Glucose → Gluconic acid 

Continuous  
EMR 
0.05L 

3 106,000 [63] 

Lactate dehydrogenase 
(Staphylococcus epidermidis) 
2-Oxo-4-phenyl-butyric acid → 2-
Hydroxy-4-phenyl-butyric acid 

Formate dehydrogenase (NADH) 
(Candida boidinii) 
Formate → CO2 

Continuous 
EMR 
0.2L 

165 900 [78] 

Alcohol dehydrogenase 
(Horse liver) 
Cyclohexanone → Cyclohexanol 

Alcohol dehydrogenase (NADH) 
(Horse liver) 
Cyclopentanol → Cyclopentanone 

Batch 
EMR 
 

nd 100,000 [79] 

Alcohol dehydrogenase 
(Rhodococcus erythropolis) 

1-Phenyl-2-propanone → 1-Phenyl-2-
propanol 

Formate dehydrogenase (NADH) 
(Candida boidinii) 

Formate → CO2 

Continuous 
EMR 

100 1350 [80] 

Leucine dehydrogenase 
na 
Trimethyl pyruvic acid→ L-tert-Leucine 

Formate dehydrogenase (NADH) 
na 
Formate → CO2 

Continuous 
EMR 
0.01L 

373 7920 [60] 

Glutamate Dehydrogenase 
na 
α-Ketoglutarate → L-Glutamate 

Glucose dehydrogenase (NADH) 
(Bacillus sp.) 
Glucose → Gluconic acid 

Continuous 
EMR 
0.25L 

120 10,000 [81] 

Alcohol dehydrogenase 
(Rhodococcus erythropolis) 
1-Phenyl-2-propanone → 1-Phenyl-2-
propanol 

Formate dehydrogenase (NADH) 
(Candida boidinii) 
Formate → CO2 

Continuous 
EMR  
0.05L 

64.3 1361 [82] 

Glutamate dehydrogenase 
(beef liver) 
2-keto-6-Hydroxyhexanoic acid → L-6-
Hydroxynorleucine 

Glucose dehydrogenase (NADH) 
(Bacillus megaterium) 
Glucose → Gluconic acid 

Batch 
EMR 
0.03L 

507 387 [83] 

Lactate dehydrogenase 
(Leuconostoc mesenteroids) 
(R)-3-(4-Fluorophenyl)-2 hydroxy 
propionic acid → (R)-Methyl 3-(4-
fluorophenyl)-2-hydroxypropanoate 

Formate dehydrogenase (NADH) 
(Candida boidinii) 
Formate → CO2 

Continuous 
EMR 
2.2L 560 2050 [84] 
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Leucine dehydrogenase 
(Bacillus sphaericus) 
Trimethylpyruvic acid → L-tert-Leucine 

Formate dehydrogenase (NADH) 
(Candida boidinii) 
Formate → CO2 

Batch  
EMR 
 

638 nd [85] 

Lactate dehydrogenase 
(Rabbit muscle) 
Pyruvate → L-Lactate 

Glutamate dehydrogenase (NADH) 
(Bovine liver) 
L-Glutamate → α-Ketoglutarate 

Batch 
Test tube nd 20,000 [86] 

Carbonyl reductase 
(Streptomyces coelicolor) 
Ethyl 4-chloro-3-oxobutanoate → Ethyl 
(S)-4-chloro-3-hydroxybutanoate 

Carbonyl reductase (NADH) 
(Streptomyces coelicolor) 
2-Propanol → Acetone 

Batch 
Stirred reactor 
0.5L 

655 12,100 [87] 

Xylose reductase 
(Pichia stipitis) 
Xylose → Xylitol 

Glycerol dehydrogenase (NADH) 
(Cellulomonas sp) 
Glycerol → Dihydroxyacetone 

Batch 
Test tube 160 82 [47] 

Alcohol dehydrogenase 
(Lactobacillus  brevis) 
2-Octanone → 2-Octanol 

Glucose dehydrogenase (NADPH) 
na 
Glucose → Gluconic acid 

Continuous 
EMR 
0.02L 

10 245 [88] 

Alcohol dehydrogenase 
(Thermus thermophilus) 
2,2,2-Trifluoroacetophenone →  
(S)-α-(Trifluoromethyl)benzyl alcohol 

Glutamate dehydrogenase (NADH) 
(Thermus thermophilus) 
L-Glutamate → α-Ketoglutarate 

Batch 
Test tube 
 

nd 9000 [89] 

Alcohol dehydrogenase 
(Lactobacillus  brevis) 

2-Octanone → 2-Octanol 

Alcohol dehydrogenase (NADPH) 
(Lactobacillus  brevis) 

2-Propanol → Acetone 

Continuous 
Stirred reactor 12 26,000 [90] 

Carbonyl reductase 
(Bacillus subtilis) 

Ethyl 2-oxo-4-Phenylbutyrate → (R)-2-
hydroxy-4-Phenylbutyrate 

Glucose dehydrogenase (NADPH) 
(Bacillus subtilis) 

Glucose → Gluconic acid 

Batch 
Stirred reactor 
1L 

660 32,039 [91] 

Carbonyl reductase 
(Streptomyces coelicolor) 

Ethyl 4-chloro-3-oxobutanoate → Ethyl 
(S)-4-chloro-3-hydroxybutanoate 

Carbonyl reductase (NADH) 
(Streptomyces coelicolor) 

Isopropanol → Ketone 

Batch 
Stirred reactor 
50L 

86 6060 [92] 

Carbonyl reductase 
(Candida glabrata) 

Ethyl 4-chloro-3-oxobutanate → (R)-3-
Hydroxy-4-chlorobutyrate 

Glucose dehydrogenase (NADPH) 
(Bacillus megaterium) 

Glucose → Gluconic acid 

Batch 
Stirred reactor 
1L 

660 108,000 [93] 

Alcohol dehydrogenase 
na 
Acetaldehyde → Ethanol 

Alcohol dehydrogenase (NADH) 
na 
Benzyl alcohol → Benzaldehyde 

Batch 
Stirred reactor nd 3904 [68] 

Carbonyl reductase 
(Yarrowia lipolytica) 
Ethyl 4-chloro-3-oxobutanoate → Ethyl 
(S)-4-chloro-3-hydroxybutanoate 

Carbonyl reductase (NADPH) 
(Yarrowia lipolytica) 
Mannitol/Sorbitol → Sugar 

Batch 
Stirred reactor 
0.05L 

600 13,500 [94] 

*EMR – Enzymatic membrane reactor
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Table 5 Cofactor regeneration enzyme reaction systems for NADH and NADPH (beyond FDH and 
ADH). 
 

Regeneration enzyme Cofactor Cosubstrate Coproduct 

Glucose dehydrogenase (GDH) 
NADP+ → NADPH 

NAD+ → NADH 
Glucose D-Glucono-1,5-lactone 

Phosphite dehydrogenase 
(PDH) 

NAD+ → NADH Phosphorus acid Phosphates 

Hydrogenase (Hase) NADP+ → NADPH H2 - 

 


