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Abstract

A canard explosion is the dramatic change of period and amplitude of a limit cycle of a
system of non-linear ODEs in a very narrow interval of the bifurcation parameter. It occurs
in slow-fast systems and is well understood in singular perturbation problems where a small
parameter epsilon defines the time scale separation. We present an iterative algorithm for the
determination of the canard explosion point which can be applied for a general slow-fast system
without an explicit small parameter. We also present assumptions under which the algorithm
gives accurate estimates of the canard explosion point. Finally, we apply the algorithm to the
van der Pol equations and a Templator model for a self-replicating system with no explicit small
parameter and obtain very good agreement with results from numerical simulations.

1 Introduction

We consider singular perturbation problems of the form

ẋ = F (x, y, z, ǫ), (1)

ẏ = G(x, y, z, ǫ),

where ǫ is small parameter and z is a bifurcation parameter. All vector fields are assumed to be
analytic in their arguments. In the singular limit ǫ = 0 the system is assumed to have a critical
manifold, that is, a manifold of critical points. We restrict our attention to planar systems with
x ∈ R and y ∈ R such that the critical manifold is a curve. The parameter ǫ defines a time-scale
separation, and for singular perturbation problems in the special form

ẋ = F (x, y, z, ǫ), (2)

ẏ = ǫH(x, y, z, ǫ),

the state variables x and y can be identified as the fast and the slow variable, respectively. For the
system (2) the critical manifold is defined by F (x, y, z, 0) = 0, and it follows from Fenichel theory
[7, 9] that, under certain regularity conditions, there exists a slow invariant manifold ǫ-close to the
critical manifold. For simplicity, we will suppress the explicit dependence of F and H on ǫ in the
system (2) from now on.
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Canard explosion. The canard explosion is the dramatic change of amplitude and period of a
limit cycle born in a Hopf bifurcation in a very narrow parameter interval. The phenomenon is well
understood in singular perturbation problems of the form (2) [1, 17, 11, 3]. Canards are solutions
which are ǫ-close to a critical manifold on the form η0 = η0(y, z) defined from F (η0(y, z), y, z) = 0
both on an attracting part where ∂xF < 0 and a repelling part where ∂xF > 0. Thus, canards are
slow manifolds with both an attracting and a repelling part. They only exist for a narrow range (of
order e−c/ǫ) of the parameter z, and the canard explosion occurs when a segment of a limit cycle
is a canard. A unique asymptotic expansion of a parameter value z where the canard occurs, the
canard point, and an expansion of the corresponding (maximal) canard can readily be obtained.

However, canard explosions are also observed in slow-fast systems where there is no explicit
small parameter that separates the timescales,

ẋ = F (x, y, z), (3)

ẏ = H(x, y, z),

and where existing singular perturbation theory cannot be applied directly. An example is the
Templator model which we consider in Section 3. In [5] a modification of the iterative method of
Fraser and Roussel [8, 14], devised to construct regular slow manifolds, was proposed to determine
a canard point for a general system of the form (3). The method was successfully applied to the
van der Pol equations where it was shown that the first terms in the asymptotic expansion of the
canard point are determined correctly, and on a Templator model for a self-replicating system with
no explicit ǫ where canard explosions have been found numerically.

In this paper, we will consider a modified version of this method. Being based on a linearization,
the method is explicit, in contrast to the original one. Furthermore, we present explicit non-
degeneracy conditions as well as “smallness conditions” and show how they guarantee accurate
approximations for the canard solution and the canard explosion point for the system (3). We
illustrate the method with examples.

Notation. All norms will be denoted by | · |. Superscripts with n ∈ N0 will be used to denote
partial sums such as:

ηn =
n
∑

i=0

ηi, n ≥ 0, (4)

with each of the terms in the sum being enumerated through subscripts. Following this convention
means that η0 = η0. We will in this paper suppose that the vector-field is analytic. In particular we
will consider complex sets of the form x ∈ (a, b)+ iν and y ∈ (c, d)+ iσ. Here we by (a, b)+ iν ⊂ C

and (c, d) + iσ ⊂ C denote the complex ν and σ-neighborhoods of the real intervals (a, b) resp.
(c, d). We will then use |h|ν to denote the sup-norm of an analytic function h over the domain
(a, b) + iν. This representation gives the following compact form of Cauchy’s estimate:

Lemma 1 Let h = h(x) be analytic in x ∈ (a, b) + iν. Then

|h′|ν−ξ ≤
|h|ν
ξ

, 0 < ξ ≤ ν. ✷

Proof See [15, Theorem 10.26]. �

The iterative method of Fraser and Roussel. A slow manifold for Eqns. (2) of the form
x = η(y, z) fulfills the invariance equation

−ǫ∂yηH(η, y, z) + F (η, y, z) = 0, (5)
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obtained by eliminating time. Fraser and Roussel [8, 14] developed an iterative method for the
approximation of slow manifolds from the scheme

−ǫ∂yη
n−1H(ηn, y, z) + F (ηn, y, z) = 0, (6)

starting from the critical manifold η0 = η0(y, z). The function η = ηn satisfies (5) up to the error

−ǫ∂yηnH(ηn, y, z), (7)

using the notation (4). In [16] it was shown using Cauchy estimates to control (7) that this proce-
dure, even for an arbitrary number of slow and fast variables, leads to slow manifolds exponentially
close (O(e−c/ǫ)) to invariance. The equation (6) is non-linear in ηn, but Neishtadt [13] showed that
the same convergence is obtained if F and H in (6) are linearized with respect to x at ηn−1 such
that the equation becomes linear in ηn = ηn − ηn−1.

A crucial assumption for the success of these methods is that |∂xF | ≫ ǫ. This is violated
near fold points of the critical manifold where ∂xF = 0, and this is where canards may occur. To
study canards in systems with fold points one instead makes use of the fact that ∂yF 6= 0 and solve
F (x, y, z) = 0 for y = ζ0(x, z). A fold point (x0, ζ0(x0, µ0)) is then characterized by ∂xζ0(x0, µ0) = 0
for some parameter value z = µ0. For a slow manifold y = ζ(x, z) the invariance equation becomes

−∂xζF (x, ζ, z) + ǫH(x, ζ, z) = 0, (8)

and following Fraser and Roussel it is proposed in [5] to solve this iteratively from

−∂xζ
n−1F (x, ζn, z) + ǫH(x, ζn, z) = 0 (9)

starting with the critical manifold ζ0 = ζ0. A solution ζn(x, z) of (9) will generally have a singularity
close to the fold, but this may be canceled by an appropriate choice of z = µn. Then ζn is well-
defined at the fold, and hence represents a canard. Thus, this procedure yields a sequence µn of
approximations to the canard point as well as approximations y = ζn(x, µn) of the corresponding
canard. In the present paper we follow Neishtadt again, and linearize Eqn. (9) at ζn−1 such that
it can be solved explicitly for ζn. A precise formulation of this procedure requires some notation
which we turn to now; the complete algorithm is described as Algorithm 1 below.

2 The modified Fraser-Roussel algorithm for canards

Consider the system (1) and let

V (x, y, z, ǫ) =

(

F (x, y, z, ǫ)
G(x, y, z, ǫ)

)

,

denote the vector-field. A critical manifold for (1) is a smooth curve of fixed points V (x, y, z, 0) = 0
within the (x, y)-plane for (1)ǫ=0. We shall assume that this manifold can be parametrized by x so
that y = ζ0(x, z). We then have

Lemma 2 The critical manifold is normally hyperbolic at (x0, ζ0(x0, z)) if and only if

∂yV · (−∂xζ0, 1) 6= 0. ✷
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Proof The layer equations of (1) are

(

ẋ
ẏ

)

= V (x, y, z, 0),

where ẋ and ẏ in general are both non-zero. An equilibrium (x0, ζ0(x0, z)) is then normally hyper-
bolic if the linearization, described by the Jacobian:

DV =
(

∂xV ∂yV
)

,

only has one zero eigenvalue. Since V (x, ζ0(x, z), z, 0) = 0 we have by implicit differentiation that

∂xV = −∂yV ∂xζ0.

Therefore we can write DV as

DV =
(

−∂yV ∂xζ0 ∂yV
)

.

The eigenvalues of DV are then directly obtained:

0 and ∂yV · (−∂xζ0, 1),

and the result therefore follows. �

Following Lemma 2, the critical manifold y = ζ0(x, z) loses normal hyperbolicity at point
(x0, ζ0(x0, z)) where

∂yV · (−∂xζ0, 1) = 0. (10)

Generically (see (A1) below) such a point is a fold point.

Remark 1 Geometrically, (10) means that the critical fiber of (x0, ζ0(x0, z)) is tangent to the
graph y = ζ0(x, z) at this point. ✷

One of the main aims of this paper is to present a method that applies to systems of the form
(3) without an explicit ǫ. To this end, we define a manifold y = ζ0(x, z) from

F (x, ζ0(x, z), z) = 0.

Were there an ǫ multiplying H, as in (2), this would be the critical manifold for ǫ = 0 which can
be used be used as a starting point for a Fraser-Roussel iteration as described in § 1. The precise
assumptions needed for this to work in the ǫ-free setting are given in (A1) and (A2) below.

To continue, let (x0, µ0), be fixed, their values to be determined later in (A1), and introduce y0
and z0 by

y = ζ0(x, z) + y0,

z = µ0 + z0.

This leads to the following extended system obtained from (2):

ẋ = F0(x, y0, z0) = f0(x) + F0y(x, y0, z0)y0 + F0z(x, y0, z0)z0, (11)

ẏ0 = e0(x) + (Φ(x) + b0(x))z0 + T0(x, z0) + (Λ(x) + a0(x, z0))y0 +R0(x, y0, z0),

ż0 = 0,
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where

F0y(x, y0, z0) = (using that F (x, ζ0(x, µ0), µ0) = 0)

=

∫ 1

0
∂yF (x, ζ0(x, µ0) + sy0, µ0 + sz0)ds,

F0z(x, y0, z0) =

∫ 1

0
∂zF (x, ζ0(x, µ0) + sy0, µ0 + sz0)ds,

e0(x) = G(x, ζ0(x, µ0), µ0), (12)

Φ(x) = −∂xζ0(x, µ0)∂zF (x, ζ0(x, µ0), µ0) + ∂zG(x, ζ0(x, µ0), µ0), (13)

Λ(x) = −∂xζ0∂yF (x, ζ0(x, µ0), µ0) + ∂yG(x, ζ0(x, µ0), µ0), (14)

and T0 = O(z20), a0 = O(z0), and R0 = O(y20). Here we have just Taylor-expanded the right hands
sides about (y0, z0) = (0, 0). For later convenience we have also introduced f0 ≡ 0 and b0 ≡ 0. The
subscripts on y0, z0 and the functions f0, . . . , b0, . . . , R0 are used to indicate that they later will be
part of an iteration. The functions Λ and Φ will not be updated.

The function Λ = Λ(x) in (14) is precisely ∂yV · (−∂xζ0, 1) which according to (10) vanishes
at a fold point (x0, ζ0(x0, µ0)) at a given parameter value z = µ0. Therefore we will assume that
there is such a point where Λ vanishes. This only gives one condition on the pair (x0, µ0). For
the possibility of having a canard solution we need further conditions. These are contained in the
following assumptions:

(A1) The pair (x0, µ0) is so that Λ (14) and e0 (12) vanish:

−∂xζ0(x0, µ0)∂yF (x, ζ0(x0, µ0), µ0)+∂yG(x0, ζ0(x, µ0), µ0) = 0,

G(x0, ζ0(x0, µ0), µ0) = 0.

Given that Λ(x0) = 0 and e0(x0) = 0 we can define Λ̃ and ẽ0 by

Λ̃(x) =

∫ 1

0
∂xΛ(x0 + s(x− x0))ds,

respectively

ẽ0(x) =

∫ 1

0
∂xe0(x0 + s(x− x0))ds, (15)

so that Λ(x) = (x− x0)Λ̃(x) and e0(x) = (x− x0)ẽ0(x). We further assume:

(A2) The following non-degeneracy and “smallness” conditions hold true: Let

δ̃0 ≡ |ẽ0|ν0 , (16)

K ≡ |Λ̃−1|ν0 .

Then there exist ǫ ≪ 1 so that

δ̃0 ≤ K−1ǫ, (17)

and

|F0y|ν0 , |F0z |ν0 , |T0|ν0 , |R0|ν0 ≪ K−1ǫ−1.

Furthermore, either of the following conditions hold true:
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(a)

|Φ(x0)|−1 ≪ K−1ǫ−1, (18)

and

|Φ|ν0 ≪ K−1ǫ−1. (19)

(b)

|Φ(x0)|−1 ≤ K−1ǫ−1, (20)

and

|Φ|ν0 ≤ K−1ǫ. (21)

Remark 2 We include case (b) in (A2) to cover the case where G = ǫH is small. ✷

The reason for supposing analyticity is that we in this case can present what we believe are
optimal exponential estimates. However, we will not need any smoothness assumptions on how ǫ
enters beyond condition (A1) and (A2). In particular, the analysis of our method is not based on
asymptotic expansions in ǫ.

The function ẽ0 in (15) is the obstacle to invariance of y0 = 0, z0 = 0: If ẽ0 ≡ 0 then y0 =
0, z0 = 0 corresponds to a canard solution. We have therefore introduced δ̃0 in (16) as the error
δ̃0 = |ẽ0|ν0 = O(ǫ). The system (11) is our normal form. Our algorithm will be based upon
applying transformations, affine in y0 and z0, to (11) that seek to diminish the error ẽ0. These
transformations directly lead to a simple algorithm similar to that presented in [5] that we present
in Algorithm 1.

Remark 3 Suppose that G = ǫH is truly small and the slow and fast variables have been properly
identified. Then there are known sufficient conditions for a canard explosion [3, 10]:

(B1) There exists a pair (x̃0, µ̃0) so that

∂xζ0(x̃0, µ̃0) = 0, H(x̃0, ζ0(x̃0, µ̃0), µ̃0) = 0.

(B2) The following non-degeneracy conditions hold true:

∂yF (x̃0, ζ0(x̃0, µ̃0), µ̃0) 6= 0, ∂2
xF (x̃0, ζ0(x̃0, µ̃0), µ̃0) 6= 0,

∂zH(x̃0, ζ(x̃0, µ̃0), µ̃0) 6= 0, ∂xH(x̃0, ζ0(x̃0, µ̃0), µ̃0) 6= 0,

Our condition (A1) replaces (B1). They are equivalent when ∂2
xF (x0, ζ0(x0, µ0), µ0) 6= 0 by the

implicit function theorem. Similarly, using (A1), it follows that the first three inequalities (B2) are
equivalent to those in (A2), case (b), for ǫ sufficiently small. In condition (A2), however, we do
not require ∂xH(x̃0, ζ0(x̃0, µ̃0), µ̃0) 6= 0. This condition is included in (B2) because it guarantees
that the nullclines of x and y are transverse at the fold point and that the equilibrium undergoes
a Hopf bifurcation. It is the associated limit cycles that undergo rapid amplitude growth in the
canard explosion. In agreement with [3], our algorithm and main result (Theorem 1 below) still
apply without the need of this assumption but the results may have little dynamical significance.
There is a well-known connection between the first Liapounov coefficient, the Hopf point and the
canard point to lowest order in ǫ [11, 3]. This was exploited in [12] as a numerical tool to estimate
canard explosion points. ✷



7

Remark 4 Suppose again that the slow and fast variables have been properly identified. Then one
can actually replace Λ in (14) by −∂xζ0∂yF and ignore the small term ∂y(ǫH). Our main result
still applies as the term ignored can be collected into a0. Indeed, the iterative lemma, Lemma 3,
that is the basis of our proof of the main theorem, just assumes that a0(x, 0) is bounded from above
by cǫ, see (41) below, for some c sufficiently large. However, in the general case, this term cannot
be ignored. See also section 3.4 where we apply our algorithm to the Templator model. ✷

Remark 5 As described in Remark 4, the result of the paper still applies if |a0(x, 0)|ν0 ≪ |Λ̃|ν0 .
Similarly, we can also allow for |f0|ν0 ≪ |Λ̃|ν0 and |b0|ν0 ≪ |Φ|ν0 . The iterative lemma, Lemma 3,
still applies (see also (41) below).

The modified iterative method for the computation of canard explosion. We are
looking for a canard solution through a graph y = ζ(x) for a value µ of the parameter z. The
invariance of the graph gives the equation (8) for ζ = ζ(x), which following Neishtadt [13] we wish
to approach iteratively starting from y = ζ0(x, µ0), z = µ0 and continue with solving the linear
equations:

ρn−1(x, z) + Λ(x)ζn(x, z) = 0, (22)

ρn−1(x, z) = −∂xζ
n−1F (x, ζn−1, z) +G(x, ζn−1, z), (23)

Λ(x) = −∂xζ0∂yF (x, ζ0, µ0) + ∂yG(x, ζ0, µ0). (24)

Due to our assumption (A1), however, we are potentially dividing by zero as Λ(x0) = 0 when
solving for the updates ζn. The idea of [5] is then to proceed by removing the singularity in the
expression for ζn by solving the equation ρn−1(x0, z) = 0 for z = µn so that −ρn−1(x, µ

n)/Λ(x) is
well-defined. We collect this into an algorithm in the following:

Algorithm 1 Suppose (A1) and (A2). To compute the canard explosion point do the following:

1◦ Define Λ̃ = Λ̃(x) to be

Λ̃(x) =

∫ 1

0
∂xΛ(x0 + s(x− x0), µ0)ds.

Then by construction Λ(x) = (x− x0)Λ̃(x) where Λ is defined in (24).

2◦ Define

ẽ0(x) =

∫ 1

0
∂xρ0(x0 + s(x− x0), µ0))ds.

Then by construction ρ0(x, µ0) = (x− x0)ẽ0(x) where ρ0 is defined in (23)n=1.

2◦ Iterate the following over n starting from n = 1 and ζ0 = ζ0 and µ0 = µ0 until |ẽn| has
reached a desired tolerance:

(i) Define

ζn(x) = − ẽn−1(x)

Λ̃(x)
, ζn(x) = ζn−1(x) + ζn(x).
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(ii) Solve the following equation for z = µn:

ρn(x0, µ
n−1 + z) = 0,

where

ρn(x, µ
n−1 + z) = −∂xζ

nF (x, ζn, µn−1 + z) +G(x, ζn, µn−1 + z).

(iii) Set
µn = µn−1 + µn,

and let

ẽn(x) =

∫ 1

0
∂xρn(x0 + s(x− x0), µ

n))ds. (25)

Then by construction ρn(x, µ
n) = (x− x0)ẽn(x).

The graph y = ζn(x) is then the approximation of the canard slow manifold, connecting repelling
and attracting branches, at the explosion point z = µn. The error is described in Theorem 1.

Main result. Our main result is contained in the following theorem which we prove in section
4.

Theorem 1 Suppose that the assumptions (A1) and (A2) hold true and that F and G are analytic
in their arguments (x, y, z). (i) Fix first n ≥ 0. Then, provided ǫ is sufficiently small, the procedure
defined in Algorithm 1 generates a sequence of ζi’s and µi’s so that

ζn(x) =

n
∑

i=0

ζi(x), µ = µn =

n
∑

i=0

µi ✷

satisfies (8) up to an error (25) of ẽn = O(ǫn+1). Moreover, (ii) there exists an N(ǫ) = O(ǫ−1/2) ∈
N so that the error in (25) with n = N is exponentially small ẽN = O(e−c/ǫ1/2), with c > 0 and
independent of ǫ.

The first part (i) only requires smoothness. The last part (ii) requires analyticity.

Remark 6 The
√
ǫ in Theorem 1 is in agreement with the results in [6, 10] where the canard point

is obtained as a smooth function of
√
ǫ. ✷

3 Applications

3.1 Van der Pol

In this section we consider the classical van der Pol system

ẋ = F (x, y) = y − 1

3
x3 + x,

ẏ = G(x, z) = ǫ(z − x).

This system has a canard explosion near z = µ0 = 1 for ǫ small. Asymptotic expansions yield a
more accurate value

µ = 1− 1

8
ǫ− 3

32
ǫ2 − 173

1024
ǫ3 +O(ǫ4), (26)
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see e.g. [1, 17]. To use Algorithm 1 to compute the canard explosion point we first verify the
conditions (A1) and (A2). Solving F (x, y) for y gives

y = ζ0(x) =
1

3
x3 − x.

Then

Λ(x) = −∂xζ0∂yF (x, ζ0(x)) = 1− x2.

We have a fold point at x = x0 = 1 where ∂xζ0(x0) = 0 where also Λ vanishes. To complete the
verification of (A1) we must solve G(x0, z) = 0 for z = µ0. We obtain µ0 = 1. For (A2) note that

Λ̃(x) = −(1 + x), (27)

dividing x−x0 = x− 1 out, so that Λ̃(x0) = −2 6= 0. Since Φ ≡ ǫ we have to take case (b) in (A2).
The remaining assumptions can easily be verified for ǫ sufficiently small.

We are now ready to apply Algorithm 1. For 1◦ we have (27) and for 2◦ we first note that

ρ0(x, z) = ǫ(z − x),

and so ẽ0 = −ǫ when dividing x− x0 = x− 1 out from e0(x) = ρ0(x, µ0).
For 3◦ we first set ζ1 = −ẽ0/Λ̃ = −ǫ/(1 + x), which finishes step (i) and define ρ1 (ii) as

ρ1(x, z) = ǫ(1 + z)− ǫ(1 + x)−3(x3 + 3x2 + 3x+ 1− ǫ).

Setting ρ1(x0, z) = 0 gives z = µ1 = −1
8ǫ so that

µ1 = 1 + µ1 = 1− 1

8
ǫ, (28)

correct to first order in ǫ cf. (26). This finishes step (iii). We iterate this procedure and obtain the
following approximations

µ2 = 1− 1

8
ǫ+

3

32
ǫ2 − 27

2048
ǫ3, µ3 = 1− 1

8
ǫ+

3

32
ǫ2 − 173

1024
ǫ3 +O(ǫ4), (29)

correct to order 2 respectively 3 in ǫ.

3.2 Templator

In this section we consider the Templator model [2, 4]

ẋ = F (x, y) = kuy
2 + kT y

2x− qx

K + x
, (30)

ẏ = G(x, y, z) = z − kuy
2 − kT y

2x,

and use Algorithm 1 to compute a canard explosion. Numerical computations indicate a canard
explosion at

µ = 0.419943, (31)

[2, 4]. This system has no explicit ǫ, yet numerical simulations show that the system exhibits a
slow-fast structure. In [4] it is shown that various combinations of the parameters in the system
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can locally be considered as small parameters, but no global parametrization in the form (2) exists.
Here we proceed to find a canard explosion without any identification of an explicit small parameter.
As in [4] we set ku = 0.01, kT = 1, q = 1, and K = 0.05. We first solve F (x, y) = 0 for y = ζ0(x)
and obtain

ζ0(x) =
50
√

2x(1 + 150x + 5000x2)

1 + 150x+ 5000x2
. (32)

Note that (32) is independent of z. The equation also has a negative solution which we have
discarded. We then realize that there is a point x =

√
2/100 = 0.014142 where ∂xζ0 = 0. The

function Λ(x) = −∂xζ0∂yF (x, ζ0)+∂yG(x, ζ0, z) vanishes near this point at x = x0 = 0.014345. For
this value of x = x0, we continue to verify the assumptions in (A1), and compute z = µ0 giving
G(x0, ζ0(x0), z) = 0. We obtain z = µ0 = 0.417681. The error is 0.5% in comparison with the value
in (31). We then define Λ̃ and ẽ0 by division of Λ and e0 by x− x0. To verify (A2) we note that

Φ ≡ 1,

Λ̃(x0) = 996.78,

ẽ0(x0) = −17.157,

so that

ẽ0(x0)

Λ̃(x0)
= 0.017213. (33)

Since (33) is “small”, we are confident that (A2), case (a), is satisfied and we therefore proceed by
applying Algorithm 1. Introducing ζ1(x) = −ẽ0(x)/Λ̃(x) then gives the new error

ρ1(x, z) = −∂xζ
1F (x, ζ1) +G(x, ζ1, µ0 + z), ζ1 = ζ0 + ζ1.

We solve ρ1(x0, z) = 0 for z = µ1 and obtain the improved approximation to the canard explosion
point

µ1 = µ0 + µ1 = 0.419883,

an error of 0.01%. At the next step we get µ2 = 0.419938. The error is now 0.001%.

3.3 Rotated van der Pol

In this section we again consider the van der Pol equations, but we rotate the coordinates, replacing
x by x− y and y by x+ y:

ẋ = F (x, y, z) =
1

2
(2x− (x− y)3/3 +

1

2
ǫ(µ− (x− y)),

ẏ = G(x, y, z) = −1

2
(2x− (x− y)3/3) +

1

2
ǫ(µ − (x− y)).

mimicking a situation where the slow and fast variables have not been properly identified. We will
demonstrate that the algorithm applies to this case too. The fold point in the original variables is
no longer a fold point in the sense used in section 3.1 in the coordinates used here. Indeed solving
for the x-nullcline gives

y = ζ0(x) = x− 61/3x1/3 +O(ǫ), (34)
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with non-zero derivative for the relevant x-values. The fold point now appears where Λ(x) =
1−62/3x2/3+ǫ6−2/3x−2/3 vanishes. The O(ǫ)-term in Λ is following the discussion in Remark 4 not
important: It can collected into a0 = O(ǫ) in (11). We therefore re-define Λ as Λ(x) = 1−62/3x2/3.
Then Λ vanishes at the point x = 1/6, where y = −5/6 + O(ǫ) according to (34). The point
(x, y) = (1/6,−5/6) is also the value obtained by transforming the fold point point (1,−2/3) in
the original variables, used in section 3.1, to the current rotated variables. This alteration of Λ
is in principle not needed: There is a point ǫ-close to the point above where the old Λ vanishes.
However, when we ignore this part then the calculations can actually be done by hand without
using a computer algebra software.

Note that ∂xΛ(x0) = −4 6= 0 and we can therefore define

Λ̃(x) = −4 + 4(x− x0)−
32

3
(x− x0)

2 +O((x− x0)
3).

Now we are in a position to apply Algorithm 1 2◦. For this we first note that

ρ0(x, z) = −∂xζ0F (x, ζ0) +G(x, ζ0, z) = ǫ6−2/3x−2/3(z − 61/3x1/3),

and we therefore obtain z = µ0 = 1 by solving ρ0(x0, z) = 0. Following (iii), we then set

ẽ0(x) = −2

3
ǫ(3− 18(x− x0) + 104(x − x0)

2 +O((x− x0)
3).

It is easy to verify the conditions in (A2). We therefore proceed as in Algorithm 1 (3◦) starting from
(i) setting ζ1(x) = −e0(x)/Λ(x) = −ǫ6−2/3/(61/3x1/3+1)x2/3 which by construction is smooth also
at x = x0. We continue and obtain

µ1 = µ0 + µ1 = 1− 1

8
ǫ− 35

32
ǫ2 − 545

384
ǫ3 +O(ǫ4),

µ2 = µ0 + µ1 + µ2 = 1− 1

8
ǫ− 3

32
ǫ2 − 18183

2048
ǫ3 +O(ǫ4),

µ3 = µ0 + µ1 + µ2 + µ3 = 1− 1

8
ǫ+

3

32
ǫ2 − 173

1024
ǫ3 +O(ǫ4)

correct to order 1, 2 respectively 3 cf. (26). Note that the corrections in µ1 (the terms −35
32ǫ

2 −
545
384ǫ

3) and µ2 (the term −18183
2048 ǫ

3) are different from those in (28) and (29) being 0 and − 27
2048ǫ

3,
respectively, but the expressions are correct to the order expected by Theorem 1, even though the
slow and fast variables have not been properly identified.

3.4 Templator again

As a final example we consider the Templator model (30) again with the parameters ku = 0.01,
kT = 1, q = 1, and K = 0.05 as before. The solution of F (x, y) = 0 gave

y = ζ0(x) =
50
√

2x(1 + 150x + 5000x2)

1 + 150x + 5000x2
,

having one single fold point at x = x0 =
√
2/100. There is, however, another canard explosion at

µ = 0.967555, (35)

[2] that arises from another zero of Λ. Here we cannot ignore the term ∂yG in Λ as we did in
the rotated van der Pol above. This term is not small as is illustrated in Fig. 1. Here it is made
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visible that Λ has another zero at x0 = 0.599393 where ∂xΛ < 0. Therefore we can define Λ̃ by
Λ(x) = (x − x0)Λ̃(x). The zero of Λ gives rise to a singularity in the Eq. (22). To continue the
verification of (A1) we note that solving ρ0(x0, z) = 0 gives

µ0 = 0.967710.

This gives a relative error of 0.01% in comparison with the value in (35). To verify the conditions
(A2) we note the following:

Λ̃(x0) = −3.6535,

ẽ0(x0) = −0.0521311,

and Φ ≡ 1 as above, so that

ẽ0(x0)

Λ̃(x0)
= 0.014268.

This again gives us confidence to apply Algorithm 1. The expressions are quite messy so we leave
out the details and just present the result of one iteration of 2◦ of the method:

µ1 = 0.967560.

The error is now 0.006%. A final additional application gives

µ2 = 0.967558,

reducing the relative error to 3× 10−6.

Figure 1: The graph of Λ (14) and Λ− ∂yG = −∂xζ0∂yF (dotted).
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4 Proof of Theorem 1

To prove our theorem we start from (11):

ẋ = F0(x, y0, z0) = f0(x) + F0y(x, y0, z0)y0 + F0z(x, y0, z0)z0, (36)

ẏ0 = e0(x) + (Φ(x) + b0(x))z0 + T0(x, z0) + (Λ(x) + a0(x, z0))y0 +R0(x, y0, z0),

ż0 = 0,

where f0 ≡ 0 and b0 ≡ 0. From conditions (A1) and (A2), it is without loss of generality to take
K ≡ |Λ̃−1|ν0 = 1. Indeed, we can introduce a new time τ = K−1t to achieve this. Then also by
(A2):

δ̃0 ≡ |ẽ|ν0 ≤ ǫ ≪ 1, (37)

and furthermore, assuming case (a):

|Φ(x0)|−1, |Φ| ≤ CΦ. (38)

Here CΦ > 0 is independent of ǫ. The proof for case (b) where

|Φ(x0)|−1 ≤ CΦ/ǫ, |Φ| ≤ CΦǫ, (39)

is almost identical (see Remark 7 below).
We will seek to apply a sequence of transformations φ1, φ2, . . ., φn to (11) that successively seek

to diminish the ẽi’s that appear as a result of these transformations. We define the transformations
through an iterative lemma.

The iterative lemma. To set up an iterative lemma we start from the normal form (36) with
appropriate subscripts removed:

ẋ = F (x, y, z) = f(x) + Fy(x, y, z)y + Fz(x, y, z)z, (40)

ẏ = e(x) + (Φ(x) + b(x))z + T (x, z) + (Λ(x) + a(x, z))y +R(x, y, z),

ż = 0,

where
e = (x− x0)ẽ(x),

T = O(z2) independent of y, and R = O(y2). We suppose

δ̃ = |ẽ|ν , |a(x, 0)|ν , |ǫ−1b(x0)| ≤ cǫ, (41)

for some constant c > 0 and ǫ sufficiently small. Note that these conditions are satisfied for our
initial system (36).

Then y = 0, z = 0 is an approximation to the canard solution. The accuracy of the approxima-
tion is determined by δ̃. We will in the following apply a transformation φ to (40), which will be
based on two steps, seeking to improve the approximation of the canard solution. First, we define
the solution, ζ = ζ(x), of the equation

e(x) + Λ(x)ζ(x) = 0. (42)

The solution is

ζ(x) =
ẽ(x)

Λ̃(x)
, (43)
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measuring

|ζ|ν ≤ Kδ̃. (44)

Now, we set

y = ζ(x) + y+.

This gives

ẋ = f+(x) + F+
y (x, y+, z)y+ + F+

z (x, y+, z)z,

ẏ+ = e+(x) + (Φ(x) + b+(x))z + T+(x, z) + (Λ(x) + a+(x, z))y +R+(x, y, z),

ż = 0,

with

f+(x) = f(x) + Fy(x, ζ, 0)ζ,

F+
z (x, y+, z) = Fz(x, ζ + y+, z),

e+(x) = −∂xζf
+(x) + a(x, 0)ζ +R+(x, ζ, 0),

b+(x) = b(x)− ∂xζFz(x, ζ, 0) + ∂za(x, 0)ζ + ∂zR+(x, ζ, 0),

a+(x, z) = a(x, z)− ∂xζFy(x, ζ, 0) + ∂yR+(x, ζ, 0),

and where F+
y , T+ = O(z2), which is independent of y, and R+ = O(y2) are determined by Taylor’s

theorem. For ǫ sufficiently small we then have

δ+ ≡ |e+|ν−ξ ≤
ǫCδ̃

ξ
,

for C sufficiently large, using (41), (44) and the fact that R+(x, y, z) = O(y2) is quadratic.
The result is not yet appropriate for iteration as

e+(x0) 6= 0.

To account for this we transform z by introducing z = µ+ z+ with µ satisfying

e+(x0) + (Φ(x0) + b+(x0))µ+ T+(x0, µ) = 0. (45)

By (38), and the contraction mapping theorem, there exists a solution

µ ≈ −e+(x0)

Φ(x0)
,

of (45), that satisfies

|µ| ≤ 2CΦδ
+ ≤ 2ǫCΦCδ̃

ξ
. (46)

Here we have used that T+ = O(z2), (41), the first estimate in (38) and the smallness of δ̃ and ǫ.
Then the resulting system reads

ẋ = F (x, ζ + y+, µ + z+) = f+(x) + F+y(x, y+, z+)y+ + F+z(x, y+, z+)z+, (47)

ẏ+ = e+(x) + (Φ(x) + b+(x))z+ + T+(x, z+) + (Λ(x) + a+(x, z+))y +R+(x, y, z+),

ż+ = 0,
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with

f+(x) = f+(x) + F+
z (x, 0, µ)µ,

F+y(x, y+, z+) = F+
y (x, y+, µ+ z+)

e+(x) = e+(x) + (Φ(x) + b+(x))µ + T+(x, µ),

b+(x) = b+(x) + ∂zT
+(x, µ),

and where F+z, T+, R+ are determined by Taylor’s theorem. By construction e+(x0) = 0. We
estimate the new obstacle to invariance e+ of y+ = 0, z+ = 0 as

|e+|ν−ξ ≤ |e+|ν−ξ + 2CΦ|µ|

≤ ǫC(1 + 2C2
Φ)δ̃

ξ
, (48)

using the second estimate in (38) and (41), for δ̃ and ǫ sufficiently small. Since e+(x0) = 0 we write
e+ as

e+(x) = (x− x0)ẽ+(x), ẽ+(x) =

∫ 1

0
∂xe+(x0 + s(x− x0))ds,

and estimate our new error ẽ+ on ν+ = ν − 2ξ using a Cauchy estimate and (48):

|ẽ+|ν+ ≤ ǫC(1 + 2C2
Φ)δ̃

ξ2
.

Remark 7 If we assume case (b) in (A2) then we obtain a ǫ−1-factor in (46) so that |µ| ≤
2ǫ−1|Φ(x0)|−1δ+. However, we recover an estimate as in (48) using (39) (in place of (38) used
above). ✷

We collect the results in the following iterative lemma:

Lemma 3 Let ξ > 0 and ν+ ≡ ν − 2ξ ≥ 0. Then there exists a C̄ > 0 so that the transformation

φ : (x, y, z) 7→ (x+, y+, z+),

x+ = x,

y+ = ζ(x)− y,

z+ = µ− z,

with ζ and µ solving (43) and (45), respectively, maps (40) into (47) where

|a− a+|ν+ , |b− b+|ν+ , |R−R+|ν+ , |T − T+|ν+ ≤ C̄δ̃,

and

δ̃+ ≡ |ẽ+|ν+ ≤ ǫC̄

ξ2
δ̃, (49)

provided ǫ are sufficiently small. ✷
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The O(ǫn) estimates in (i) of Theorem 1 follow directly from (49) as each application of the
procedure introduces a factor of ǫ.

Exponential estimates. To obtain the exponential estimates we first apply the iterative
lemma, Lemma 3, to (36) and obtain

δ̃1 = |ẽ1|ν1 ≤
ǫC̄0

ξ20
δ̃0 =

16C̄0

ν20
ǫ2, (50)

using (37) and (49) with ν1 =
ν0
2 setting here ξ = ξ0 =

ν0
4 = O(1).1 Here C0 is the constant obtained

from applying Lemma 3 to (36). Then we apply the lemma successively setting the measure of the
domain reduction ξ in Lemma 3 to be2

ξ =
√

2ǫC̄∞,

with

C̄∞ = 2C̄0. (51)

The (n+ 1)th application of Lemma 3 gives rise to a constant C̄n. Then by (49)

δ̃n+1 ≤
ǫC̄n+1

ξ2n
δ̃n ≤ 2−1δ̃n−1 ≤ 2−nδ̃1, (52)

while C̄n+1 ≤ C̄∞ = 2C̄0 and

νn+1 = νn − 2ξ =
1

2
ν0 − 2nξ ≥ 0. (53)

By the geometric sum formula and the fact that δ̃1 = O(ǫ2), cf. (50), the requirement C̄n ≤ 2C̄0

does not pose any restrictions on n for ǫ sufficiently small. The only restriction on n is contained
in the last inequality in (53):

n ≤ N(ǫ) ≡
⌊

ν0
4ξ

⌋

=

⌊

ν0

4
√

2ǫC̄∞

⌋

.

Here ⌊v⌋ denotes the integer part of v ≥ 0. Hence Lemma 3 can be applied O(ǫ1/2)-many times,
which by (52) with n = N(ǫ) gives the exponential estimate

δ̃N(ǫ)+1 ≤ 2
−

⌊

ν0

4
√

2ǫC̄∞

⌋

δ̃1,

in Theorem 1. This then completes the proof.
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