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Abstract The localized analytical sensitivity for eigen-

frequency is extended to the non-linear problem of 3D

continuum buckling analysis. Implemented in a finite el-

ement approach the inherent complexity of mode switch-
ing and multiple eigenvalues is found not to be a prac-

tical problem. The number of necessary redesigns is of

the order 10-20 as illustrated by a specific example,
where also different cases of stiffness interpolation are

exemplified.

Keywords Sensitivities · buckling · analytical ·

optimization · FE

1 Introduction

The book by Haftka et al (1990) include references

to early papers on optimization that involves buck-
ling as an objective or as a constraint and the sub-

ject still needs further research. In the papers Wu and

Arora (1988), Mróz and Haftka (1994), Kleiber and
Hien (1997) and in the review Ohsaki (2005) exten-

sive formulations of sensitivity analysis for non-linear

problems are presented and discussed, including prob-
lems where stability is essential. The shown examples

in these references are still concentrated on structural
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models such as trusses and frames. In the discussion

of Bruyneel et al (2008) on design of continua it is in

the conclusion stated that ”buckling optimization is a

very difficult problem and the reasons for slow conver-
gence are multiple”. In the recent papers by Dunning

et al (2016), Luo and Tong (2015), Sørensen et al (2014)

and Colson et al (2010) the discussion is continued in-
cluding aspects of sensitivity analysis, choice of opti-

mization method, and the possibility of several buck-

ling modes. The present paper is intended to be short
and add to the discussion of Bruyneel et al (2008). In

spite of the fact that buckling of trusses and frames are

of major importance, the present research concentrate

on continua.

In the present paper focus is on the sensitivity anal-

ysis. The optimization method chosen is an optimality
criterion method but this is of minor importance as sen-

sitivities are of more general value. Each optimization

step is based only on the buckling mode of the lowest

eigenvalue and still ”convergence” is obtained in 10-20
redesigns, although influence from switching of buck-

ling mode is seen. Including several buckling modes as

in the cited references may improve convergence fur-
ther, but is not attempted in the present paper, which

concentrate on the formulation for sensitivity analysis

and the discussion of the basis for the involved eigen-
value problem.

The main difference between the cited references

and the present formulation of the eigenvalue problem
for buckling determination (estimation) relates to the

involved matrices. In the references the initial global

stiffness matrix is applied, i.e., a secant stiffness matrix

based on Green-Lagrange strains to obtain non-linear
static equilibrium is not involved. The eigenvalue prob-

lem is in the present paper stated as a linear extrapo-

lation from a geometrically non-linear state, with two
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matrices from this state which describe the resulting

tangent stiffness matrix.

For a given continuum (design) with given load dis-
tribution and specified support conditions, a buckling

load factor may be determined (estimated) by solution

of an eigenvalue problem as described in Cook et al
(2002) based on linear elastic analysis. This formula-

tion involves the initial global stiffness matrix that only

depends on the current design. However, in the present
formulation the necessary data for the eigenvalue prob-

lem is obtained by the solution of a static equilibrium

of a geometrical non-linear elastic problem, iteratively

applying current secant and tangent stiffness matrices
based on Green-Lagrange strains. This geometrical non-

linear approach in reality simplifies the sensitivity anal-

ysis for the eigenvalue problem, and include the possi-
bility for changed relations between individual stresses.

The eigenvalue problem includes the tangent stiff-

ness matrix separated in the stress stiffness matrix and

the remaining part of the tangent stiffness matrix. For

a tetrahedron element analytical expressions for these
matrices are available in Pedersen (2006) and are ap-

plied for the presented research. It is directly seen that

especially the stress stiffness matrix is rather simple.
The eigenvalue problem is solved by the method of sub-

space iteration giving in addition to the eigenvalue (load

factor) also the corresponding buckling mode. With this
mode a Rayleigh quotient is equal to the eigenvalue and

the formulation is presented in energy terms that may

be directly accumulated from element energies, remem-

bering that the element stress stiffness matrices are in-
definite.

Two aspects of the eigenvalue problem simplify the

sensitivity analysis, defined as change in load factor

(eigenvalue) as a function of a specific element design
parameter. At first the gradient of the Rayleigh quo-

tient is stationary with respect to the eigenmode, .i.e.,

the change of buckling mode will not influence the first
order derivative. Secondly, the accumulation from ele-

ment energies, with only local explicit influence from

design parameter to the corresponding element matri-

ces, implies that local analytical sensitivity analysis can
be derived and applied.

An optimality criterion is closely related to the sen-

sitivity gradient and a heuristic numerical approach de-

termine a redesign towards an increased load factor,
assume no mode switching. The number of needed re-

designs is of the order 10-20 and mainly the compu-

tational demanding part is the chosen implicit non-

linear elastic solutions after each redesign, which with
Newton-Raphson iterations involves a Gauss elimina-

tion for each iteration. The presented example in 3D

have close to 100000 design variables, close to 100000

degrees of freedom and for the linear equations a band-

width close to 1000, still being computationally accept-
able.

The layout of the paper is as follows: Section 2 de-

scribe mathematically the essentials of the stress stiff-

ness matrix for a FE tetrahedron and Section 3 de-
scribes the formulation of buckling as an eigenvalue

problem. Localization of results for sensitivity analy-

sis is shown in Section 4 and are in Section 5 applied
to obtain an optimality criterion that a design must

satisfy when the size limits for design parameters are

not active. A numerical example is finally discussed in

Section 6, including different cases of stiffness interpo-
lation. The obtained results should be of interest for

research related to topology optimization, although 0-1

solutions are not attempted.

2 Stress stiffness matrix

The stress stiffness matrix [Sσ] is a part of the tangent

stiffness matrix [St]. The remaining part we index as

the gamma stiffness matrix [Sγ ], that in Section 5.1.2 of
Crisfield (1991 and 1997) is indexed with t1. With zero

displacement gradients [Sγ ] simplifies to the stiffness

matrix for linear elasticity. The matrix [Sγ ] is positive
definite.

[St] = [Sγ ] + [Sσ] (1)

All these stiffness matrices are symmetric, and are in
Pedersen (2006) available by analytical expressions for

the simple four node tetrahedron element. From these

expressions it is seen that [Sσ] is proportional to a factor
on the stresses, i.e., a factor on the load distribution in

a tangential extrapolation. Further simplifications are

seen with presentation on the directional level:

[Sσ] =



[Sσ]xx [Sσ]xy [Sσ]xz
[Sσ]yx [Sσ]yy [Sσ]yz
[Sσ]zx [Sσ]zy [Sσ]zz




=



[Sσ]xx [0] [0]
[0] [Sσ]yy = [Sσ]xx [0]

[0] [0] [Sσ]zz = [Sσ]xx


 (2)

and the 4 × 4 matrix [Sσ]xx is

[Sσ]xx =σxx[Txx] + σyy[Tyy] + σzz[Tzz]+

σxy([Txy] + [Txy]
T ) + σxz([Txz] + [Txz]

T )+

σyz([Tyz] + [Tyz]
T ) = [Sσ]

T
xx (3)
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where the six basis matrices [Tij ] are determined di-

rectly from the initial nodal positions. The simple ex-
pressions for the stress stiffness matrix by (3) and (2)

is directly taken from the total tangent stiffness ma-

trix in Pedersen (2006). The remaining part of the tan-
gent stiffness matrix is [Sγ ] as defined in (1) by [Sγ ] =

[St]− [Sσ].

3 Buckling as an eigenvalue problem

With the tangent stiffness matrix available for a FE
model, buckling may be determined as described in

Cook et al (2002). In buckling two close equilibrium

states are possible for the same load.

An initial non-linear obtained reference state is as-

sumed, corresponding to the load {A}i and is obtained

by a solution of the geometrical non-linear elastic equi-
librium [Ss]i{D}i = {A}i, where the system secant

stiffness matrix is non-symmetric and depending upon

the displacement vector {D}i. An iteratively obtained

solution is given the index i to indicate the dependence
on the chosen prescribed load distribution {A}i, which

might include imperfections and may be changed/scaled

when closer knowledge to the actual optimization prob-
lem is obtained. At convergence for the geometrical

non-linear static equilibrium the tangent stiffness ma-

trix is obtained. Then for further load increment (ex-
trapolation), this matrix is assumed fixed, i.e., both [Sγ ]

and [Sσ] do not depend on the further displacements.

This is the background for the simple sensitivity anal-

ysis.

Different solution approaches are possible, also with-

out focus on the secant stiffness matrix. Here the Rayleigh-
Ritz approach is applied and a system residual {R} is

defined from

{R} = [Ss]{D} − {A} (4)

and then iteratively update the estimate {D} by {∆D}
found from

{R}+ {∆R} = {0} ⇒ {∆R} = −{R} = [St]{∆D} (5)

where the total tangent stiffness matrix [St] is symmet-
ric and also depending upon the current displacement

vector {D}i. The update is done on the system level, so

that the system tangential stiffness matrix and the sys-

tem residual vector can be assembled in the usual finite
element manner, but without needing to assemble the

system secant stiffness matrix that is non-symmetric,

i.e., {R} =
∑

e([Ss]e{D}e − {A}e).

A determined solution {D}i gives the gamma stiff-

ness matrix [Sγ ] and the stress stiffness matrix [Sσ] by

[Ss]i{D}i = {A}i ⇒ {D}i ⇒

γi ⇒ [Sγ ]i and σi ⇒ [Sσ]i (6)

For an extrapolated load step, the tangent stiffness

matrix is added the effect of scaled (increased) stress by
the factor λi for estimation of the buckling load. With

the definition λ = 1 + λi this gives

(([Sγ ]i + [Sσ]i) + λi[Sσ]i) {∆D}i+1 =

([Sγ ]i + (1 + λi)[Sσ]i) {∆D}i+1 ⇒

([Sγ ]i + λ[Sσ]i) {∆D}i+1 = λ{∆A}i+1

([Sγ ]i + λ[Sσ]i) ({∆D}i+1 + {∆}) = λ{∆A}i+1 (7)

where {∆} is the buckling mode from {∆D}i+1. The

difference of these two equations gives an eigenvalue
problem

([Sγ ]i + λ[Sσ]i) {∆} = {0} ⇒ the eigenpair λ1, {∆}1
(8)

The critical load {A}C corresponding to the buck-

ling mode {∆}1 is

{A}C = λ1{A}i (9)

where λ1 is the lowest eigenvalue, with λ1 > 1 (which

is obtained by scaling of {A}i). (If λ1 = 1 the tangent

stiffness matrix is singular and {∆}1 not defined).

4 Localization of sensitivity analysis

The eigenvalue problem (8) presented without index i

is

([Sγ ] + λ[Sσ]) {∆} = {0} (10)

that is pre multiplied by the transposed buckling eigen-

mode {∆}T to

Uγ + λUσ = 0 with the defined energies

Uγ := {∆}T [Sγ ]{∆} and

Uσ := {∆}T [Sσ]{∆} (11)

and the Rayleigh quotient
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λ = −
Uγ

Uσ

(12)

The sensitivity of the buckling eigenvalue with re-

spect to the density ρe of the local element e is

∂λ

∂ρe
= −

∂
Ûγ

Uσ

∂ρe
−

∂
Uγ

Uσ

∂∆

∂∆

∂ρe
= −

∂
Ûγ

Uσ

∂ρe
(13)

simplified by the stationarity of the Rayleigh quotient
with respect to change of the eigenmode and apply-

ing a hat notation for gradients with unchanged eigen-

mode, see Pedersen and Pedersen (2015) with reference
to Wittrick (1962).

Note for the energies in (11), that the stiffness ma-

trices are based at the solution {D}i for the non-linear

elastic problem while the buckling mode {∆} is the
eigenmode. The stationarity of λ as a function of buck-

ling mode is not an assumption of independence but

only related to the first order partial derivative. In the
linear extrapolation from the non-linear static equilib-

rium, the tangent matrices [Sγ ] and [Sσ] are fixed and

obtained by the current determined displacement vec-

tor {D}i from [Ss]i{D}i = {A}i, but {D}i is not explic-
itly involved in the sensitivity analysis. This is the back-

ground for the simple results obtained with the energy

eigenvalue formulation where the buckling mode {∆}
and not the displacement vector {D}i is involved. Every

new redesign is initiated with a non-linear static analy-

sis, iteratively determining [Ss]i. From several examples
it is seen that almost monotonous convergence is ob-

tained with small redesign changes. Influence from mul-

tiple buckling modes that have equal or nearby eigen-

values are taken care of in later redesigns without ex-
tended sensitivity analysis for non-single eigenmodes.

Also mode switching is seen for the cases when apply-

ing the method of subspace iterations to obtain more
than one eigenvalue.

Further differentiation of the Rayleigh quotient give

∂λ

∂ρe
= −

∂Ûγ

∂ρe

1

Uσ

+
∂Ûσ

∂ρe

Uγ

U2
σ

= −
1

Uσ

(
∂Ûγ

∂ρe
+ λ

∂Ûσ

∂ρe

)

(14)

where the energies are accumulated from element ener-

gies

Uγ =
∑

e

(Uγ)e and Uσ =
∑

e

(Uσ)e (15)

The stiffness matrices depend explicitly only on the

local element density ρe and if this dependence is as-
sumed to be linear proportionality we find

∂λ

∂ρe
=−

1

Uσ

(
∂(Ûγ)e
∂ρe

+ λ
∂(Ûσ)e
∂ρe

)
=

−
1

Uσρe
((Uγ)e + λ(Uσ)e) =

(Uσ)e
Uσ

1

ρe
(λe − λ)

(16)

For other dependence than linear proportionality,

see Pedersen and Pedersen (2015) and Section 4.1.

4.1 Influence from modified stiffness interpolation

The assumed linear dependence of the element stiffness

matrices on the design parameter ρe may be substi-

tuted by a more general function f(ρe), assumed being

the same function for all elements. This involves modi-
fication of the sensitivity (16) as described in Pedersen

and Pedersen (2014), but is here more simple because

no kinetic energy is involved, and just a factor Γ (ρe) is
added to (16)

∂λ

∂ρe
=

(Uσ)e
Uσ

1

ρe
Γ (ρe)(λe − λ) (17)

where Γ (ρe) is

Γ (ρe) =
ρef

′(ρe)

f(ρe)
with f ′(ρe) =

df(ρe)

dρe
(18)

The simple result (17) is also valid for other finite el-

ement models. The applied function, named NLPI (Non
Linear Penalization or Interpolation), is analytical pre-

sented in Pedersen and Pedersen (2012) with discus-

sions relative to SIMP (Solid Isotropic Material Penal-

ization) f(ρ) = ρκ1
e , and also relative to another one

parameter interpolation function named RAMP (Ra-

tional Approximation of Material Properties) f(ρ) =
ρ

1+(κ1−1)(1−ρ) . The parameter κ1 is the slope of f at
ρe = 1 and for NLPI the second parameter κ0 is the

slope of f at ρe = 0. Figure 1 shows the interpolation

function and corresponding Γ functions for two applied
cases of κ0, κ1, together with the third order SIMP pe-

nalization f(ρ) = ρ3e.

4.2 Summary on the sensitivities

The gradients (16) and (17) constitute the basis for
an optimization procedure. They are the most valuable

result of the present research and therefore presented

in summary:
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NLPI κ1 = 2, κ0 = 0.2

Fig. 1 Left three interpolation functions and right the corresponding factors for the sensitivity, defined in (18). The parameters
κ0, κ1 are the slopes of f at ρe = 0, 1. The specific values 0.1217 and 0.0786 are used in an example.

– The derivative of the critical load factor λ with re-

spect to density ρe is determined directly by cor-

responding local quantities from already performed
analysis.

– The derivative is proportional to the local relative

energy from the stress matrix (Uσ)e
Uσ

.
– The derivative is inversely proportional to the lo-

cal density ρe, for non-linear interpolation modified

with the factor ρef
′(ρe)

f(ρe)
.

– The derivative is proportional to the difference be-

tween local Rayleigh quotient and system Rayleigh
quotient, i.e., proportional to (λe − λ).

– The sign of the derivative is equal to the sign of
(Uσ)e
Uσ

(λe − λ) where Uσ may be normalized to 1.

– When Γ (ρe) is constant as in the SIMP penaliza-
tion, it is just the same scaling factor on all sensi-

tivities (and on values for optimality criterion). For

the applied NLPI interpolation it influences the re-
sult of optimization.

5 Design optimality criterion and numerical

procedure

The objective of maximizing the buckling load λ1{A}i,
i.e., maximizing λ1, subject to a constraint of unchanged

total mass/volume is

Maximize λ1 for g =
∑

e

ρeVe − V = 0 (19)

and the necessary optimization criterion is

∂λ

∂ρe
= Λ

∂g

∂ρe
= ΛVe ⇒

(Uσ)e
Uσ

Γ (ρe)

ρeVe

(λe − λ) = Λe = Λ (20)

with a constant Λ. By normalizing the buckling mode

{∆}, Uσ may be normalized to 1.

5.1 Numerical design procedure for density variables

Assume that the value of the optimality criterion for
element e is termed Λe. Then in cases with negative as

well as positive ratios 0 > (Λe)min ≤ Λe ≤ (Λe)max >

0, which is the case for the buckling optimization, the

following heuristic procedure has been applied

For positive gradients (
(Uσ)e
Uσ

(λe − λ) > 0)

(ρe)new = (ρe)current(1 + fp
Λe

Λmax

)qF

For negative gradients (
(Uσ)e
Uσ

(λe − λ) < 0)

(ρe)new = (ρe)current(1− fn
Λe

Λmin

)qF (21)

i.e., always increase for a positive gradient and decrease

for a negative gradient. The values of Λmin < 0, Λmax >

0 are determined during the evaluation of the gradi-

ents. Specific values in (21) (fp, fn, q = 4, 0.8, 0.25 or

fp, fn, q = 1, 0.5, 0.5) are chosen after experience with
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a given problem, acting as kind of move-limits and in-

fluence the number of recursive redesigns (number of
eigenvalue analysis) with F in an inner iteration deter-

mined such that the total volume constraint is exactly

satisfied, see Pedersen and Pedersen (2012) for details.

For the procedure (21) the size limits of the non-
dimensional density variables

0 < ρmin ≤ ρe ≤ ρmax ≤ 1 (22)

are satisfied at each iteration in the ”inner” iteration
loop without further analysis and sensitivity analysis.

The converged factor F thereby satisfies both the size

limits (22) and the specified total amount of mate-
rial/volume V by

∑
e ρeVe = V .

The described iterative redesign procedure to in-

crease the load level for buckling initiation is as follows:

– For a given distribution of densities, i.e., a given

non-uniform FE model solve the non-linear analysis

problem with load {A}i.
– With resulting displacement gradients and resulting

stresses the system matrices [Sγ ], [Sσ] are evaluated.

– The eigenvalue problem (8) is solved by subspace

iterations to obtain the first two lowest eigenvalues
and corresponding buckling eigenmodes λ1, ∆1 and

λ2, ∆2. The design history is shown by λ1, λ2 for

redesigns 0, 1, 2, ...
– Assuming the initial load vector to be {A}i, then

the critical buckling load vector is λ1{A}i.

– For each element evaluate the local Rayleigh quo-
tient λe.

– Redesign according to distribution of the optimality

criterion (20) with the applied heuristic procedure

(21), using a not too large value of relaxation expo-
nent q, say q = 0.5 or even q = 0.25, for a detailed

model.

6 Numerical example

The influence of numerical parameters for the chosen

numerical approach and of the basic parameters for the
design problem, i.e., the total amount of available ma-

terial and of stiffness interpolation as a function of rela-

tive density can be studied in numerical examples. The
example below documents the effectiveness of the ap-

proach.

6.1 Example of a single column

At first a column with design space of height 20m and

a squared cross-section of 3m× 3m is analyzed and the

buckling optimized. Figure 2 shows the discretization

of the cross section and an indication for a central part
that at the free top end is loaded with a uniform dis-

tributed load towards the corresponding part at the

bottom end that is fixed in all three directions x, y, z.
The remaining part of the bottom end is only fixed in

the z-direction. The total load is 5.625 · 107N.

In the length direction the FE discretization is in

65 levels with each 16 × 16 quadratic domains, i.e.,
between two levels 256 box domains of each 6 tetrahe-

drons, as shown in Figure 3, i.e., totally 98304 tetrahe-

dron elements. This FE model is not completely sym-
metric due to the division of the boxes into 6 tetrahe-

drons, and this means that a further imperfection is not

necessary for buckling. For easier interpretation of the
resulting designs and their corresponding responses, it

is chosen to present smooth results where all tetrahe-

drons in a box after each redesign are set to the mean

value of these six tetrahedrons.

Chosen parameters for the first case is:

– Stiffness interpolation by κ0, κ1 = 1, 1, i.e., linear

interpolation.

– Total amount of material by ρmean = 0.3, i.e., 30 %
of maximum.

– Size constraints: ρmin = 0.1 and ρmax = 1

– Redesign relaxation by q = 0.5 and fp, fn = 1, 0.5

in (21), giving rather stable convergence in 10-20
redesigns.

Figure 4 shows the history of buckling load factor λ1

as a function of redesign number with 0 for the initial

uniform design of 30% densities in the specified design
space. The λ1 factor for uniform design corresponds to

15.5 and by 20 redesigns this increases to 20.9, i.e., with

initial load 5.625 ·107N the total distributed load before
buckling is increased from 8.7 ·108N to 11.7 ·108N. The

influence of mode switching is clearly seen by the jagged

curves.

The two lower curves of Figure 4 illustrate the total
accuracy of the determined sensitivities. The obtained

(∆λ1)o is based on a smoothed model where all tetra-

hedrons in a box after each redesign are set to the mean
value of these six tetrahedrons, and therefore with less

gain. The expected (∆λ1)e is based on individual re-

design of the six tetrahedron in a box and (∆λ1)e >

(∆λ1)o is found in most shown cases. For the final re-
designs with no mode switching (∆λ1)e ≃ (∆λ1)o is

found.

The resulting design after 20 redesigns is illustrated

in Figures 5 by density distributions at 16 levels (at ev-
ery fourth level as mean values of connecting elements).

A rather general interpretation is: 1) low density at the

free loaded end to distribute the midpoint load towards
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z

Fig. 2 Sketch of a 3D cantilever column with the finite element box discretization of the cross section. The thick lines at mid
indicate the loaded domain at the free end as well as the completely fixed domain at the bottom.
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Fig. 3 Eight node hexahedron element divided first into two wedges elements and then into six tetrahedra elements, numbered
in circles. The numbering of the eight nodes of the hexahedron is also related to the corner nodes of the tetrahedra.

the quadratic boundary, 2) for next quarter part higher
densities at the corner gradually increasing, 3) for the

third and fourth part, still low densities in the mid part

also close to the fixed supports, and maximum density

at the corners.

All the cross sections in Figure 5 show close to dou-
ble symmetry for the material distribution. It is then ex-

pected to determine close to double eigenvalues. Figure

6 illustrate the obtained lowest buckling mode. With

reference to a diagonal of the squared domains for the
full continuum, the buckling mode corresponds to skew

bending without torsion. The second buckling mode has

reference to the other diagonal and the two eigenvalues

are close as seen in Figure 4.

Figure 7 shows the distribution of optimality crite-
rion values after 20 redesigns. Almost equal values are

obtained with values close to zero, indicating that the

optimality criterion is fulfilled.
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∑

e

∂λ1
∂ρe

∆ρe

Fig. 4 Design history by eigenvalues evolution with λ1 being
the objective. The thick red line correspond to λ1 while the
lighter line correspond to λ2. Interpolation by κ0, κ1 = 1, 1,
i.e., linear interpolation. Total material 30 %. Obtained in-
crements by green line and expected increments by blue line.
The ”shared” point for λ1 and λ2 indicate close eigenvalues,
but only one buckling mode is the basis for the following re-
design.

Fig. 5 Design after 20 redesigns with interpolation by
κ0, κ1 = 1, 1, i.e., stiffness proportional dependent on the
local density parameter ρe. Starting from upper left corner
close to the free, loaded end. Ending at the lower right corner
close to the support.

The second case corresponds to non-linear in-

terpolation with κ0, κ1 = 0.2, 2 and Figure 8 shows
the history of buckling load factor λ1 as a function of

redesign number with 0 for the initial uniform design

of 30% in the specified design space. The λ1 factor for

Lowest buckling mode

x, y displacements at 16 z levels

Fig. 6 The buckling mode displacements at every fourth z
level. Starting from upper left corner close to the free, loaded
end. Ending lower right corner close to the support. In 3D
showing a skew bending without torsion. The second mode
similar, but relative to the other diagonal.

m−3

Fig. 7 Distribution of optimality criterion values after 20
redesigns with interpolation by κ0, κ1 = 1, 1, i.e., stiffness
proportional dependent on the local density parameter ρe.
The figure illustrates that the optimality criterion is fulfilled.
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uniform design corresponds to 6.28 and by 20 redesigns

this increases to 8.62.

 0

 2

 4

 6

 8

 10

 0  5  10  15  20Redesign

λ2, λ1, (∆λ1)o, (∆λ1)e

λ2

λ1

Obtained (∆λ1)o

”Expected” (∆λ1)e =
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e
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∆ρe

Fig. 8 Design history by eigenvalues evolution with λ1 being
the objective. The thick red line correspond to λ1 while the
lighter line correspond to λ2. Interpolation by κ0, κ1 = 0.2, 2.
Total material 30 %. Obtained increments by green line and
expected increments by blue line.

For this case of non-linear interpolation with κ0, κ1 =

0.2, 2 the resulting design after 20 redesigns is illus-
trated in Figures 9 by the distribution of density distri-

butions at 16 levels. The resulting distribution of opti-

mality criterion values is similar to Figure 7 and there-
fore not shown. This also holds for the following third

case.

Fig. 9 Design after 20 redesigns with interpolation by
κ0, κ1 = 0.2, 2.

The third case corresponds to a stronger non-

linear interpolation with κ0, κ1 = 0.1, 3 and Figure
10 shows the history of buckling load factor λ1 as a

function of redesign number with 0 for the initial uni-

form design of 30% in the specified design space. The
λ1 factor for uniform design corresponds to 4.06 and by

20 redesigns this increases to 5.61.
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e

∂λ1
∂ρe

∆ρe

Fig. 10 Design history by eigenvalues evolution with λ1

being the objective. The thick red line correspond to λ1

while the lighter line correspond to λ2. Interpolation by
κ0, κ1 = 0.1, 3. Total material 30 %. Obtained increments
by green line and expected increments by blue line.

For this case of stronger non-linear interpolation

with κ0, κ1 = 0.1, 3 the resulting design after 20 re-
designs is illustrated in Figures 11 by the distribution

of density distributions at 16 levels.

All three Figures 4, 8 and 10 show clear conver-
gence in spite of mode switching for first and second

eigenvalue. For linear interpolation, initial to optimized

values are λ1 = 15.5 ⇒ 20.1; for κ0, κ1 = 0.2, 2 inter-

polation, initial to optimized λ1 = 6.28 ⇒ 8.62 and
for κ0, κ1 = 0.1, 3 interpolation, initial to optimized

λ1 = 4.06 ⇒ 5.61.

Figure 12 combines results for history of the eigen-
values. With stronger non-linear interpolation several

of the lowest eigenvalues are close and the numerical

analysis is more sensitive, but still solvable.

For the three cases the resulting designs after 20
redesigns are illustrated in Figures 5, 9 and 11 by the

distribution of density distributions at 16 levels (at ev-

ery fourth level as mean values of connecting elements).
The interpretation of these figures is similar to the com-

ments given to Figure 5. With stronger non-linear in-

terpolation the resulting designs shows clearer concen-
trations of material and larger flexible domains.

For uniform density, i.e., redesign 0 in Figure 12

we may see interpolation as a scaling of stiffnesses and

thereby get an estimate of the change in load factor
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Fig. 11 Design after 20 redesigns with interpolation by
κ0, κ1 = 0.1, 3.

 0

 5
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 20

 0  5  10  15  20

Redesigns

λ1 and λ2

κ0, κ1 = 1, 1

κ0, κ1 = 0.2, 2

κ0, κ1 = 0.1, 3

Fig. 12 Combined design histories by eigenvalues evolution
with λ1 being the objective. The thick lines correspond to
λ1 while the lighter lines correspond to λ2. Three different
interpolations and total material 30 % for all three cases.

λ1. From Figure 1 the λ1 factor for κ0, κ1 = 0.2, 2 is

reduced by a factor 0.1217/0.3 = 0.406, that estimate

λ1 to 15.5·0.406 = 6.293, close to the determined factor
6.28. Similar for κ0, κ1 = 0.1, 3 with value from Figure

1 the λ1 factor is 15.5(0.0786/0.3) = 4.061 that agree

with the determined factor 4.06. The strong influence of

the interpolation is illustrated in the combined Figure
12, not only by the scaling, which itself is depending on

the total amount of material, but also by the closeness

of eigenvalues and the mode switching.

7 Conclusions

For a four node tetrahedron element, a simple evalua-

tion of the stress stiffness matrix is presented and ap-

plied in buckling analysis that is formulated as an eigen-
value problem. Based on static non-linear equilibrium

the eigenvalue problem is set up and solved by subspace

iterations.
The simple sensitivity analysis is obtained on the

basis of a linear extrapolation from a geometrical non-

linear static equilibrium, and give rice to rather ro-
bust optimizations. Localized sensitivities are analyt-

ically obtained and this makes optimization possible

also for large (100000) numbers of local design vari-

ables. Cases of optimization for a single non cylindrical
column are presented. The influence of chosen stiffness

interpolations is shown.

Although the multi-mode aspects are important, it
is here decided to investigate the limitations for re-

design based only on the mode associated with the low-

est eigenvalue. Also in relation to mode switching this
redesign approach is found practical and without diver-

gent solutions.
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