

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 16, 2017

A Top-down Approach to Genetic Circuit Synthesis and Optimized Technology
Mapping

Baig, Hasan; Madsen, Jan

Published in:
Proceedings of 9th International Workshop on Bio-Design Automation

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Baig, H., & Madsen, J. (2017). A Top-down Approach to Genetic Circuit Synthesis and Optimized Technology
Mapping. In Proceedings of 9th International Workshop on Bio-Design Automation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/86557357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/a-topdown-approach-to-genetic-circuit-synthesis-and-optimized-technology-mapping(e9e75410-361d-4705-aaf3-b991e66f5657).html

A Top-down Approach to Genetic Circuit Synthesis and
Optimized Technology Mapping

Hasan Baig and Jan Madsen

Department of Applied Mathematics and Computer Science
Technical University of Denmark

{haba, jama}@dtu.dk

1. INTRODUCTION
Genetic logic circuits are becoming popular as an emerging field
of technology. They are composed of genetic parts of DNA and
work inside a living cell to perform a dedicated boolean function
triggered by the presence or absence of certain proteins or other
species.
In this work, we introduce a top-down approach to synthesize
genetic logic circuit. This approach is based on translating high-
level description of genetic circuit (in the form of boolean
function) to its low-level representation in the form of SBOL [1]
notation. This approach is implemented in the Genetic
Technology mapping tool, GeneTech. It takes the Boolean
expression of a genetic circuit as input, and then first optimize it.
It then synthesizes the optimized Boolean expression into NOR-
NOT form in order to construct the circuit using the real
NOR/NOT gates available in the genetic gates library [2]. In the
end, GeneTech performs technology mapping to generate all the
feasible circuits, with different genetic gates, to achieve the
desired logical behavior.

There are some existing tools which supports technology mapping
of genetic circuits including Cello [2] and iBioSim [3]. GeneTech
differs from these tools by generating all feasible genetic circuits
from a Boolean expression. This work is originally inspired from
the processes of optimization and technology mapping of
electronic circuits in the electronic design automation (EDA)
industry. In EDA, the combinatorial circuit optimization is always
required to implement the circuit with the minimum number of
logic gates [4]. This area-efficient implementation of digital
circuits not only helps reducing the size of electronic devices but
also avoid wasting power and redundant resources.

Figure 1. Digital circuit of the expression ab+b+ac.

(a) Original circuit. (b) Optimized circuit having two gates.
In order to get the insight of logic optimization, consider the
digital circuit for the Boolean expression, ab + b + ac, shown in
Figure 1(a). In this figure, the circuit consists of four logic gates.
After running the optimization algorithm, the number of gates in
the circuit reduces down to two while preserving the original
functionality, as illustrated in Figure 1(b).
This optimization of digital electronic circuits seems simple and
straight forward. However, the optimization and technology
mapping of genetic circuits is not similar to electronic circuits.
This is because the input and output quantities of electronic
circuits are the same i.e. voltage, and therefore the electronic gates
can easily be cascaded together. On the contrary, the input and
output quantities of genetic gates are different, and therefore the

signal matching has to be considered while mapping genetic gates
on the circuit. This makes it very challenging to integrate genetic
logic gates to construct complex genetic circuits. Similar to the
above process of optimizing digital logic in electronic circuits, we
want to avoid having redundant logic in genetic circuits as well.

2. METHODOLOGY
Two different ways to represent the same boolean logic or digital
circuit are the minterm and maxterm canonical forms. Minterms
are also called the products because the variables (or literals) in
the Boolean expressions are represented as the logical AND.
Maxterms are referred to as sums because the variables (or
literals) are represented as the logical OR. Therefore, the same
Boolean function can either be expressed as the sum of
products/minterms (SOP) or the product of sums/maxterms (POS),
as shown in equation (1). In this example, the left-hand side
represents the SOP form and the right-hand side represents its
equivalent POS form.

ab + b + ac = a + b + c (a + b + c)(a + b + c) (1)

Figure 2. The technology mapping flow of GeneTech.

The flow of genetic technology mapping in GeneTech is shown in
Figure 2. It takes the raw Boolean expression in the SOP form and
then first optimize it using the simulated annealing (SA) [5]
optimization algorithm. The goal of optimization at this step is to
reduce the number of variables (or literals) in the expression while
keeping the output logic the same. Reducing the number of literals
in the Boolean expression results in the reduction of logic
components required to obtain the desired logic.

To construct real genetic circuits, GeneTech uses the gates library
from [2], which consists of genetic gates in the form of NOR and
NOT functions. Therefore, to map the genetic gates on the
Boolean expression, it is necessary to bring it into NOR/NOT
form. Hence, when the Boolean expression is optimized, it then
goes to a process of synthesis, as shown in Figure 2. Once the
Boolean expression is available in NOR/NOT form, a mapping

(b)(a)

Input	Boolean	
Expression	(SOP)

Optimization	(using	metaheuristic)

Synthesis	(to	NOR/NOT	form)

Technology	Mapping Gates	
Library

A" # B" # C + A" # B # C	+ A # B # C

################### (()

######## (*)

################### (+)

C # (A" # B"	+	B)

(C + (B +A"))

Different	Possible	circuits

Figure 3. Experimental results of GeneTech for 0x0B [2]. (a) Circuit schematic and SBOL representation of 0x0B shown in [2]. (b) Circuit representation

generated by GeneTech. (c) The SBOL notations of all possible circuits generated by GeneTech to achieve the same logic of the circuit 0x0B.

algorithm of GeneTech checks for the logic components in the
gates library and find all feasible genetic circuits.

We have extracted the genetic gates by analyzing the SBOL
notations of all the circuits shown in [2] and organized them in
separate lists of genetic NOT and NOR gates. The algorithm is
based on a deterministic depth-first search approach and maps the
genetic gates on the deepest most elements in the expression. For
example, in the expression (𝛾) shown in Figure 2, all NOT gates
from the library which are compatible with A are selected first.
Then the mapping algorithm checks for any available NOR gate
with one of the input as B and the other input matching to the
outputs of any of the NOT gates selected previously for A. If any
such NOR gate is found, the algorithm then search for another
NOR gate with the inputs compatible to the output of first NOR
gate and the output of any of the NOT gates available for C. In
this way, all the compatible components are used to achieve the
same boolean functionality with different possible genetic circuits.

While constructing genetic circuits, GeneTech, avoid using those
genetic gates which generate the same output protein. This is to
make sure that the signals of the gates do not interfere with each
other.

3. EXPERIMENTATION AND RESULTS
We performed experiments on the genetic circuits shown in [2].
Due to space limitation, the results of one circuit, 0x0B, are
shown in Figure 3. Figure 3 (a) shows the schematic and SBOL
representation of the circuit 0x0B obtained directly from [2].

The input expression of the circuit 0x0B is obtained from the truth
table given in [2], which is shown as expression (𝛼) in Figure 2.
After optimization, it is reduced to the expression (𝛽) shown in
Figure 2. Afterwards the synthesis is performed to bring this
expression into NOR/NOT form shown as (𝛾) in Figure 2. Figure
3(b) shows the multi-line text string format (similar to SBOL
notation) which is used by GeneTech to represent the structure of
a generated circuit. In Figure 3(b), promoters are shown with the
symbol “->”, the proteins are represented by round braces “()”,
and the repression is indicated by the symbol “----|” or “T”. Figure
3(b) indicates that the PTac promoter generates a protein PhlF
which in turn represses the output promoter PPhlF. The promoter
PPhlF together with the promoter PTet generate the protein HlYllR,
which represses the output promoter PHlYllR. In the second line,

promoter PBad generates the protein SrpR which supresses its
corresponding output promoter PSrpR. This promoter PSrpR together
with the promoter PHlYllR generate the protein BM3R1, which
represses the activity of the output promoter PBM3R1. The promoter
PBM3R1 is used to produce the output indicator, the yellow
fluorescent protein (YFP). The SBOL notation of Figure 3(b) is
shown as notation 1 in Figure 3(c). Figure 3(c) shows the SBOL
representations of the circuits generated by GeneTech tool. This
figure shows that the GeneTech tool, beside suggesting the
solution given in [2] (Figure 3(c)-1), it also finds all other possible
circuits to achieve the same logic function using other genetic
components available in the gates library [2].

4. SUMMARY
In Cello [2], circuits are constructed by selecting the appropriate
genetic components, based on matching their threshold levels,
through non-deterministic search using simulated annealing
algorithm. Therefore, for every compilation of the same code in
Cello, the generated circuit may contain the same or different
genetic components. On the contrary, GeneTech gives the number
of possible solutions to achieve the same logic. With the correct
set of parameters, the threshold levels of these circuits can then be
obtained using D-VASim [6] and then can be verified in the
laboratory. More design constraints can be added in GeneTech to
make sure that the circuits generated by this tool would work in
the laboratory. Furthermore, GeneTech, at its current state,
supports technology mapping of genetic gates based on
repression. In future, it will be upgraded to support genetic gates
based on other technologies.

5. REFERENCES
[1] B. Bartley, et al., “Synthetic Biology Open Language (SBOL)

Version 2.0.0.,” J. Integr. Bioinform., 2015.
[2] A. A K. Nielsen, et al., “Genetic circuit design automation”, Science,

vol. 352, no. 6281, pp. 7341, 2016.
[3] N. Roehner and C. J. Myers, “Directed Acyclic Graph-Based

Technology Mapping of Genetic Circuit Models,” ACS Synth. Biol,
2014.

[4] Giovanni De Micheli, “Synthesis and Optimization of Digital
Circuits,” McGraw-Hill Series in Elec. and Comp. Engg., 1994.

[5] S. Kirkpatrick, et al., “Optimization by Simulated Annealing”,
Science (80), vol. 220, no. 4598, pp. 671–680, 1983.

[6] H. Baig and J. Madsen, “Simulation Approach for Timing Analysis of
Genetic Logic Circuits,” ACS Synth. Biol., Feb. 2017.

PTac-> (PhlF)----|PPhlF-> PTet-> (HlYllR)----|PHlYllR-> PSrpR-> (BM3R1)----|PBM3R1-> (YFP)
PBad-> (SrpR)---T

1.	

2.	

3.	

4.	

5.	

6.	
PTac PSrpR PTet PPhlF PBetl

SrpR PhlF Betl YFP
PBad PAmtR

AmtR

PTac PSrpR PTet PPhlF PHlYllR
SrpR PhlF HlYllR YFP

PBad PAmtR
AmtR

PTac PPhlF PTet PHlYllR
PhlF HlYllR YFP

PBad PAmtR
AmtR

PBetl
Betl

PTac PAmtR PTet PBetl
AmtR Betl YFP

PBad PSrpR
SrpR

PPhlF
PhlF

PTac PHlYllR PTet PBetl
HlYllR Betl YFP

PBad PSrpR
SrpR

PPhlF
PhlF

PTac PPhlF PTet PHlYllR
PhlF HlYllR YFP

PBad PSrpR
SrpR

PBM3R1
BM3R1

(a)

(b)

(c)

