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Abstract. Gaze stabilization is essential for clear vision; it is the combined effect
of two reflexes relying on vestibular inputs: the vestibulocollic reflex (VCR), which
stabilizes the head in space and the vestibulo-ocular reflex (VOR), which stabilizes
the visual axis to minimize retinal image motion. The VOR works in conjunction
with the opto-kinetic reflex (OKR), which is a visual feedback mechanism that
allows to move the eye at the same speed as the observed scene. Together they
keep the image stationary on the retina.

In this work we implement on a humanoid robot a model of gaze stabilization
based on the coordination of VCR and VOR and OKR. The model, inspired
by neuroscientific cerebellar theories, is provided with learning and adaptation
capabilities based on internal models. We present the results for the gaze
stabilization model on three sets of experiments conducted on the SABIAN robot
and on the iCub simulator, validating the robustness of the proposed control
method. The first set of experiments focused on the controller response to a
set of disturbance frequencies along the vertical plane. The second shows the
performances of the system under three-dimensional disturbances. The last set
of experiments was carried out to test the capability of the proposed model to
stabilize the gaze in locomotion tasks. The results confirm that the proposed
model is beneficial in all cases reducing the retinal slip (velocity of the image on
the retina) and keeping the orientation of the head stable.

Keywords: gaze stabilization, internal model, adaptive control, VOR, VCR
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A comprehensive gaze stabilization controller based on cerebellar internal models 2

1. Introduction

Gaze stabilization is fundamental in everyday activi-
ties. The way it compensates the movements of the
other part of the body as the torso, especially dur-
ing basic movements like walking or running, is crucial
to give a stable reference frame for the two essential
perceptual systems for detection of self-motion relative
to space: the visual and vestibular systems. Vision
is the most useful sensor for many animals to provide
information about the surrounding environment. The
vestibular information operates to create an inertial
guidance system determining the spatial orientation in
order to coordinate movements and balance. Two kind
of reflexes, which rely on the output of the inertial sys-
tem and are used to keep the image stable on the retina,
exist: the vestibulo-ocular reflex (VOR), which stabi-
lizes the visual axis to minimize retinal image motion
and the vestibulocollic reflex (VCR), which stabilizes
the head in space through the activation of the neck
musculature in response to vestibular inputs.

1.1. VOR - From neuroscientific evidences and

models to robotic controllers

The VOR compensates for head movements that would
perturb vision by turning the eye in the orbit in the
opposite direction of the head movements (Barnes
1993). VOR works in conjunction with the opto-
kinetic reflex (OKR), which is a feedback mechanism
for moving the eye at the same speed as the observed
scene. Together they keep the image stationary on the
retina, with VOR compensating for fast movements
and OKR for slower ones (Schweigart et al. 1997).
The VOR involves six extraocular muscles, each pair
acts around a single rotation axis. When a rotation
of the head is detected, the semicircular canals get
activated by head rotation and send their impulses
via the vestibular nerve, through the vestibular nuclei,
to the extraocular muscles (an inhibitory signal to
the muscles on one side and an excitatory signal
to the muscles on the other side). The result is
a compensatory movement of the eyes. The neural
control circuitry of the horizontal VOR has been
studied intensively since it involves only three neuron
reflex arc and the cerebellar flocculus (Itō 1984)
which is also known to be involved in the OKR.
The VOR is an adaptive mechanism which changes
with experience. The vestibulocerebellum is considered
to be responsible for this learning. Several studies
confirm that the cerebellum is essential for motor
learning to correct the VOR in order to ensure accurate
eye movement. To test this hypothesis, Ito and
colleagues (Ito et al. 1977) studied the influence of a
stimulation applied to the inferior olivary or to the
optic tract to the vestibulo-ocular reflex. In healthy

rabbit, an olivary stimulation induced a depression
of the discharge sent by the semicircular canals. In
parallel with the electrophysiological studies, authors
tested the effect of a lesion on the VOR. Using
spectacles that reversed left and right direction on
cats, Robinson (Robinson 1976) showed that cats
are able to adapt their VOR gain to achieve a
stable vision. When the flocculus, paraflocculus and
some parts of the vermis were removed, Robinson
(Robinson 1976) reported no more long- or short-term
adaptation. An interesting hypothesis on cerebellar
motor learning, based on an experimental study of the
rabbit cerebellum, was proposed by Ito (Ito 2000) who
followed the Marr-Albus model (Marr & Thach 1991,
Albus 1971). According to Ito, the adjustment of the
relative strengths of the direct excitatory and indirect
inhibitory pathways adaptively modulates the gain of
the VOR. Ito asserted that the modulation could be
influenced by messages of retinal image slip and the role
of the cerebellum is to store the motor memory for the
changes in VOR gains. Miles and Lisberger (Miles &
Lisberger 1981) proposed an alternative model. They
stated that the role of the cerebellum was not to store
memories but rather to compute an instructive signal
to guide the plasticity process.
One of the first neuroscientific models of VOR has
been proposed by Schmid et al. (Schmid et al.
1971) based on human recordings with the aim to
compare the frequency response of their model to the
human behavior. Galiana and Outerbridge (Galiana
& Outerbridge 1984) published a bilateral model of
the VOR based on the anatomy of the main neuronal
connections present in the central VOR pathway. The
model can reproduce the activity of the different
populations of neurons when a subject is rotating
in the dark. Gomi and Kawato (Gomi & Kawato
1992) proposed a model based on the simultaneous
adaptation of VOR and OKR, and compared it with
the biological data. Finally, Green and Angelaki
(Green & Angelaki 2004) proposed model based on a
neural network that combines the sensory information
from otoliths and semicircular canals simulating the
response along the three rotational axes (yaw, pitch
and roll). Other models focus on the visual-vestibular
interaction ((Lau et al. 1978) (Schmid et al. 1980)
(Barnes 1993). Lau and colleagues (Lau et al. 1978)
published a VOR model with a linear interaction
between the vestibular and the visual component.
With this simple model, they simulated the behaviour
of the VOR in the dark, in the light, with a head-
fixed target and with a target oscillation added to
the scillating chair. The model of Lau et al. (Lau
et al. 1978) was built to reproduce all the experimental
conditions for a single oscillation frequency of 0.05Hz.
After that, Schmid et al. (Schmid et al. 1980) updated
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A comprehensive gaze stabilization controller based on cerebellar internal models 3

the model of Lau et al. (Lau et al. 1978) and integrated
non-linear elements to better represent the behaviour
of the visual-vestibular interaction on a larger range
of target velocities. Barnes (Barnes 1993) proposed
a model that includes three loops to reproduce the
visual modulation during pursuit and the non-visual
modulation of the VOR. In this model, a central
control triggers either an enhancement or a decrease
of the VOR response to model a volitional control of
the VOR. All these models aim to validate human
experiments or try to replicate the neural circuits
involved in this tasks, but are not suitable for the
implementation on robotic platforms.
Two biological models of the VOR have been proposed
and tested on robotic platforms. Shibata and Shaal
(Shibata & Schaal 2001) propose to use a feedback
error learning strategy in conjunction with a receptive
field weighted regression algorithm to implement the
VOR and its internal model on a humanoid robot.
Porrill and colleagues (Porrill et al. 2004) presented
a model for the VOR that is capable of working on
three rotational axes and that includes an internal
model and provide an implementation on Matlab. This
model has also been implemented on a robotic platform
simulating the eye movements (Lenz et al. 2008) .
In robotics literature we found some other controllers
inspired by the VOR (Viollet & Franceschini 2005,
Franchi et al. 2010). Viollet and Franceschini
developed a gaze controller that includes a feedforward
component inspired by the VOR, but lacking any
sensory-motor corrective module. Finally, in (Franchi
et al. 2010), a decorrelation model replicating the
VOR, that is implemented with a Recursive Least
Square algorithm, is shown to be working on a
robotic simulator. Panerai and colleagues presented
a bio-inpired controller based on an inertial sensory
apparatus and images of space-variant resolution
(Panerai & Sandini 1998, Panerai et al. 2000). Among
all these controllers, only Shibata and Schaal (Shibata
& Schaal 2001) replicated the OKR mechanism and
showed the cooperation between ocular movements.

1.2. VCR - From neuroscientific evidences and

models to robotic controllers

The VCR stabilizes the head based on the inertial
input space by generating a command that moves the
head in the opposite direction to that of the current
head-in-space displacement. When the head is rotated
in the plane of a semicircular canal, the canal is
stimulated and the muscles are activated. Thanks
to this stimulation, a compensatory rotation of the
head along the same axis is produced. Each canal
activation produces an appropriate reflex response.
The VCR controls a complex musculature that includes
more than 30 muscles controlling pitch, roll and yaw

rotations (Peterson et al. 2001). The system could
be considered underdetermined because there are more
muscles than rotation axes. One consequence of this
property is that the same head movement can be
produced by the activation of different muscle patterns:
this is the case for voluntary head movements, but not
for the VCR where a particular head motion is related
to a stereotyped muscle activation pattern (Peterson
et al. 2001).
The neuroscientific studies conducted on human
patients during locomotion evidence the contribution
of the VCR for the head stabilization. During a
normal straight walking the head moves mainly in
the sagittal plane, rotating around the pitch axes in
a range of 0.3 − 8◦ and translating between 0.8 −

9 cm (Pozzo et al. 1990, Bloomberg et al. 1992).
During fixed-gaze treadmill walking, that is at fixed
velocity, the coordination between the head and the
trunk is dependent on the events in a gait cycle
(Mulavara et al. 2002), although the trunk already
damps many oscillation acting as a low pass filter
(Kavanagh et al. 2006), the role of the reflexes is still
essential. The neural pathways mediating this reflex
are as yet uncertain. Despite this, the involvement
of the cerebellum in the vestibulo spinal reflexes,
including the VCR, is well known (Cullen & Roy 2004,
Manzoni et al. 1994). For a complete review about
the role of vestibular system in posture control and
involvement of the cerebellum in stabilization tasks
refer to (Cullen 2012). Task involving visual fixation
lead to an improvement of head-in-space stabilization
in humans (Goldberg & Cullen 2011) due to increased
VCR contributions (Forbes et al. 2013). Rather, it is
still unclear whether a suppression of the VCR occurs
in voluntary head movements (Forbes et al. 2014).
Although there are many physiological models of the
VOR and many robotic implementations, it is not
really the same for the VCR. The existent models
have incomplete characteristics or are not suitable
for a robotic implementation. The current state
of art provides two main important models for the
aforementioned reflex. Both consider the VCR as a
simple negative feedback, but recent studies (Forbes
et al. 2013) demonstrates the engagement of the central
nervous system in the modulations of feedback gains.
This means that the simple feedback is not enough to
explain the mechanisms involved in head stabilization
and that some feedforward contribution is present.
A model of VCR has been proposed by Peng (Peng
et al. 1996) in 1996. They presented a control model
of yaw head rotations during perturbations of the torso,
which for the first time combine a model of the human
head with neural feedback controllers representing the
vestibulocollic and the cervicocollic reflexes. The
parameters of the model are extracted directly from
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A comprehensive gaze stabilization controller based on cerebellar internal models 4

anthropomorphic, biomechanical and physiological
studies. The model proposed by Goldberg and
colleagues (Goldberg & Cullen 2011) is nearly the
same as the previous one but in addition there is the
contribution of the voluntary control.
In robotics, some head stabilization models already
exist. Yamada and colleagues (Yamada et al.
2007) proposed a method for controlling the neck
of a snake-like robot in order to stabilize the head
against undulations. The controller is based on
the rejection of the disturbance of the body on
the head using a continuous model. The model
proposed by Marcinkiewicz (Marcinkiewicz et al.
2009), implemented on the AIBO robot, uses a machine
learning algorithm able to learn how to compensate
for head rotations in the absence of stabilization
mechanisms. Gay and colleagues (Gay et al. 2013)
proposed a head stabilization system for a bipedal
robot during locomotion controlled by the optical
flow information. It is based on Adaptive Frequency
Oscillators to learn the frequency and phase shift of
the optical flow. Although the system can successfully
stabilize the head of the robot during its locomotion,
it does not take in consideration the vestibular inputs.

The closest to the neuroscientific findings of
the VCR are the works proposed by Kryczka and
colleagues (Kryczka et al. 2012b, Kryczka et al. 2012a,
Falotico et al. 2012). They proposed an inverse
jacobian controller (Kryczka et al. 2012b, Kryczka
et al. 2012a) based on neuroscientific results (Falotico
et al. 2011) and an adaptive model based on a feedback
error learning (FEL) (Falotico et al. 2012) able to
compensate the disturbance represented by the trunk
rotations. A comparison between these models of head
stabilization is provided in (Falotico et al. 2017).

1.3. Objectives and rationale

All the presented models try to reproduce specific
aspects of the gaze stabilization behaviour, but none
of them can provide a comprehensive model of gaze
stabilization, integrating eye stabilization (OKR and
VOR) together with head stabilization (VCR). Some
robotic controllers provide mechanisms involving eyes
and head, but they usually consider a unique kinematic
chain (neck-eyes) with the aim of stabilize the image
on the retina (Roncone et al. 2014, Habra & Ronsse
2016) without any learning mechanism involved. With
the aim of providing an efficient regulation of the
gaze system, in this work we present a complete
model of gaze stabilization based on the coordination
of VCR and OKR/VOR (Vannucci, Tolu, Falotico,
Dario, Lund & Laschi 2016, Vannucci, Falotico, Tolu,
Dario, Lund & Laschi 2016). By inspiration on
the aforementioned cerebellar theories, an adaptive
learning mechanism is integrated in the model. This

model is tested on a humanoid robot on three sets
of experiments. The first set of experiments focused
on the controller response to a set of disturbance
frequencies along the vertical plane. The second
shows the performances of the system under three-
dimensional disturbances. The last set of experiments
was carried out to test the capability of the proposed
model to stabilize the gaze in locomotion tasks.

Moreover, in addition to showing how the adaptive
learning mechanism can be used to improve the
performances of gaze stabilization while executing a
specific task that is long enough to allow for a proper
learning phase, it is shown how such mechanism
can be employed to perform learning even when
the trials are short or to create a more general
controller capable of adapting to various execution
tasks. This is implemented through an offline learning
technique that allows to create training sets, upon
which learning is performed, and then to store the
internal model parameters after learning for later use
in a modified version of the stabilizing controller. This
also allows the proposed method to be used in short,
but repeatable (up to a certain degree of similarity)
task, such as biped locomotion.

This is the first time that such a comprehensive
control model, with its offline learning capability, is
employed for the gaze stabilization on a physical
humanoid robot.

2. Gaze Stabilization controller

The VOR-OKR-VCR stabilization system is based
on the model proposed in (Vannucci, Tolu, Falotico,
Dario, Lund & Laschi 2016, Vannucci, Falotico, Tolu,
Dario, Lund & Laschi 2016). Such model comprises
feedforward and feedback controllers and learning
networks that provide corrective control signals
through internal models. The overall architecture of
the controller is shown in Figure 1.

2.1. Internal model

The implementation of the internal model aims at
replicating the functionalities of the cerebellum and
was proposed in (Tolu et al. 2012, Tolu et al.
2013). It comprises a machine learning algorithm,
Locally Weighted Projection Regression (LWPR)
(Vijayakumar & Schaal 2000), that models the
cerebellar granular layer (mossy fibers and granule
cells), and a linear readout modelling the integration of
information performed by the Purkinje cells, denoted
as Purkinje Layer (PL). Both the LWPR algorithm and
the linear readout can be trained by feedback signals
(climbing fibers). Given the control architecture of the
subsystems, the internal models act as inverse dynamic
models that take as an input the reference and the
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A comprehensive gaze stabilization controller based on cerebellar internal models 5

Figure 1: The proposed Gaze Stabilization controller. All three subsystems consist of a feedforward or feedback
controller and the relative internal model, whose components, LWPR and PL, contribute in the generation of
the motor commands, by providing appropriate corrections. The training signals for the PL and LWPR are the
output of the feedforward or feedback controller and the total motor command, respectively.

current state of the robot, and produce the desired
motor command that minimize the output of the
feedforward or feedback component (Tolu et al. 2012).
This, in turn, is dependent on both the sensory delays
and the robot dynamics itself, so the internal model is
able to provide motor commands that compensate for
these delays, therefore improving the performances of
stabilization system.

The LWPR is a non-linear regression model that
divides the input space into a set of receptive fields.
Each one has a centre ck and an extension defined by
a positive definite distance matrix Dk. The activation
of each receptive field k in response to an input x and
its output are expressed by

pk(x) = exp

(

−

1

2
(x− ck)

TDk(x− ck)

)

, (1)

yk(x) = wk · x+ ǫk, (2)

where wk and ǫk are the weight vector and bias
associated with the k-th linear model. With every new
input, the centre and the distance matrix associated
with the assigned receptive field are updated.

The global output of the LWPR is given by the
weighted mean of all the outputs yk of the linear local
models created:

y(x) =

∑N

k=1
pk(x)yk(x)

∑N

k=1
pk(x)

. (3)

By employing localized linear models, the LWPR
algorithm lowers the computational cost and enable the
possibility for online, real-time learning.

The activation response of the LWPR, pk, is used

to compute the output of the Purkinje Layer:

z(x) =
∑

k

rkpk(x), (4)

where r is a set of weights that can be trained with an
update rule derived from (Porrill & Dean 2007):

δrk = −βe(x)pk(x), (5)

where β is a positive learning rate and e(x) is the error
signal for the current input.

The output of the internal model is the sum
between the output of the LWPR and of the PL:

u(x) = y(x) + z(x). (6)

2.2. Vestibulocollic reflex subsystem

In this subsystem, the feedforward controller (evcr)
provides velocity motor commands that stabilize
the head against disturbances originated by torso
movements. The output of the internal model
(uvcr) is added to the motor command in order
to provide corrective sensory-motor signals, thus
increasing the performances of the system. The
VCR Feedforward Controller is implemented as a PD
controller, and its output is computed as a function of
the inertial readings (orientation as Euler angles, In,
and rotational velocities, ˙In):

evcr = kp · (−In)− kd · (− ˙In). (7)

Albeit the choice of using a PD controller to model
the Feedforward component of the reflexes is not
biologically inspired, in this work we aim at a robotic
application, therefore such simplification can still be
considered appropriate in this context. The internal
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A comprehensive gaze stabilization controller based on cerebellar internal models 6

model receives as input the current and the desired
angular position and velocity of the robot head, and it
is trained with the output of the feedforward controller
and the resulting motor command. The desired
angular position and speed can be computed as the
current intensity of the external disturbance. This can
be estimated using readings coming from the inertial
measurement unit and the encoder values, using only
direct kinematics functions. The disturbance vector
can be computed as d = In−Ĩn, i.e. by subtracting the
expected angular rotations given by the encoder values
(Ĩn) from the inertial readings (In). Ĩn = [ϕ, ϑ, ψ] are
the Euler angles for the rigid roto-translation matrix
K(θh) from the root reference frame to the inertial
frame, computed as:

ϕ = atan2(−K(θh)2,1,K(θh)2,2), (8)

ϑ = asin(K(θh)2,0), (9)

ψ = atan2(−K(θh)1,0,K(θh)0,0). (10)

The angular velocity of the disturbance can be
estimated as follows:

ḋ = ˙In−
˙̃
In = ˙In− J(θh) · θ̇h, (11)

where J is the geometric Jacobian from the root
reference frame to the inertial frame.

2.3. Vestibulo-ocular reflex subsystem

The VOR subsystem receives in input the head angular
position and velocity signals, acquired through the
inertial measurement unit (In, ˙In), and use them
to generate appropriate velocity motor commands
that compensate for head motion. As for the VCR
subsystem, it comprises of a feedforward controller,
implemented as a PD, and an internal model. The
output of the PD controller can be computed as

evor = kp · (−In) + kd · (− ˙In) + uokrtot, (12)

where uokrtot is the output of the OKR subsystem,
employed as compensatory signal (Shibata & Schaal
2001). The VOR internal model receives as inputs the
desired eye rotations (i.e. inertial angular positions and
velocities), along with the current eye encoder values
(θe and θ̇e). As in the VCR subsystem, the learning
signals are the output of the feedforward controller and
the generated motor command.

2.4. Opto-kinetic reflex subsystem

The position error of the visual target, computed as its
angular position on the horizontal and vertical axes in
the camera reference frame (u, v), and the retinal slip,
its derivative (u̇, v̇) are used by the OKR subsystem to
keep the camera image stable. The angular position is
extracted from the camera image using colour filtering,
centroid computation and a conversion from pixels to

angles. This information is used to compute the output
of the feedback controller:

eokr = kp · (u, v) + kd · (u̇, v̇). (13)

As in the previous cases, the learning signals for the
OKR internal model are the output of the feedback
controller and the generated motor command. The
inputs to the model are the current eye state and the
sum of the eye position and velocity and the tracked
target position and velocity, that are the absolute value
of the camera image motion in the eye reference frame.

2.5. Offline learning

While the proposed model is capable of online, real-
time learning, this is not suitable for every situation.
In fact, once the internal model has been learnt, it
could be used on subsequent trials in order to avoid
the training phase. Moreover, the training could be
performed offline, either by collecting a set of trials
that can be used as a training set or by generating
a random disturbance. The first approach can be
useful to train the controller for a specific task which
is too short to allow online learning, while the second
one can be employed to expose the controller to a
wider range of disturbances, creating a more generic,
adaptive controller which can be later employed under
different disturbances. Once the learning phase is over,
the LWPR and PL parameters can be stored and used
in a new trial in order to avoid having to perform the
learning again. In particular, the parameters that have
to be saved for the LWPR are the number of receptive
fields, the distance matrices Dk, the weight vectors wk

and the biases ǫk, while for the PL the vector of weights
r must be saved.

After the learning phase, the contribution of the
non internal model term (feedforward or feedback
controller) to the resulting motor command tends to
be null (Tolu et al. 2012). Thus, in the offline learning
case, we did not use the feedback controllers for the
subsystems during the testing trials, simplifying the
control scheme as shown in Figure 2.

3. Experimental setup

In order to assess the performances of the proposed
model, three different kinds of experiments have been
performed:

• stabilization of artificially generated disturbances;

• stabilization of 3D disturbances;

• stabilization of locomotion disturbance.

In the first case, the iCub robotic head was
mounted on a oscillating platform capable of generat-
ing disturbances through periodic motion (see Figure
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A comprehensive gaze stabilization controller based on cerebellar internal models 7

Figure 2: The modified Gaze Stabilization for the execution after a learning phase.

3a). The iCub head (Beira et al. 2006) has 6 degrees
of freedom: 3 for the neck (pan, tilt and swing) and
3 for the eyes (an independent pan for each eye and
a common tilt). All the joints are actuated by DC
servo motors with relative encoders. The visual stereo
system consists of 2 dragonfly2 cameras with a max-
imal resolution of 320x240 pixels and a frame rate of
60Hz. The Inertial Measurement Unit (IMU), mounted
in the centre of the head, is an XSens MTx unit. In-
ertial measurements, with an angular accuracy on the
roll and pitch axis of 2 degrees can be sampled with a
100Hz frequency.

The oscillating platform is a custom built device
that generates periodic disturbances and it consists in
an aluminium plate connected to a rigid external frame
by two coaxial bearings. The device to be tested is
placed on the plate and anchored mechanically. The
plate is then connected to a rigid mechanism that
transforms the continuous rotation of a crank, actuated
by a DC motor, through a slide mechanism, to the
periodical oscillation of the plate (Figure 3b). The
platform can only provide disturbances on a single
rotational axis, and the rotation of the plate (γ) can
be expressed as a function of the crank angle (δ):

sin(γ) =
R · sin(δ)

√

(R · sin(δ))2 + (L−R · cos(δ))2
, (14)

where R is the distance from the motor axis and
the pin joint linking the disk and the slider and L is
the distance between the axis of the motor and the
axis of rotation of the platform. By construction these
parameters are set to R = 2cm and L = 20cm.

Due to the limitations of the platform, that
provides disturbances on a single rotational axis, only
the pitch axis could be considered for the experiments,
thus only rotations around the y axis of the inertial
reference frame.

In order to verify that the controller is capable
of working also for disturbances on all rotational axes,
experiments were also performed on the iCub robotic
simulator (Tikhanoff et al. 2008). In this case, the
disturbance is provided by moving the robot torso.

For the stabilization of locomotion disturbance, we
employed the SABIAN humanoid robot in a straight
walking task. This robot has an iCub robotic head
mounted on the body of the WABIAN-2 humanoid
robot (Ogura et al. 2006), that has 7 DOF in each leg
and 2 DOF in the waist, with a bio-inspired range of
motion. These make the robot able to perform human-
like walking, with stretched knees and raising the hip,
in contrast with most humanoid robots that walk with
the knees bent.

As the iCub head encoders do not provide velocity
information, a smooth differentiation technique was
employed to compute the velocity of joints. This
introduced a sensory delay of around 100ms. To align
all sensory feedback, we also delayed position, inertial
and visual information accordingly.

4. Results

During all the experiment the main measure of error
considered is the movement of the camera image
(retinal slip). Human vision is considered stable if such
error is below 4deg/s (Collewijn et al. 1981). In order
to compute the retinal slip, and to generate the input
for the OKR subsystem, a target was placed in the
field of view of the robot camera. The other measure
of performance considered is the inertial orientation of
the head, read through the IMU.
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A comprehensive gaze stabilization controller based on cerebellar internal models 8

(a)

(b)

Figure 3: The oscillating platform. In (a) the iCub head mounted on the platform, with its inertial reference
frame is shown. The transmission of motion from the DC motor to the oscillating platform is depicted in (b).

4.1. Stabilization on the oscillating platform

During these trials, the robotic head was mounted on
the oscillating platform that was controlled in order to
produce different disturbance motions. In particular
the frequency of the periodic disturbance (f) was
varied during the tests.

In a first set of trials, due to their length and
repeatability, no information about the learnt internal
models was retained, thus the online learning phase
of the LWPR and the linear readout always started
from scratch at the beginning of the trial. During
these tests, the frequency of motion was changed in an
increasing fashion, thus providing trials of increasingly
disturbance speed. During these trials, the target was
kept static in front of the platform. Due to the target
being static, the OKR subsystem does not provide
substantial contributions during these trials, thus it
was disabled. This also improves learning times, as
the OKR output can slow down the learning, especially
at high frequencies. Results for f ranging from 0.3Hz
up to 1.5Hz can be found in Table 1 where, for each
frequency, the Root Mean Square (RMS) value of the
disturbance speed ḋp (deg/s), inertial sensor readings,

Inp (deg) and ˙Inp (deg/s), and the position and
velocity of the target on the camera image on the
vertical axis, v (deg) and v̇ (deg/s), are presented.
In order to avoid having the results influenced by the
instability of the initial learning phase, the RMSs were
computed only on the last 5 of the 14 total seconds
of the trials. It can be observed that the controller
is able to stabilize the image on the camera against
disturbances generated by motion frequencies up to
1Hz. After that, the retinal slip (v̇) increases over
4deg/s. However, by comparing the magnitude of the
disturbance and the retinal slip, it emerges that the
controller is able to reduce it to one third even for
frequencies up to 1.4Hz, thus providing a substantial
contribution towards a stable camera image. An
example of such trials (for f = 1Hz) can be seen in
Figure 4. It can be observed that, after an unstable
learning phase at the beginning, the magnitude of
the error is reduced dramatically over time, in both
the velocity and position spaces. At the same time,
the control signal coming from the internal model,
especially from the LWPR component, increases, while
the output of the feedforward controller (FFC) is
reduced towards zero. This implies a switch to a
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A comprehensive gaze stabilization controller based on cerebellar internal models 9

sensory-motor compensatory motion that is able to
almost nullify the disturbance.

Table 1: Results for disturbances provided by the
oscillating platform at various frequencies.

f ḋp Inp
˙Inp v v̇

0.30 9.46 0.32 1.16 0.29 0.94
0.50 15.79 0.17 1.40 0.30 1.06
0.70 18.58 0.18 1.78 0.34 1.01
0.85 22.54 0.32 3.33 0.48 0.99
1.00 25.66 0.78 7.31 1.15 2.20
1.20 29.62 0.78 11.17 2.61 7.94
1.40 34.98 1.21 15.74 2.06 9.44
1.50 39.70 2.59 28.68 3.55 27.16

It is also relevant to stress the importance of
the combination of VCR and VOR subsystems during
these tasks: in fact, as shown in Table 1, while
the VCR subsystem is able to provide a substantial
contribution towards stabilization, reflected in the low
inertial readings RMS values, it is only thanks to the
added contribution of the VOR subsystem that full
stabilization is achieved in some cases. Moreover, if
employed separately, the VCR and VOR subsystems
cannot achieve the same performances, as depicted
in Figure 5, where the results for trials where only
one of the two subsystems was active are shown. It
can be observed that each of the two subsystems
work and is able to reduce the error generated by
the disturbance. However, the RMS value for the
retinal slip is respectively 7.86deg/s and 4.01deg/s for
the VOR and VCR subsystems. Thus, only with
the combination of the two, a stable camera image is
ensured.

In order to simulate the drifting motion that elicits
the OKR response, the target, placed in front of the
platform, was moved with a sinusoidal motion on the
vertical axis with a frequency of 0.15Hz and a peak-
to-peak amplitude of 15deg in the camera reference
frame, while the frequency of the disturbance was kept
at 1.0Hz. The behaviour of the system during this
trial is shown in Figure 6. It can be noticed that the
controller is able to stabilize the image on the camera
and almost no trace of the target movement can be
observed in the position or velocity space plots. The
RMS value of the retinal slip in this trial is 3.69deg/s,
thus the camera image is kept stable, even if the error
is increased, compared to the trial with a static target.

In a second set of tests, we employed the offline
learning strategy to create a more general controller
that can work on different disturbances. To achieve
this, we performed a training phase of 150s during
which the platform was moved with a sinusoidal signal
whose frequency randomly varied over time. The

motion was generated by varying the voltage applied
to the motor using a colored noise signal (low-pass
filtered white noise) with a maximum voltage of 3V.
This led to frequencies of motion up to 1.2Hz. Figure
7 shows the behaviour of this learning phase. It can be
observed that, after an initial phase of circa 50 seconds
where the learning occurs, the RMS of the inertial and
camera measures, averaged over time bins of 3s, remain
stable and no further improvements are noticeable.
By performing a similar trial with the learnt internal
models (Figure 7, bottom row), we can observe
that initial unstable phase has disappeared and that
the disturbance is immediately compensated. After
learning, we employed the controller with the learnt
internal models on a test trial in which a sinusoidal
signal whose frequency gradually increased every 5
seconds was applied to the platform. Figure 8 shows
the behaviour of the RMS during such trial, averaged
over time bins of 1s. Being already trained, the
system is able to immediately stabilize the disturbance
and the performances do not significantly decrease
when the signal changes frequency. By comparing
the behaviour of the same task in the online learning
scenario, it can be noticed that in the latter case the
performances are inferior as the system needs to learn
after each frequency change and it has not enough time
to properly do so. Therefore, a long offline training
phase provides a viable solution to create more general
controllers capable of adaptation to different tasks.

4.2. Stabilization of 3D disturbances

Due to the movements of the oscillating platform being
limited to only one rotational axis, stabilization of
disturbances applied on all three axes could only be
done in simulation.

In these tests, sinusoidal disturbances were applied
to the three joints of the torso to produce a three-
dimensional disturbance. In this case, the VCR is able
to provide stabilizing motor commands on all three
rotational axes, while VOR and OKR can only stabilize
on the pitch and yaw rotational axes, as the robot eye
joints do not rotate around the roll axis. Results for
f ranging from 0.3Hz up to 1.5Hz can be found in
Table 2, where the same terminology of Table 1 is used
and r, y, u are the roll axis, yaw axis and horizontal
axis of the camera image, respectively. It can observed
that, while the inertial reference frame is stabilized by
the VCR, the image on the camera appear to be not
stable. This is because the combination of all the three
rotational movements produces a linear motion of the
head in space, whose effects cannot be canceled by
the controller, as linear measurements are not taken
into account as inputs. This motion is particularly
evident on the horizontal axis. This disturbance can
only be partially canceled by the OKR, especially at
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A comprehensive gaze stabilization controller based on cerebellar internal models 10

Figure 4: Execution trial for f = 1Hz. Results for the inertial readings and camera error in the velocity and
position spaces are on the upper half, while the contributions of the feedforward controllers (FFC) and the
internal model components (LWPR and PL), for both the VCR and VOR, are on the lower half.

Figure 5: Execution trial for f = 1Hz with only one of VCR or VOR subsystem active.

high frequencies.

Page 10 of 16AUTHOR SUBMITTED MANUSCRIPT - BB-101034.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



A comprehensive gaze stabilization controller based on cerebellar internal models 11

0 2 4 6 8 10 12 14

Time (s)

-50

0

50

A
n

g
u

la
r 

V
e

lo
c

it
y

 (
d

e
g

/s
) TARGET MOTION - VELOCITY SPACE

Retinal Slip

Disturbance

Head Pitch

Target

0 2 4 6 8 10 12 14

Time (s)

-10

0

10

A
n

g
u

la
r 

P
o

s
it

io
n

 (
d

e
g

) TARGET MOTION - POSITION SPACE

Cam Error

Disturbance

Head Pitch

Target

Figure 6: Execution trial for f = 1Hz with elicitation of the OKR through a vertical movement of the target.
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Figure 7: Offline learning with a randomly generated movement applied to the oscillating platform. The
disturbance used for the training is shown on the top, the trend of the RMS of the disturbance and error
signals during the training phase is show in the middle, while the behaviour of a similar trial, performed after
training, is shown on the bottom.

An example of trial, for f = 1Hz, can be seen in
Figure 9, where the disturbances, as well as the errors,
on all rotational axes are shown. In accordance to the
results observed for the oscillating platform, after an

initial unstable phase, where learning occurs, both the
inertial measurements and the camera errors decrease.
While full stability of the camera image cannot be
achieved due to the translation of the head caused
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Figure 8: Comparison of the execution of the same trial by a controller trained with offline learning and another
performing online learning. The frequency of the disturbance increases every 5 seconds.

Table 2: Results for disturbances provided by moving the robot torso on three axes, in simulation.

f ḋp Inr
˙Inr Inp

˙Inp Iny
˙Iny u u̇ v v̇

0.30 13.34 0.18 0.69 0.51 1.26 0.14 0.53 4.83 2.26 2.29 0.85
0.50 22.32 0.31 1.80 0.39 1.94 0.13 0.53 4.83 3.81 2.29 1.59
0.70 31.10 0.30 1.99 0.23 1.66 0.13 0.95 4.79 5.30 2.30 2.60
0.85 37.69 0.30 2.25 0.51 3.13 0.17 1.35 4.80 7.56 2.27 3.22
1.00 44.26 0.60 3.90 0.31 2.71 0.03 0.54 4.84 8.13 2.31 4.31
1.20 52.83 0.13 1.96 0.42 3.89 0.09 1.92 4.84 11.21 2.29 4.59
1.40 61.40 0.12 2.19 0.13 2.44 0.17 2.70 4.84 15.24 2.29 5.83
1.50 65.52 0.53 5.95 0.56 6.22 0.30 4.32 4.83 17.54 2.30 6.18

by the torso movements, the disturbance is greatly
reduced by the controller.

4.3. Stabilization during locomotion

The effectiveness of the controller was also tested in
a realistic situation by employing the biped humanoid
robot SABIAN for a walking task consisting of 8 steps
in a straight line (the step length was 160mm, step
width 120mm, step time 1s). The walking control
system of the WABIAN/SABIAN is composed by two
modules phases (Lim, Yamamoto & Takanishi 2002,
Yamaguchi et al. 1999, Lim, Kaneshima & Takanishi
2002). The first module uses a pattern generator
that calculates the trajectory of the end-effectors (feet)
and generates an ideal Zero Moment Point (ZMP)
and the motion pattern of the lower limbs before the

beginning of the walking task. The second module
is active during the walking task, for the dynamic
balance of the robot, providing corrections for leg and
waist motions (Torso Position Control) according to
the difference between the current and the ideal value
of the ZMP positions (Lim et al. 2006, Yamaguchi
et al. 1999, Hashimoto et al. 2012, Kang et al. 2012).
In order to compute the camera error and the retinal
slip, a target was placed in front of the robot, at the
same height as the robot head. The target was kept
static during these trials, thus the OKR module have
been disabled. During a walking task, oscillations
are produced on all three rotational axes, thus a
stabilizing mechanism is needed for pitch, roll and yaw
disturbances. However, due to the drifting of the IMU
readings, it was not possible to perform stabilization
on the yaw rotational axis. Therefore, the VCR was
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Figure 9: Stabilization of a sinusoidal motion with a frequency of 1Hz applied on all three rotational axes, in
simulation. Results for pitch, head and roll are on the top, middle and bottom rows, respectively.

only employed on the pitch and roll axes. Moreover,
the robot eyes cannot rotate around the roll axis, thus
VOR compensation is provided only on the pitch axis.

Due to the shortness of the execution, each step
lasts around one second for a total of 8 seconds,
it was impossible for the internal models to have
enough time to properly learn the motion dynamics.
In addition, the disturbance in the velocity space
had some considerable peaks probably due to the
impulsive acceleration the head is subject to (see not
stabilized gaze in Figure 10), that could slow down
the learning. These two reasons make the online
learning disadvantageous for such a short task. Thus,
we employed the offline learning strategy by creating
a training set consisting in inertial data recorded
during 4 locomotion trials. All the collected data
were glued together to create a new offline task lasting
32 seconds. Then, the controller was executed on
such trial and the learnt internal models were saved.
Finally, the modified version of the controller for the
execution phase was employed on a new walking task.
A comparison between a stabilized walk and a non
stabilized one can be seen in Figure 10. When the
stabilization is employed the camera and inertial errors
are significantly reduced in both the velocity and
position spaces. Table 3 presents the results for two
kinds of tests. In the first one the Torso Position
Control (TPC) was active (as for the the trials used for
the learning). In the other task the TPC was disabled
producing a stronger disturbance on the head, but

the gaze stabilization controller was able to effectively
reject the disturbance also in this case. In particular,
the RMS values for the camera errors, presented in
Table 3 (Inr and ˙Inr denote the inertial angular
position and velocity along the roll axis), indicate a
significant reduction of error while the controller is
employed. In particular, the retinal slip value is lower
than 4deg/s thus demonstrating the effectiveness of the
proposed stabilization mechanism on a realistic task.

Table 3: Comparison between camera and inertial
RMS values in the stabilized and non-stabilized cases,
in two different trials (with active and non-active TPC
control).

tr. stab. TPC Inp
˙Inp Inr

˙Inr v v̇

1
yes yes 0.19 1.62 0.33 1.46 0.29 3.23
no yes 0.47 3.06 0.61 2.59 0.76 6.58

2
yes no 0.38 1.68 0.88 2.84 0.27 3.34
no no 1.91 5.85 0.94 4.12 0.78 8.20

5. Conclusions

In this work we present a complete controller for
the stabilization of the gaze that is based on the
coordination of VCR, VOR and OKR in conjunction
with cerebellar internal models and we validate it
through an implementation on a humanoid robotic
platform. The model was tested on a robotic
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Figure 10: Stabilization during a straight walking task (with active TPC control), comparison between stabilized
and non stabilized gaze.

head mounted on an oscillating platform capable of
generating periodic disturbances and on a complete
humanoid robot during a locomotion task. Results
on the oscillating platform show that the model is
able to keep the camera image stable while the
disturbance is applied. The coordination of the
VCR and VOR components proves beneficial for the
overall performances and the controller is able to
cope with drifts of the camera image thanks to the
OKR subsystem. Moreover, tests performed during
robotic locomotion trials prove the effectiveness of
the approach in realistic scenarios. Experiments
also shown that the internal models do not have
to be learnt online during the execution of the
task but can be generated by employing offline
training and then stored to be used on real task.
The model still has some limitations, and could be
improved in some aspects. Due to the fact that
only rotational information is used by the controller,
disturbance produced by linear translations cannot
be compensated. However, the controller could be
in principle be extended to take also these inputs
into account. Another simplification introduced was
to align all sensory feedback in time introducing
a fixed delay. In a more biologically accurate
system, the delays could be different for every sensory
pathway and could also be non constant. Enabling
the OKR in some circumstances can significantly

increase the learning times, therefore it should be only
activated if its contribution could really be helpful in
stabilizing the camera image. A possible improvement
in this direction could be an automatic switching
mechanism that enable the OKR when its contribution
is required. Overall, this work has proven that the
coordination of the three aforementioned reflex can
increase the performances of gaze stabilization on
physical humanoid robotic platforms and than can
provide a fundamental component for visually-guided
locomotion.
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