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Abstract

The sand shot in the DISAMATIC process is simulated by the discrete element

method (DEM) taking into account the influence and coupling of the airflow

with computational fluid dynamics (CFD). The DEM model is calibrated by

a ring shear test, a sand pile experiment and a slump test. Subsequently, the

DEM model is used to model the propagation of the green sand inside the

mold chamber and the results are compared to experimental video footage.

The chamber contains two cavities designed to quantify the deposited mass of

green sand. The deposition of green sand in these two cavities is investigated

with three cases of different air vent settings which control the ventilation of

the chamber. These settings resulted in different air- and particle-velocities as

well as different accumulated masses in the cavities, which were successfully

simulated by the model.
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1. Introduction

The DISAMATIC process [1] is a sand casting process applying green sand

as the molding material [2, 3]. The DISAMATIC process is typically used in the

automotive industry to produce molds for metal castings in order to manufacture

e.g. brake disks, differential cases and steering knuckles.

The DISAMATIC moulding process has been used since the early 1960s.

Compared to conventional green sand moulding processes, it has a vertical

parting line. Furthermore, it is a flaskless process, meaning there are no boxes

supporting the moulds. The DISAMATIC moulding process is very productive

compared to other processes, as it can produce up to 555 moulds per hour.

Additionally, it can produce parts with low tolerances. Due to its efficiency and

accuracy it is widespread used within the automotive sector.

The ever-rising demands to casting quality, especially within the automotive

sector, lead among other things to higher demands to the mould quality. To

comply with the higher demands to the mould quality, simulation tools come in

handy in the development work having to be done. Until now most of the de-

velopment work has been based on experience and a trial and error approach as

no commercial simulation tools have been available for simulating the combined

flow of green sand and air. The lack of commercial available simulation tools is

partly driven by lack of material data of the green sand needed to describe the

flow. Hence determination of material data has been a major part of this study.

The green sand consists mostly of quartz sand mixed with coal dust, ben-

tonite (active clay) and water, which coats the sand grains to form a cohesive

granular material where the green sand flow-ability is affected by the amount

of bentonite and water. In [4] a regression model was applied to determine

the relationship between the input value of the sand mixture, i.e active clay,

dead clay, water content to the related output values of compactability, com-

pressive strength, spalling strength and permeability. These relationships were

developed from a DISAMATIC foundry. The green sand flow-ability was inves-

tigated in [5], [6] and the fluidized viscosity of green sand was investigated in
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[7]. In [6] it was suggested that the green sand can be investigated as an yield

stress material and an analytical derivation based on the yield stress material

with additional overpressure similar to the conditions when the sand enters the

chamber was made in [8]. Tri-axial tests have also been performed on green

sand in order to obtain the yield locus in [9]. Uni-axial compression tests were

made for green sand and the stress-strain curves were analysed in [10]. Green

sand was tested with a ring shear tester obtaining the yield locus and a sand

pile experiment in [11].

DEM simulations of the ring shear tester have been performed in [12] where

the particle shape, cohesion and static friction were investigated with respect

to the resulting tangential pre-shear stress and the peak stress (yield stress). A

sensitivity study was performed in [13] simulating a Schulze ring shear tester

studying the effect of several material parameters on the resulting tangential

pre-shear stress. The resulting tangential pre-shear stress relationship to the

particle-particle static friction coefficient (µs,p−p) was asymptotic up to the

value of µs,p−p < 0.70 and a linear dependence was found on the parameters

rolling friction coefficient (µr,p−p) and the Young’s modulus. A DEM adhe-

sive elasto-plastic contact model was used to simulate uni-axial consolidation

followed by unconfined compression to failure in [14].

A simulation of the sand casting process with a two phase continuum model

has earlier been presented in [15] and continuum models have been designed to

model granular materials as e.g. in [16, 17]. In [18] a multiphase model was

applied to simulate a core shooting process numerically in 2-D and 3-D dimen-

sions. The DISAMATIC process was first studied with a 2-D DEM model in

[19] where the granular flow was compared to video footage. This study fo-

cused on the deflection of the sand flow causing ”shadow effects” around the

ribs placed in the geometry of the mould. The model applied a constant particle

inlet velocity and particle diameters of 2 mm and 4 mm as representative sand

particle clusters for the granular flow. In [11] the same geometry was investi-

gated with a 2-D and 3-D DEM slice model applying the representative particle

cluster diameter of 2 mm. A 2-D sensitivity study was performed with respect
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to the particle-wall interaction which showed the particle-wall values to be of

less importance for the flow behaviour and filling times than e.g. particle inlet

velocity. The DEM model was calibrated from experiments (ring shear test and

sand pile experiment) and afterwards a velocity function for the granular flow

was found from video footage.

In this study the framework of [11] is applied for calibrating the DEM model

using a ring shear tester to obtain the static friction coefficients and a sand

pile experiment for calibrating the rolling resistance and cohesion value for the

particle-particle interaction. Additionally the mass of the DEM particle is re-

calculated and a slump experiment is used for calibrating the rolling resistance

for the particle-wall interaction. Finally a DEM model and a CFD-DEM model

are tested by simulating the flow and deposition of green sand in the two cavities

and subsequently compared to the experimental observations for the three cases

of the air vent settings.

2. Governing equations

2.1. Granular flow: Discrete element method

The framework of [11] is applied in this work where the commercially avail-

able software of STAR-CCM+ [20] is used for simulating the DISAMATIC pro-

cess.

2.1.1. Contact notation

The notation for the particle contact is from [21], where particle i and particle

j in contact are denoted by their respective positions at {~ri, ~rj}, the velocities

{~vi, ~vj}, the angular velocities of {~ωi, ~ωj} and the distance between the two

particles is denoted rij = ||~ri − ~rj ||2. The position vector from particle j to i is

~rij = ~ri − ~rj and the normal overlap δij = (Ri +Rj)− rij = 2R with a uniform

radius of R for all the particles.

4



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2.1.2. Normal contact force

The normal force on particle i from particle j can be found as,

~Fnij
= ~nijknδ

3
2

ij −Nnij
~vnij

+ ~Fcohij
(1)

~nij =
~rij
rij

is the unit normal vector, ~vnij
is the relative normal velocity and δij is

the normal overlap. Nnij
is the normal non-linear damping coefficient, Fcohij

is

the cohesion, Kn is the stiffness in the normal direction, Nnij
is the damping in

the normal direction, for further details see [11]. The particle-particle constant

cohesion force in the normal direction is,

~Fcohij
= −1.5πRminW~nij (2)

Rmin = R is the minimum radius of contact, W is the cohesion parameter. The

cohesion ~Fcohij
selected is the Johnson-Kendall-Roberts (JKR) model from [22]

with the factor of -1.5.

2.1.3. Tangential contact force

The tangential force on particle i from particle j can be found as,

~Ftij = Kt

~tij

||~tij ||2
δtij

3
2 −Ntij~vtij +

~Trolij (3)

~tij is the tangential direction of the overlap, δtij is the tangential overlap, Kt

is the tangential stiffness, Geq is the equivalent shear modulus, Ntij is the tan-

gential non-linear damping coefficient. The rolling resistance for the particle-

particle interaction used is the constant torque method defined as,

~Trolij = −
ωrel

|ωrel|
µrReq|~Fnij

| (4)

The relative angular velocity between the two particles is defined as ~ωrel =

~ωi − ~ωj and the torque from the rolling resistance is ~Trolij .

Note that there is a maximal tangential force due to Coulomb’s law,

‖µs
~Fnij

‖2 < ‖~Ftij‖2 (5)

the particle-particle static friction coefficient is denoted µs,p−p and particle-wall

static friction coefficient is denoted µs,p−w.

5
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2.1.4. Summing the forces

The total resultant force on particle i is then computed by summing the

contributions of all particles j with which it currently interacts, thus:

~F tot
i = mi~g +

∑

j

(

~Fnij
+ ~Ftij

)

(6)

where ~g is the acceleration due to gravity. The total torque acting on particle i

is given by

~T tot
i = −Ri

∑

j

~nij × ~Ftij (7)

From these two expressions the acceleration, velocity, position and rotation, are

calculated by Newton’s second law, numerically for each time step.

2.2. Air flow: Navier Stokes equations

The low air pressures (P ) measured in the chamber during the sand shot

and the corresponding low air velocities (vg) make the assumption of the air

phase being an incompressible fluid valid for small values of the Mach number

≤ 0.3. Then the continuity equation becomes,

ρg
∂

∂t
(ǫg) + ρg∇ · (ǫgvg) = 0 (8)

where ǫg is the air volume fraction found from ǫg =
Vg

Vg+Vs
where Vg is the

volume of the air phase and Vs is the volume of solid phase. Navier-Stokes

equations for the incompressible air phase are,

ρg
∂

∂t
(ǫgvg) + ρg∇ · (ǫgvgvg) = −ǫg∇P + ǫgρgg −∇ · (ǫgτg)− If (9)

where ρg = 1.18415 kg
m3 is the density of the air phase, g = [0,−9.82, 0]ms2 is

gravity and the shear stress on the air is τg where the air is assumed to be a

Newtonian fluid with the dynamic viscosity of µ = 1.85508 × 10−5 Pa · s. The

two-way coupling between the air phase and the solid phase is enforced via the

inter-phase momentum transfer of If due to the drag on the solid phase.

6
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2.3. The inter-phase momentum transfer

A source smoothing method is applied for the inter-phase momentum trans-

fer of If which averages the momentum transfer from larger parts of the mesh

to the solid phase stabilizing the simulations to ensure converging simulations.

The drag force on the solid phase is,

FD = −
1

8
πd2ρgCd(vg − u)|vg − u| (10)

where u is the velocity of the solid phase and d is the diameter of the particle.

The interaction of the solid phase with the air phase is described by the Schiller-

Naumann drag model,

Cd(Rep) =











24
Rep

(

1 + 0.15Rep
0.687

)

, Rep ≤ 103

0.44, Rep > 103
(11)

where Rep is the particle Reynolds number and it is defined as,

Rep =
ρg|vg − u|d

µ
(12)

where |vg − u| is the slip velocity.

2.4. Turbulence model

Modelling the air phase as a continuum is done by solving Navier Stokes

equations with the finite volume method (FVM) applying a polyhedral mesh.

The k-ǫ turbulence model is used and all the methods are described in [20].

3. The green sand tests and calibrating of the DEM model

The following green sand tests and calibrations of the DEM model are per-

formed.

3.1. The water content test

The percentage of water content is found by heating a sample of green sand

and measuring the mass of water which is lost. The details of the water content

test also denoted the moisture determination is described in [3]. This is a

standard test typically performed in a foundry.

7
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3.2. The Schulze ring shear tester

The Schulze ring shear tester is applied for characterizing the flow of granular

materials in order to obtain the yield locus and the wall yield locus. The test

procedures can be found in [23, 24]. The particle-wall static friction coefficient

(µs,p−w) is acquired directly from the wall friction angle as demonstrated in

[11]. The particle-particle static friction coefficient in the simulation is found

directly from the linearized yield locus angle. The linearized yield locus angle

is described in [11, 23, 24, 25].

3.3. The sand pile experiment and the DEM calibration.

The sand pile experiment is applied for characterizing and calibrating the

DEM model with respect to the height of the sand pile (hp) above the box cf.

Fig. 1(left) and described in [11]. The parameters that are calibrated from the

sand pile height are the particle-particle rolling resistance interaction (µr,p−p)

and the particle-particle cohesion value (Wp−p).

[Figure 1 about here.]

3.4. The compactability test

The compactability test described in [3, 11] is applied to characterize the

green sand condition and this is the standard test performed in the foundries.

The green sand is poured into the cylinder with a tube filler accessory, subse-

quently the mass is measured before the ramming and from this the loose density

of the green sand ρexp is calculated cf. Fig. 1(middle). The compactability of

the sand mixture is finally found by the rammer method described in [3]. The

cylinder has a height of Hcyl = 0.12 m and a diameter of Dcyl = 0.05 m.

3.5. Scaling the DEM particle density

The preliminary density of the DEM particles (ρDEM
†) used in the sand pile

simulations (Fig. 1(left)) is corrected to ρDEM
∗ to obtain a correct simulated

8
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bulk density (ρsim
∗) equal to the loose density measured before the ramming

(ρexp) cf. Fig. 1(middle)

ρDEM
∗ ≈ ρDEM

†

(

ρexp
ρsim

)

. (13)

Here ρsim denotes the preliminary bulk density obtained from the sand pile

simulation. Thus the subsequent slump calibration has the correct simulated

bulk density (ρsim
∗) shown in Fig. 1(right).

3.6. The slump cylinder experiment and the DEM calibration

The slump cylinder experiment is performed by lifting the cylinder rapidly

upwards emulating the instantaneous wall opening in the simulation to finally

find the slump length. The cylinder applied for the slump test is the same as

the cylinder applied in the compactability test. The slump cylinder experiment

is shown in Fig. 2(top) and the slump simulation is shown in Fig. 2(bottom).

[Figure 2 about here.]

When the green sand slump has settled the two diameters orthogonal to each

other (lx, ly) are measured and the average is calculated for the final slump

length lp where the simulated slump length is found in a similar way from the

algorithm first applied in [26] and described in [25]. The rolling resistance of the

particle-wall interaction µr,p−w is calibrated with respect to the slump length.

The slump simulation is applying the values found from the earlier calibrations

together with the re-calculated DEM particle density (ρDEM
∗).

For a correct density in the slump simulation the number of initial injected

particles are found from the re-calculated DEM particle density (ρDEM
∗) to-

gether with the experimental loose density in the cylinder (ρ) in the following

way,

N ≈
ρsimHcyl

π
4D

2
cyl

ρDEM
∗ π
6 d

3
(14)

The particle are initially placed on an initial lattice with an initial random

velocity to ensure a random packing.

9
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4. The experimental tests of the DISAMATIC process

4.1. The DISAMATIC process

The DISAMATIC process is illustrated with a special setup in the chamber

shown in Fig. 3 with two cavities on the left hand side each having a narrow

opening for testing the ability of green sand to enter the two cavities. During

the sand shot the compressed air in the air tank drives the sand flow vertically

down from the hopper through the sand slot into the chamber filling the mold

chamber and the two cavities.

[Figure 3 about here.]

In the casting process the sand mold is squeezed also, but in this experiment the

swing plate on the left hand side is opened instead and the green sand is then

brushed out of the cavities so that the mass of the green sand in the cavities

can be measured at the end of each experiment. The flow inside the chamber

is captured with the video camera (v1) placed on the right hand side on the

chamber (Pressure plate: PP) and photos are shown in Fig. 4 for eight stages

of the sand shot.

[Figure 4 about here.]

The red light shown in Fig. 4(a) indicates when the valve between the air tank

and the hopper is activated, this moment is defined as tstart = 0. A very short

time after the valve activation the air pressure over the sand in the hopper starts

to increase. Later during the sand shot, the sand starts flowing into the chamber

shown in Fig. 4(a) and this moment is denoted t0. Seven lines are marked to

quantify the seven filling times t1 − t7, which is defined as when the green sand

reaches the seven lines as shown in Fig. 4(b)-(h).

In Fig. 5 the flow in the cavities is captured with the mini video cameras v2

and v3 where the filling times of the cavities are monitored as t1 when the sand

enters the cavity and t2 when the camera is blocked by the green sand. The

times for the two cavities are denoted the following way: For the bottom cavity

tb, 1 and tb, 2 and for the top cavity tt, 1 and tt, 2.

10
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[Figure 5 about here.]

4.2. The two air vent types

Two types of air vents are applied for ventilating the chamber where one

type is placed in the chamber (ac) and another type is placed on the SP side

inside the cavities (ap). Experiments for the air vents flow rate versus pressure

drop are shown for the air vent in the chamber in Fig. 6(blue line) and for the

air vents on the pattern plate in Fig. 6(black line). The pattern plate air vents

are placed in the cavities.

[Figure 6 about here.]

The physical behaviour shown in Fig. 6 resembles the Darcy flow,

Q = −a∆p (15)

where Q is the air flow rate and ∆P is the pressure difference across the air

vent and a is the permeability of the air vent. The chamber air vent type has

the value of ac = 1.274× 10−6 m3

sPa and the air vent type placed in the cavities

on the pattern plate has the value of ap = 2.34× 10−6 m3

sPa .

4.3. The air vent settings and the three test cases

The air vents and their positions are illustrated in Fig. 7 where a total of

294 air vents are opened and this is denoted case 1. There are 238 air vents of

the type ac where 112 air vents are placed at the top of the PP chamber side,

52 air vents are placed at the top of the SP side shown in Fig. 7(Chamber top

view) and 2 × 37 air vents are placed on the chamber sides in Fig. 7(Chamber

side view). On the pattern plate shown in Fig. 7(Swing plate view) each cavity

has 28 cavity air vents of the type (ap) where the purpose of the air vents in

the cavities is to ensure a better ventilation and thereby transporting a larger

amount of green sand into the cavities.

[Figure 7 about here.]

11
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The three cases of the air vents settings are investigated with 2.0 bar overpres-

sure where the three air vent settings are presented in table 1. The three air

vents settings are: case 1 with all the air vents opened, case 2 with all the air

vents closed in the top of the SP side and 5 closed side air vents and finally case

3 with 14 air vents closed in each pattern plate.

[Table 1 about here.]

The chamber measurements without the pattern plate have the width W =

0.50 m, height H = 0.48 m and depth D = 0.60 m. The cavities in the pattern

plate has the depth Dc = 0.57 m and is also centred at the middle of the

chamber depth. The orifice opening height of the cavities are set to 0.015 m

and the height of the cavities is Hc = 0.085 m. The sand slot has the width

Wi = 0.04 m and a depth Ds = 0.54 m and is centred at the middle of the

chamber depth. The encapsulation areas for the air vents Ap, ASP , APP are

applied for calculating the porous resistance for the simulations together with

the two types of air vents in eq. 18.

5. Simulation settings for the DISAMATIC process

5.1. The simulated geometry

[Figure 8 about here.]

The flow is modelled as a 3-D slice placed in the middle of the chamber shown in

Fig. 8 with a slice depth of Ds = 0.01 m in the z-direction where this direction

has symmetry. Thereby the side air vents are not simulated due to the slice

geometry of the simulation.

5.2. Boundary conditions for the granular flow

5.2.1. DEM particle flow rate

The chamber is divided into the eight different volumes (V1 − V8) where

Vn = AnDs and the sand jet is included in the first volume (V1) and thereby

excluded from the other volumes as shown in Fig. 8. The volumes are filled with

12
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green sand at the subsequent filling times (t1 − t7). From this the flow rates are

calculated (f1 − f7) where the flow rate for the last area A8 is assumed to be

equal to the flow rate of f7. The particle flow rate function fy(t) in the DEM

simulations is calculated from the volumes of the chamber V1 − V7 (neglecting

the cavities on the swing plate) multiplied with the maximum particle packing

fraction of approximately ηh = 0.74 divided with the volume of the particle and

the individual flow rate intervals ∆t1 = t1, ∆t2 = t2 − t1, ∆t3 = t3 − t2 etc. in

the following way,

fn =
Vnηh

π
6 d

3∆tn
(16)

Volume conservation for the number of injected particles is established in the

transition zone from the flow rate of fn to fn+1 with a linear interpolation in the

time interval of ∆tn, s = min (∆tn,∆tn+1). The slope of linear interpolation in

the time interval is calculated as sn = fn+1−fn
∆tn, s

and the particle flow rate function

fy(t) then becomes,

fy(t) =fn if tn−1 +
∆tn−1, s

2
≤ t ≤ tn −

∆tn, s
2

fy(t) =fn +

(

t−

(

tn −
∆tn, s

2

))

sn if tn −
∆tn, s

2
≤ t ≤ tn +

∆tn, s
2

(17)

The calculated flow rate of fy(t) is applied for all the following DEM particle

inlet velocities. The filling times applied for obtaining the flow rate are shown in

Fig. 9 where the full lines represent the selected experiment used for simulating

each of the three cases.

5.2.2. DEM particle inlet velocity

The time dependent inlet particle velocity (vy(t)) in the vertical y-direction

is obtained from the estimated velocities vn = An

tnWi
, where the seven areas (A1−

A7) are shown in Fig. 8. The transition from velocity vn to vn+1 is found using

eq. 17.

[Figure 9 about here.]

The filling times (t1 − t7) used for calculating the inlet velocity are shown in

Fig. 9 for the selected experiments. The resulting time dependent velocities

13



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

vy(t) for three simulations are shown in Fig. 10(a) where the spikes are due

to the video frame rate 60 frames/s making it difficult to exactly determine

the filling times shown in Fig. 9. To smooth out the spikes a two stage time

dependent inlet velocity v2y(t) is constructed, where v1 and v2 are connected

by eq. 17. The first constant velocity is obtained as previously whereas the

second constant velocity v2 is chosen among the velocities vy(t > t1) with the

longest duration cf. Fig. 10(a). An exception is made in case 3, where the second

longest time duration is chosen to avoid an otherwise unrealistic velocity. The

two stage time dependent inlet velocities are shown in Fig. 10(b). Lastly, two

constant particle velocities of vy(t) = −5
m
s and of vy(t) = −7

m
s are considered.

For each of the three cases all the four different vertical velocities are simulated

for both pure DEM simulations (vacuum) and CFD-DEM (including air phase)

and this gives a total of 24 simulations.

[Figure 10 about here.]

A normal distribution is applied for the horizontal velocity to emulate the ran-

dom nature of the green sand flow in the chamber and was originally applied

in [11]. Thus, the horizontal velocity vx(t) has a mean of 0.0 m
s and a standard

deviation 0.1 m
s and a maximum fluctuation of ±1.0 m

s as in [11].

5.3. Boundary conditions for the air flow

5.3.1. Air inlet pressure

In this study the focus is on simulating the flow of air and green sand in the

chamber, the air inlet pressure boundary for the chamber is placed at the sand

slot where the green sand also enters, as shown in Fig. 11. The air pressure

at the boundary is obtained from the top pressure sensor shown in Fig. 7(red

circle).

5.3.2. Air outlets

A symmetry boundary is applied in the z-direction (depth direction) which

resembles the conditions in the center of the mold during the sand shot and the
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boundary is shown in Fig. 11. The mesh has a polyhedral structure with the cell

size of ∆x = 0.025 m giving the number of cells of around ≈ 9000. There are

4 porous baffle interfaces in the chamber each having an elongated air channel

with a pressure outlet set to 0 bar relative to the pressure of the inlet.

[Figure 11 about here.]

5.3.3. Air outlet: Darcy flow in the porous baffle

The DISAMATIC air vents from eq. 15 are set in parallel because the n air

vents are positioned side by side in the areas (A),

β =
A

ρgan
(18)

β is the constant porous viscous resistance [20] and is determined by the air vent

type (a), the number of air vents (n) over the cross sectional area (A) and the

density of the fluid ρg. The placements and areas of the air vents are illustrated

in Fig. 7 and for the simulation shown in Fig. 11. The outlet boundary settings

for all the three cases are shown in table 2 where in case 2 and in case 3 a number

of air vents are blocked and thereby the porous areas are changed together with

β.

[Table 2 about here.]

5.4. Monitoring the simulated flow

The seven filling times t1 − t7 are monitored for the simulations and found

from the particle filling of the seven volumes (V1 − V7). A volume Vn is filled

when the minimum volume of particles Vp is above the packing fraction of 0.4

and thereby the filling time is monitored tn.

The mass of the DEM particles in the cavities of the slice geometry Ds are

monitored with respect to time and scaled with Dc

Ds
= 57 due to the ratio of the

simulated geometry depth Ds versus the experimental depth of the cavities Dc.
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6. Results of the green sand tests and the calibrations

6.1. Results of the green sand tests

The result of particle-particle static friction coefficient and the particle-wall

static friction coefficient from the ring shear test, the sand pile height, the green

sand density, the slump length, the compactability and water content are shown

in table 3.

[Table 3 about here.]

6.2. Calibration of the DEM model

6.2.1. General settings for all the DEM simulations

The radius of the DEM particle, coefficient of restitution, Poisson’s ratio

and Young’s modulus are obtained the framework of [11] and listed in table 4.

The particle-wall static friction coefficient applied in the simulation takes the

value of µs,p−w = 0.33 corresponding to the average value obtained from the

ring shear tests for the green sand samples interaction with a stainless steel

plate with the procedure described in [11]. The particle-particle static friction

coefficient of µs,p−p = 0.57 is obtained from the ring shear test’s linearized yield

locus angle, where all the parameters are listed in table 3.

[Table 4 about here.]

In the sand pile simulations it is assumed that the particle-wall rolling resistance

is µr,p−w = 0.4, this is a reasonable assumption based on prior simulations of

the slump cylinder test. Note, that the particle-wall rolling resistance µr,p−w

will be calibrated later in the slump cylinder simulation. The initial DEM

particle density of ρDEM
† = 1750 kg

m3 is a reasonable assumption based on prior

simulations of the sand pile density.

6.2.2. Results of the sand pile calibration

The experimental sand pile height is plotted together with the simulated

sand pile heights in Fig. 12. The simulations with µr,p−p = 0.4 and Wp−p =

16



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

0.3 J
m2 (blue dotted line) and µr,p−p = 0.2 and Wp−p = 0.5 J

m2 (red dot) both

give values of the height which are within the standard deviation of the measured

height shown in Fig. 12. The selected parameters are µr,p−p = 0.4 and Wp−p =

0.3 J
m2 because they give a more conically shaped sand pile which was also

observed in the experiments and described in [11].

[Figure 12 about here.]

6.2.3. Re-calculating the DEM particle density

In Fig. 13 the simulated sand pile density (ρsim) is compared to the exper-

imental loose poured bulk density (ρexp) measured in the cylinder before the

compactability test.

[Figure 13 about here.]

The chosen particle density for the sand pile simulation is ρDEM
† = 1750 kg

m3

which is too small for the selected hp with the particle-particle value of µr,p−p =

0.4 and Wp−p = 0.3 J
m2 when compared to the bulk density measured in the

cylinder. Therefore the density is re-calculated from eq. 13 which gives ρDEM
∗ =

1900 kg
m3 .

6.2.4. Results of the slump length simulation

The slump simulation is applied for determining the particle-wall rolling

resistance µr,p−w with less than a standard deviation away from the the slump

experiment lp. The obtained values from the sand pile experiment of µr,p−p =

0.4 and Wp−p = 0.3 J
m3 , the scaled DEM particle density of ρDEM

∗ = 1900 kg
m3

and the number of particles injected into the cylinder which is found from eq.

3.6 are applied for the slump calibration.

[Figure 14 about here.]

The slump length result from the experiment is shown in Fig. 14 where the mean

slump length lp is the black diamond and the standard deviation is indicated by

the two black horizontal lines. The particle-wall interaction of µr,p−w = 0.5 is
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below a standard deviation away from the average experimental slump length

shown in Fig. 14.

6.2.5. Settings for the final simulations of the DISAMATIC process

The results from the calibration of the DEM model are listed in table 5

where the general simulation settings were presented in table 4.

[Table 5 about here.]

7. Results of the DISAMATIC process and simulations

7.1. Experimental air pressures measured from the sensors

For the selected sand shot in case 1, the measured air pressures can be seen

as a function of time in Fig. 15. The air pressure builds up in the hopper (black

line) in the start of the sand shot as the pressure decreases in the air tank (black

dotted line) shown in Fig. 15. The pressure in the hopper starts to decrease after

t1 when the green sand has reached the bottom line l1 of the chamber shown

earlier in Fig. 4(b). The pressure decrease in the hopper is due to a equilibrium

pressure is reached with the air tank and the air pressure now drops and the air

flow propagates towards the chamber. In Fig. 15 the duration of time from t0 to

t1 is longer than the subsequent next time intervals t1 to t2 etc. which is due to

the larger pressure difference in the hopper versus the chamber. Video footage

of the times t0 − t7 are shown in Fig. 4(a)-(h) for the selected sand shot in case

1. The filling times of the two cavities with the top cavity times tt,1− tt,2 (red)

and the bottom cavity times tb,1 − tb,2 (blue) are shown in Fig. 15.

[Figure 15 about here.]

The green sand starts entering the chamber at the monitored time of t0 at this

time the air pressure in the top of the chamber starts slowly to increase which is

shown in Fig. 16 for the three selected cases. The air pressure in the top of the

chamber shown in Fig. 16 is plotted from the time of t0 where the green sand

starts to enter the chamber, which is chosen to be the initial starting time for
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the simulations. The three plotted pressures are applied as the sand slot inlet

pressure in the CFD-DEM simulations with the minimum pressure of zero.

[Figure 16 about here.]

7.2. The filling times t0 − t7 of the chamber

The selected experimental and simulation filling times for case 1 are shown

in Fig. 17 for the initial starting time of t0 = 0.

[Figure 17 about here.]

The constant velocity of 7 m
s and 5 m

s have the shortest filling times in the

initial part of the simulated sand shot t1 − t4 whereas the later filling times

are too long t4 − t7. The filling times of the time dependent velocity vy(t) has

the best agreement with the experiments and the two stage time dependent

velocity function v2y(t) has the second best agreement with the experiment.

The starting velocity of v1 for both of the time dependent velocities were set

too slow because the simulated filling time of t1 was too long when compared

to the experimental time shown in Fig. 17.

The filling times of the simulations and the selected experiment in case 1 are

in good agreement with the other selected cases case 2 and case 3.

7.3. The sand deposited in the two cavities

[Table 6 about here.]

The deposited masses in the two cavities from the three cases and the selected

experiments are listed in table 6. Considering all the experimental cases, case

2 showed the largest mass of deposited sand in both the top cavity and bot-

tom cavity, being 1220 g and 933 g, respectively. As earlier mentioned one

experiment was selected for simulation for each of the three cases considered.

The simulated masses in the two cavities are monitored with respect to time

and compared to the selected experiment for the three cases shown in Fig. 18

- Fig. 20. For all the three cases of the CFD-DEM simulations the deposited
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mass in the two cavities were overestimated when compared to the selected

experiments. For case 3 the CFD-DEM simulations had better agreement with

the selected experiment shown in Fig. 20 as compared to the other simulated

cases.

[Figure 18 about here.]

[Figure 19 about here.]
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For case 1 and case 2 the deposited mass in DEM simulations’ for the two

cavities are underestimated when compared to the selected experiments shown

in Fig. 18 - Fig. 19, except for vy(t) in the top cavity shown in Fig. 19(b) plotted

with the blue dotted line. In case 3 the DEM simulations has a good agreement

with the selected experiment shown in Fig. 20, except for vy(t) in especially the

top cavity which is shown in Fig. 20(b) which is due to the high particle velocity

in the end of the simulation shown earlier in Fig. 10(a).

The inlet velocity for the DEM particles in the simulated sand shot was

initially larger for the two constant inlet particle velocities as compared to the

simulations with the time dependent velocities and thereby the particles entered

earlier in the bottom cavity in all the three simulated cases with DEM.

[Figure 20 about here.]

7.4. The qualitative flow behaviour

The CFD-DEM simulated results of case 1 - 3 are shown in Fig. 21. The

three simulations overestimated the mass in the cavities as when compared to

the experiments and the DEM simulations. For the cases 1 and 2 simulated air

velocities in the cavities were around 15−30 m
s as compared to case 3 where the

cavity air velocities were around 10−20 m
s . When comparing case 2 to both case

1 and case 3 in Fig. 21(middle figures) the particles have greater velocities and

a more pronounced particle jet when the particles entered the bottom cavity.

When comparing the simulations to the experiments shown in Fig. 21 all the

simulations were in good agreement with the experiments with respect to the

sand pile shape at the time t=0.50 s.

[Figure 21 about here.]
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8. Conclusion

In the present paper the sand shot in the DISAMATIC process was inves-

tigated with three different air vent settings with respect to the mass of green

sand deposited in two cavities, this investigation was performed experimentally

as well as simulated. For the three cases all the simulations were performed with

only the discrete element method (DEM) and additionally with the discrete el-

ement method (DEM) combined with computational fluid dynamics (CFD) de-

noted CFD-DEM. The CFD part took into account the influence and coupling

of the airflow.

From the experiments the following conclusions can be drawn: With the

standard air vent settings (case 1) where all the air vents were open, the experi-

ments showed the second largest average mass in the top cavity as expected and

the smallest average mass in the bottom cavity, although the average mass in

the bottom cavity was only 5.1 % smaller as compared to the case with half of

the air vents closed in the cavities (case 3). When 52 out of 164 of the air vents

were blocked in the chamber (case 2) it gave an enhanced local air flow through

the cavities and as expected the mass in the two cavities were largest with at

least 21.2 % difference from the other cases. With half of the air vents blocked

in the cavities (case 3), the smallest average mass in the top cavity was observed

and the second smallest average mass in the bottom cavity was observed. Thus,

the local air flow can be controlled e.g. by blocking air vents in the chamber

and therefore increasing the local air flow through the air vents placed in the

cavities as done in case 2. Decreasing the number of air vents in the cavities

as done in case 3 decreased the deposited mass of green sand in the cavities as

compared to case 2.

From the simulations the following conclusions can be drawn: With the

chosen particle flow rates and particle velocities it was possible to simulate the

deposited mass of green sand in the cavities and the qualitative flow behaviour.

Larger inlet velocities for the DEM particles increased the final mass in the

cavities.
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The CFD-DEM simulations show larger masses in the cavities than the ex-

perimental results due to the air flow in the simulations still drags the particles

into the cavities at the end of the sand shot. The side air vents could not be

simulated due to the running time of the number of DEM particles when simu-

lating a larger part of the chamber and thereby the volume of air that exits the

cavities is correspondingly overestimated. In case 3 the CFD-DEM simulations

were in better agreement with the selected experiment due to the lower air inlet

pressure in the simulations which gave subsequently lower air velocities through

the cavities.

Predictions of the mass of the green sand in the cavities were obtained with

good agreement by the DEM simulations however with a tendency to underes-

timate the mass.

The CFD-DEM simulations predict the cavity fillings times better as com-

pared to the DEM simulations although the CFD-DEM simulations still show

too long filling times for the cavities as compared to the experiments. The

results indicate that it is important to include the influence of the air flow in

pneumatic transport of granular material including the 2-way coupling between

the phases.
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Sand pile simulation

hp

 DEM
†  DEM

* 

  

 

Slump experiment

 sim

Slump simulation

 exp

Scaling the density

 sim
*

Figure 1: The sand pile simulation (left), the slump experiment (middle) and the slump
simulation (right) are used to calibrating the particle static friction coefficient (µr,p−p), the
particle-particle cohesion value (Wp−p) and the DEM paticle density (ρDEM

∗). The simulated
bulk density inside the box is denoted ρsim, the loose experimental density inside the cylinder
is ρexp and the DEM particle density in the slump simulation is ρDEM

∗. The edited figure
to the left are originally from [11].
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Slump simulation

Slump experiment
Wall removal Slump length  Filling  
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Figure 2: The slump cylinder test: experiment (top) and simulation (bottom). The slump
filling (left), wall removal (middle) and the measurements of the slump length lp = 1

2
(lx + ly).
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sand 
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sand 

Cavity 
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Green 

Sand 

Camera  

  v
1

a) Start of the sand shot 

Sand flows 

Sand slot 
Sand slot Sand slot 

v
2

v
3

Hopper 

SP opens to remove the  

green sand in the cavities 

 b) Middle of sand shot c) End of the sand shot 

Air tank 

Swing plate (SP) Pressure plate (PP) 

Valve open Valve open 

Figure 3: The sand shot: (a) The hopper is filled with green sand. (b) The sand shot fills
the mold chamber and cavities with green sand. (c) The swing plate (SP) opens to access
the green sand in the two cavities. The air pressures are monitored by sensors in the air
tank (light black cross), the shot valve (green cross), the hopper (black cross), the top of the
chamber (red cross) and the bottom of the chamber (blue cross).
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Sand enters 

at t
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l
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Red light at 

tstart 

(a) Sand enters the chamber at t0 (b) t1

(c) t2 (d) t3

(e) t4 (f) t5

(g) t6 (h) t7

Figure 4: (a) Video footage of the green sand starting to enter the chamber where this
occurrence is defined by the time t0. In the chamber seven equally spaced lines are drawn
and indicated by the names l1 − l7. (b)-(h) When the sand passes the seven lines, the seven
filling times are recorded t1 − t7.
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(a) tred (start). (b) t1 sand enters. (c) t2 black camera.

Figure 5: Video footage of the green sand filling of the cavity where a camera is placed in
each cavity. (a) The red light indicates when the activation of the sand shot valve occurs. (b)
The green sand entering the cavity t1. (c) The filling of cavity by the green sand blocking the
camera view t2.
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Figure 6: The air flow rate (Q) through the air vent as a function of the pressure drop (∆P ).
The chamber air vent permeability is denoted ac (blue line) and the pattern plate air vents
permeability is denoted ap (black line) .
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Figure 7: (a) The chamber top view showing the two air outlets - one on the SP side and
one on the PP side. (b) The chamber side view with the placements of pressure sensors (top
and bottom), side air vents, sand slot, SP side, PP side. (c) The chamber SP view with the
pattern plate area for the two air vent areas indicated by name air outlet.
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Figure 8: The flow rate found from the chamber measurements and the video footage in the
chamber. The chamber is divided into the different areas (A1 −A7) that are filled with green
sand at the subsequent times (t1 − t7).
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Case 2: Air vents closed in the chamber
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Case 3: Air vents closed in the pattern plate
Selected for the simulation of case 3

Figure 9: The average experimental filling times of t0 − t7 for the three cases 1 - 3(dotted
lines) and the three selected experimental filling times from cases 1 - 3(full lines).
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Figure 10: The vertical inlet velocities for the simulations. The time dependent velocities
vy(t) for the three cases. The two stage time dependent velocities v2y(t) and the constant
velocities for the three cases
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Figure 11: Placements of the boundaries.
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Figure 12: The black diamond is the mean height of the green sand pile experiment of
0.054 m± 0.002 m (black horizontal lines).
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Figure 13: Plot of the density: The black diamond is the mean density of the green sand pile
experiment of 902± 30 kg

m3 (thin black line). The DEM simulations were made for the settings

for the cohesion value Wp−p = 0.3 J

m2 (blue dotted line).
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Figure 14: The black diamond is the mean length (diameter) of the green sand slump exper-
iment of 0.186± 0.0548 m with the standard deviation of σ = 5.48 mm (thin black line).

45



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

t [s]

P
[b
a
r] t0: Sand enters

t1 t2 t3 t4 t5 t6 t7

tb,1 tb,2

tt,1 tt,2

Pressure tank [bar]
Pressure hopper [bar]
Pressure shot valve [bar]
Pressure chamber top [bar]
Pressure chamber bottom [bar]

tstart

Figure 15: Example from Case 1: The pressure as a function of time is shown in the positions
listed from the top to the bottom: The air tank (black dotted line), the shot valve (green), the
hopper (black line), the top of the chamber (red line) and the bottom of the chamber (blue
line). The atmospheric pressure is used as the reference pressure. The filling times t0 − t7 in
the chamber from the chamber camera v1 (black dotted lines).
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Figure 16: The three cases of experimental pressures measured at the top of the chamber as a
function of time with the initial starting time of t0 = 0.0 s. The atmospheric pressure is used
as the reference pressure.
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Figure 17: The experimental and simulation filling times of t0 − t7 for case 1.
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Figure 18: Case 1: The mass as a function of time for the bottom cavity (a) and for the top
cavity (b).
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Figure 19: Case 2: The mass as a function of time for the bottom cavity (a) and for the top
cavity (b).
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Figure 20: Case 3: The mass as a function of time for the bottom cavity (a) and for the top
cavity (b).
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         Case 1                                                Case 2                                             Case 3                            

Figure 21: For the selected three cases: The time dependent velocity vy(t) simulation at
time t=0.50 s. (Top) The velocity of the air phase. (Middle) The velocity of the particles.
(Bottom) The experimental video footage at time t=0.50 s.

52



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

List of Tables

1 The experimental air vents settings in the chamber for the three
cases. In case 2, 62 air vents of the type ac are blocked in the
chamber. Case 3, 14×2 air vents of the type ap are blocked in
each cavity on the pattern plate. . . . . . . . . . . . . . . . . . . 52

2 Simulating of the air vent’s settings in the chamber for the three
cases. (a) Two sets of air vents are placed on the pattern plate,
one in each cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Results from the test of the green sand calibrating the model. . . 54
4 General material values for all the simulations. . . . . . . . . . . 55
5 The calibrated DEM model for simulating the DISAMATIC pro-

cess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 (left) Masses in the two cavities from the three cases together

with the selected experiments. (right) The compactability test
results from the three cases. . . . . . . . . . . . . . . . . . . . . . 57

53



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 1: The experimental air vents settings in the chamber for the three cases. In case 2, 62
air vents of the type ac are blocked in the chamber. Case 3, 14×2 air vents of the type ap are
blocked in each cavity on the pattern plate.

Case 1 2 3
SP top air vents opened (ac) 52 0 52
PP air vents, opened (ac) 112 112 112

Pattern plate air vents opened (ap) 2×28 2×28 2×14
Side air vents opened, (n) 2×37 2×32 2×37

Total opened air vents (ac + ap) 294 232 266
Experimental repetitions 7 3 3
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Table 2: Simulating of the air vent’s settings in the chamber for the three cases. (a) Two sets
of air vents are placed on the pattern plate, one in each cavity.

Case 1 2 3
SP air vents, (n) 52 0 52
ASP , [m

2] 507.6 ×10−4 No 507.6 ×10−4

βSP , [
m
s ] 766.2 No 766.2

PP air vents, (n) 112 112 112
APP , [m

2] 1296 ×10−4 1296 ×10−4 1296 ×10−4

βPP , [
m
s ] 908.3 908.3 908.3

Pattern platea, (n) 28 28 14
Ap, [m

2] 285.0 ×10−4 285.0 ×10−4 142.5 ×10−4

βp, [
m
s ] 435.0 435.0 435.0
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Table 3: Results from the test of the green sand calibrating the model.

Material property average std Rep.
Static friction coefficient µs,p−p 0.57 ±0.04 90
Static friction coefficient µs,p−p 0.33 ±0.02 26
Sand pile height hp 52× 10−3 m 2× 10−3 m 15

Density ρBulk 902 kg
m3 ±30.0 kg

m3 27
Slump length lp 186× 10−3 m 5.48× 10−3 m 25
Compactability 36 % ±2.1 % 27
Water content % 3.5 % ±0.2 % 42
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Table 4: General material values for all the simulations.
Material property Value
DEM particle radius, (R) 0.001 m
Solid density of the chamber wall (ρwall) 7500 kg/m3

Youngs modulus of the green sand, (Ep) 17000 MPa
Youngs modulus of the chamber wall, (Ew) 200000 MPa
Poisson ratio of the green sand, (ν) 0.3
Poisson ratio of the chamber wall,(ν) 0.3
Coefficient of restitution particle-particle, (en) 0.01
Coefficient of restitution particle-wall, (et) 0.01
Gravity (g) 9.82 m

s2

Particle-wall static friction, (µs,p−w) 0.33
Particle-particle static friction, (µs,p−p) 0.57
The simulation time step, (∆t) 10−5 s
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Table 5: The calibrated DEM model for simulating the DISAMATIC process.

Material property Value
Particle-particle rolling friction coefficient (µr,p−p) 0.4
Particle-particle cohesion work (Wp−p) 0.3 J

m2

Particle density ρDEM
∗ 1900 kg

m3

Particle-wall rolling friction coefficient (µr,p−w) 0.5
The simulation time step, (∆t) 10−4 s
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Table 6: (left) Masses in the two cavities from the three cases together with the selected
experiments. (right) The compactability test results from the three cases.

Case Rep. Bottom cavity [g] Top cavity [g] Rep. ρsand [kg/m3]
1 7 593±189 961±237 18 920±50.1
1 Selected for simulation 792 1118
2 3 933±215 1220 ±72.5 9 970±19.7
2 Selected for simulation 1100 1284
3 3 623±47.7 687±30.2 9 937±28.6
3 Selected for simulation 674.8 721
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Graphical abstract

       Case 1                         Case 2                          Case 3                            

  

• The DISAMATIC process and the geometry with the two specially de-

signed cavities for the simulation and the experiment.

• Case 1, case 2 and case 3 for the simulated air flow (top row), the simulated

granular flow (middle row) and the experimental flow profile (bottom row).
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Highlights

• The calibration of the DEM model was performed with several experi-

ments.

• A special cavity geometry was designed for investigating the locally depo-

sition of green sand during the DISAMATIC process.

• Comparing the dynamics of the granular flow process to DEM and CFD-

DEM simulations.
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