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“If we knew what it was we were doing, it would not be called research, would it?” -
Albert Einstein



Abstract
Drivers such as our deep dependence on fossil fuels availability and price volatility, global
concern about climate change and social distress, are steering the economy to be more
sustainable and based on a greater use of renewable resources. Therefore, the concept of
integrated biorefineries has attracted much attention by aspiring at replacing fossil sources.
However, as has been recently witnessed through multiple failures and the shutdown of
biorefinery plants all over the world, a biobased economy that heavily depends on the
production of biofuels, leads to unsatisfactory results. Thus, it seems that an economy
based on the innovative and cost–efficient use of bio-resources for the production of both
chemicals and biofuels/bioenergy, is in fact very promising regarding the three pillars of
sustainability (economic, environmental and social). Notwithstanding, to be competitive
in the long run and to present an advantage in the global markets, robust systems for the
acquisition, production and distribution of these bioproducts must be in place.

Although considerable studies have been carried out on the analysis and optimiza-
tion of biomass conversion to biofuels and bioenergy, up to date limited research has
been done on the valorization of biorefinery by-products. This is especially noticeable
concerning the valorization of glycerol, which is, as main by-product of the biodiesel in-
dustry, responsible for approximately 2/3 of the world supply of glycerol. Despite the
many uses for pure glycerol, the exponential growth of biodiesel production in a recent
past due to fossil-based energy insecurity and environmental concerns, has led to a sig-
nificant surplus of glycerol, resulting in a significant drop of its market value. Then,
how to deal with the large quantities of low price crude glycerol surplus may become an
environmental problem. As a result, exploratory research being carried out along the
years has been pointing to glycerol as a powerful starting material for the production of a
plethora of value-added chemicals and biofuels. A significant challenge is that emerging
technologies are accompanied by uncertain performance characteristics, as well as exoge-
nous sources of uncertainty such as product price and demand. This leads to a significant
number of possible options regarding the design, operation and product portfolio offered
by biorefineries, from which the most suitable process configurations must be selected,
with regards to economics, environmental constraints and overall sustainability. There-
fore, uncertainties should not be overlooked. Furthermore, given the multiplicity of large
(bio)chemical operations and the often-conflicting objectives among the several business
divisions, such as planning, manufacturing, distribution and corresponding environmental
consequences and concerns, it is therefore vital to model these activities and to develop
comprehensive and systematic methods to capture the synergies and the trade-offs within
this complex system. Therefore, the foremost aim of this thesis is to provide a roadmap
for early-stage managerial decisions targeting at identifying feasible alternatives for the
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design and planning of sustainable glycerol biorefineries and corresponding value chains.
In this way the thesis is contributing to the transition towards the sustainable develop-
ment and implementation of these concepts. To achieve this, significant effort is firstly
invested into process understanding and into the development of data-driven process mod-
els (’gate-to-gate’). Secondly, detailed methodologies for the economic and environmental
assessment are developed, where uncertainty and sensitivity analysis play a significant role.
Nevertheless, in order to further advance the development and implementation of glyc-
erol based biorefinery concepts, it is critical to analyze the glycerol conversion into high
value-added products in a holistic manner, considering both production as well as the
logistics aspects related to the supply chain structure. Therefore, the boundaries of anal-
ysis were extended to include all activities and operations involved in the glycerol-based
biorefinery to bioproducts supply chain. To this end, the GlyThink model is proposed
so as to identify operational decisions - including locations, capacity levels, technologies
and product portfolio, as well as strategic decisions such as inventory levels, production
amounts and transportation to the final markets. GlyThink is a multi-period, multi-stage
and multi-product Mixed Integer Linear Programming optimization model based on the
maximization of the associated Net Present Value (NPV). Furthermore, strongly based
upon the GlyThink model, alongside with detailed economic and environmental assess-
ment, a multi-layered framework for the optimal design and planning of glycerol based
biorefinery supply chains under uncertainties is developed in this thesis. The proposed
integrated framework ultimately leads to the identification of the optimal design and
planning decisions for the development of environmentally conscious biorefinery supply
chains, where the consequences of external economic uncertainties on the environmental
objective function are analyzed and the trade-offs identified. In summary, this thesis
covers the development of methods and tools for the modeling and optimization at the
strategic and tactical level, along with detailed economic and environmental assessment
techniques, including the incorporation of multi-level uncertainties. All in all, despite
the fact that all methods and tools derived in this thesis have been developed to address
the optimal design and planning of the glycerol-based biorefinery, they are flexible and
applicable to other biorefineries similar in nature.



Resumé
Konceptet af en integreret bioraffinaderi tiltrækker stor opmærksomhed, idet dette kon-
cept har potentialet til at konkurrere med og ideelt erstatte fossile brændsler til produktion
af kemikalier, brændstoffer og energi. Ydermere, er det interessant at kigge på integr-
erede bioraffinaderier, idet økonomien i større og større grad, globalt set, fokuserer på
bæredygtige og vedvarende ressourcer. Dette kommer bl.a. som konsekvens af store pris
variationer på fossile brændsler, samt usikkerhed omkring tilgængeligheden af disse inden
for en relativ kort fremtid. Derudover har der i den senere tid været flere eksempler på
nedlukning af bioraffinaderier, samt fejlslagne forsøg på at etablere bioraffinaderier, grun-
det dårlige økonomiske resultater. Dette har resulteret i at integrerede bioraffinaderier har
fået øget fokus, idet det virker mere lovende at basere økonomien på innovativ og omkost-
ningseffektiv anvendelse af bioressourcer til produktion af kemikalier, biobrændstoffer og
bioenergi på denne måde.

Der er dog flere udfordringer i at etablere en økonomi der i større grad er baseret på
bæredygtige løsninger, som samtidig er konkurrencedygtig på det globale marked. Blandet
andet er der behov for at etablere robuste systemer til, at anskaffe genanvendelige råvarer
og sikre bæredygtig produktion, samt distribution af de producerede produkter.

Til dato er der mange eksempler på videnskabelige studier der udelukkende har fokuseret
på at analysere og identificere optimeringsmuligheder af biomasseomdannelsen til bio-
brændstoffer og bioenergi. Hvorimod der kun har været relativt få studier med fokus
på den potentielle værdi der kan findes i biprodukterne fra bioraffinaderier, som er et
vigtigt element i integrerede bioraffinaderier. I forhold til dette er det specielt interessant
at kigge nærmere på glycerol, som er det vigtigste biprodukt fra biodieselindustrien og
udgør ca. 2/3 af verdensforsyningen.

Specielt for glycerol har den eksponentielle vækst i produktionen af biodiesel resul-
teret i et væsentligt overskud af tilgængelig glycerol. På trods af de mange anvendelses-
muligheder for glycerol, giver det nye miljømæssige udfordringer. Der er derfor en sti-
gende interesse i at forske i brugen af glycerol som råvare til at producere et bredt
vifte af værdifulde kemikalier og biobrændstoffer i integrerede bioraffinaderier. Der er
dog væsentlige udfordringer forbundet med dette, idet der er usikkerhed omkring effek-
tiviteten og robustheden af nye teknologier der er nødvendige for at etablere en glycerol
baseret produktionsplatform. Derudover er produktpriser og efterspørgsel varierende og
usikre. Det er derfor nødvendigt at tage højde for sådanne usikkerheder når man evaluerer
forskellige alternativer i forhold til procesdesign, drift og produktionsportefølje for inte-
grerede bioraffinaderier. Derudover er det vigtigt at inddrage forskellige forretningsom-
råder, som: planlægning, fremstilling, distribution og miljømæssige konsekvenser for at
kunne udvikle omfattende og systematiske metoder til at modellere og analysere sådanne
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systemer. Ved at inkludere alle disse faktorer i evalueringen sikres et mere robust beslut-
ningsgrundlag for at udvælge de mest egnede proceskonfigurationer, med udgangspunkt
i økonomi, miljøbegrænsninger og overordnet bæredygtighed. Evaluering af integrerede
bioraffinaderier baseret på sådanne omfattende og systematiske modeller gør det også
muligt at fange synergi i forhold til forretningsmodeller, samt fordele og ulemper.

Formålet med denne afhandling var at etablere en platform der kan bidrage, i den
tidlige beslutningsproces, i at identificere mulige alternativer til design og planlægningen
i etableringen af bæredygtige glycerol baserede bioraffinaderier. Samt bidrage til at iden-
tificere og analysere værdikæden for disse bioraffinaderier, hvilket vil være med til at un-
derstøtte overgangen til bæredygtig procesudvikling og implementering. Dette er opnået
ved først og fremmest at fokusere på procesforståelse, samt udviklingen af datastyrede
procesmodeller (’gate-to-gate’). Derudover blev der fokuseret på udvikling af detaljerede
metoder, der inddrager usikkerheder og robusthedsanalyser, til evaluering af økonomi og
impakt på miljøet.

Yderligere, for at fremme udviklingen og gennemførelsen af glycerolbaserede bioraf-
finaderikoncepter er det vigtigt at analysere glycerolomdannelsen til højt værditilvæk-
stprodukter på en holistisk måde. Her bør der tages hensyn til såvel produktion som
logistikaspekter i forbindelse med forsyningskædens struktur. Derfor blev grænserne
for de udførte analyser udvidet til at omfatte alle aktiviteter og operationer involveret
fra det glycerolbaserede bioraffinaderi til bioprodukternes forsyningskæder. For at eval-
uere dette blev GlyThink modellen udviklet. Brugen af GlyThink gjorde det muligt at
identificere vigtige operationelle beslutninger, - herunder placeringer, kapacitetsniveauer,
teknologier og produktportefølje - såvel som strategiske beslutninger såsom lagerniveauer,
produktionsbeløb og transport til de endelige markeder. GlyThink er en multi-periode,
multi-stage og multi-produkt blandet integer lineær programmeringsoptimeringsmodel
baseret på maksimering af den tilhørende Net Present Value (NPV). Derudover, baseret
på GlyThink-modellen, er der i denne afhandling udviklet en flerlagsrammemodel, der
inkluderer usikkerheder, for den optimale udformning og planlægning af glycerol baserede
bioraffinaderi forsyningskæder. I denne flerlagsrammemodel er der også er taget højde
for økonomiske og miljømæssige forhold. Denne flerlagsrammemodel vil i sidste ende føre
til at optimale design og planlægnings beslutninger bliver identificeret og dermed sikrer
udviklingen af miljøbevidste bioraffinaderier, hvor der også er taget højde for eksterne
økonomiske usikkerheder.

Overordnet dækker denne afhandling udvikling af metoder og værktøjer til modellering
og optimering på strategisk og taktisk niveau sammen med detaljerede økonomiske og
miljømæssige teknikker, herunder inkorporering af usikkerheder på flere niveauer. På
trods af det faktum, at alle metoder og værktøjer, der er afledt i denne afhandling, er
blevet udviklet for at imødegå det optimale design og planlægning af det glycerolbaserede
bioraffinaderi, er de fleksible og anvendelige til andre bioraffinaderikoncepter af samme
art.
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CHAPTER 1
Introduction

The aim of this chapter is to give a general introduction to the topics studied in the thesis.
The research area is introduced and a review of the state of art is presented. With that
state of the art in mind, the project motivation is framed, deriving the specific goals of
the project and accordingly also outlining the thesis structure. This thesis is built upon
a collection of published and submitted papers as detailed in the following chapters. The
review of the state of the art is to a large extent based on the introductory paragraphs
of the papers that form the basis for this thesis.

1.1 Background & State of the art
Global concerns about climate change, energy security, exhaustion of fossil resources and
its societal impacts, have been driving the development towards sustainable manufactur-
ing and the use of renewables. Even though the chemical industry is still improving its
energy and mass efficiency, it remains highly dependent on oil and gas. Furthermore, fos-
sil fuels are the dominant products obtained in the chemical industry but add significantly
to the polluting emissions, as greenhouse gas emissions (GHG). Worldwide, transport is
responsible for 22% of all energy-related GHG polluting emissions, and it’s still increas-
ing at a faster pace than any other sector [1].Therefore, driven by the urgency to find
sustainable alternatives, there has been a solid interest in the use of biomass and its biore-
fining for the production of biofuels [2],[3],[4]. Compelling parallels should/can be drawn
between the fossil-based refining and biorefining, where biorefining is defined as a way to
fractionate biomass into a multitude of products which differ greatly depending on the
nature of the feedtstock. The range of products may vary from transportation fuels, such
as bioethanol and biodiesel, to platform chemicals, building blocks, polymers and special-
ity chemicals [5]. As has been witnessed along the years, if biomass biorefining focuses
solely on the production of biofuels, fossil-based conventional refining remains more eco-
nomically attractive [3],[6]. Therefore, an analogy to the fossil-based industry should/can
be made, targeting the production of high volume/low value alongside with low volume/
high value products [7]. Hence, in recent years, the bio-based economy has been seen
as a key approach that may meaningfully lead/contributte to long term sustainable de-
velopment, where bio-based chemicals and fuels may play a relevant role towards the
replacement (partly or completely) of fossil-based resources [8], [9]. This coproduction of
bio-based derivatives could take place in integrated biorefineries [10] [11], which converts
biomass feedstocks into a spectrum of valuable molecules, materials and energy carriers
including biofuels, heat and power. Therefore, due to an increasing interest in the topic of
biorefineries, the need for a robust bio-industry is paramount/significant/preeminent. To
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this end, it is essential to assess and develop the economic and structural understanding
about biorefineries, which implies careful selection of supply chain design, minimizing the
threats, all the way from feedstock suppliers to downstream building block technologies
and sustainable materials that are converted into higher value chemicals [3].

Furthermore, these processes and corresponding value chains are expected to be effi-
cient and sustainable in the long term so that this industry can compete efficiently with
the fossil/petro-based industry. This implies a fair balance among economic benefits, en-
vironmental impacts and social consequences. Thus, companies are, now more than ever,
not only focusing on economic performance, but they are also attempting to integrate
green practices, in order to comply with environmental legislation. In particular, man-
agerial decisions integrating proactive sustainable thinking, bring competitive advantage
to enterprises [12]. Hence, there is an immediate need for developing strategies aim-
ing at screening and gathering the most appropriate/feasible/viable designs/technologies
and associated value chains, regarding tangible economics, environmental constraints and
overall sustainability. Therefore updated models are required in the frame of the optimal
design and planning of integrated biorefineries, that would support engineers to identify
and validate not only the economic viability of the potential future commercialization of
a given product and value chain, but also its overall sustainability.

However, from a systems perspective, due to the multidimensional nature of sustain-
ability, the design and analysis of sustainable biorefineries is an entanglement of multi-
criteria and multi-objective decision-making, leading to complex procedures. The com-
plexities seldom arise not only from the multi-evaluation techniques to be chosen, but also
from the significant amount of input data required to perform the sustainability analysis,
data which may originate from different sources, with different degrees of uncertainty
[13],[14]. This is due to the fact that, emerging technologies suffer not only from uncer-
tain reliability but also are surrounded by uncertain performance characteristics, which
lead to a great number of possible alternatives regarding the design, operation and prod-
uct portfolio offered by biorefineries, from which the most suitable process configurations
with regards to economics, environmental constraints and overall sustainability must be
selected [3],[15],[16].

Furthermore, the comparison and screening of potential processes at the conceptual
design phase of biorefineries is marked by assumptions, hypotheses and simplifications
that need to be made in order to represent the complexity of the problem. Therefore, it
implies that during the first stages of biorefinery design and development, since real data
is often incomplete or not available, there are several alternative technologies, feedstocks
and products, generating a great number of potential processing pathways and related
supply/value chains (see Figure 1.1). Also, as presented in Figure 1.2, since preliminary
process engineering assessments can address “what if” questions, early-stage analysis can
reduce economic investment and risks once the cost of design changes are at their lowest.
Given the multiplicity of large (bio)chemical operations and the often-conflicting objec-
tives among the different business divisions, such as planning, manufacturing, distribution
and environmental concerns, it is therefore vital to develop a robust framework to capture
the synergies and the tradeoffs within bio-based manufacturing.
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Best alternatives(s)
(to proceed to the detailed design)

C

b a

Figure 1.1: Early-stage and screening
of alternatives. Figure 1.2: Process design stages [17].

Therefore, to guide the user towards informed decision-making, and aiming at man-
aging the complexity associated with the design of biorefinery systems, research has been
conducted along the years, focusing in particular on mathematical programming. Several
multi-scale and multi-period models have been developed/employed for biorefinery design
and planning, where notably supply chain management through optimization has become
a widespread method to address and analyse the multiplicity of potential alternatives. The
supply chain is defined as a network of facilities that perform a set of operations ranging
from the acquisition of raw materials, the transformation of these raw materials, and the
transportation of finished goods to the clients [18]. Thus, supply chain optimization seeks
to identify the optimal strategic, tactical and operational decisions in order to maximize
the performance of the supply chain regarding a certain performance indicator(s).

Several authors have directed/conducted research in this area, with special empha-
sis on biomass to biofuel (mostly based on bioethanol) value/supply chain optimization
problems, and greatly based on Mixed Integer (Linear) Programming - MI(L)P. This is
due to the fact that nonlinear problems are very demanding in terms of mathematical
modelling, appropriate tuning of the algorithms, etc; while MI(L)P is handled most suc-
cessfully. Furthermore, MI(L)P is one of the most useful and suitable methods to drive
the decision-making process, since it generates a quantitative basis for decisions [19] and
it can be efficiently coupled with other significant attributes such as the principles be-
hind sustainable design [20]. Being the goal not to provide an extensive literature review,
but to illustrate the direction of research in a recent past, a survey of works/approach-
es/studies is presented in Table 1.1. The review has been narrowed to include examples
of design of biorefinery networks (gate-to-gate, references a to i) and supply chain opti-
mization problems (references j to cc) which share common trades as: (i) being MILP
problems; and, (ii) having common strategic decisions such as product portfolio design,
supply allocation, multi-period, technology and capacity selection.

Notwithstanding, the above-mentioned approaches consider all model parameters to
be known prior to the decision. However, as above-mentioned, uncertainties are intrisic to
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the systems and are introduced into the design of biorefinery processes and supply chains
in many ways. Thereby, since they introduce significant variability and noteworthy risk
into the decision-making processes/systems, if uncertainties are disregarded it may lead
to the identification of inefficient, sub-optimal or even unfeasible solutions.[21],[22],[23]

Uncertainties directly related to technology-evolution and technology readiness level
are, for example, the parameters for the estimation of the fixed capital investment, and
production yields. In addition, the presence of exogenous uncertain parameters composes
a great challenge to control and account for during the planning horizon of the biore-
finery plant. Examples of potential exogenous sources of techno-economic uncertainty
include, among others [21]: (i) product market prices fluctuation/variability/volatility;
(ii) feedstock market price fluctuation; (iii) feedstock supply; and, (iv) product demand.

Likewise, with regards to the environmental analysis, even though the LCA method-
ology is widely accepted in the field, the presence of uncertainties is fundamentally im-
portant because it threatens to give qualitatively different or even contrasting results
when applying LCA on the same products or systems [24]. Summarizing, as presented
in Figure 1.3 uncertainty in LCAs can be seen as an input/output box, with three sub-
problems regarding the assessment and quantification of: (1) errors in the input data, (2)
the propagation of errors in the calculations, and, (3) errors in the output data.

Input data

Errors in input 
data

LCA 
calculation

Error propagation 
in calculation

Output data

Errors in output 
data, 
Interpretation

Figure 1.3: Three sub-problems in the LCA calculation related to quantitative errors. Adapted
from [25]

The distinguished types of uncertainty presented by [26] and referred in [27], are
model uncertainty, parameter uncertainty, uncertainty due to methodological choices,
spatial and temporal variability, and variability between objects/sources. For example,
parameter uncertainty arises due to empirical inaccuracy (imprecise knowledge) in the
inventory and impact assessment parameters, such as imprecise, incomplete, outdated or
no measurements of, for example, characterization factors, CFs, mass flows and/or sub-
stance properties. Interval calculation (Chevalier Téno 1996), fuzzy logic [28], Gaussian
formulas [29] and Monte Carlo Simulation, are some of the proposed approaches to deal
with error propagation. The latter is the most commonly used method for the propaga-
tion of parameter uncertainty onto the model outputs [30], [31], [32]. However, despite
inherent uncertainties portrayed in the LCI and LCIA stages, and the considerable work
being done on the development of initiatives to address and include propagation of un-
certainty in environmental assessments, existing LCA guidelines give little instructions
on how to perform such analyses [24], [33]. Consequently, uncertainty still plays a minor
role in LCA studies, and the results are tipically reported based on deterministic models
[25],[33],[34].
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A major hinderance when performing optimization under uncertainty is handling the
uncertainty space/domain, usually very large, which leads to very computationally de-
manding optimization models. Furthermore, this issue is even more prominent when con-
sidering decision-making processes, which frequently carry more complexity due to the
use of integer decision variables to model logical and other discrete variables in a multi-
scale and/or multi-period context [35]. So as to deal with the complexity of optimiza-
tion problems under uncertainty, extensively used methodologies for the incorporation
of uncertainty include the recourse-based stochastic programming, robust programming,
chance-constraint programming and fuzzy programming. The most generally used ap-
proach is two-stage stochastic programming, where the first- and second-stage variables
correspond to supply chain strategic (design) and planning decisions, respectively. In
order to account for the growing number of scenarios, Monte Carlo sampling and the
Sample Average Approximation technique have been usually used. Although stochastic
programming mirrors a risk-neutral approach, chance-constrained programming can be
used to improve the accuracy of supply chains by imposing a minimum fulfillment on
the probability of satisfying constraints. Furthermore, to reflect the decision-maker’s risk-
adverse attitude (conservative), robust optimization can be used to avoid the worst case
realization of uncertainty in the supply chain design and operations. At last, the third
most used approach to deal with uncertainty in the supply management and design, is
fuzzy programming, which considers the random parameters as fuzzy numbers and con-
straints as fuzzy sets [36],[21]. Aiming at providing an up-to-date review of relevant works
that deal with uncertainty in the biorefinery optimization field, a survey of approaches is
presented in the next sub-section.

Biorefinery optimization under uncertainties: a review

A review of works with particular interest to the topic is presented in Table 1.3, which
is built upon the following attributes: (i) mixed integer linear programming (MILP)
models developed specifically for the (ii) optimal design of biomass/biofuel/bioproducts
biorefinery networks (gate-to-gate, references a to g) and supply chains (references h to
jj); and, (iii) considering uncertainty conditions. The survey on the design of gate-to-gate
biorefinery networks was limited to product portfolio design problems under uncertainties.
Among these, only 29% were found to be multi-period optimization problems (models
that accommodate multiple time periods). Furthermore, as the main goals of this thesis
involve the design and planing of biorefinery supply chains under uncertainties, focusing on
product portfolio design, a more detailed analysis covering the studies that propose multi-
product approaches for the optimization of biorefinery supply chains under uncertainties
is performed and described based on relevance, and in chronological order.

Kim et al. (2011a,b)[37],[38] proposed a two-stage stochastic optimization problem
for the identification of optimal decisions on the supply and facility location, along with
production capacity, by maximizing the single-period total profit, under uncertainties on
biomass supply, biofuel demand and prices. Further, Gebralssie (2012) [39] proposed a
bi-objective stochastic optimization model that enables technology and capacity selection,
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and production and logistics planning, by minimizing the multi-period total cost and fi-
nancial risk, under supply and demand uncertainties. Similarly, Kostin et al. (2012) [40]
aiming at maximizing the expected performance of the SC under financial risk mitigation,
presented a multi-period and multi-objective scenario based optimization problem under
demand uncertainty, to decide on the capacity of production plants and storage, along
with production rates and product flows. McLean and Li (2013) [41] also suggested a sce-
nario based optimization model however limited to the identification of supply location
and production technology through the maximization of the total profit considering both
uncertainties on the biomass supply and product demand. To determine only the optimal
planning decisions regarding the biomass supply and amounts of product manufactured,
Awudu and Zhang (2013) [42] introduced a single-period stochastic programming model
maximizing the expected total profit, under uncertainties on product demand and prices.
Tong et al. (2013) [43] suggested a multi-period scenario-based stochastic optimization
problem to identify the optimal decisions regarding design and operations of the biorefin-
ery to be incorporated into crude refineries, by minimizing the total cost when subjected
to price and quantity uncertainties. Also addressing the minimization of the total annu-
alized costs of incorporating a biorefinery into the crude refineries, Tong et al. (2014a)
[44] (ref s) proposed a multi-period stochastic model to optimize the expectation of the
objective function under a number of scenarios associated with biomass availability, fuel
demand, crude oil prices, and technology evolution. However, in a further work, Tong
et al. (2014b) [45] presented a single-period fractional programming model where the
aim was to optimize the unit cost of the downstream design and planning of the same
case study, tackling uncertainties on the biomass supply and biofuel demand. However
addressing the effect of the same uncertainties also on the downstream supply chain,
Kasivisvanathan et al. (2014) [46] presented a single-period robust programming model
that, by minimizing the total cost, led to the optimal decisions regarding technology
and capacity selection. In a more recent work by Geraili and Romagnoli (2015) [22], a
multi-objective stochastic optimization approach is proposed to, under price uncertainty,
incorporate the tradeoffs between the cost and the financial risk, leading to the optimal
decision regarding technology and capacity selection. In a subsequent study also based on
a stochastic optimization model, Geraili et al. (2016) [47] presents a decision support tool
for the maximization of the NPV in order to optimize the production capacity, and the
operating conditions of the plant. This tool includes a simulation based global sensitiv-
ity analysis to identify the most critical uncertainties concerning market and operational
uncertainties. Overall, it is observed that, with regards to the supply chain design: (i)
100% of the studies here listed were developed for the biomass to biofuel supply chain,
mostly focused on the bioethanol production; (ii) multi-product SC design problems are
rare (48%); (iii) only 15% of the studies are multi-period, including technology selection,
portfolio design and incorporation of parameters uncertainties; (iv) where from these 15%
only one study ([40]) used Net Present Value as economic objective function; and, (v) no
studies were found with more than 3 products in the design space. One can infer that
there is a trade-off between computational effort and SC complexity, since the higher
the number of decisions, products, technologies in the design space, along with higher
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intricacy of the objective function, the higher the modeling and computational effort.
Moreover, as observed in Table 1.3, studies considering uncertainties for the design

and planning of biorefineries that cover both economic and environmental concerns are
rather limited. For example, Giarola et al. (2012) [48] presented a MILP model for the
optimal upstream strategic and planning decisions of the ethanol supply chain, where both
the economic (NPV) and the environmental impact (global warming potential, GWP) of
the supply chain are optimized considering carbon trading cost uncertainty. In a similar
fashion, Giarola et al. (2013) [49] also proposed a model for the optimal strategic and
planning decisions under carbon trading uncertainty of the ethanol supply chain based
on the previous work. However, both the economic (NPV) and the environmental impact
(global warming potential, GWP) are optimized considering the user’s risk mitigation
preferences. More recently, Santibanez-Aguilar et al. (2016) [50] proposed a scenario–
based optimization problem to identify the optimal supply allocation under biomass price
uncertainty, where the environmental impact is measured through the Eco-indicator99
method, and the economic performance is determined by the net annual profit.

Also, noteworthy is that, regarding all works collected (presented in Tables 1.1 and 1.3),
only 11 out of 61 (18%) include environmental concerns besides the economic objective
function. Among these studies, only 9% consider environmental concerns when performing
optimization under uncertainties. Therefore, a comprehensive overview and discussion on
optimization studies that included the environmental assessment as an objective function
is given below.

Optimization and environmental assessment: a review

As previously mentioned, the increasing awareness of environmental concerns has been
witnessed in a recent past especially motivated by governmental regulations. Therefore,
crescent effort has been made on the incorporation of environmental impact assessment,
alongside with typical economic criteria. In order to do so, Life-Cycle Assessment (LCA)
has been described as the most scientifically reliable method currently available for study-
ing and evaluating the environmental impacts of a certain product or process [51]. Further
this is enforced by the fact that the European Commission stated in the Sustainable Devel-
opment Strategy that a significant goal is to develop and standardize LCA methodologies
[52],[53]. Thus, LCA has become the main tool to analyze environmental consequences
related to a product, process or activity. A standard LCA method begins by establishing
the boundaries of analysis of a given good or service, followed by the collection of the life-
cycle inventory within those boundaries. Afterwards follows the characterization stage
where the emitted substances or resources consumed are converted into environmental
categories of impact by using component and category specific characterization factors,
followed by normalization and weighting, leading to a single indicator. To this end, a
specific life cycle impact assessment method (LCIA method) is selected. Several differ-
ent LCA methods are available and continuously being developed. These use different
models in the characterization step, different normalization assumptions and/or different
weighting factors [54]. Despite the great benefits of coupling optimization and LCA, there
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are still only few published works on the topic. Even less studies are found that include
the environmental modeling through LCA in the supply chain optimization field. Frota
Neto et al. (2008) [55] proposed a framework for the design and analysis of sustainable
logistic networks, assessing the ecological impact through the environment index, taking
the pulp and paper industry as example. Guillen-Gosalbez and Grossmann (2009) [56]
addressed the design of sustainable chemical supply chains with uncertainty in the life
cycle inventor, by using the Eco-indicator 99 LCIA method. Duque et al. (2010) [57]
proposed a supply chain model to optimize the decisions regarding production and trans-
portation routes, where the environmental impact is also quantified by using Eco-indicator
99. Likewise, Pinto-Varela et al. (2011) [58] also used Eco-indicator 99 to account for
environmental concerns when optimizing the design and planning of supply chains. Of
particular interest for the work described in this thesis, some examples are given that
include environmental metrics on the field of biorefineries. Zamboni et al. (2009) [59]
developed a spatially-explicit MILP model for the design of respectively first and hybrid
generation ethanol SCs under economic and environmental performance (GHG emissions)
optimization. Mele et al. (2011) [60] and Santibanez-Aguilar et al. (2011) [61] developed
a mixed-integer linear program optimizing the economic and environmental performances
of bioethanol supply chains using Eco-indicator 99, as well as Global Warming Potential.
Similarly, Giarola et al. (2012a) [48]and Giarola et al. (2012b) [49] proposed a spatially-
explicit MILP model for the design of respectively first and hybrid generation ethanol
SCs under economic and environmental performance (GHG emissions) optimization, un-
der deterministic and uncertainty conditions, respectively. Bernardi et al. (2012) [62]
proposed a multi-objective MILP addressing hybrid corn grain and stover supply chains
to ethanol production, where the environmental burdens were included through the esti-
mation of the carbon and water footprints. Similarly, You et al. (2012) [63] suggested
an approach towards the sustainable design of biorefinery supply chains by including the
GHG emission as the environmental objective. More recently, as mentioned in the previ-
ous section, Santibanez-Aguilar et al. (2016) [50] proposed a scenario–based optimization
problem optimizing the supply allocation under biomass price uncertainty, where the en-
vironmental impact is measured through the Eco-indicator 99 method. Lastly, d’Amore
and Bezzo (2016) [64] proposed a multi-objective MILP model where the environmental
objective is represented in terms of GHG emissions, as well as the analysis of the impact
on emissions caused by indirect Land Use Change effects.

Acknowledging all the above-mentioned points, the motivation and goals of this thesis
are outlined in the following section.
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1.2 Motivation & project goals
As previously pointed out, although a considerable number of studies have been done on
the analysis and optimization of biomass conversion to biofuel and bioenergy (gate-to-
gate and SC), up to date limited research has been done on the valorization of biorefinery
by-products. This is especially true concerning the valorization of glycerol, (by-product of
the biodiesel industry) which is responsible for 2/3 of today’s worldwide glycerol supply.

Despite the fact that pure glycerol is an important industrial feedstock used in food,
drugs, cosmetics, pharmaceuticals, pulp and paper, leather, textile and tobacco industries,
the growth of the biodiesel industry has led to a glycerol surplus resulting into a ten-fold
decrease in crude glycerol prices [8],[104]. The world biodiesel production has significantly
increased with an average growth of 11% annually (growth rate end-2009 through 2014)
and it reached a maximum of 125 billion liters in 2014 [105].

Henceforth, glycerol valorization by chemical and biochemical conversion to biofuels,
high value-added chemicals and building blocks has been pointed out as a powerful al-
ternative to add value to this side stream [8],[3],[106]. By transforming the conventional
biodiesel industry into an integrated biorefinery, it would not only increase its economic
viability, but also provide a potential replacement platform for fossil-based products, in-
stigating a probable overall improvement of environmental performance.

Therefore, this project aims at filling this gap by developing multi-criteria computer
aided decision-making techniques as a roadmap for early-stage managerial decisions, tar-
geting at guiding the user towards the design and planning of sustainable glycerol biore-
fineries and corresponding value chains. To this end, this thesis covers the development
of methods and tools for the modeling and optimization at the strategic and tactical
level, along with detailed economic and environmental assessment techniques, including
the incorporation of multi-level uncertainties. Hence, the realistic case study of glycerol
valorization in Europe is used not only because it composes a currently realistic challenge,
but also to highlight the features of the proposed design and assessment strategies.

In the next section, the structure of the thesis is defined, and the specific research
objectives per chapter are delineated.

Thesis Keywords

glycerol; early-stage; concepts screening; economic assessment; Net Present Value; envi-
ronmental assessment; LCA; optimization; uncertainties; supply chain

1.3 Structure of the thesis
The results section of the thesis consists of two parts, as presented in Figure 1.4. Part
I consists of chapters 2, 3 and 4; and, Part II consists of chapters 5 and 6. Lastly, in
chapter 7 overall conclusions and directions for future research are discussed. In the
following sub-sections a summary of the main achievements in each chapter is presented.
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………
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…
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… …

Part II
Chapter 5: Supply chain design - the 
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application

Chapter 6: Optimal design and planning 
of sustainable glycerol-based biorefinery 

supply chains under uncertainty

Part I

Chapter 2: Environmental sustainability
(deterministic and under uncertainty conditions)

Chapter 3: Techno-economic analysis
and risk assessment

(deterministic and under uncertainty conditions)

Chapter 4: Framework for sustainability 
analysis by risk assessment

Figure 1.4: Thesis structure: Part I and Part II boundaries

Part I: process design, optimization & analysis

Part I of the results section of this thesis deals with the design, optimization and analysis
of gate-to-gate glycerol-based biorefinery concepts.

The prime aim of chapter 2, is to recommend an early-stage methodology for the
environmental evaluation and robust ranking of bioprocesses under uncertainty (called
E3BU). This is achieved by focusing on (i) the reduction of uncertainty at the inventory
stage of LCA; and, (ii) how to appropriately deal with parameter uncertainty at the
characterization factors level. Furthermore, a model library (database) for glycerol-based
biorefinery concepts for the production of biofuels and value-added products is developed
in Chapter 2. In chapter 3, the main goals/achievements are: (i) to extend the database
of glycerol-based biorefinery concepts for the production of value-added products; and,
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(ii) to propose and apply a systematic methodology for the early-stage screening and as-
sessment of alternatives through detailed techno-economic analysis and risk assessment
by incorporating technical and economic uncertainties. At last, in chapter 4 a framework
for techno-economic and environmental sustainability analysis by risk assessment is in-
troduced. It aims at providing a way for a quick and visual screening and identification
of alternatives. This is done through the interpretation of a sustainability risk matrix,
targeting to ease the communication of results between different management levels.

Part II: towards the sustainable design of biorefinery supply chains

In Part II, in order to expand and consolidate the knowledge on the glycerol-based biorefin-
ery, the boundaries of design and analysis are broadened so as to include the supply/value
chain. In Chapter 5, both production and logistics aspects related to the glycerol biorefin-
ery supply chain structure are analysed. To this end a multi-product, multi-stage/scale
and multi-product MILP model (called GlyThink) based on the maximization of the Net
present Value is proposed. Finally, in Chapter 6 the goal is to assess the supply chain
(SC) in a holistic manner. To achieve this, a framework is developed for the design
and planning of (glycerol-based) biorefineries. The framework presents a multi-layered
strategy composed of different steps, and it is strongly based on optimization techniques,
detailed economic and environmental assessment, and multi-objective optimization under
stochastic environment.
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Part I

Process design, optimization &
analysis





CHAPTER 2
Assessing the environmental

sustainability of early stage
design of glycerol bioconversion

Substantial uncertainty is involved in the early-stage design and analyses of bioprocesses,
and thus the ranking and identification of potential sustainable solutions is a challenging
task. Therefore, in this chapter a methodology is proposed that targets at facilitating the
environmental sustainability assessment under uncertainty during the conceptual design
of bioprocesses. This step-wise methodology aims at assisting decision-makers to: (i)
collect and generate the input data for bioprocesses; (ii) systematically reduce uncertainty
concerning the material fluxes at the early stage design of bioprocesses, decreasing overall
uncertainty in the life cycle inventory; (iii) handle parameter uncertainty, by applying the
Monte Carlo technique for the propagation of uncertainty in characterization factors to
the environmental impact categories; (iv) establish sound quantitative thresholds for the
comparison of alternatives by incorporating a probabilistic interpretation; and lastly, (v)
rank the alternatives within the design space. ln summary, the proposed methodology,
through its statistical approach, aims at providing a consistent and robust ranking of
alternatives.

This chapter of the thesis is based upon the following article:

Assessing the environmental sustainability of early stage design for bioprocesses under
uncertainties: An analysis of glycerol bioconversion. L. Gargalo, C., Cheali, P., Posada,
J.A., Carvalho, A., Gernaey, K. V. Sin, G. Journal of Cleaner Production, vol 139, pp.
1245-1260. (2016)

Nomenclature

LCA Life Cycle Assessment

CC Climate change

CFs Characterization factors to convert inventory into environmental categories of
impact

CDF Cumulative distribution function

CFi,l Characterization factors for component i, category of impact l

DCE Dichloroethane

FU Functional unit
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FE Freshwater eutrophication potential

FET Freshwater ecotoxicity potential

HT Human Toxicity potential

HFom Formic acid

HSuc Succinic acid

Ki Degree of reduction of component i

LHS Latin Hypercube Sampling

ME Marine eutrophication potential

MET Marine ecotoxicity potential

PMF Particulate matter formation potential

POF Photochemical oxidation formation potential

Sc Environmental category of impact

Snorm Normalized environmental category of impact

S@5class1 Category of impact at 5th percentile, class 1 uncertainty

S@95class3 Category of impact at 95th percentile, class 3 uncertainty

SI Single Indicator

S
eg
out

Potential Environmental Impact that goes out of the energy generation system

S
eg
in

Potential Environmental Impact that goes into the energy generation system

S
mp
in

Potential Environmental Impact that goes into the manufacturing process

S
mp
out

Potential Environmental Impact that goes out of the manufacturing process

TA Terrestrial acidification potential

TET Terrestrial cotoxicity potential

TOA Trioctylamine

X Biomass

YSN Yield of ammonia per C-mol of substrate consumed

YSX Yield of biomass per C-mol of substrate consumed

YSO Yield of oxygen per C-mol of substrate consumed

YSC Yield of carbon dioxide per C-mol of substrate consumed

YSP1 Yield of product or by-product produced per C-mol of substrate consumed

YSW Yield of water produced per C-mol of substrate consumed

αi,k Ratio of chemicals or utilities added per unit of inlet mass flowrate

µi,j,k Ratio of consumption of utilities or chemicals per unit of inlet mass flowrate

γi,r Stoichiometry per unit of inlet mass flowrate

spliti,k Product separation fraction per unit of inlet mass flowrate

V Uncertainty type v, uncertainty due to choices

2.1 Introduction
As discussed in the Introduction section, despite inherent uncertainties portrayed in the
LCI and LCIA stages, and the considerable work being done on the development of ini-
tiatives to address and include propagation of uncertainty in environmental assessments,
existing LCA guidelines give little instructions on how to perform such analyses [24],
[33]. Consequently, uncertainty still plays a minor part in LCA studies, and the results
are normally reported based on deterministic models [25],[33], [34]. In short, the moti-
vation of this work arises fundamentally from: (i) the inherent uncertainty concerning
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early-stage design of bioprocesses; (ii) little guidance/methods in existing literature and
studies to perform and interpret LCA under uncertainty; and, (iii) missing thresholds for
comparison of alternatives and decision-making. Therefore, this chapter aims at present-
ing and demonstrating a methodology for assisting the decision-maker towards identifying
the more environmentally sustainable bioprocess design alternative under uncertainty, as
well as aiding the user with reporting and interpreting uncertainty in environmental eval-
uation. It focuses on dealing with parameter uncertainty, firstly by focusing on reducing
uncertainty on the life cycle inventory stage concerning the inter-process flows at the
early stage design; and secondly, by handling the propagation of uncertainty regarding
the characterization factors (which carry a high degree of uncertainty) to the environ-
mental impacts. The proposed methodology is presented as a systematic support tool
for decision-making at the conceptual (early-stage) phase, which aims at enabling the
decision-maker to screen design alternatives, to establish a ranking and to identify the
environmentally most sustainable pathway(s). To this end the following steps are formu-
lated within the methodology: (i) collect and generate the input data for bioprocesses; (ii)
systematically reduce uncertainty concerning the material fluxes at the early stage design
of bioprocesses, reducing overall uncertainty in the inventory stage of LCI; (iii) handle
parameter uncertainty introduced by the characterization factors used for flux classifica-
tion by applying the Monte Carlo technique; (iv) establish sound quantitative thresholds
for alternatives comparison by incorporating a probabilistic interpretation; and lastly, (v)
rank the alternatives within the design space.

This chapter is organized as follows: (i) the proposed methodology is described in
section 2.2, followed by (iii) the Results & Discussion section; and, (iv) Conclusions.

2.2 Early-stage Environmental Evaluation of Bioprocesses

under Uncertainty (E3BU)

The proposed methodology is called Early-stage Environmental Evaluation of Biopro-
cesses under Uncertainty (E3BU). E3BU is based on the combination of methods which
includes: the Life Cycle Assessment [107] steps, the Monte Carlo technique coupled with
Latin Hypercube Sampling, and the establishment of quantitative thresholds for direct
comparison and screening of alternatives acting as a support tool for decision-making at
the conceptual design phase of bioprocesses. The methodology objective is to rank the
alternatives in the design space and identify the potentially best and thus most environ-
mentally friendly solution at the early stage design of bioprocesses. The methodology, as
presented in Figure 2.1, is composed of five steps: (1) goal and scope; (2) adapted Life
Cycle Inventory; (3) life cycle impact assessment; (4) dealing with parameter uncertainty:
Monte Carlo technique; and, (5) ranking and selection of the best processing network.
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Figure 2.1: Schematic representation of the proposed E3BU methodology.

2.2.1 Step 1: Goal and Scope
This step aims at defining the system boundaries (processes/operations to be included in
the LCA study) and the Functional Unit (FU). E3BU has been developed to guide the
decision-maker to define if the problem to be solved is based on a product- or process-
oriented approach in order to select the FU. Therefore, in order to assure equivalence
among the systems, the following FU are recommended within E3BU:

• A product-oriented approach is suggested when the goal is to produce a certain
product (or a set of products), and the decision-maker needs to evaluate several
pathways for its production. This is the case of a retrofitting problem, where one
wants to adapt or change the current plant so as to have additional manufacturing
paths and/or to have diverse sources of feedstock being transformed in the plant.
Therefore, the functional unit (FU) would be kg of product produced from the
chosen feedstock.

• A process-oriented approach should be used when the decision-maker is targeting
to assess a number of routes to produce a set of products from a given (previously
chosen) feedstock and, thus, the issue is the establishment of a proper product
portfolio. Therefore, it would result in an entirely new plant (or module); and the
FU would be kg of feedstock being converted in the plant which is still reflecting
the primary function of the plant.
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2.2.2 Step 2: Adapted Life Cycle Inventory
The data collection and management section involves all steps related to data gather-
ing and generation to be performed in the life cycle inventory (LCI). The required data
consists of the mass and energy balances for all the operations composing the processing
networks within the design space. The data needed can be provided by databases (such
as Ecoinvent), real data and/or simulation. When real data and databases are unavail-
able, which often happens when considering bioprocesses, process simulation is needed.
Therefore, in step 2 of E3BU, a stepwise procedure to fill this gap concerning the lack of
bioprocess data for early stage design is proposed. This procedure reduces the uncertainty
related to fluxes involved in the bioreaction. The steps included in step 2, as shown in
Figure 2.1, are: Step 2.1. Collection and characterization of process technologies; Step 2.2
Bioreaction validation algorithm; and, Step 2.3 calculation of mass and energy balances
by simulation using input-output models.

Step 2.1: Collection and characterization of process technologies

After clearly defining the boundaries of the environmental assessment to be conducted
(i.e. defining it as a product- or process-oriented approach), the next step is the col-
lection of possible conversion pathways. Therefore, the aim of this step is to guide the
decision-maker towards the development of a database of process technologies describing
the systems under study, therefore leading to the full description of the system and the col-
lection of all the associated data required to perform the mass balances in the subsequent
steps. Additionally, the possible combinations are graphically established in a process
superstructure composing the design space, from which the best potential alternatives
will be identified. The superstructure of technologies representing the object of the study
is built of processing networks/pathways. A processing network consists of a number of
processing steps connecting raw materials to products, such as pre-treatment, conversion,
separation and purification. Therefore, a generic process modeling approach previously
proposed by [108], [17] is here used to collect and manage the complexity of multidisci-
plinary and multi-dimensional data of different process alternatives within a processing
network. The block model (Figure 2.2) consists of four parts described by representative
balance equations: (i) mixing, (ii) reaction, (iii) waste separation, and (iv) product sep-
aration, where each one is specified by specific parameters. These input parameters and
ratios per unit of inlet mass flowrate are, µi,j,kk – ratio of chemicals or utilities added,
αi,kk – direct consumption of utilities or chemicals, SWi,kk – waste separation fraction,
spliti,kk– product separation fraction and, at last, γi,rr, representing the stoichiometry
coefficients. The required process data (input parameters and ratios) can be collected
through a comprehensive literature review combining different sources, such as, experi-
mental, pilot and demonstration plant data, simulation results, or available stream tables
or operating data of a provided flowsheet.

A multidimensional matrix (i.e. database) is then constructed where the data previ-
ously gathered is inserted and organized to represent the processing steps composing the
different alternatives that are potentially available in the study. Hence, this is a robust
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Figure 2.2: Generic input-output model. Adapted from [17].

way to standardize the input data gathered from different sources (all converted to the
same format), making it easily accessible, reusable and expandable.

Step 2.2: Data validation algorithm

For early stage design of bioprocesses, the data is often unavailable, unrepresentative
(data inaccuracy) or there are data gaps. Therefore, identifying data gaps or lack of
representative data in the life cycle inventory such as pollutant flows or inter-process flows
may be complicated at this conceptual phase. A more complete accounting of emissions
may be obtained from the analysis with the closest processes and by analyzing the process
reaction stoichiometry, where the law of conservation of mass helps to predict data gaps.
It may still underestimate pollutant losses, but it is still superior compared to completely
disregarding the mass balances [109]. As a result, in order to reduce uncertainty related to
the fluxes involved in the reaction step, and thus, manage to decrease the uncertainty in
the inventory stage, the bioconversion data collected needs to be validated. A systematic
consistency analysis of experimental data is thus proposed to verify and, in some cases
predict, the missing data to describe fully the reaction stoichiometry (the stoichiometric
coefficients γi,rr). It is based upon elemental and degree of reduction balances, and their
underlying concepts can be found in [110]. The workflow of this algorithm is represented
in Figure 2.3.

Step A.1 and A.2 have as first input the data collected in step 2.1. These data fre-
quently consists of experimental yield(s) of products along with the information about
the microorganism used in the bioconversion. In step A.1, the yields collected (output
step 2.1) are converted into C-mol of compound per C-mol of substrate; and, in step
A.2, the degree of reduction of each component is estimated. Targeting to validate (or
predict) the bioreaction stoichiometry, an investigation into the microorganism metabolic
pathways and the growth media used is needed (step B.1) to predict a possible stoichiom-
etry equation (step B.2). A generic equation, as presented in Eq. 2.1, will be used as
an input model for calculation and optimization purposes, which intends to guide the
decision-maker towards a fully determined and verified bioreaction stoichiometry.
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Figure 2.3: Algorithm for bioreaction data validation (the dash-dotted lines represent the infor-
mation flow).

− substrate − YSN NH3 − YSOO2 + YSP 1P1 + YSP 2P2

+ YSP 3P3 + ... + YSCCO2 + YSXX + YSW H2O = 0
(2.1)

where, P1, P2 and P3 represent the products (metabolites) of the fermentation, and
YSP represents the yield of carbon containing compounds (represented by C-mol) per
C-mol of substrate. Note that the yield of the non-carbon containing compounds is
represented in terms of mol per C-mol of substrate. In step C, the output of step A.1 is
inserted into the equation (output step B.2) and hence, steps D, E and F are performed
and mathematically formulated as follows in Eqs. 2.2, 2.3 and 2.4, respectively.

EmYsm = 1 ↔ −1 +
M∑

i=1

xcm1 · Ysm1 = 0 (2.2)

EkK = 0 ↔ −1 · ks +
M∑

i=1

km1 · Ysm1 = 0 (2.3)



28 2 Assessing the environmental sustainability of early stage design of glycerol bioconversion

EkYSN = 0 ↔ −1 +
M∑

i=1

xNm1 · Ysm1 = 0 (2.4)

Equations 2.2 to 2.4 are then translated into the following matrices,


xCm1 xCm2 · · · xCmM

km1 km2 · · · kmM

xNm1 xNm2 · · · xNmM

 ·



YSm1

YSm2

...

YSmM


=


1

0

1

 (2.5)

where, M represents the number of metabolites in Eq. 2.2 to 2.5; xcmi and xNmi

specify the carbon and nitrogen content of the given metabolite mi, respectively. The
constant kmi

represents the degree of reduction per C-mol of the metabolite mi; and,
Ysmi as mentioned earlier, identifies the molar yield of metabolite mi (C-mol) per C-mol
of substrate. If the carbon or degree of reduction balance does not close (step D and E),
multiplication of the matrices differs from the last column on the right in Eq. 2.5, and
then the reported yields are to be investigated and varied satisfying Eqs. 2.6 and 2.7.
Thus, the verified stoichiometry will be the one that presents the minimum least squares
difference regarding the carbon and degree of reduction balance, as presented in Eqs. 2.6
and 2.7.

min | 1 −
M∑
i

Ci | (2.6)

min | 0 −
M∑
i

Ki | (2.7)

Therefore, the output of this step is the verified stoichiometry, which is one of the required
inputs for the calculation of mass and energy balances.

Step 2.3: Calculation of mass balances and energy balances

After collecting all the process parameters representing the technologies and verifying
the stoichiometry, all the data needed to solve the block model equation is collected.
Therefore, by using a mathematical solver, the processes are simulated providing all the
data requirements for the next step.

2.2.3 Step 3: Life Cycle Impact Assessment
The aim of this step is to assess the environmental impact of the processing networks
within the design space, by establishing a link between the product/process that is inves-
tigated and its corresponding categories of impact.
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Selection of LCIA method

In this step, the LCIA method for characterization of environmental impacts is selected
according to ISO 14040 standards. There are several LCIA methods that can be applied
(ReCiPe, CML 2002, Eco-indicator 99, EDIP97, etc.) and they diverge in the impact
categories, the selection of indicators, and in the geographical focus. The most suitable
method to be applied is case-dependent and the International Reference Life Cycle Data
System (ILCD) Handbook [111] provides guidance and further details on the adequacy of
the method.

Calculation of impact categories & single indicator

The deterministic environmental category of impact (Detc) for a certain category c is
obtained by aggregating all the characterized flows by category using the following equa-
tion.

Detc =
∑

i

CFi,c × Fi (2.8)

Where i = {1, , I} corresponds to the components present in the system, the CFi,c

represent characterization factors that convert component flows i into impact categories
c, and Fi is the material flux of component i. Having selected the LCIA method, the indi-
cators and characterization factors are pre-selected and therefore used in the subsequent
steps. Therefore, depending on the classification method selected, the inventory is then
characterized into C impact categories. It is important to note that, the science-based
characterization factors (CFi,c) are based on models that are usually simplified versions
of more complex models within the various impact categories. Different databases may
have different estimations or experimental values for the science-based characterization
factors that are used to convert mass balance inventory into appropriate categories of
midpoint impact. Differences may derive from geographical conditions, from data sources
or measurement errors. They provide useful indications for relative comparisons but they
are not suitable for absolute or damage assessment to the environment or to human health
since they carry significant uncertainty. Furthermore, in this step normalization could
be used to express impact indicator data in a way that can be compared among impact
categories [112]. This procedure normalizes the indicator results by dividing them by a
selected reference value. After normalization, the impact categories can be aggregated
into an overall dimensionless score by a weighting technique incorporated into an overall
single indicator, SI, as shown in Eq. 2.9.

SI =
C∑
i

wc × Detnorm,c (2.9)

Where, wc refers to the weighting reference, which can either be global, local or regional,
and c represents the impact category being estimated.
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2.2.4 Step 4: Dealing with parameter uncertainty - Monte Carlo
technique

The characterization and propagation of parameter uncertainty into the potential envi-
ronmental impacts is a central feature of the E3BU methodology (see the workflow in
Figure 2.1, Step 4). To that purpose, the Monte Carlo technique has been applied.

Step 4.1: Characterization of uncertainty

Appropriate characterisation of uncertainties in CFs require data sets with proper statis-
tical information such as accuracy, confidence intervals and/or standard deviation. Due
to lack of statistical information in databases (e.g. ReCiPe, IMPACT2002), the expert
review method is used. Expert review is a commonly used approach for uncertainty
analysis in engineering studies [113], [114]. Three classes of uncertainties for CFs were
defined as follows: the class 1 uncertainty refers to 25% variation, the class 2 refers to
50% variation, and the class 3 refers to 75% variation around the reported (mean) val-
ues of CFs. The assignment of uncertainty classes for each CFi,c is done based on the
availability and variability of the number of observations regarding their reported values
(measurements). Then, it has been assumed that uncertainty in CFi,c follows a uniform
distribution (a common assumption when there is limited data to identify an underlying
distribution). Moreover, with these assumptions, the lower and upper bound of a uniform
distribution are calculated as follows: the lower bound=(1 − %var)× mean value and the
upper bound=(1 + %var)× mean value [115]. The mean value of CFi,c is collected from
available databases.

Step 4.2: Latin Hypercube Sampling

The Latin Hypercube Sampling (LHS) method is used to sample from the parameter
space [114]. For the sampling step, one needs to a priori specify the total sample number,
N. After the sampling, one obtains a sampling matrix with N rows and p columns, where
N is the total number of samples and p refers to the number of uncertain parameters
for which the sampling is performed {CFi,cat1 , ..., CFI,catP

} , as shown in Eq. 2.10. The
summary table with the mean values, uncertainty classes and lower and upper bounds
are given in Appendix A, Table A.3.

LHSclass1,2or3 =


ss1,1 . . . ss1,P

...
. . .

...

ssN,1 . . . ssN,P

 (2.10)

Step 4.3: Monte Carlo simulations

In this step, the model equation (Eq. 2.8) describing the calculation of Detc for each im-
pact category is solved using parameter values from the sampling matrix (usually called
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Monte Carlo simulations). Performing N calculations with the model leads to a distri-
bution of the model output values (i.e. S values) as result of propagation of the joined
parameter uncertainties in the input (i.e. CFi,c ). The distribution of outputs, as shown
in Eq. 2.11, will be analyzed by means of an empirical cumulative distribution function
(CDF) for all categories c, and for each one of the uncertainty classes attributed in Step
4.1., and used for interpretation in the next step.

outputclass1,2or3 =


Det1,1 . . . Det1,C

...
. . .

...

DetN,1 . . . DetN,C

 (2.11)

2.2.5 Step 5: Ranking and identification of best potential alternative

The objectives of this step are to obtain the ranking of alternatives regarding their en-
vironmental performance and finally identify the most environmentally friendly solution.
In this step of E3BU, a probabilistic interpretation framework is used which interactively
assists the decision-maker to compare and screen alternatives. It is described in detail in
the following steps.

Step 5.1: Theoretical maximum and minimum

For each alternative, the empirical cumulative distribution functions of the potential
environmental impacts are built for each uncertainty class (1, 2 and 3). The y-axis
in CDF reads probability of x (the Detc) being less than or equal to a certain value X,
P (Detc ≤ X), while the x-axis refers to actual values of the impact categories. The range
of the x-axis indicates how large the uncertainty is (the larger the range of the x-axis, the
larger the uncertainty). The shape of the CDF function (e.g. linear, S-shape), indicates
the probability of observing X. A linear CDF means that input uncertainty propagates
linearly to the outputs, while an S-shape CDF indicates that input uncertainties propagate
in a non-linear fashion to the output [116]. By identifying a certain percentile, an estimate
of the theoretical maximum and minimum is established for every impact category. In
this work, the 90% confidence interval is used by reading the 95/5 percentiles in the CDF.
These are used as theoretical thresholds representing the best and worst case scenario,
Detc@5class1 and Detc@95class3, respectively. As shown in Figure 2.4, the theoretical
minimum and maximum are identified by x1 and X3, once it gives the ‘conservative’
minimum and maximum among the uncertainty classes (the worst case scenarios).

Step 5.2. Comparison of alternatives – single indicator under uncertainty (SI)

In this step, the alternatives are to be compared and ranked according to their perfor-
mance by following the algorithm shown in Figure 2.5.
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Pr
 (x

<X
)

Figure 2.4: Theoretical minimum and maximum values established from the empirical cumulative
distribution of generic impact categories. Blue, red and green, correspond to class 1, 2 and 3
uncertainty.

Figure 2.5: Algorithm for comparison, ranking and identification of the best alternative.

Firstly, for a certain impact category c, the alternative’s performance is quantified by
Eq. 2.12. It corresponds to the difference (‘distance’) between the category’s nominal
value given by the deterministic value obtained in Step 3.2 and the theoretical maximum
established in Step 5.1. Both values are normalized, where the reference value is given
by the difference between Tmax,c and Tmin,c, which represent the theoretical maximum
and minimum of a certain category of impact across all alternatives in the design space.
Detc,p and Smax,c,p stand for the deterministic value and the maximum value obtained
through the CDF for a certain category c and for a given product p, respectively.
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Distc,p =| Detc,p,norm − Smax,c,p,norm |=
(

| Detc,p − Smax,c,p |
Tmax,c − Tmin,c

)
)

(2.12)

The procedure is followed for each alternative until there are no more categories to
analyze. Once there are no more categories c, to analyze for a certain product p, the
normalized categories of impact are summed into a single score under uncertainty, SI,
(see Eq. 2.9). Therefore, the identification of the best potential environmentally friendly
solution is enabled, and it corresponds to the one that minimizes SI, as presented in Eq.
2.13. It is noted that the Distc,p here indicates the extent of uncertainty on the calculated
value. If the uncertainty is low, then the distance will be low, which is a desirable solution.
This is due to the fact that the smaller is the difference between the deterministic value
of the category and the theoretical maximum, the more trustworthy are the deterministic
values for the categories of impact.

Bestalt = minSI = min

[
C∑

c=1

Distc,p

]

= min

[
C∑

c=1

| Detc,p,norm − Smax,c,p,norm |

]
= min

[
C∑

c=1

(
| Detc,p − Smax,c,p |

Tmax,c − Tmin,c

)] (2.13)

As motivational example, hypothetic alternatives A and B, for a generic set of three
categories (Cat 1, Cat 2 and Cat 3), have the sum of ‘distances’ and the corresponding
SI represented in Figure 2.6. As it can be seen from Figure 2.6, the smaller the distance
between the deterministic value (Detc) and the theoretical maximum (Smaxc), the higher
the performance of that alternative regarding the set of categories c. By minimizing
the ‘distances’, the algorithm attributes naturally/automatically more importance to the
categories that carry higher uncertainty, because the greater the ‘distance’ the less trust-
worthy is the category of impact results. Therefore, alternative A is found to be the best
alternative in this example.
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Figure 2.6: ‘Distances’ for hypothetical alternatives A and B. Detc, Smax,c and SI correspond
to the normalized categories deterministic value, theoretical maximum and Single Indicator of A
and B, SIA,B , respectively.

2.3 Results & Discussion

2.3.1 Step 1: Goal and Scope
The goal of applying the E3BU methodology to the case study is to identify the best
potential environmentally sustainable design alternative to add value to the glycerol side
stream by converting it to high-value added products. The problem is looked at from a
process-oriented point of view, since the decision-maker is targeting to assess a number of
bioconversion paths to produce a set of products from glycerol. Therefore, the function
is the valorization of 1 kg of crude glycerol, the functional unit being the inflow of 1 kg
crude glycerol. Thus, as represented in Figure 2.7, the boundary limits are set up to be
gate-to-gate, which includes the manufacturing process, the utilities scheme and waste
disposal.

System	of	
Utilities

Production	
Process

Energy	Supply

Pre-
treatment

Separation	&	
Purification

Fuel	
Resources Emissions

Product

by-
product

Raw	
Materials

Mass	
Outputs

Mass	
Inputs

Souteg

Soutmp

Sineg

Sinmp

waste

 

 

0 = 𝑆$%& − 𝑆()&& + 𝑆+,%&

Figure 2.7: System boundaries: Seg
in , Smp

out, Smp
in and Smp

out, Seg
in , Seg

out, Smp
in ,Smp

out, represent the
impact categories that enter and leave the energy generation process and, the S that enter and
leave the manufacturing process, respectively. St

in, St
out and St

gen represent the total S that enter,
leave or are generated inside the system boundaries, respectively.
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2.3.2 Step 2: Data collection & Management

Collection and characterization of process technologies

The first step was to collect information for all technologies regarding glycerol conversion
to value-added chemicals, through literature review of significant publications in the field.
The study presented in this chapter includes: the purification and bioconversion of crude
glycerol (obtained from the palm oil-based biodiesel plant) into six value-added prod-
ucts (ethanol, poly-3-hydroxybutyrate, D-lactic acid, succinic acid, propionic acid and,
1,3-propanediol), and their potential environmental impact under uncertainties, is stud-
ied. Table 2.2 summarizes the details and data sources of the glycerol-based biorefinery
concepts.

Table 2.2: Glycerol biorefinery concepts (and data sources).
Product Bioconversion process Data sources

Ethanol Glycerol fermentation by an engineered strain of
E. coli [117], [118]

PHB Glycerol fermentation by an engineered strain of
C. necator [104], [119]

Lactic acid Glycerol fermentation by an engineered strain of
E. coli [120], [121]

Succinic acid Glycerol fermentation by an engineered strain of
E. coli [122]

Propionic
acid

Glycerol fermentation by an engineered strain of
P. acidipropionici ACK-Tet [123], [124]

1,3PDO Glycerol fermentation by an engineered strain of
K. pneumoniae [125], [126]

After collecting all the data needed, a superstructure representing the design space
was constructed (see Figure 2.8). As mentioned before, the mass and energy balances were
obtained based on the generic input-output block model, described in Figure 2.2. As a
generic example, the succinic acid production is presented in Figure 2.9, by exemplifying
the process as having the bioconversion and the separation and purification stages.

Bioprocess data validation algorithm

Targeting to reduce the uncertainty present at the conceptual phase of process design,
a validation algorithm for the bioreaction stoichiometry is here applied to decrease the
uncertainty related to the material flows (inventory) involved in the reaction step. There-
fore, the data was validated and consolidated following the algorithm explained in detail
in Step 2.2. (Figure 2.3); a short example for succinic acid is provided below. The
metabolic pathways and experimental data for fermentation are provided in [122], and
the resulting stoichiometric equation is as follows.

− CH8/3O − YSN NH3 + YSP 1CH3/2O + YSP 2CH2O + YSP 3CH4/3O

+ YSCCO2 + YSXCH1.8O0.5N0.25 + YSH2OH2O = 0
(2.14)

Where SP1, SP2, SP3 represent the production of succinic acid, acetate and pyruvate,
respectively. After applying the validation algorithm for experimental data (Figure 2.3),
the stoichiometry is completed and the yield coefficients are filled in accordingly,
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Figure 2.8: Superstructure representing the design space for the glycerol-based biorefinery con-
cepts. Light blue, red and brown arrows represent cooling and heating utilities and waste gener-
ated, respectively.

Figure 2.9: Generic example of the input-output calculation for the production of succinic acid

− CH8/3O − YSN NH3 + 0.544CH3/2O + 0.064CH2O + 0.009CH4/3O

+ YSCCO2 + 0.066CH1.8O0.5N0.25 + YSH2OH2O = 0
(2.15)

Since, the molar yields of carbon dioxide (YSC) and nitrogen (YSN ) are still missing,
therefore, the matrices for carbon and degree of reduction balances are prepared as shown
in Eq. 2.16 and 2.17.
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xCglyc xCNH3

xCHSuc xCHAc xCpyr xCCO2
xCX

xCglyc xNNH3
xNHSuc xNHAc xNpyr xNCO2

xNX

kglyc kNH3 kHSuc kHAc kpyr kCO2 kX

 ·



−1

YSN

YSHSuc

YSHAc

YSpyr

YSC

YSX


=


1

1

0

 (2.16)


1 0 1 1 0 1 1

0 1 0 0 0 0 0.25

4.67 0 6.00 3.50 2 0 4.20

 ·



−1

YSN

0.544

0.064

0.009

YSC

0.066


=


1

1

0

 (2.17)

By solving the closed set of equations (Eq. 2.17), the result is that YSN = 0.0132 mol
NH3 per C-mol of glycerol consumed. From the degree of reduction balance exemplified
in Eq. 2.18, YSO is also identified as follows.

−4.67 + 3.50 × YSHSuc + 4.00 × YSAc + 3.33 × YSpyr + 4.20 × YSX = 0 (2.18)

The left-hand side of Eq. 2.18 is different from zero and equal to -2.20. Consequently,
an electron donor has to be provided in order to have a closed degree of reduction balance.
In reality, the glycerol fermentation here described is performed under microaerobic con-
ditions [122]. Therefore, the electron donor is O2 and its molar coefficient is, YSO = 0.55
mol O2 per C-mol of glycerol substrate. Finally, the complete confirmed stoichiometry is
shown in Eq. 2.19.

− CH8/3O − 0.0132NH3 − 0.55O2 + 0.544CH3/2 + 0.064CH2O

+ 0.009CH4/3 + 0.303CO2 + 0.066CH1.8O0.5N0.25 = 0
(2.19)

The fermentation stoichiometry of the system is now fully determined and it is consid-
ered to be consistent and accurate. For the five remaining products, the same algorithm
was followed and the results are presented in Table A.1, Appendix A.



38 2 Assessing the environmental sustainability of early stage design of glycerol bioconversion

Calculation of mass and energy balances

By knowing the full stoichiometry for the bio-reactions occurring in each of the pathways,
the next stage was to verify the data collected (or estimated). As a result, the inventory
regarding the fluxes of mass were found. Following the guidance provided in this step,
the database consisting of the required process steps that compose the pathways in the
superstructure, and the related coefficients are represented/reported in Table A.1.

2.3.3 Step 3: Life cycle impact assessment (LCIA)
The ReCiPe impact assessment method [127] was selected in accordance with the inter-
nationally accepted ISO 14000 standard. The deterministic categories of impact (Sc) are
calculated, using the completed inventory data from the previous section, and following
Eq. 2.18. The categories of impact are depicted in Figure 2.10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

CC (kg CO2 eq./kg glyc)

ME (kg N eq./kg glyc)

FE (kg P eq./kg glyc)

TA (kg SO2 eq./kg glyc)×10

POF (kg NMVOC eq./kg glyc)

PMF (kg PM10 eq./kg glyc) ×10^2

FET  (kg 14DCB eq./kg glyc)*10^2

MET  (kg 14DCB eq./kg glyc)*10^3

TET  (kg 14DCB eq./kg glyc)*10^3

HT  (kg 14DCB eq./kg glyc)*10^2
PHB

lactic acid

propionic acid

ethanol

1,3-PDO

succinic acid 

Figure 2.10: Deterministic midpoint categories of impact for the alternatives being tested per kg
of glycerol.

The results have been validated based on a brief literature review. However, the results
are discussed based only on three products and their corresponding Climate Change cat-
egory of impact (CC). This is due to the following reasons: (i) the lack of environmental
studies, to the best of our knowledge, on the glycerol valorization to value-added products;
and, (ii) substantial differences in methodological choices and scope/background informa-
tion of the available analyses (such as feedstock, energy types, downstream processing,
etc.). Therefore, bio-based lactic acid, propionic acid and 1,3-Propanediol, are used as
benchmark. It is important to note that, while in Figure 2.10, the categories of impact
are reported per kg of glycerol, for comparison purposes, the CC values are now discussed
and compared in terms of kg of CO2 eq. per kg of product being produced as follows.
The CC value for the lactic acid production obtained in this work (1.90 kg CO2 eq./
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kg lactic acid) is located in the range of values reported per kg of bio-based lactic acid
stated in other studies for the same boundary conditions (1.80 and 1.94 kg CO2 eq./kg
in [128] and [129], respectively).In the case of the production of propionic acid, the value
obtained in this study (2.84 kg CO2 eq./ kg propionic acid) is located in the range of
values being reported by Tufvesson and colleagues [130] (3.8 kg CO2 eq./ kg propionic
acid), considering approximately the same set of boundary conditions. Likewise, accord-
ing to [131], the production of bio-based 1,3-propanediol leads to a reduction of emissions
by 56% when compared to its petroleum based counterpart. The petro-based reference
value is approximately 9.5 CO2 eq./kg 1,3-PDO [132]. Therefore, the value obtained in
this work ( 3.3 kg CO2 eq./kg 1,3-PDO) reports a difference of approximately 20% to the
above-mentioned reference for bio-based 1,3-propanediol ( 4 CO2 eq./kg 1,3-PDO). As
also previously mentioned, due to different methodological choices and scope, differences
in the obtained CC values were to be expected [133], [134].

2.3.4 Step 4: Monte Carlo technique: dealing with parameter
uncertainty

After the mass and energy fluxes are collected, verified and inventoried, and following the
estimation of the deterministic categories of impact, the next step is the first stage of the
Monte Carlo method. For the identification of possible sources of uncertainty one starts
by gathering the characterization factor (CFs) values. In this work, the nominal values of
the characterization factors were retrieved from an open-source database (ReCiPe[127]).
The upper and lower bound of the uniform distribution are established on the basis of the
extent of variability reported across different databases; thus the expert review was used,
and a low (25%), medium (50%) or high (75%) level of variation around the nominal values
is assigned [115]. The same procedure is performed for all input components in the system
within the defined boundaries. The next step is the sampling from the input uncertainty
domain using Latin Hypercube Sampling. As a result, N=200 random estimates of each
CFi are created (p=38). A brief sample of the CFs for flux classification for some of
the components in the system (input uncertainties) is shown in Table 2.3. It provides an
example of (i) the characterization factors collected for two distinct products (methanol
and ammonia) and for the respective categories of impact; and, (ii) the minimum and
maximum values obtained after sampling using Latin Hypercube Sampling having three
classes of uncertainty and the collected (nominal) values as the input uncertainty domain.
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The output of this step is the domain definition of input uncertainty which is com-
posed of an N × M space, where M refers to the CFi,c representing the total number of
compounds (products, intermediates, raw material, etc.) in the system (from which sam-
pling will be done). In the next step, by applying Eq. 2.8, the fluxes (Fi) are multiplied
to each one of the 200 samples, for the c impact categories considered. Consequently, for
a certain potential environmental impact category c, an empirical cumulative distribution
function (CDF) was built, which will be used in the next stage of the methodology.

2.3.5 Step 5: Ranking and identification of best potential alternative

2.3.5.1 Theoretical minimum and maximum quantification

Several midpoint categories are analyzed through the probabilistic interpretation frame-
work, providing a robust tool to evaluate and compare the environmental performance
of the alternatives. As mentioned before, as part of the Monte Carlo method, and after
estimating the Sc for each one of the samples, a CDF can be built for every impact cate-
gory. The CDF of the model outputs is obtained by revising equation Eq. 2.8, where CFi

represents the sample space N instead of nominal values. As shown in Figure 5, S@5class1

and S@95class3, quantify the thresholds for best and worst case scenario, by quantifying
the theoretical minimum (Tmin,c) and maximum (Tmax,c) across all the products, respec-
tively. As an example, in Table 2.4 the CC and HT for the succinic acid production are
compared under deterministic and uncertainty conditions (best and worst case scenarios).
Where (Tmax,c) and (Tmin,c) represent the theoretical maximum and minimum of a cer-
tain category of impact across all alternatives in the design space, Detc,p and Smax,c,p

stand for the deterministic value and the maximum value obtained through the CDF for
a certain category c and for a given product p, respectively. Lastly, |Detc,p−Smax,c,p|

Tmax,c−Tmin,c
rep-

resents the normalized ‘distance’ for each category of impact c and for a given product
p.

Table 2.4: CC and HT are compared under deterministic and uncertainty conditions (best and
worst case scenarios) for the succinic acid production.

CC (kg CO2 eq./ kg
of glyc)

HT (kg 14DCB eq./
kg of glyc )

Detc,p 1.17 1.76 · 10−3

Smax,c,p 1.96 2.90 · 10−3

Tmax,c 2.21 2.94 · 10−3

Tmin,c 0.71 1.35 · 10−3

| Detc,p − Smax,c,p |
Tmax,c − Tmin,c

0.18
0.72

2.3.6 Comparison of alternatives

As mentioned before, the goal is to be able to robustly rank and identify the potentially
best environmentally sustainable alternative(s) to add value to the glycerol side stream.
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Therefore, in this step, the alternatives’ performance is quantified and analyzed by fol-
lowing the algorithm proposed in Figure 2.5, for each alternative and for each category of
impact until there are no more categories to analyze. The difference (‘distance’) between
the category’s deterministic value obtained in Step 3.2 and the theoretical maximum es-
tablished in Step 5.1. is estimated based on Eq.2.12. The normalized ‘distances’ were
estimated for each category of impact c and for a given product p. As an example, in
the last row of Table 2.4, the normalized ‘distances’ are presented for the CC and HT
regarding the production of succinic acid. The same calculation was performed for the
remaining categories and for all products in the database. The results are summarized in
Table 2.5. The single indicator (SI) estimated based upon Eq. 2.13 leads to the ranking
of the alternatives. The production of lactic acid stands out as the best potential envi-
ronmentally sustainable option within the design space since it has the lowest SI under
uncertainty (Table 2.5).

Table 2.5: Ranking of alternatives based on the SI under uncertainty
product Succinic acid 1,3-PDO Propionic acid Lactic acid PHB Ethanol

SI =∑
cc

| Detc,p − Smax,c,p |
Tmax,c − Tmin,c

3.00 3.65 2.75 2.77 2.47 4.97

ranking 4 5 3 1 6 2

Furthermore, a comparison was drawn between the SI ranking under uncertainty here
proposed and the SI estimated with the deterministic categories values. To that purpose,
three reference normalization and weighting systems for analysis of midpoint (EDIP97,
EU-15 and equal contribution) presented in [112] were applied on the deterministic values
obtained for all categories for all alternatives in the design space and the SI was estimated.
Therefore, as presented in Figure 2.11, a deterministic ranking was obtained for each one
of the weighting systems used. It is noteworthy that the ranking of alternatives based
upon deterministic single score is highly dependent on the respective weighting system.
However, by following the methodology proposed here, and further applying the three
above-mentioned weighting systems, it was found that, in this case, the ranking of alter-
natives under uncertainty conditions is robust (‘this work’ in Figure 2.11). This is due to
the fact that the approach in this work uses the accuracy of the estimation of the respec-
tive impact categories. Where the lower the ‘distance’ to the theoretical maximum implies
that the deterministic estimate is more trustworthy, and automatically attributes higher
weight to that same category. Therefore, this statistical approach ensures consistency
and robustness.
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Figure 2.11: Ranking of alternatives by weighting system selected. ‘this work’ represents the
consistent ranking of alternatives across the four weighting systems

2.4 Conclusions
A methodology for environmental evaluation under uncertainty was proposed aiming at
ranking the alternatives within the design space and selecting/identifying the best poten-
tial processing network at the early stage of design. To achieve this, the methodology
features the following: (i) a bioprocess validation algorithm, aiming at consistent biopro-
cess stoichiometry so that mass fluxes can be accurately calculated, reducing uncertainty
in the LCI; (ii) identification and quantification of parameter uncertainties in particular
focusing on the characterization factors for calculation of potential impact categories by
applying the Monte Carlo technique; (iii) establishment of sound quantitative thresholds
for alternatives comparison by incorporating a probabilistic interpretation; and lastly,
(iv) ranking of the alternatives within the design space for identifying the potentially
best environmentally sustainable alternative. The glycerol-based biorefinery concepts are
found to be critically affected by uncertainties in the environmental assessment, and thus
not considering uncertainty (uncertainty at the inventory stage and characterization fac-
tors) would lead to unreliable results. Following the methodology, lactic acid ranked
best among the alternatives in the design space from the environmental sustainability
point of view. Additionally, it is important to note that, through the application of the
methodology, it was observed that the ranking obtained under uncertainty conditions
is consistent and robust across different weighting systems, which is highlighted as an
important contribution of this work. It is a significant contribution since it provides the
decision-maker with the best potential alternative among the set of options and under a
given degree of information accuracy (or uncertainty). In this way, uncertainty analysis
can be used as a tool for robust and reliable estimation of the theoretical maximum and
the ranking of alternatives towards more robust and environmentally friendly solutions.
In short, the proposed methodology extended the state-of the-art by providing a cus-
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tomized approach that targets to achieve more robust analysis at the conceptual stage of
bioprocess development by considering uncertainties in decision-making to support gen-
eration of environmentally sustainable solutions. Uncertainty analysis enabled a more
detailed interpretation of results, then improving the transparency and robustness of the
reached conclusions. However, further identification of additional sources of uncertainty
needs to be acknowledged, quantified and characterized in order to provide robust results
and sound alternatives.



CHAPTER 3
Economic risk assessment of

early-stage designs for glycerol
valorization

In this chapter, a systematic methodology is proposed to critically assess and screen
among early stage design alternatives for glycerol conversion. Through deterministic
sensitivity analysis it was found that variations in the product and feedstock prices, total
production cost, fixed capital investment as well as discount rate, among others, have
high impact on the project’s profitability analysis. Therefore, the profitability was tested
under uncertainties by using NPV and MSP as economic metrics. The robust ranking of
solutions is presented with respect to minimizing the economic risk of the project being
non-profitable (failure to achieve a positive NPV times the consequential profit loss). In
Figure 3.1, a graphic description of this chapter is presented.

This chapter of the thesis is based upon the following article:

Economic Risk Assessment of Early Stage Designs for Glycerol Valorization in Biore-
finery Concepts. L. Gargalo, C., Cheali, P., Posada, J.A., Gernaey, K. V. Sin, G Indus-
trial & Engineering Chemistry Research, vol 55, no. 24, pp. 6801–6814. (2016)
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Nomenclature

NPV Net Present Value

Ct Net cash inflow during the lifetime of the plant

C0 Total initial investment costs

r Discount rate (internal Rate of Return, IRR) (%)

FCI Fixed capital investment

DCFR Discounted cash-flow rate of return

LHS Latin Hypercube Sampling

MSP Minimum selling price

Xi Input model variables

Yk Economic metrics

NP V0 NPV at base case conditions

MSP0 MSP at base case conditions

DSA Deterministic Sensitivity Analysis

SNxM Matrix of samples generated through LHS from the uncertain domain

YNxK Matrix of model outputs obtained through deterministic optimization

P ri Probability of uncertain realization

Mi Magnitude of loss in case of uncertain event realization

Std. Standard deviation

DSP Downstream processing

n Exponent used in the seven-tenths rule

CEPCI Chemical Engineering’s Plant Cost Index

TPC Total annual production cost

MACRS Modified Accelerated Cost Recovery System

NPV@10 NPV estimated at dicount rate of 10%

NPV@24 NPV estimated at discount rate of 24%

MSP@10 MSP estimated at discount rate of 10%

MSP@24 MSP estimated at discount rate of 24%

Pi Price of raw materials i, i ∈ Irm

Pp Price of products i ∈ Ip

Pwd Price of waste disposal

Pi,ut Price of utilities

Pi,rm Price of raw materials

MACRS Modified Accelerated Cost Recovery System

Indices

i component i

k utilities k

Sets

I Total number of components i

K Process technologies k

Iut Total components composing utilities

Irm Total components that are raw materials
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Chemicals

H2 Hydrogen

1,3-PDO 1,3-propanediol

1,2-PDO 1,2-propanediol

PHB Poly-3-hydroxybutyrate

HLac Lactic acid

HSuc Succinic acid

Prop Propionic acid

3.1 Introduction
Earlier studies in our group have developed a systematic and robust methodology that
aims to assist the user to manage the complexity of input data and their intrinsic uncer-
tainties [17]. In this chapter, the methodology is extended by (i) identifying the sources of
uncertainty which affect the economic performance the most using deterministic sensitiv-
ity analysis; (ii) proactively incorporating uncertainties through stochastic optimization
and scenario-based analysis; (iii) quantitative and qualitative analysis of economic met-
rics; (iv) quantifying the risk of potential profit loss for the top-ranked alternatives taking
into account time value of money; and, finally (v) exploring the implementation of flexible
concepts as reduction strategy for the minimization of future risk. The study aims ulti-
mately at providing a robust assessment and decision-making tool for the identification
of optimal biorefinery concepts at the screening phase, under uncertainties with regards
to technical and economic criteria. This systematic approach is applied to a significant
case study focusing on value added products from glycerol.

As above-mentioned, in this study the aim is to identify and rank possible glycerol
valorization concepts with regards to their economic performance, intending to implement
such valorization concepts into the biodiesel plants as an add-on. This chapter is orga-
nized as follows: (i) the superstructure formulation and data collection (database) for
the glycerol biorefinery and the economic model for the assessment are presented in the
Materials and Methods section, followed by (iii) the Results section and (iv) Conclusions.

3.2 Materials & Methods

3.2.1 Glycerol-based value-added products
As having a comprehensive database is by itself very valuable, the database developed in
Chapter 2 has been extended to include one additional biochemical pathway and chemical
pathways for the conversion of glycerol (see Appendix B, Table B.1). The products
added are: 1,2-propanediol, isobutanol, acrolein, H2 and n-butanol. The main traits of
the relevant processing technologies compiled from literature are summarized in Table 3.2.
Additionally, the corresponding superstructure representing the glycerol-based biorefinery
concepts was formulated (please see Appendix B, Figure B.1).
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An extensive literature review has been done, gathering, to the best of my knowledge,
the most significant contributions for the current set of products. Several building blocks
for a wide range of applications (various bulk and niche chemicals) are included in the
product portfolio. As an example: (i) poly-3-hydroxybutyrate (PHB), lactic acid and 1,3-
propanediol, which are polymers building blocks for bio-polyesters, polylactic acid (PLA),
polyethers, polyurethanes and plastics; and (ii) succinic acid, which can be used as food
additive (natural flavor), excipient in pharmaceutical products (to control acidity) and
also as a precursor of polyesters and thermoplastics (polybutylene terephthalate, PBT).

Important to note is, that the current product portfolio composing the database was
selected based on the following criteria: (i) important reports on bio-based chemicals, such
as the references [135], [9], [136], [137] where the main bio-based chemicals (value-added
products) that could be co-produced with bio-energy/biofuel in integrated biorefineries
are reported, in this case specifically checking for the chemicals that can be potentially
obtained from glycerol; and furthrmore (ii) cross-checking this information with the avail-
ability and completeness of information for techno-economic assessment (given by previous
studies and process simulations with sufficient detail).
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3.2.2 Techno-economic analysis: methods and assumptions
In order to make an investment decision, the foreseen profit from an investment must be
evaluated relative to a quantitative measurement of profit with respect to the investment
necessary to generate that profit. In this chapter, for the project evaluation, the economic
model used is the discounted cash-flow rate of return (DCFR). This model is used to
estimate the attractiveness of an investment. It uses future cash flow predictions and
discounts them to get a present value estimate, which is then used to analyze the potential
for investment. Therefore, it considers the time value of money, i.e., the DCFR takes into
consideration that money to be received or paid at some time in the future is viewed
as having less value than an equal amount received or paid today. Because the goal of
investing is to increase the shareholder’s wealth, an investment is worth undertaking if
it creates value, and the investment creates value if it creates more value than it costs,
considering the time value of money (discounted cash in- and out-flows). Therefore, a
process to be economically viable/acceptable has to present a NPV higher than zero
(at which point it breaks even, value created is equal to costs), which means that it is
expected to generate more revenue than could be obtained by gaining the discount rate,
representing the time value of money which is the amount that could be obtained by
investing in other alternatives [149],[150]. Capturing the time dependency of cash-flows
during the project is very important to investors firstly because not all the money has
to be financed immediately, and secondly because the sooner the capital is repaid to the
investors, the sooner it can be used to fund another investment [150]. This model is
defined to be the interest rate at which all cash flows must be discounted in order for
the net present value of the project to be equal to zero (breakeven). Therefore, it is
based on the calculation of the net present value by setting a discount rate r, which is
the interest rate that represents the minimum rate of return that the company is willing
to accept for a new investment. The model also enables the calculation of minimum
selling price to comprehensively assess and compare the process alternatives (Eqs. 3.1 to
3.8). Noteworthy is that this method is recommended when significant uncertainties are
present and therefore risk is a challenge [151]. A brief description of the assumptions for
the economic model is presented in the supplementary materials (Appendix B, section
B.2) and a summary is presented in Table 3.3.

NP V =
T∑
t

Ct

(1 + r)t
− C0

t = 1, ..., T

Ct =net cash inflow during the lifetime of the plant
C0 =total initial investment costs

(3.1)

NP V =Annual present value−
∑T

t=−2(Annual Fixed Investment Cost) (3.2)
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Annual present value (net present revenue)=
∑T

t=1(annual cash inflow× 1
(1 + r)t

1
(1 + r)t

=discount factor
(3.3)

annual cash inflow (net revenue)=total annual sales
−total production cost−income tax−loan payment
= xp × Pp−total production cost−income tax−loan payment

(3.4)

total annual sales=production ratei(ton/year)×market pricei($/ton)=
∑

p
xp × Pp (3.5)

total annual production cost= variable operating costs+fixed operating costs (3.6)

variable operating costs ($/year)=raw materialsi,rm(ton/year)×market pricei,rm($/ton)
+utilitiesi,ut(ton/year)×market pricei,ut($/ton)+waste disposal (ton/year)×price ($/ton)
+repairs ($/ton)+operating supplies ($/year)+royalities ($/year)
variable operating costs ($/year)=

K∑
k

Irm∑
i

ϕi,k × Pirm +
K∑
k

Iut∑
i

Riut,k × Piut +
K∑
k

Iw∑
iw

xiw,k × Pwd

+repairs ($/ton)+operating supplies ($/year)+royalities ($/year)
k = 1, ..., K(total number of technologies)
iut = 1, ..., Irm(total number of utilities)
irm = 1, ..., Iut(total number of raw materials)
iw = 1, ..., Iw(total number of wastes)
for the factorial methodology see Appendix B, Table B.3

(3.7)

fixed operating costs=labor (operators× annual salary)+maintenance
+property insurance and tax

(3.8)
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Table 3.3: Summary of the assumptions used for the discounted cash-flow rate of return [149],
[152], [153]

Parameter Assumption
Plant life (years) 20
Discount Rate (mar) 10%
Depreciation Period (Years) 10 (MACRS system)
Equity 40%
Interest 5%
Loan Term (Years) 10
Construction Period (Years) 2
% Spent in Year -1 60%
% Spent in Year 0 40%
Start-up Time (Years) 0.50
Product production/ Feedstock use (% of Normal) 50%
Variable Costs (% of Normal) 75%
Fixed Cost (% of Normal) 100%
Income Tax Rate 35%
Cost Year for Analysis 2014

3.3 Methodology
A comprehensive economic assessment is performed to characterize the uncertainty and
incorporate it in the economic metrics for project evaluation. The economic assessment
follows the algorithm in Table 3.4 below which includes the following: Step (1) - relevant
economic metrics for the analysis are defined as well as the required input for the economic
model; Step (2) - the output from step 1 is used to perform a deterministic analysis of
economic metrics for each alternative; Step (3) - sensitivity analysis is applied to the
results obtained in step 2 which provides a ranking of input data regarding their impact
on the model; Step (4a) - using the most important parameters identified in step 3,
an uncertainty analysis is performed on the economic metrics by first performing a Latin
Hypercube Sampling (LHS) of the input uncertainty domain; Step (4b) - the optimization
problem is solved for each LH sample, leading to the uncertainty mapping and analysis of
solutions; Step (5A) - based on the uncertainty mapping, the top three product candidates
are selected for further economic risk analysis; and, at last in Step (5B) risk mitigation
strategies are proposed and evaluated. The application of these steps is further detailed
and analyzed in the results section below.
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3.4 Results

Step 1: Identify economic model and input model variables
As presented in Table 3.4, Step 1, instructs to select the economic model and metrics
that the projects will be evaluated on, and they are referred to as Yk, so as to identify
the input variables to the model (Xi). As mentioned above, the economic model used
in this work is the discounted cash-flow rate of return (DCFR). For the calculation of
NPV, the question is which interest rate (represented by r in Eq. 3.1) is to be used
to discount the cash-flows. This interest rate is usually set by the investors or man-
agement department and it represents the minimum rate of return that the company
is willing to accept for a new investment, reflecting the company’s adjustment to risk
(more details in Appendix B). On the other hand, the user can also estimate the internal
rate of return (IRR, which corresponds to the discount rate when NPV is set to zero)
or minimum selling price (MSP) for which the project would break even (rearranging
Eq.3.1) by using the goal-seek function and setting the NPV to zero, while maintain-
ing all the other variables constant. This analysis is performed by using the NREL excel
file (http : //www.nrel.gov/extranet/biorefinery/aspenmodels) for the discounted cash-
flow rate of return calculation after adapting it with the appropriate model assumptions
for the present case study (see Table 3.3). To this end, the assumptions described in Table
3.3 together with the mean value of the remaining input variables are used to establish
the base case (for the mean raw material cost and product selling price, see Table 3.5).

Step 2: Deterministic solution
In this step, the model is initialized to generate the base case and to estimate the first
ranking of solutions, and therefore the economic metrics are calculated for the base case
scenario. The problem is formulated and solved by estimating the Net Present Value
(following Eqs. 3.1 to 3.8) for each of the processing networks (alternatives) using the
nominal/average market prices of product and raw material (see Table 3.5).

Table 3.5: Product prices and respective standard deviations
Parameter Mean 2014 ($/kg) Std. Data points ref.
Crude glycerol (60 % w/w) 0.368 0.048 [154]
Succinic acid (HSuc) 2.0 [136] 0.23 [155]
Ethanol (EtOH) 0.707 0.137 [145], [152]
n-Butanol 1.558 [155] 0.421 [156]
H2 0.536 0.138 [157]
1,2-Propanediol (1,2PDO) 1.662 [155] 0.28 [158]
Propionic acid 1.590 [155] 0.131 [130]
Polyhydroxybutyrate (PHB) 4.5 [155], [136] 0.197 [159]
Lactic acid (HLac) 2.0 [160] 0.041 [161]
Isobutanol 1.524 [155] 0.12 [155]
1,3-Propanediol (1,3-PDO) 2.02 0.35 [155], [162]
Acrolein 2.0 [148] 0.27 [156]

The capital investment was calculated based on the factorial methodology (in Ap-
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pendix B, table B.3) and by dividing the processing routes/pathways into three sections:
(1) glycerol separation and purification; (2) conversion step; and, (3) downstream pro-
cessing (DSP). The capital investment for section (1) was calculated, as mentioned above,
based on a medium-sized biodiesel plant in Europe [163], providing approximately 10
kton glycerol/year, corresponding to 10% (w/w) of the total annual biodiesel production
rate ( 100 kton/year). The detailed equipment list and the equipment cost in $2003 and
the updated costs for $2014, as well as the purchased, installed capital investment and
total fixed capital investment can be found in the Appendix B, Table B.5. The total
purchased capital investment for section (1) is 1.61 M$, including the utilities system
(Appendix B, Table B.4). For section (2) and (3), recovery and purification of products,
the capital investment was calculated by a careful and independent calculation for all
the products being produced based on a literature review, scaled to the production rate
set by the verified stoichiometry. Table 3.6 presents the purchased equipment costs, the
data sources and the remaining parts (calculated based on the factorial methodology).
The purchased equipment costs were calculated based on the product specific references
(base) and adapted to appropriate capacities (plant X), the purchase costs were updated
to year 2014, as shown in Eq. 10 [164], [149]. The seven-tenths rule [164] was used as
exponent (in Eq. 10) for scale up/down for all equipment except for the fermenters, where
an exponent of 0.75 was used [165].

Cost2014
X =

[
Costbase ×

(
CapacityX

Capacitybase

)n]
× CEP CI2014

CEP CIbase
(3.9)

Where Cost2014
X represents the purchased cost for plant X calculated from the Costbase

of a similar plant with similar functionality; CEPCI2014 and CEPCIbase represent the
Chemical Engineering’s Plant Cost Index (see Supplementary material, Figure B3) for
2014 and for the base year (reference year for each case), respectively. For the calcu-
lation of the fixed and variable operating costs, the capital investment (FCI) needs to
be estimated prior to applying the factorial methodology (as presented in Appendix B,
table B.3). It is important to stress that, as this work focused on systematically screening
alternatives for glycerol based bio-products and their comprehensive uncertainty analysis
at an early stage design, therefore rigorous simulations of shortlisted process candidates
are considered to be out of scope of this work. It would be natural, however, at a later
stage of the process development life cycle to perform more detailed process simulations
for process design optimization and refinement of the cost estimation. The NPV and
MSP estimated based on the nominal values are shown in Table 3.6. A first ranking
of alternatives can be obtained, however as only the production of lactic acid presents
a positive NPV, further analysis is needed especially on the high impact variables that
might be subject to high degrees of uncertainty. It is important to mention that, like
ethanol, isobutanol and n-butanol, the production of H2 in the current project’s setting
is not profitable. Its market price should increase at least to its MSP level (see Table 3.6)
in order for the project to break even. However, special attention should be payed to H2

due to the fact that it is not straightforwardly transported or stored. Therefore, if along
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with the manufacture of high value-added product(s), synergies were to be explored and
these fuels were to be produced and consumed inside the running plant (fulfilling part or
all of its energetic needs), it would potentially result in a profitable project.

Table 3.6: Estimation of the purchased capital cost to be used for the factorial methodology
(updated to 2014 prices by using the appropriate CEPCI) and remaining needed parameters.
NPV and MSP are estimated at the conditions reported in Table 3.3

E’*
(MM$)
[ref.]

FCI*
(MM$)

TPC*
($/kg)

Utili-
ties*

(MM$/y)
Sales

(MM$/y)
Product
price
($/kg)

NPV@10
(MM$)

MSP@10
($/kg)

Succinic acid 11.217
[166] 35.221 1.625 0.956 19.4 2.00 -2.72 2.18

1,3 PDO 5.347 [162] 22.278 2.045 1.971 10.6 2.02 -28.1 2.71

Propionic acid 4.747 [130],
[166] 24.817 1.369 0.474 10.3 1.59 -16.4 1.94

PHB 15.020
[167] 45.903 3.643 1.948 15.4 4.50 -26.0 5.59

1,2 PDO 4.713 [143] 16.280 1.421 2.848 12.2 1.66 -6.0 1.79
Lactic acid 4.929 [166] 26.161 1.218 0.529 15.1 2.00 11.5 1.74
Isobutanol 6.705 [144] 21.107 1.471 0.921 11.5 1.524 -22.6 1.91
H2 5.551 [168] 21.627 1.445 1.666 3.4 0.536 -75.9 1.96
n-Butanol 5.202 [169] 22.615 3.172 1.434 4.4 1.558 -66.4 4.37

Ethanol 8.227 [152],
[145] 30.022 1.708 0.551 3.5 0.707 -76.6 2.59

Acrolein 4.927 [148],
[170] 27.314 3.133 0.761 9.3 2.00 -79.1 4.07

*it includes the separation and purification of crude glycerol. E - Purchased capital cost; FCI - Fixed capital
investment; TPC - total product cost

Step 3: Deterministic Sensitivity Analysis

The investment and cash-flows are first calculated for the baseline conditions, and then
the NPV is re-estimated by changing one variable at a time over the expected range of
variability. This will express how sensitive the DCFR model is to variations in the input
information. Therefore, this sensitivity analysis provides an idea about the degree of risk
involved in forecasting the economic performance of the project and also indicates which
input data have the highest impact. As an illustrative example, the sensitivity analysis
is performed on the economic indicator NPV for the 1,2-PDO production from glycerol,
when subjected to the variation of the input parameters, and it is presented in Table 3.7
and illustrated in Figure 3.2).

In Figure 3.2, the data categories are ordered so that the level of effect on the economic
indicators decreases from top to bottom, i.e. the economic indicators on top of these fig-
ures correspond to the parameters that have relatively higher importance in the model.
Product price, feedstock price and capital investment have been previously identified as
important and common sources of uncertainty on the economic performance across differ-
ent biorefinery types [175], [176],[177]. The effect of economies of scale can be perceived
by the fact that increasing the plant capacity 20% has less impact on the NPV than the
opposite decrease by 20%. It means that the fixed capital investment has a non-linear
relationship with the NPV, i.e. the higher the plant capacity the less impact has the fixed
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Table 3.7: – Key economic factors under variability for sensitivity analysis of the DCFR model.
Data sources Lower limit %

of thee baseline
Base Case
(1,2-PDO)

Upper limit %
of the baseline

Product price [150] -20% 1.662 $/kg +20%

Feedstock price [150] -10% 0.368 $/kg +30%

Fixed Capital Investment [171], [88] -20% 16.280 MM$ +50%

Discount rate [150],[172] [this
work] 8% 10% 24%

Plant life time [this work] 10 years 20 years 30 years

Loan interest [this work] 4% 5% 8%

Construction time [this work] 1 year 2 years 3 years

Income tax rate [173] -20% 35% +20%
Total Annual Production
Cost (TPC) [174] [this work] -20% 1.421 $/kg +20%

Plant Capacity [this work] -20% 7740 +20%

capital investment on the NPV. The same effect is observed with the relationship total
annual production cost vs. NPV.

-30 -25 -20 -15 -10 -5 0 5 10 15

Product price 
Sales volume 

Total Annual Production Cost
Plant capacity 

Feedstock price 
Fixed capital investment

Discount rate 
Plant lifetime
Loan interest

Construction time 
Income tax rate 

NPV (MM$)

Figure 3.2: Sensitivity analysis of NPV to variations in key economic parameters for the produc-
tion of 1,2-PDO. Dark grey represents a negative impact on the NPV and light grey represents
a positive impact on the NPV

.

In order to further investigate the yearly impact of the discount rate on the economic
model, a complementary scenario analysis is presented in Figure 3.3. The figure shows the
cumulative discounted cash-flows using the deterministic model varying only the discount
rate (from 10% to 24%). The Figure 3.3 shows the discounted cash flow diagram generated
using the deterministic model based on the 10 year Modified Accelerated Cost Recovery
System (MACRS) depreciation method (see Table 3.3, and more details in Appendix B).
The blue line represents the DCFR for a discount rate of 10% corresponding to a low risk
project; and the red line represents the DCFR for a 24% discount rate, corresponding to
a medium/high risk project (see Table 3.8). By analyzing Figure 3.3, one can see that at
the 10 years’ mark (depreciation period) the project at both discount rates starts to be
profitable (NPV>0), however, at 24% the profit is barely visible since the investors set
such a high rate of return to adjust for the possible risk the investment faces. The impact
of the selected discount rate on the economic performance can be further analyzed by
estimating the product minimum selling price (MSP) obtained by setting NPV to zero,
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for a constant discount rate. For example, the MSP for the 1,2-propanediol production
at the conservative discount rate of 24% is 2.05 $/kg, whereas for a discount rate of 10%,
the MSP of 1,2-PDO is 1.79 $/kg.

Figure 3.3: Cumulative discounted cash flow for 1,2-PDO production. Baseline assumptions +
varying the internal rate of return for the investment: the red line represents 24% discount rate
and the blue line represents 10% discount rate

.

Table 3.8: Suggested discount rate according to levels of risk per type of investment. Adapted
from [149]

.

type of investment Risk level r (%/year)

Basis - safe corporate investment Safe 4 – 8

New capacity for established corporate
market position Low 8 – 16

New product entering into established
market, or new process technology Medium 16 – 24

New product or process in a new
application High 24 – 32

Everything new, high R&D and market
effort Very high 32 – 48+

Step 4A: Uncertainty characterization and sampling from input
uncertainty domain
Several sources of uncertainty on the economic model predictions were pointed out through
deterministic sensitivity analysis as having high impact on the model predictions in Step
3. Therefore, the scenario considered for further analysis was built on (i) historical data
on the raw materials and product market prices described through appropriate probabil-
ity distribution functions; and, (ii) considering variability of the fixed capital investment
over its typical range of variation (represented by a uniform distribution varying between
-20 to +50%). There are several methods to get price forecasts, such as the ones discussed
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in [150], however obtaining consistent price information is a continuous challenge in this
field/community, since companies cannot provide prices. Therefore, in this study, histor-
ical price data is chosen to define a scenario in which future price forecasts are sampled
from historical price distributions. The historical trends of the products under consid-
eration have been surveyed over the past 10 years and have been used to construct the
historical price distributions for each product (Table 3.5). An example of the historical
data price collection and their fitting through distribution functions, is presented in Fig-
ure 3.4, for the prices of crude glycerol and 1,2-PDO. The same procedure was performed
for the remaining 10 products being considered here.

Figure 3.4: Historical price data collection (left) and their fitting through normal probability
distribution functions (right). The 1st and 2nd row correspond to 1,2-PDO and glycerol, respec-
tively. [178], [155], [154]

.

Through Latin hypercube sampling with correlation structure/control [113] (see Ap-
pendix B, Table B.6), 500 future scenarios were generated for each of the input parameters.
The remaining relevant sources of uncertainty were analyzed through scenario-based anal-
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ysis in Step 4B.

Step 4B: Uncertainty mapping and analysis of solutions
In this step, a deterministic optimization problem is solved for each of the scenarios gen-
erated by Monte Carlo sampling performed in the previous step, where the consequences
of the data uncertainty on the decision-making problem are studied and mapped. The
result is a distribution of 500 optimal processing networks that are mapped and statically
analyzed. The frequency of selection for each scenario is presented in Figure 3.5. The
top-3 ranking alternatives are, lactic acid, succinic acid, and 1,2-PDO.

Figure 3.5: Network frequency of selection, where the top-3 selected are Lactic acid, Succinic
acid and 1,2-PDO

.

Figure 3.6 presents the parallel coordinate plot of the system under uncertainty. It
allows a quick quantitative and qualitative visualization of results obtained from the opti-
mization problem for each scenario generated by the Monte Carlo simulations. In this way
the plot shows how input uncertainties affect the optimal decision. Hence, it presents the
optimization results and the raw data corresponding to those uncertainty realizations. It
displays high-dimensional datasets, where each y axis (‘columns’) represents one variable;
there are 500 values for each y, corresponding to the 500 LH samples. These values are
then joined, creating multiple polylines that represent the scenarios across variables. Vari-
ables (‘columns’) were normalized to a fixed range (0–100) which is equivalent to working
with standardized variables (to avoid the influence of one variable onto the others due to
scaling).

Furthermore, to take the uncertainties in a proactive way and further understand
their impact on the ranking/mapping of solutions, three extra scenarios were built based
on different assumptions of future uncertainties through the realization of Monte Carlo
simulations. It is important to note that these scenarios were built on the base case
where uniform distribution of capital investment and historical price data was used to
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Figure 3.6: Parallel coordinate plot of the system under uncertainty. Orange, blue and light blue
represent the top-4 best solutions: Lactic acid, succinic acid, 1,2-PDO and PHB. The yellow
lines represent the remaining selected concepts

describe pre-identified uncertainties. The scenarios are: (i) the total production costs
vary normally with 20% standard deviation, (ii) prices of selected top products crash to
80% of their average price, and, (iii) total sales volume decreases to 80% of its normal
volume. The total production cost, essential for the estimation of the economic metrics,
can vary for several reasons, such as raw materials, chemicals, utilities and solvents price
variations, as well as labor and maintenance, among others. Therefore, scenario (i) con-
siders the total production cost of each alternative in the base case to vary according to
a normal distribution within its probable range of variation. The realization of uncertain-
ties through the optimization problem is quantified and, in this scenario, lactic acid and
succinic acid lead the top with 38% and 30%, followed by PHB and 1,2-PDO, with 16%
and 10%, respectively. Further, if future developments take the prices of the top selected
products identified in the base case scenario (scenario ii), to decrease to 80% of their
average price, then the 1,2-PDO is selected for 34% of the samples, followed by lactic
acid which is selected for 26%, 1,3-PDO and succinic acid with 16 and 13%, respectively.
Finally, scenario (iii) is built on the assumption that the sales volume decreases to 80% of
its average value. In this case, lactic acid is selected for 56% of the samples, followed by
succinic acid and 1,2-PDO which are selected for 18% and 12%, respectively (please find
the histograms corresponding to scenarios (i) to (iii) in Appendix B, Figures B.4 to B.6).
Therefore, as expected from the deterministic sensitivity analysis performed in Step 3A,
the results from scenario (ii) show that the ranking of solutions is highly dependent on
the products’ selling price. However, within the price scenario established (for the current
and referenced price data, Table 3.5), the ranking of solutions is robust, which can be
interpreted from the comparison of the rankings obtained in scenarios (i) and (iii) to the
ranking obtained in case of the base case scenario.
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Step 5A: Economic risk quantification
As mentioned earlier, risk is defined as the probability of occurrence times the consequence
of that same event to occur. In this study, NPV is used as economic metric/indicator for
project evaluation in order to support a risk-aware decision making. To this end, the risk
is given by the probability of failing to achieve the targeted NPV (‘being lower or equal
to’) times the magnitude of the consequence of that event occurring (‘loss of profit’). The
economic risk is defined by the probability of the project being non-profitable (NPV<0)
times the consequence (loss of profit) as described in Eq. 3.10.

Risk =
∑

i

Pi × Mi =
∑

i

P (NP V ≤ 0) × (NP Vi) (3.10)

where i is the occurrence of the undesirable event, Pi is the probability of that event to
occur and Mi is the magnitude of the consequence (in MM$) of the undesirable event. It
is important to note that, in this study, the overall project to be undertaken represents the
implementation of new technologies, and therefore the project discount rate is adjusted to
offset risk and attract investors, therefore considered to be somewhere between medium
to high, and so the minimum acceptable rate of return is set to be 24% (see Table 3.8).
However, to also depict the effect of the company choices with respect to the level of
discount rate used, the economic evaluation is here performed considering both discount
rates of 10% and 24%. The cumulative distribution function of NPV is presented in
Figure 3.7. The importance of incorporating cost uncertainties in the NPV calculations
through stochastic modelling, has also been explored/demonstrated in [135] for analysis
of biorefinery concepts. According to Eq. 3.10, the calculation of Risk is equal to the
shaded area in the cumulative distribution function for NPV shown in Figure 3.7, where
two curves are depicted in red and blue, representing NPV obtained at 24% and 10%
internal rate of return, respectively. A summary of results is presented in Table 3.9.

Table 3.9: Summary of results for the calculation of economic risk for the top-3: lactic acid,
succinic acid and 1,2-PDO.

Lactic acid Succinic acid 1,2-PDO

Frequency of selection 216/500 138/500 60/500

P r(NP V ≤ 0) @10% 0.632 0.764 0.68

P r(NP V ≤ 0) @24% 0.99 0.962 0.89

Risk @10% (MM$) 8.69 13.74 15.45

Risk @24% (MM$) 19.21 23.86 16.43

Net present revenue @10% 26.4 17.4 6.43

Risk 10%/net present revenue
@10% 0.3291 0.787 2.403

Step 5B: Flexible multi-product glycerol-based biorefinery concepts
In this step, the aim is to identify the optimal trade-off between the operating flexibility
and capital investment according to different uncertainty realizations of product prices.
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Figure 3.7: Cumulative distribution function for the lactic acid, succinic acid and 1,2-PDO
production from glycerol. The highlighted area represents the risk of the project being non-
profitable. Blue represents NPV obtained for a discount rate of 10%. Orange represents NPV
obtained for a discount rate of 24%.

Therefore, as a risk mitigation strategy, a possible multi-product network (comb) was
tested where lactic acid and succinic acid are produced depending on the market envi-
ronment. Moreover, as previously mentioned, based on the large ratio risk/ net present
revenue for the production of 1,2-PDO, its co-allocation combination with the production
of lactic acid is economically unfeasible. Following the same principles as the economic
risk estimated in step 5A, the risk was estimated for comb and it is reported in Table
3.10. There is a reduction in the quantified risk by about 20%, and consequentially the
net present revenue to risk ratio has improved to be approximately 3.6 times the potential
risk. Therefore, it indicates that a flexible multi-product network for the valorization of
glycerol through the co-allocation of lactic acid and succinic acid is a promising solution
to mitigate the effect of uncertainties in the techno-economic metrics. The multi-product
network allows the products to be, in turn manufactured depending on favorable market
demands and prices. A plant capable of switching between final products has advantages
since it is then able to guarantee that it is continuously using the pathway that optimizes
the profitability, considering the market demands, market prices and their corresponding
volatilities. By mimicking the economic success story of the oil-based industry, a multi-
product plant would be able to reduce the risk and therefore yield a more sustainable and
competitive bio-based industry. Finally, the results support the argument that early-stage
design of processes (concept screening phase) is significantly affected by uncertainties due
to the scarcity and variability of the input data needed. Nevertheless, if reasonable ap-
proximations are used to describe the techno-economic reality and if carefully considering
the potential (and probable) uncertainties, the methodology is still a powerful tool for
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removing unfeasible process-product pathways and, in this way, improve the effectiveness
of decision making for screening of process concepts in the screening phase.

Table 3.10: Quantified risk for single- and multi-product combinations (estimated at discount
rate of 10%)

Combination Risk10% (MM$) Risk 10%/net present revenue
@10%

Lactic acid 8.69 0.33
Succinic acid 13.74 0.79
comb: lacitic acid + succinic acid 7.03 0.28

3.5 Discussion
A first ranking of solutions is given by solving the deterministic problem by maximizing
the potential profit of the biorefinery concepts considering no variability on the input
data (‘single point’ analysis). It was found that the lactic acid, succinic acid and 1,2-
PDO are the top-3 ranked solutions when only using NPV nominal data. This is justified
based on the balance between the product selling price and production capacity, fixed
capital investment and the low variable operating costs when comparing to the remaining
concepts. Various studies on glycerol conversion have been performed along the years
[179], [180], [181], [148]; a few studies have considered techno-economic indicators, but
noteworthy is that, to the best of my knowledge, up to now there are no studies on glyc-
erol valorization concepts that are subjected to uncertainties on the input data. Vlysidis
et al. [181] analyzed the coproduction of succinic acid to add value to the glycerol side
stream of the biodiesel industry, where the co-production of succinic acid is forecasted
to be a positive and potentially profitable solution to valorize glycerol. Posada (2011)
[179] also performed a deterministic analysis of possible schemes for the conversion of
glycerol to value-added products, assessed only based on the production cost. Both stud-
ies, being deterministic assessments for early stage screening and design of biorefinery
concepts, present some shortcomings related to the possible lack of awareness of market
fluctuations and technical variabilities. They embody a substantial risk concerning the
selection of optimal process concepts, and so, long-term competitiveness and robustness
cannot be guaranteed due to the variability, scarcity and uncertainty of input informa-
tion. Therefore, in this work, a systematic study is performed by incorporating stochastic
uncertainty in the techno-economic analysis, according to which the most suitable set
of process concepts are identified. The input uncertainty on the feedstock and product
prices was depicted based on the empirical historical data using appropriate probability
distribution functions. The fixed capital investment variability was described by a uni-
form distribution of values around their typical predicted range of variation. Then, the
input uncertainty was propagated to the objective function through Monte Carlo sim-
ulation enhanced with Latin Hypercube sampling. The obtained uncertainty mapping
of solutions pointed to 1st lactic acid and 2nd succinic acid as the best potential alter-
natives regarding economic criteria (positive and high NPV), followed by 1,2-PDO. To
further analyze the robustness of the ranking of alternatives under uncertainties, three
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additional scenarios were tested. As expected from the deterministic sensitivity analysis
performed in Step 3A, the ranking of solutions is robust, and this can be concluded from
the comparison of the rankings obtained in scenarios (i) and (iii) to the ranking obtained
on the base case scenario which remains the same. The effect of the fixed capital invest-
ment variability was verified to have a significant impact on the project profitability and,
consequentially, it substantially influences the optimal solution (decision-making) at the
concept screening phase where a broad range of uncertainty is expected. Furthermore,
the findings of this study pointing to lactic acid as the most suitable and robust candidate
for the valorization of glycerol is corroborated by the existing commercial plants such as
Corbion Purac, Natureworks and Galactic, among others, which are manufacturing lactic
acid by fermentation of carbohydrates [9], [182]. Lactic acid is a bulk chemical and its
demand has been reported to have an average annual growth rate of 10% [9], with a long
history of uses in the the food, cosmetic and pharmaceutical sectors, and as a monomer
for the production of biodegradable PLA (polylactic acid) [9]. The high growth rate of
lactic acid demand lies fundamentally on the demand of PLA, the biodegradable polymer.
It has approximately a demand of 25,000 ton/year (2013) and can reach up to 650,000
ton/year in 2025 [9]. On the other hand, succinic acid was also identified as a potential
candidate for the glycerol valorization. This is also supported by commercial production
plants such as: Reverdia producing 10 kton/y of Biosuccinium from renewable carbon
sources (fermentable sugars) in Italy, since 2012 [183]; Succinity, a joint venture between
Corbion Purac and BASF established in 2013, also operating a 10 kton/y plant in Spain
since 2013; and, Myriant and Bioamber, with the same range of installed capacities, op-
erating in Canada and North America, respectively [182]. Succinic acid (and its salts)
has been predicted to be one of the future platform chemicals that can be derived from
renewable resources and has significant potential as building block; for the production of
biopolymers [184], to be used directly in food, pharmaceutical and cosmetic industries as
well as due to its potential conversion into solvents and other current petro-based chemi-
cals [138]. Finally, 1,2-PDO, having several applications in industry, for example in food
and pharmaceuticals, is produced in industrial and USP grades, respectively. The world
leader of bio based 1,2.-PDO production is ADM, followed by Oleon, manufacturing it
from alternative carbohydrate sources such as glycerol, sorbitol and dextrose. Moreover,
as mentioned in the above sections, several reports and review articles such as [182], [9],
[185], have continuously identified lactic acid, succinic acid and 1,2-PDO, among others,
reporting them as having strong market growth and highlighting their potential to be
used as platform chemicals and their suitability as building blocks for the synthesis of
a variety of chemicals through chemical conversion. Therefore, in light of this, a deeper
analysis was undertaken into the top-3 concepts through economic risk analysis, i.e. the
probability of NPV being lower than zero times the consequence of that event occurring.
In other words, the economic risk will reflect the probability of the biorefinery concept
under study to be non-profitable which corresponds to a NPV lower than zero. To this
end, the glycerol valorization through the production of lactic acid, succinic acid and
1,2-PDO was compared based on the quantified economic risk of being non profitable. It
was found that the lactic acid production from glycerol has a potential risk of profit loss
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of approximately 9 MM$ (estimated at discount rate of 10%), over a net present revenue
of 26 MM$ (20 years of plant life time). In this case, the net present revenue, over 20
years of plant lifetime, is approximately 3 times the potential profit loss risk. On the
other hand, succinic acid has a potential loss of 14 MM$, which represents around 80%
of the potential net present revenue. Finally, based on the current data, 1,2-PDO has a
high potential risk of profit loss of 16 MM$, representing a risk which is 2.4 times higher
than the potential present revenue. In order to decrease the risk associated with the
mentioned concepts, risk mitigation strategies can be applied. In this work, the flexible
multi-product biorefinery is tested as a risk reduction strategy.

3.6 The impact of price correlations on economic

assessment: Uncertainty & Global Sensitivity Analysis
This section of the thesis is based on the following article: Uncertainty & sensitivity
analysis of economic assessment of lactic acid production from crude glycerol – impact of
price correlations. Gargalo L.C., Carvalho, A., Gernaey K. V., Sin G. Proceedings of the
27th European Symposium on Computer Aided Process Engineering. Computer-Aided
Chemical Engineering (in press).

In this section, global sensitivity analysis is used in order to fully comprehend the
consequences of the expected price volatility, and their correlations, on the economic
assessment and its predictions. Even though uncertainty and sensitivity analysis have
become widespread tools to obtain relevant information about complex process models
and despite searches in the avaiable literature, to my knowledge, this is the first study that
addresses the impact of correlation between inputs on the sensitivity analysis of economic
assessment, as all state of the art sensitivity analysis methods assume that inputs are
independent [186], [114]. Therefore, in this section, the impact of the expected price
volatility and correlations on the overall economic assessment is investigated, using lactic
acid production from crude glycerol as case study (potentially best alternative identified
in Step 4B). In particular, the goals are two-fold: (i) to understand the effect of the degree
of pairwise correlation between input uncertainties on each other and on the outputs from
the economic model (Net Present Value); and lastly, (ii) to estimate the first-order as well
as independent variance-based sensitivity indices so as to identify which of the input
uncertainties in the economic analysis affect the estimated NPV the most.

To assess how uncertainty in the output can be apportioned to input parameters,
the variance of the model output(s) is decomposed into fractions that can be attributed
to the inputs by estimating the variance-based sensitivity measures. Furthermore, in
the literature two types of GSA can be distinguished, for the case of dependent and
independent inputs, respectively. The latter is easier to tackle because there are effective
computational methods to compute the sensitivity indices [187] [114]. However, the case
of dependent inputs is more complex and the sensitivity indices can be estimated based
upon parametric interpolation or non-model based methods [188]. In most chemical
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engineering model-based applications, e.g. for process design or control, in fact inputs are
likely to be correlated, and therefore the importance of addressing the correlation properly
when performing uncertainty and sensitivity analysis matters. Thus, considering the case
of dependent inputs, the modeler is able to detect the inputs that contribute to the
variation of the model output by themselves and also due to the relationships among
each other. To estimate the aforementioned sensitivity indices, metamodeling [189] or
sampling (Monte Carlo) [190] based techniques can be used. Here, the sampling algorithm
developed by [188] is implemented in Matlab (R2015a), which uses a Monte Carlo method
with permutation using Latin Hypercube Sampling and Iman Conover correlation control
to compute the first order global sensitivity indices. For a given input uncertainty xi,
the Monte Carlo estimators for the first order and the independent sensitivity indices are
given by the following equations,

Si = Vi

V ar(Y ) =
1
N

∑N

k=1 f(xk) × (f(xi
k) − f(x′

k))
V ar(Y ) (3.11)

Sind
i−1 =

1
N

∑N

k=1 f(xk) × (f(xi−1
k ) − f(x′

k)
V ar(Y ) (3.12)

where, x∗
k = (xk1∗, ..., xkn∗) is the kth MC trial in the sample x∗, k ∈ [1, n] and

V ar(Y ) is the total variance predicted as the average of the total variances obtained with
each sample x∗. In Eq. 3.11, the Monte Carlo estimation of Si - the first order sensitivity
index for input i is shown. This is interpreted as the full first order sensitivity index, i.e.
it includes the effect of the input xi and its correlated part with other inputs x ∼ i. In Eq.
3.12, the Monte Carlo estimation of Sind

i is given which includes only the independent
contribution of input xi. These indices provide a comprehensive analysis of the importance
of inputs on the model outputs, in particular the effect of xi due to its correlation with
other inputs or by itself. The same analysis can be extended to computation of the total
sensitivity index, STi. For more details and the integral definitions of the sensitivity
indices, the reader is referred to Mara et al. (2015) [188].

The economic model (DCFR) was implemented in Matlab (R2015a), and the sources
of uncertainty investigated are {xp, Pp, xrmi

, Prmi
, Puti

, FCI} (Eqs. 3.1 to 3.8). However,
special attention is paid to the effect on the economic model of correlation between the
prices of lactic acid and glycerol. Using the above-mentioned algorithm, the correlated
set of samples was generated and used for Monte Carlo simulations.

In Figure 3.8, it is observed that the mean value of the NPV is highly affected by
the uncertainty on the input parameters. Furthermore, it is also perceived that the more
positive the correlation between the LA and the glycerol price, the higher the mean value
of the NPV and the lower the variance. As expected, the uncertainty on the model output
decreases when the correlation between the prices is stronger, not only due to the decrease
in the variation allowed but also due to the fact that the product price is approximately
5 times the glycerol price. As a stress test, considering that possible future developments
take the market price of the LA to collapse to 50% of its average price, in Figure 3.9,
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one can see that the mean value of the NPV decreases drastically. Furthermore, the
same pattern is observed, i.e. the more negative the correlation between the LA and the
glycerol price, the lower the mean value of the NPV. This further confirms that the NPV,
and the consequent project feasibility, is highly dependent on the product selling price.

!

Figure 3.8: Mean value of the Net Present Value variation with the pairwise correlation between
LA and glycerol prices (ρ)

!!

Figure 3.9: Mean value of the Net Present Value variation with the pairwise correlation between
LA and glycerol prices (ρ). Stress test: lactic acid price crashes to 50% of its nominal value

The sensitivity indices of all input sources of uncertainty are depicted in Figure 3.10,
considering the case where, as above, there is correlation between the LA and glycerol
prices.

It is noteworthy that, when comparing the full first order indices presented in Figure
3.10(a) with the independent first order indices in Figure 3.10(b), one can see that the
impact of the glycerol price on the variance of the NPV model is rather small when
considered only by itself. However, through its correlation with the LA price, it has
high importance for the variance of NPV. The LA price, on the other hand, has a high
impact on the output variance mostly by itself, but also due to its correlation with the
glycerol price. This clearly shows that the magnitude of the effects of the inputs heavily
depends on the presence of correlation between them and should be included in adequate
sensitivity analysis, otherwise the results of such analysis may be misleading. Furthermore,
as presented in Figure 3.10 and highlighted in Table 3.11, one can see that the impact
of input uncertainties on the output variance depends on the sign and on the magnitude
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S i

(a)

S i
	in
d

(b)

Figure 3.10: (a) full first order sensitivity indices; (b) independent first order sensitivity indices

of the correlation. In this case, negative correlation between product and glycerol price
leads to lower mean value of NPV and relative importance of inputs on the model output
variance.

Table 3.11: Highlight of the impact of magnitude and sign of correlation on the importance of
inputs.

Si ρ = 0 (base case) ρ = −0.8 ρ = 0.8

FCI 0.05 0.045 0.10
Product price 0.40 0.55 0.28
Production rate 0.40 0.32 0.56
Glycerol price 0.05 0.425 0.10
Glycerol inlet 0.05 0.045 0.10

For the base case where there is no correlation, the LA price and production rate
have equally important contributions, while other inputs have negligible contributions.
However, when a high negative correlation between LA and glycerol price is present,
the glycerol price, which was unimportant in the base case, becomes a significant factor,
followed by the production rate. Furthermore, for a high positive correlation a pattern
similar to the base case is observed. The production rate has the highest impact on
the model variance, and the effect of the glycerol price has a slightly larger contribution
than in the base case. For engineering applications, it is noted that high variance in the
estimated NPV is a cause for concern, as it essentially means that one does not know
for sure what the true value of NPV is because the calculations are clouded due to the
presence of uncertainty in the inputs. Therefore, knowing what inputs affect this output
uncertainty can give a suggestion to manage/decrease this variance and the corresponding
risk.
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3.7 Conclusions
In this chapter, eleven gate-to-gate possible routes/technologies for the production of
chemicals and biofuels from glycerol are analyzed. To this end, a systematic methodology
for the detailed economic assessment has been proposed. This methodology accounts for
the inherent presence of uncertainties in the input data/information, such as product and
glycerol market prices and fixed capital investment. In this study, so as to depict poten-
tial future scenarios, it is assumed that future market price fluctuation will behave as in
the past; thus, historical product and crude glycerol prices are used. However, as the
methodology used is systematic, it can be iterated and solved for different price scenarios
realizations, including the scenario where the prices are affected by increasing the availabil-
ity of these products in the market, or any other price forecasting approach, for example
the ones proposed in [150], [149]. The uncertainties portrayed are propagated to the model
outputs by using Monte Carlo simulation enhanced with Latin Hypercube Sampling. The
results have shown that the top-3 products that potentially carry lower economic risk are
the conversion of glycerol into lactic acid, succinic acid and 1,2-PDO. Finally, the results
support the development of an integrated multi-product concept through the production
(co-allocation) of lactic acid and succinic acid according to the market environment ob-
served. This seems to be a promising solution for the production of chemicals from the
biodiesel by-product, potentially adding value and enhancing the bioindustry’s overall
robustness and sustainability. Furthermore, through global sensitivity analysis discussed
in section 3.6, it has been shown that the predicted economic feasibility highly depends
on the magnitude of the uncertainties. In particular, the stress test scenario has shown
that the lactic acid price heavily impacts the mean NPV of the project. Additionally, as
the aim of section 3.6 is first and foremost to understand how correlation between input
uncertainties affects the model output, it was specifically analyzed how the correlation
between lactic acid (LA) price and glycerol price affects the model output and how it
impacts the importance of the other inputs on the model variance. It was observed that
the economic feasibility depends upon both magnitude and sign of the correlation among
input uncertainties. For engineering applications, high variance in the estimated NPV is
a cause of concern since it essentially reflects that the true NPV value is unknown since
the calculations are uncertain due to presence of uncertainty in the input data. Thus, any
decision based on such high variance would be a risky decision. Therefore, this approach
aims at providing information and powerful insights on the quality of the estimated NPV,
helping to better assess economic feasibility under a broad range of uncertainties and ulti-
mately give valuable suggestions to manage/decrease this variance and the corresponding
risk of potential business failure.



CHAPTER 4
Framework for risk-based

decision-support
In this chapter, a multi-level framework for techno-economic and environmental sustain-
ability analysis through risk assessment is proposed for the early-stage design and screen-
ing of conceptual process alternatives. The alternatives within the design space are an-
alyzed following the framework’s work-flow, which targets to: (i) quantify the economic
risk; (ii) perform the monetary valuation of environmental impact categories under un-
certainty; (iii) quantify the potential environmental risk; (iv) measure the alternatives’
eco-efficiency identifying possible trade-offs; and, lastly (v) propose a joint risk assessment
matrix for the quantitative and qualitative assessment of sustainability at the decision-
support level.

This chapter of the thesis is based upon the following article:

A framework for techno-economic & environmental sustainability analysis by risk as-
sessment for conceptual process evaluation. L. Gargalo, C., Carvalho, A., Gernaey, K. V.
& Sin, G. Biochemical Engineering Journal, vol 116, pp. 146–156. (2016)

Nomenclature

DCFR Discounted cash-flow of return

NPV Net Present Value

IRR Internal rate of return

Risk@10 Economic risk estimated at IRR of 10%

Risk@24 Economic risk estimated at IRR of 24%

FU Functional unit

LCIA Life Cycle Impact Assessment method

Sc Deterministic category of impact

CFi,c
Characterization factor to convert inventory into environmental impact
category

T Production lifetime

wc Monetization factor

Fi Flow reference of component i

LHS Latin Hypercube Sampling

N Number of LHS samples

j Number of alternatives

p Number of columns - number of parameters under uncertainty

Riskecon,j Economic risk associated to alternative j
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Pi Probability of a certain event

Mi Magnitude of the consequence associated with the occurrence of a certain even

Riskenv,j Environmental risk associated to alternative j

RECn,j Normalized economic risk

RENn,j Normalized environmental risk

(REC′
n,j , REN′

n,j ) improved position of alternative j when eco-efficiency applies

Components

1, 3 − P DO 1,3-propanediol

HSuc Succinic acid

4.1 Introduction

As previously mentioned, notwithstanding the many studies focused on the economic and
environmental domains of sustainability, it should be noted that the majority of these
studies measure sustainable performance solely under deterministic conditions, where un-
certainty and the associated risk a decision carries, is disregarded. Accordingly,to the best
of my knowledge, no other studies have proposed a combined techno-economic and en-
vironmental risk quantification matrix for sustainability assessment and decision-making.
Therefore, this work proposes a step-by-step framework whose purpose is to identify the
best potential alternative(s) that would sustainably create value with the least potential
risk of economic and environmental impact. This is achieved by systematically integrating
uncertainty and sustainability analysis into a risk assessment framework. The framework
aims to establish a holistic view, by leading the user through the: (i) estimation of the
deterministic economic and environmental metrics; (ii) use of Monte Carlo technique for
propagation of uncertainties to the environmental and economic indicators; (iii) quantifi-
cation of the economic risk; (iv) monetary valuation of environmental impact categories
under uncertainty; (v) quantification of the potential environmental risk; and, (vi) use of
the sustainability risk matrix as a visual tool for quantitative and qualitative analysis for
decision-making. Moreover, performing qualitative analysis by making use of the sustain-
ability risk assessment matrix (as a visual aid tool), it is a valuable advantage/benefit of
the framework which facilitates exchange of information among experts and non-experts.

The rest of this chapter are structured as follows: (i) the framework section intro-
duces a step-by-step explanation (user guide) of how to use the quantification of risk as
an integrating decision-making tool; then (ii) the framework is highlighted through its
application to the glycerol valorization to value added products namely 1,3-PDO and
succinic acid; and finally, (iii) conclusions from the work are presented.



4.2 Framework for techno-economic environmental sustainability analysis by risk assessment 73

4.2 Framework for techno-economic environmental

sustainability analysis by risk assessment
The main goal of the proposed framework is to systematically, at an early stage of process
design, collect, evaluate and screen the alternatives within the design space, through a
comprehensive sustainability analysis by risk assessment. As presented in Figure 4.1, the
framework work-flow is composed of six steps: (1) problem definition; (2) data collection
and management; (3A) deterministic techno-economic analysis; (3B) deterministic envi-
ronmental analysis; (4) Monte Carlo technique for uncertainty analysis; (5) economic and
environmental risk quantification; and, (6) risk assessment and decision-making. The
framework is based on the combination of the two methodologies previously presented
in Chapters 2 and 3, and in this chapter the analysis is further extended to incorporate
quantitative and qualitative sustainability analysis by risk assessment.

As this framework is built upon the combination of the previously described method-
ologies, the reader is referred to the previous chapters for the detailed description of the
common steps. (but the steps are briefly described through the application of the frame-
work). Thus, in Table 4.2, a summary of details of each step and the correspondence to
the previous methodologies is presented. The steps highlighted in Figure 4.1, Steps 5 and
6, are described in detail in the following sections.

Table 4.2: Details on the steps composing the framework.
Steps of the
framework E3BU (Chapter 2)

Algorithm for techno-economic
assessment under uncertainty

(Chapter 3)

Step 1 Step 1 -

Step 2 Step 2.1, Step 2.2 and Step 2.3 -

Step 3A.1 - Step 2

Step 3A.2 - Step 3

Step 3B Step 3.1 and Step 3.2 -

Step 4.1 Step 4.1 Step 4.A

Step 4.2 Step 4.2 and Step 4.3 Step 4.B

Step 5.1 Described in this chapter Step 5A

Step 5.2 Described in this chapter Described in this chapter

Step 6 Described in this chapter Described in this chapter
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4.3 Step 5: Risk quantification

As shown in Figure 4.1, this step is composed of two sub-steps: the economic and envi-
ronmental risk quantification.

4.3.1 Step 5.1: Economic risk quantification

As stated in Chapter 3, risk is estimated as the probability of occurrence of a certain
event times the consequence of that same event to happen. In this work, the economic
risk (Riskecon) is quantified by the probability of failing to achieve the targeted NPV
(‘being lower or equal to’) times the magnitude of the consequence of that happening
(‘loss of profit’). Therefore, the economic risk is given by the probability of the project
being non-profitable (NPV ≤ 0) times the loss of profit in the event of that happening
(consequence). The respective mathematical description is presented in Eq. 3.10.

4.3.2 Step 5.2: Environmental risk quantification

In this study, the quantification of the environmental risk (Riskenv) of a certain alternative
reflects the total amount that the decision-maker is willing to pay if the impact categories
deviate from their deterministic value due to uncertainty on the CFs. Therefore, the
Riskenv is given by the probability of the category Sc being higher than the deterministic
value multiplied by the consequence of that event happening. The magnitude of the
consequence is estimated based on the monetary difference between the deterministic
values and the realization of the conservative sample values (class 3 uncertainty, step 4.1)
over the plant’s production lifetime. Graphically, the individual risk incurred for each one
of the impact categories SC corresponds to the shaded area in the cumulative distribution
function presented in Figure 4.2. The mathematical formulation is given by Eq. 4.1

Figure 4.2: General representation of the cumulative distribution function for environmental
categories of impact Sc, where Det corresponds to the deterministic value of the impact categories
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Riskenv =
T∑
t

(
C∑
c

P r(Sc ≤ DetC)× | Detc − Sc | ×wc

)

=
T∑
t

(
C∑
c

[∑
i

P r(CFi ≥ DetCFi )× | DetCFi − CFi | ×fi

]
] × wc

) (4.1)

Where, Sc corresponds to the realization value of the category of impact c and Detc

corresponds to the deterministic value of the category of impact c (obtained previously in
step 3B) and T reflects the production lifetime of the processing network under consider-
ation. Lastly, wc represents the monetary valuation factors used to convert midpoint or
endpoint categories into a normalized and weighted monetary unit. Monetary valuation
for direct comparison is the practice of converting measures of impacts into monetary
units and is used to attribute economic value to non-market goods for which no market
exists. Although advantages of such an approach have been pointed out by several authors
such as Ahlroth (2014) [191], and the technique is being applied in cost benefit analysis,
up to now monetary valuation has not been widely applied in environmental assessments,
or more specifically in Life Cycle Assessment (LCA). However, it presents great poten-
tial for interpretation purposes and communication of environmental assessment results,
due to the fact that decision-makers at the management level need a rough but clear
presentation of results, and can easily relate to monetary units, for example if a trade
off between two competing objectives is to be made. A summary of existing approaches
for monetary valuation, built-in methods and key features is described in [192]. In this
work, the weighting factors methodology selected is the one given by ECOVALUE08 [193],
since our focus is on midpoint indicators and their well-defined cause-effect relationships
between compound fluxes and the indicators to which they contribute to. Table 4.3 shows
the weighting factors provided by ECOVALUE08.

Table 4.3: Midpoint weighting factors given by ECOVALUE08 [192],[193]. Values adjusted for
inflation, $2014.

Global warming [$/kgCO2eq.] 0.33

Acidification [$/kgSO2eq.] 5.06

Eutrophication [$/kgP O4eq.] 36.8
Photochemical oxidation formation

[$/kgC2H4eq.] 6.74

Human toxicity [$/kg1, 4 − DBeq.] 2.03

4.4 Step 6: Risk assessment & decision-making
The main goal of this step is to rank and identify the potentially best alternative(s)
regarding economic and environmental aspects through risk assessment for sustainability
analysis. Therefore, a joined risk interpretation matrix is set as visual aid to facilitate a
quantitative and qualitative interpretation of the quantified risk for decision support at



4.4 Step 6: Risk assessment & decision-making 77

early stage design. To this end, both economic and environmental risk are normalized as
follows.

RECn,j = Riskecon−norm,j = Riskecon,j

(
∑

j
Riskecon,j)/J

(4.2)

RENn,j = Riskenv−norm,j = Riskenv,j

(
∑

j
Riskenv,j)/J

(4.3)

where (
∑

j Riskecon,j) and (
∑

j Riskenv,j) represent the sum of economic or environmen-
tal risk over the number J of alternatives considered within the design space, respectively.

Figure 4.3 presents the proposed qualitative matrix for decision-support, where, after
normalization, the respective normalized risk position given by the pair (RECn,j , RENn,j),
is set up for each alternative. The vertical and horizontal axes display the range of normal-
ized economic risk and environmental risk, respectively. Due to the normalization, the
center of both axes corresponds to 1. As proposed by [194], the distances of the products
from the diagonal can be translated into differences between the respective eco-efficiency
performance.

Improve

RENn > 1

RECn < 1

Re-evaluate

RENn < 1

RECn > 1

Drop

RENn > 1

RECn > 1

Potential

RENn < 1

RECn < 1

High 
Environmental 

Risk
>1

Low 
Environmental 

Risk
<1

High 
Economic Risk 

>1

Low 
Economic Risk

<1

Figure 4.3: Sustainability risk assessment and interpretation matrix.

The visualization of results through the interpretation matrix provides not only a quick
decision-making tool to select the potentially most sustainable alternative within the de-
sign space, but it is also an easy way to communicate results in an easily understandable
way. To this end, the matrix is divided into four boxes both for qualitative (‘which box
does it fall in?’) and quantitative interpretation (‘higher or lower than 1?’). Therefore,
from the qualitative point of view, and in clockwise direction: ‘Drop’ indicates that the
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alternatives that fall into this box are not promising and therefore they are recommended
to be given up; ‘Improve’ categorizes the alternatives which have low economic risk, how-
ever the environmental risk assessment reflects that the process needs to be improved
in order to decrease its environmental burden; ‘Potential’ presents high likelihood to be
selected as best alternative since it has low economic risk and low environmental risk; and,
finally, ‘Re-evaluate’ classifies the alternatives that have a potentially low environmental
risk, but the economic risk is significant. In the latter case, improvements in the process
could not only improve the economics but also its environmental assessment. In order
to analyze the products’ eco-efficiency, one starts by looking at the distances between
the initial positions in the matrix and the diagonal line, i.e. the higher the distance to
the diagonal line the lower the eco-efficiency. Furthermore, the ratio between the normal-
ized environmental and economic risk (Rj) is estimated for each one of the products as
given in Eq. 4.4. If is higher than 1 it means that the normalized environmental risk of
the product is higher than the normalized economic risk. This ratio is used not only to
analyze the systems’ eco-efficiency but it is also useful to update the products’ position
in the matrix to an improved position, which represents a balance between the environ-
mental and economic risk, i.e. it is located on the diagonal line. Thus, it allows a quick
visualization of possible trade-offs when selecting a certain alternative.

Rj = RENn,j

RECn,j
(4.4)

The improved position is given by the pair (REC ′
n,j , REN ′

n,j) inspired by the procedure
proposed in [194], which is based on the theorem of Pythagoras and on the cathetus
theorem. Therefore, based on the sustainability analysis performed through the joined
risk assessment, the user will be able to quickly assess which alternative stands out as
potentially more sustainable, and also identify possible trade-offs.

4.5 Results

Step 1: Problem definition

The framework is highlighted through the application to the glycerol valorization, where
the aim is to identify the best alternative to add value to crude glycerol, by the production
of succinic acid or 1,3-propanediol as value-added products. Since the goal of the study is
to identify the best potential product, the functional unit is the inflow of crude glycerol
(1 kg of glycerol). The system boundaries are defined following a gate-to-gate approach
as described in Figure 4.4, which includes the manufacturing process and the utilities
scheme. An input flowrate of 4200 ton glycerol/year (≈ 525 kg/h) is considered.
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Figure 4.4: System boundaries to be included in the economic and environmental assessment.

Step 2: Data collection & management

As mentioned previously, all input data needed to perform the subsequent steps is collected
and stored in a multidimensional matrix. The mass and energy balances were estimated
based on the input data (please see Table C.1 in Appendix C) and following the generic
block model equations (e.g. stoichiometry, conversion, mixing, product separation, waste
separation) [108], [17]. Additionally, the techno-economic data required for Steps 3A and
4, such as nominal market prices of products and raw material(s) (see Table 4.4); and
key assumptions for the economic model, are also collected and presented in Table C.2
in Appendix C. Regarding the data requirements of the environmental assessment, after
selecting the LCIA methods, the characterization factors (CFs) are also collected and
stored in the database. In this work the LCIA method selected is the ReCiPe method
[127]. It is important to note that, having defined the LCIA method, the indicators and
characterization factors are pre-selected and used in the subsequent steps.

Step 3A: deterministic techno-economic analysis

Step 3A.1: Economic model initialization

To generate the base case conditions and obtain the first ranking of solutions, the problem
is solved maximizing the NPV of the processing networks within the design space. The
summary of key input assumptions used in the economic model is presented in Table
C.2. To this end, all the input data required for the calculation of Eqs. 3.1 to 3.8 [15],
such as input parameters, have already been collected (e.g. market prices) or estimated
(e.g. fixed and variable operating costs), as presented in Table 4.4. For the remaining
process sections, the FCI was estimated based on literature review of all products and
scaled to the production rate set by the verified stoichiometry. The purchased equipment
costs were then estimated based on the product specific references (base) and adapted to
appropriate capacities, and the respective costs were updated to year 2014, according to
Eq.3.9.
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Table 4.4: Data estimated and obtained in the economic model inintialization in Step 3A:1.
Produc-
tion rate
(ton/year)

FCI*
(MM$)

TPC*
(MM$/y)

Utili-
ties*

(MM$/y)
Sales

(MM$/y)
Product
price
($/kg)

NPV10
(MM$) MSP@10

($/kg)
Succinic
acid 2464 23.9 3.863 0.289 6.87 2.79 -3.3 2.98

1,3 PDO 2312 21.28 3.940 0.899 4.66 2.02 -6.7 2.43

Step 3A.2: Identification of input parameters with high impact on the model

The investment and cash-flows are firstly calculated for the baseline conditions, and then
the NPV is re-estimated by changing one variable at a time over the expected range of
variability of key economic factors (see Table 4.5). This will express how sensitive the
DCFR model is, to variations in the input information. From Figure 4.5, it was concluded
that (i) external input parameters such as feedstock price, product price, sales volume
and fixed capital investment have a relatively high impact on the projected economic
performance; and, (ii) the discount rate also has a significant impact on the economic
model. Thus, in this study the above-mentioned sources of uncertainty are taken into
account and analyzed further.

Table 4.5: Key economic factors under variability for sensitivity analysis of the DCFR model
Data

sources
Lower limit (%
of the baseline)

Upper limit (%
of the baseline)

Product price [150] -20% +20%

Feedstock price [150] -10% +30%
Fixed Capital
Investment [171], [88] -20% +50%

Discount rate [150],[172]
[this work] 8% 24%

Income tax rate [173] -20% +20%

Sales volume [149] -20% +20%

-20 -15 -10 -5 0 5 10

Feedstock historical price (0.24; 0.44)

Fixed Capital Investment (-20%; +50%)

Discount rate (24%; 8%)

Sales Volume (-20%; +20%)

Product price  (-20%; +20%)

Income tax rate (-20%; +20%)

NPV (M$)

Figure 4.5: Sensitivity analysis of NPV to variations in key economic parameters.
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Step 4: Monte Carlo technique

Step 4.1: characterization of sources of uncertainty

The external sources of uncertainty identified by the sensitivity analysis are now charac-
terized using appropriate statistical distribution functions. Therefore, for further analysis,
the scenario to be assessed was set-up based on (i) historical data on the raw materials
and products market prices described through appropriate probability distribution func-
tions; (ii) considering variability of the fixed capital investment over its typical range of
variation; and, (iii) considering the variation of the sales volume by allowing it to vary in
its probable range. Concerning the uncertainty in the LCIA, the CFi,c were identified as
carrying substantial uncertainty. The input uncertainty domain is defined by the expert
review method and assuming a uniform distribution as mentioned in Chapter 2.

Step 4.2: LHS Monte Carlo simulations

Trough Latin hypercube sampling with correlation structure/control [114], [113] 500 fu-
ture scenarios (realizations of uncertainty) were generated for each of the input parameters
from the input uncertainty domain. Therefore, the output of this step is composed by two
N × p matrices, corresponding to input uncertainty identified in the techno-economic as-
sessment and in the LCIA, where N represents the number of samples obtained with LHS
and p represents the uncertain parameters. In order to identify the optimal processing
networks, the optimization problem was formulated and solved, which led to 500 optimal
solutions (Monte Carlo simulations) that are mapped and statistically analyzed. The
frequency of selection of succinic acid and 1,3-propanediol is 0.84 and 0.16, respectively
(also presented in Table 4.5).

Risk quantification

Economic risk quantification

In this study, as mentioned earlier, the economic risk is quantified by following Eq. 3.10.
As identified in step 3A.2, the discount rate is an important source of uncertainty mostly
set by management choices. In this case study, the project to be selected represents the
implementation of a new technology, and therefore the project discount rate (IRR) is
adjusted to offset risk and attract investors. It is, therefore, considered to be somewhere
between medium to high, and so the minimum acceptable rate of return is set to be 24%.
Thus, as also performed in Chapter 3, to represent the effect of the company choices with
respect to the level of IRR used, the NPV is estimated considering both an IRR of 10%
and 24% [149]. In Figure 4.6, two curves are depicted in red and blue, representing NPV
obtained at 10% and 24% internal rate of return respectively, where the calculation of
risk is equivalent to the shaded area under the cumulative distribution function of NPV
as shown in Figure 4.6. A summary of the economic risk results is presented in Table 4.6.
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Table 4.6: Summary of results for the calculation of economic risk for succinic acid and 1,3-PDO.
Succinic acid 1,3-PDO

Frequency of selection 420/500 80/500

P r(NP V ≤ 0) @10% 0.7857 0.8625
P r(NP V ≤ 0) @24% 0.9119 0.95
Risk @10% (MM$) 41.22 62.68
Risk @24% (MM$) 48.40 65.24

Figure 4.6: Cumulative distribution function for the succinic acid and 1,3-PDO production from
glycerol. The highlighted area represents the risk of the project being non-profitable. Red
represents NPV obtained for IRR@10%. Blue represents NPV obtained for IRR@24%.

Table 4.6 presents a summary of results and Figure 4.5 graphically presents the results
obtained for the products under consideration, where we analyze the probability of NPV
being lower than zero times the consequence of that event occurring. I.e., the economic
risk will reflect the probability of the biorefinery concept under study to be non-profitable
(non-viable) which corresponds to a NPV lower than zero. To this end, the crude glycerol
valorization through the production of succinic acid is potentially the best investment
alternative since it has a lower risk of being non-profitable than 1,3-PDO, representing
a potential profit loss of 41 and 63 MM$ at a discount rate of 10%, respectively. Fur-
thermore, in the case of selling the purified glycerol as the only product (“do nothing”
alternative), the probability of NPV being lower than zero is equal to 1, and, therefore,
this process is non-profitable for the full realization of uncertainty. The corresponding
economic risk is 20 MM$, due to the lower capital investment required in comparison with
the above-discussed alternatives. Also, it is important to note that, due to the fact that
the market for refined/pharmaceutical grade of glycerol is nearly saturated, it is faced
with global oversupply, and therefore there is a limited demand for purified glycerol [195],
[196]. However, this fact was not taken into account in the estimation of risk for the “do
nothing alternative”, it was considered that all crude glycerol available is refined and sold.
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Step 5.2: Environmental risk quantification

The environmental risk was quantified according to Eq.4.1, and using the monetary valua-
tion factors in Table 4.3, where the built-in risk of each category is given by the probability
of the category Sc being higher than the deterministic value multiplied by the consequence
of that event happening. The empirical cumulative distribution function obtained as out-
put of Step 4.2, and built based on the realization of conservative sample values (class 3
uncertainty, step 4.1), is used in order to read the cumulative probability needed for the
estimation of risk for each category Sc. Then, the consequence is calculated based on the
monetary difference between the deterministic values of each category and the realization
of the conservative sample values over the plant’s production lifetime. In this case study,
the plant lifetime is taken to be consistent with the economic assumption lifetime of 30
years (Table C.2). However, since the first three years correspond to the plant construc-
tion (no production), 27 years is the entire period where the plant is operating and thus
this is the time over which the environmental risk is quantified. The quantified envi-
ronmental risk of 1,3-PDO and succinic acid is 47.7 and 53.9 MM$/lifetime, respectively
(shown also in Table 4.7). Therefore, based only on environmental risk and performance
one can see that the production of 1,3-PDO stands out as being slightly better than the
production of succinic acid.

Step 6: Combined risk assessment & decision-making
In order to assess the alternatives within the design space and identify the potentially best
alternative, the proposed combined risk assessment matrix is used for decision-support.
The position of both products in the matrix (RECn,j , RENn,j) is obtained by using the
Eqs. 4.1 and 4.3; the results are summarized in Table 4.7 and shown in Figure 4.7. As
shown in Figure 4.7, it is observed that the production of 1,3-propanediol is located in the
‘Re-evaluate’ box and the succinic acid production is located in the ‘Improve’ box. It is
then clear that the potentially best alternative to be chosen for further investigation is the
succinic acid production. However, the process needs to be improved in order to decrease
its environmental burden and hence decrease its potential environmental risk. This is
also highlighted by the R factor of the succinic acid alternative (see Table 4.7), which is
higher than 1 showing that the normalized environmental risk has a greater impact that
the normalized economic risk.

Figure 4.8 shows in detail the slight difference on the eco-efficiency of succinic acid
over 1,3-PDO, where succinic acid presents itself more advantageously since the environ-
mental benefit given by 1,3-PDO is evaluated not to be worth its additional economic
risk. Moreover, the Rj and the improved positions (RECn,j , RENn,j) were estimated and
shown in Table 4.7. The improved positions (REC ′

n,j , REN ′
n,j) represented in Figure 4.9,

aim at establishing a balance between the economic and environmental risk, and there-
fore following the approach presented in the framework description, they are set upon the
diagonal line. Finally, after analyzing the risk contributions of both products, one can
deduce that choosing succinic acid is a safer choice, which potentially leads to a more
sustainable solution for the glycerol valorization. This is also supported by existing com-
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Figure 4.7: Sustainability risk assessment matrix, where 1,3-PDO and HSuc represent the prod-
uct positions.

Figure 4.8: Detail of risk matrix to assess the alternatives’ eco-efficiency.

mercial production plants such as: Reverdia producing 10 kton/y of Biosuccinium from
renewable carbon sources (fermentable sugars) in Italy, since 2012 [183]; Succinity, a joint
venture between Corbion Purac and BASF built in 2013, also having a 10kton/y working
plant in Spain since 2013; and, Myriant and Bioamber, with the same range of installed
capacities, operating in Canada and North America, respectively [197]. Succinic acid (and
its salts) has been projected to be one of the future platform chemicals obtainable from
renewable resources and has noteworthy potential as building block for the production
of biopolymers [198], or to be used in food, pharmaceutical and cosmetic applications as
well following its transformation into solvents and other existing petro-based chemicals
[138].
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Table 4.7: Summary results for the joint risk assessment.
Succinic acid 1,3-PDO

Riskenv (MM$/lifetime) 53.85 47.66

(RECn,j , RENn,j) (0.80; 1.1) (1.21; 0.88)

R 1.39 0.73

(REC′
n,j , REN′

n,j) (0.80; 1.13) (1.24; 0.91)

Figure 4.9: Combinatorial risk assessment matrix, where 1-3PDO’ and HSuc’ represent the
improved positions.

Furthermore, it is important to note that, the uncertainty analysis and risk assessment
results presented here depend on the framing of the problem which includes (i) sources
of uncertainty identified, (ii) the uncertainty ranges defined (based on historical price
range, internal company experiences, process expert/engineering insights, textbooks, etc).
Therefore these results should be interpreted within that framing. However since the
methodology is flexible, the uncertainty and risk analysis can be iterated as the user has
more refined/updated information on sources/magnitude of uncertainties in the project
development.

4.6 Conclusions
A flexible and systematic framework for a ’gate-to-gate’ sustainability analysis incorporat-
ing techno-economic and environmental risk assessment is proposed as a decision-support
tool to help rank the alternatives within the design space and identify the best potential
conceptual process. To this end, the framework leads the user to actively: (i) identify
techno-economic sources of uncertainty and, through uncertainty propagation; (ii) quan-
tify the economic risk; (iii) perform the monetary valuation of environmental impact
categories under uncertainty; (iv) quantify the potential environmental risk; (v) mea-
sure the alternatives’ eco-efficiency identifying possible trade-offs; and, lastly (vi) use a
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sustainability risk assessment matrix for quantitative and qualitative assessment at the
decision-support level also enabling information transfer to non-experts. The benefit given
by the combined risk assessment matrix is a quick graphic analysis of all products within
the design space; therefore after estimating the normalized position the user is able to
visually identify the optimal solution. Enterprises are under increasing pressure to assess
environmental, social, and economic impacts of the projects they evaluate. Thus, the
proposed framework provides a meaningful measure of sustainability, being a useful and
flexible way for companies to evaluate their processes and/or products from a quantitative
and qualitative stand-point, enabling easier communication of feasibility assessments. In
this way, the proposed framework provides the user with a useful and flexible tool for
the decision-making support at the conceptual phase, which allows a quick assessment
of results to facilitate decisions concerning which products to select or reject for further
process development efforts. The framework has shown to be successful identifying the
best potential alternative in the design space to sustainably add value to the glycerol
side-stream.
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Towards the sustainable design of
biorefinery supply chains





CHAPTER 5
Supply chain design: the GlyThink

model development and
application

To further advance the development and implementation of glycerol based biorefinery
concepts, it is critical to analyze the glycerol conversion into high value-added products
in a holistic manner, considering both production as well as the logistics aspects related
to the supply chain structure. To address the optimal design and planning of the glycerol-
based biorefinery supply chain, in this chapter, a multi-period, multi-stage and multi-
product Mixed Integer Linear Programming optimization model, called GlyThink, based
upon the maximization of the Net Present Value (NPV) is proposed. The proposed model
is able to identify operational decisions - including locations, capacity levels, technologies
and product portfolio - as well as strategic decisions such as inventory levels, production
amounts and transportation to the final markets. Several technologies are considered for
the glycerol valorization to high value-added products. In Figure 5.1, a graphic description
of this chapter is presented.

This chapter of the thesis is based upon the following article:

Supply chain optimization of integrated glycerol biorefinery: GlyThink model develop-
ment and application. L. Gargalo, C., Cheali, P., Posada, J.A., Gernaey, K. V. Sin, G.
Industrial & Engineering Chemistry Research, DOI:10.1021/acs.iecr.7b00908.
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Figure 5.1: Graphic description of chapter 5.
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Nomenclature

Subscript indices

i Components

k Technologies

x Plant site locations

t Time periods

r Reactions

q Capacity levels

m Final markets

z Suppliers

Sets

I Set of all components i

Ip Set of components i that are final products

Irm Set of components i that are raw materials

Iut Set of components i that are utilities and/or chemicals/solvents

Ir Set of components i that are reactants

K Set of all technologies k

KGP Set of technologies k used for the purification of raw materials

Kconv
Set of technologies k used for the conversion of raw materials to final products
i ∈ Ip

KSP
Set of technologies k used for the separation and purification of final products
i ∈ Ip

X Set of plant locations x

T Set of time periods t

R Set of reactions r

Q Set of capacity levels q

M Set of final markets m

Z Set of all suppliers z

Parameters

Technology

ϕi,z,t Raw materials i available from supplier z in time period t

αi,k Specific utility consumption of i in k

θi,k,r Conversion of reactant i in technology k where r occurs

γi,k,r Reaction stoichiometry for every component i in technology k and reaction r

µi,k Fraction of chemicals/solvents mixed with process stream of i in technology k

SWi,k Fraction of i that is separated as waste in k

Technology capacity and cost

Hmin
k,q

Minimum capacity for each capacity level q for technology k

Hmax
k,q

Maximum capacity for each capacity level q for technology k

slopek,q,x Linearization constant for technology k and interval q

bk,q,x Intercept value for the linearized interval q for technology k

cmax
k

Maximum cost of technology k
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wct Operating supplies cost at time period t

mst Maintenance cost at time period t

Transportation

Dp,m,t Demand of product p in market m in time period t

L Total load of transport mode per trip traveled

pR Cost of rail freight per ton.km

dx,m Distance of market m from plant site location i

Cost related parameters

pRM Price of raw materials i ∈ Irm

pUTi Price of utilities per component i ∈ Iut

pSTp Storage price per final product i ∈ Ip

pPi Price of final product i ∈ Ip

ω Interest rate (%)

φ Tax rate (%)

γt Capital depreciation in time period t

Decision variables

Continuous variables

F in
i,k,x,t

Inflow of components i into technology k in plant location x in time period t

Fi,k,x,t Outflow of components i from technology k in plant location x in time period t

Ui,k,x,t Flow of utilities i added in technology k in plant location x in time period t

P ri,k,x,t
Flow of components i produced/consumed in technology k in plant location x
in time period t

F tri,x,m,t
Transported flow of component i ∈ Ip from plant location x to final markets m
in time period t

Wi,k,x,t
Flow of components i separated as waste in technology k in plant location x in
time period t

RawMi,z,x,t Flow of raw materials i from supplier z to plant location x in time period t

Costk,x,t Cost of technology k in plant location x in time period t

Ck,q,x,t Cost of technology k in each capacity interval q in time period t

h′
k,q,x,t

Disaggregated flowrate variable of technology k with capacity interval q in time
period t

Integer variables

Tx,m,t
Number of trips performed by truck from plant site location x to markets m in
time period t

Tz,x,t
Number of trips performed by truck from supplier z to production plant site x
in time period t

Binary variables

yk,q,x,t =1 if technology k with capacity q is installed in location x in time period t

Boolean variables

Yk,x,t =1 if technology k with capacity q is installed in location x in time period t

Auxiliary variables for the objective function
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NP V Net Present Value

CFt Cash flow in time period t

NEt Net earnings in time period t

F CIk,x,t Fixed capital investment of technology k in plant location x and time period t

CDt Capital depreciation in time period t

5.1 Introduction
This chapter focuses on the optimization of the supply chain for the optimal operation
of an integrated biorefinery based upon the conversion of glycerol to high value-added
products. This study differs from previous studies in the field, by proposing the GlyThink
model, a MILP multi-product, multi-period (planning horizon over a discrete set of time
periods) and multi-stage (decisions on multiple parts/stages of the supply chain) tool.
Hence, this chapter introduces the following novel contributions: (i) a mathematical for-
mulation based upon the proposed superstructure for the maximization of the economic
performance across the entire value chain (maximizing Net Present Value), by using
detailed cash flow analysis with taxation and capital depreciation, transportation and op-
erating costs; (ii) the model appropriately estimates the fixed capital investment for the
facilities by employing disjunctive programming to linearize the power-law exponential
cost function and reformulating it to a mixed integer linear programming problem; and,
(iii) the model identifies, at an early stage of design, the optimal operational decisions,
including crude glycerol suppliers, plant site location(s), capacity levels, technologies and
product portfolio; furthermore, strategic decisions such as inventory levels, production
amounts and transportation to the final markets are also supported.

The remainder of the chapter is organized as follows. In section 5.2 an overview of
the GlyThink model is provided, highlighting the problem statement; in section 5.3 the
mathematical formulation of the optimization problem is formally introduced. Section 5.4
introduces the case study, and in section 5 the case study results and the discussion are
presented. Lastly, key conclusions are drawn and ‘take home’ messages are formulated in
section 5.6.

5.2 Overview of the GlyThink model
The overall network of the integrated glycerol biorefinery supply chain is illustrated in
Figure 5.2, where both upstream and downstream parts of the supply chain are highlighted.
Within the network presented, there are six significant sections as follows: 1) transport of
biomass to the biodiesel production sites; 2) glycerol production in the biodiesel plants;
3) transportation of crude glycerol to the glycerol conversion plant site(s); 4) glycerol
purification; 5) conversion, product separation and purification; 6) distribution of the
products to the final markets.

The GlyThink model focuses on the downstream part of the network presented in
Figure 5.2. This is due to the fact that: (i) glycerol is an immediate by-product of
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Figure 5.2: Structure of the multi-stage nature of the glycerol to value-added products supply
chain network.

the biodiesel industry, being produced independently of the raw material used for the
biodiesel manufacture; and, (ii) it is nowadays a surplus product, with low market value
due to overproduction [15]. Therefore, one of the main goals of this work is to - at the
early stage of design - identify and critically analyze the optimal integrated glycerol-based
biorefinery supply chain for the valorization of glycerol into high value-added products.
As presented in Figure 5.3, the GlyThink model was developed by integrating technology
selection and operation, geographical information, capital investment models, economic
models and optimization techniques. The corresponding problem can be formally stated
as follows.

Overall, given:

• a possible superstructure of the integrated glycerol-based biorefinery supply chain
combining crude glycerol acquisition, plant site locations, upgrading technologies
and distribution logistics;

• the planning time period, corresponding to the typical biorefinery lifetime in terms
of years;

• a set of crude glycerol suppliers and a maximum supply available per supplier;

• crude glycerol composition;

• a set of potential products to be produced from glycerol;

• a set of available production, separation and purification technologies and corre-
sponding yields;

• a set of potential locations for the construction of the biorefinery(ies);

• a set of potential markets and corresponding demands;

• distances between nodes of the supply chain structure;

• crude glycerol and product prices;
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• labor cost dependency on production capacity;

• transportation capacity and related costs;

• upper and lower bounds for each technology’s capacity level;

• process and economic models (such as fixed capital investment calculation); and,

• financial data (such as interest and tax rates).

The goal is to maximize the Net Present Value associated with the integrated glycerol
biorefinery supply chain and determining the following operational and strategic decision
variables:

• Location of glycerol suppliers and related logistics;

• The number, capacities, locations (single- or multi-plant), and technologies for the
biorefinery plants;

• Glycerol inflow consumed for each selected biorefinery;

• Product portfolio, production scale and storage levels at the plant locations for each
time period; and,

• Product quantities to be delivered from plants to the demand sinks.

GlyThink
MILP model for 

Glycerol valorization

Suppliers + 
crude glycerol 

availability

Product and 
raw material 

prices

Renewable 
energy horizon 
2020 Europe

Transportation 
cost
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Process 
models

Operating 
costs

Market 
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capital 

investment 
model Sales of 
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Literature 
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fixed 
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Figure 5.3: Components and expected outcomes of the GlyThink model.

5.3 Mathematical Formulation
The GlyThink model is formulated as a multi-period, multi-product and multi-stage mixed
integer linear program (MILP), aiming at maximizing the Net Present Value associated
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with the optimal integrated glycerol biorefinery supply chain. From this moment on, SC
will be used as a simplified terminology for the integrated glycerol biorefinery supply chain.
Constraints are set up concerning: the supply of glycerol to the plant site location(s), pro-
duction capacity, mass balances, technology(s) for the conversion of glycerol into the
final products, operating costs, transportation capacities, and demand satisfaction. The
mathematical model is described in detail below. The full nomenclature, including defini-
tions of all sets, variables, and parameters of the model, is given at the beginning of this
chapter.

5.3.1 Constraints
The operational planning model regarding plant capacity, production, transportation and
mass balance relationships is considered together with the constraints of these activities
due to the supply chain structure. Thus, the corresponding constraints and relationships
are grouped into six classes, and these are: mass balances, selection of conversion technol-
ogy and plant location, supply, demand satisfaction, technology capacity and cost, and
non-negativity constraints. Each class is presented in more detail below.

Mass balances
The mathematical formulation regarding the mass balances has been adapted from a
previous work developed in our group [87], where generic process models enables the
description of every technology within the superstructure trough a sequence of tasks that
follow the same modeling structure. The overall mass balance for each component i in
technology k at plant site location x at each time period t is set by Eq. (5.1). For each
technology k at site location x and time period t, the inflow of i (F in

i,k,x,t) plus the amount
of i produced (Pri,k,x,t), must be equal to the amount of i separated as waste (Wi,k,x,t)
plus the output flow (Fi,k,x,t) to be delivered to the customers or to be stored in location
x.

Z∑
z

RawMi,z,x,t +
Kconv∑

k

P ri,k,x,t + αi,k ·
K∑
k

Ui,k,x,t =

KGP ∪KSP∑
k

Wi,k,x,t +
KSP∑

k

Fi,k,x,t, ∀i ∧ Ix ∧ t ∈ T

(5.1)

Furthermore, in this equation (5.1), Kconv represents the set of technologies used for
the conversion of raw materials into value-added products, and finally KSP , represents the
set of technologies to be used for the separation and purification of the above-mentioned
products. Also, αi,k is the fraction of a chemical or utility mixed with the process stream
(iIut), being 1 if the utility/chemical/solvent i is directly added to the flow stream (e.g.
direct steam, and 0 otherwise (e.g. cooling water).

The amount of component i produced or consumed in the conversion technologies,
Pri,k,x,t, is given in Eq. (5.2).
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Kconv∑
k

Pri,k,x,t =
Kconv∑

k

R∑
r

Rct∑
rct

γi,k,r · θrct,k,r · F in
rct,k,x,t,

∀i ∈ I ∧ x ∈ X ∧ t ∈ T

(5.2)

where, γi,k,r and θrct,k,r represent reaction stoichiometry for each component i in
technology k and reaction r, and conversion of key reactant i in technology k where
r occurs, respectively. The total amount of chemicals or utilities consumed/added i is
obtained as a fraction of the total flow in the technologies k and it is given in Eq. (5.3)
as follows.

K∑
k

Ui,k,x,t = µi,k ·
I /∈Iut∑

i

F in
i,k,x,t, ∀i ∈ Iut ∧ x ∈ X ∧ t ∈ T (5.3)

where, µi,k is the fraction of chemicals/solvents i ∈ Iut mixed with the process stream in
technology k.

Supply
In constraint (5.4), the inflow of component i ∈ Irm into plant site location x coming
from supplier z in time period t, RawMi,z,x,t, is enforced to be lower than or equal to the
total amount of i available from supplier z in time period t (ϕi,z,t).

X∑
x

RawMi,z,x,t ≤ ϕi,z,t, ∀i ∈ Ifeed ∧ z ∈ Z ∧ t ∈ T (5.4)

X∑
x

Z∑
z

RawMi,z,x,t ≤
Z∑
z

ϕi,z,t, ∀i ∈ Ifeed ∧ t ∈ T (5.5)

Ifeed∑
i

RawMi,z,x,t ≤ L · Tz,x,t, ∀x ∈ X ∧ z ∈ Z ∧ t ∈ T (5.6)

Furthermore, constraint (5.5) imposes that the maximum flow of raw material i deliv-
ered to all locations x coming from all suppliers z cannot exceed the total amount of raw
materials i available from all suppliers z in time period t. Finally, constraint (5.6) sets
the total flow of raw materials to be delivered to the plant site locations x to be lower or,
at most, equal to the available transportation capacity over the planning time period.

Selection of conversion technology and plant location
A binary variable, yk,q,x,t, is introduced in constraints (5.7) and (5.8) to impose the
selection of technologies k, with capacity level q, in biorefinery location x, and time period
t. The capacity level q refers to each one of the regions considered in the linearization of
the capital investment.

X∑
x

yk,q,x,t ≥ 1, ∀k ∈ K ∧ q ∈ Q ∧ t ∈ T (5.7)
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X∑
x

yk,q,x,t ≤ Nx, ∀k ∈ K ∧ q ∈ Q ∧ t ∈ T (5.8)

where yk,q,x,t is equal to 1 if technology k with capacity level q is built at location x

and time period t; and Nx corresponds to the total number of plant site locations available
for the construction of the biorefineries. Constraint (5.7) and constraint (5.8) state that
at least one and at most Nx locations can be simultaneously selected for the construction
of the biorefinery(ies). Also, as stated in constraint (5.9), if at time period t, technology
k with capacity level q is selected to be built at plant site location x, then it is assumed
that it must be selected/open during all time periods greater than t.

yk,q,x,t+1 ≥ yk,q,x,t, ∀k ∈ K ∧ x ∈ X ∧ q ∈ Q ∧ t ∈ T − 1 (5.9)

Demand satisfaction

Ftri,x,m,t +
K∑
k

Sti,k,x,t ≤
K∑
k

Fi,k,x,t, ∀i ∈ Ip ∧x ∈ X ∧m ∈ M ∧k ∈ KSP ∧ t ∈ T (5.10)

X∑
x

Ftri,x,m,t ≤ Dp,m,t, ∀i ∈ Ip ∧ m ∈ M ∧ t ∈ T (5.11)

X∑
x

M∑
m

Ftri,x,m,t ≤
M∑
m

Dp,m,t, ∀i ∈ Ip ∧ m ∈ M ∧ t ∈ T (5.12)

Ftrp,x,m,t ≤ L · Tp,x,m,t, ∀x ∈ X ∧ m ∈ M∧ ∈ T (5.13)

Constraint (5.10) sets the maximum limit of product being transported to the markets
m, Ftrp,x,m,t, as the maximum amount of product p being produced at plant site x in
time period t, where the Sti,k,x,t is the amount of product i to be stored at location
x. Constraint (5.11) enforces that, the amount of product p delivered to a market m

must not exceed the demand in that same market m. Furthermore, constraint (5.12)
imposes that the maximum flow of product p delivered to all markets m cannot exceed
the total demand of product p in all markets m. Finally, constraint (5.13) sets the product
flow delivered to the markets (Ftrp,x,m,t) to be lower or, at most, equal to the available
transportation capacity over the planning time period.

Technology capacity and cost
The fixed capital investment (FCI) is one of the most critical costs associated to biocre-
finery design and implementation [15]. It is beneficial for the capacity of the installed
technologies k to be a continuous variable, which commonly involves knowledge of the
plant’s costs as a function of its capacity, which might be given by a non-linear equation
such as the power law presented in Eq. (5.14).

Costx = costbase · ( capacityx

capacitybase
)n (5.14)
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In such a power law, the exponent n usually varies around 0.7. Therefore, in this
work, to account for economies of scale of the technologies, the power law has been used
to estimate the capital costs based upon the investment costs of a reference case (costbase

and capacitybase), where exponents of 0.75 and 0.7 were used for biochemical and chemical
processing plants, respectively [15]. As a linear programming model is efficient, we employ
a piecewise linear function of the non-linear power law, which specifies a set of capacity
levels q. This disjunctive formulation is used to linearize the power law equation that
relates the capital costs against capacity, and it is presented in Eq.(5.15).



Yk,x,t

∀q ∈ Q


yk,q,x,t

Costk,x,t = bk,q,x + slopek,q,x · H
′

k,x,t

H
′min
k,q ≤ H ′

k,x,t ≤ H
′max
k,q




∀

 ¬Yk,x,t

Costk,x,t = 0

 , ∀k ∈ K∧x ∈ X∧t ∈ T

(5.15)
This disjunction portrays that the linear equation to determine the capital cost of the

technology k depends on its capacity. The Boolean variable Yk,x,t is used to activate each
term of the disjunction. In this way, if a certain capacity is selected, the corresponding
segment of the capital cost function is selected and the binary variable yk,q,x,t is 1. To
appropriately model the disjunction presented in Eq.(5.15), the convex hull technique
following reference [199] is used and the respective algebraic equations are obtained. These
are presented below.

Q∑
q

yk,q,x,t ≤ 1, ∀k ∈ K ∧ x ∈ X ∧ t ∈ T (5.16)

H ′
k,x,t =

Ip∑
i

Fi,k,x,t, ∀i ∈ Ip ∧ k ∈ K ∧ x ∈ X ∧ t ∈ T (5.17)

H ′
k,x,t =

Q∑
q

h′
k,q,x,t, ∀k ∈ K ∧ x ∈ X ∧ t ∈ T (5.18)

Costk,x,t =
Q∑
q

Ck,q,x,t, ∀k ∈ K ∧ x ∈ X ∧ t ∈ T (5.19)

Hmin
k,q · yk,q,x,t ≤ h′

k,q,x,t ≤ Hmax
k,q · yk,q,x,t, ∀k ∈ K ∧ q ∈ Q ∧ x ∈ X ∧ t ∈ T (5.20)

Ck,q,x,t = bk,q,x · yk,q,x,t + slopek,q,x · h′
k,q,x,t, ∀k ∈ K ∧ q ∈ Q ∧ x ∈ X ∧ t ∈ T (5.21)

Ck,q,x,t ≤ cmax
k · yk,q,x,t, ∀k ∈ K ∧ q ∈ Q ∧ x ∈ X ∧ t ∈ T (5.22)
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In summary, if a segment of the disjunctive terms is selected, then the related Boolean
variable Yk,x,t is true and the correlated binary variable yk,q,x,t must be 1. For all other
remaining instances, the Boolean and binary variables are false and 0, respectively. There-
fore, as the upper boundaries are given by constraints (5.20) and (5.22) for the segments
that are not selected, the associated continuous disaggregated variables are 0. Further-
more, the variables that can have values higher than 0 are the ones obtained for the
disjunctive term selected/identified. Furthermore, Eqs. (5.18) and (5.19) state that the
continuous variables are equal to the disaggregated variables for the disjunctive term
chosen, and their relationships are described through these disaggregated variables by
constraints (5.17) and (5.18), which are only active when the related binary variables are
1.

Decision variables
Binary and non-negativity constraints on the decision variables are stated as follows in
constraints (5.23) and (5.24), respectively.

yk,q,x,t ∈ {0, 1} (5.23)

Fi,k,x,t, F in
i,k,x,t, Ui,k,x,t, F trp,x,m,t, Sti,k,x,t,

P ri,k,x,t, Wi,k,x,t, Costk,x,t, Ck,q,x,t, h′
k,q,x,t, Tp,x,m,t, Tz,x,t ≥ 0

(5.24)

5.3.2 Objective function
As measure of economic performance, the total Net Present Value (NPV ) of the supply
chain is selected as the objective function. The NPV is estimated as the sum of yearly
cash-flows discounted to the present year, at a specified interest rate, as presented in the
following Eq. (5.25).

NP V =
T∑
t

CFt

(1 + ω)t
=

T∑
t

NEt

(1 + ω)t
− C0 = AP V − C0 =

T∑
t

[
1

(1 + ω)t
· (St − P Ct − Lct − T rCt − SCt − W Ct − T It)

]
+ C0 ·

(
sv

(1 + ω)t
− 1
)

(5.25)

where, ω represents the interest rate. St and PCt, represent the revenue (product
sales) and production cost, respectively; Lct, TrCt, and SCt, represent the labor costs,
transportation cost and storage cost, respectively; CDt and WCt, represent the capital
depreciation and working capital, respectively. TIt and C0 stand for the taxable income
and total initial capital investment, and they are given by the following equations:

T It = φ · [St − P Ct − Lct − T rCt − SCt − CDt] (5.26)
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FCIk,x,t = 6.7 ·
Q∑
q

Ck,q,x,t, ∀q ∈ Q ∧ k ∈ K ∧ x ∈ X ∧ t ∈ T (5.27)

C0 =
X∑
x

K∑
k

FCIk,x,t=1 +
T∑
t

[
X∑
x

K∑
k

FCIk,x,t −
X∑
x

K∑
k

FCIk,x,t−1

]
,

∀k ∈ K ∧ x ∈ X ∧ t ∈ T

(5.28)

Where, in Eq. (5.27) the purchased capital investment is converted into delivered
capital investment as suggested in [149]. Moreover, C0 includes the capital investment
made at the beginning (t=1), and additional capital investment increments related to
possible/potential expansions of production capacity in t time period(s). In this way
the model is flexible allowing for potential future expansions of production capacity, if
required, for example, to accommodate the realization of uncertainty, such as in product
demand. Finally, the Net Present Value is fully given by the Eq.(5.29).

NP V =
T∑
t

[
(1 − φ)
(1 + ω)t

·

[
X∑
x

M∑
m

KSP∑
k

Ip∑
i

F tri,x,m,t · pPi −
X∑
x

KP G∑
k

Ifeed∑
i

F in
i,k,x,t · pRMi

−
X∑
x

Kconv∪KSP∑
k

Ip∑
i

Ui,k,x,t · pUTi − op · ns · avSalt ·
X∑
x

KP G∑
k

Ifeed∑
i

F in
i,k,x,t

−
X∑
x

M∑
m

Ip∑
i

[
Ti,m,x,t ·

(
2 · dx,m · (fc + trMa) +

(
2 · dx,m

sp
+ lut

)
· dw

)]
X∑
x

M∑
m

Ip∑
i

[
Tz,x,t · (2 · dz,m · (fc · pF + trMa) +

(
2 · dz,m

sp
+ lut

)
· dw)

]
− 2 · trGEt

−
X∑
x

KSP∑
k

Ip∑
i

Sti,k,x,t · pSti − (wct + mst) · C0

]

+ φ

(1 + ω)t
· γt · C0

]
+
(

sv

(1 + ω)t
− 1
)

· C0

(5.29)

5.4 Case study description
The above-mentioned mathematical formulation corresponding to the GlyThink model
was implemented in GAMS and solved to global optimality with CPLEX 12. GlyThink

was applied to the case study on the valorization of crude glycerol in Europe to a number
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of value-added products. The case study is thereby aiming at identifying the optimal
(i) set of suppliers, (ii) plant site location(s), (iii) product portfolio and, (iv) products
distribution network (supply chain structure).

5.4.1 Supply chain characterization
In 2007, the European Commission council implemented a 10% compulsory minimum
target for the share of renewable energy in transportation by 2020 [200] [201].

In the EU-28, the total energy consumed for all road transport modes amounted to 353
Mtoe in 2014 [202]. Thereby, assuming that in 2020 the renewable energy target will be
fulfilled solely by biodiesel, which is currently the most consumed biofuel in Europe [105],
it sets the glycerol availability in Europe to 4.10×106ton/year. In this section, we identify
the plant site candidates as the current top-5 major producers (and consumers) of biodiesel
in Europe, and they are assumed to be stable markets [203]: Germany, France, The
Netherlands, Spain and Italy. Being the top-5 major producers of biodiesel, these locations
are also considered to be the potential suppliers for the acquisition of glycerol, whose
availability is presented in Table 5.4. The typical composition for the crude glycerol stream
obtained from the biodiesel process is assumed to be approximately 61 wt% glycerol, 32.59
wt% methanol, 2.62 wt% NaOCH3, 1.94 wt% fats, and 2.8 wt% ash [204].

Table 5.4: Availability of crude glycerol per supplier*
Supliers Crude glycerol availability (ton/year)
Germany 1.48 × 106

France 9.76 × 105

Netherlands 8.77 × 105

Spain 4.72 × 105

Italy 2.95 × 105

*obtained considering that the biodiesel produced in Europe is solely from these locations

The range of value-added products has been primarily identified in previous work [15]
and is here expanded through literature review and based on their potential scale-up
potential, aiming at being illustrative of the potential of the glycerol based biorefinery.
Therefore, the most extensive processing network, to the best of my knowledge, with
12 processing pathways to produce a variety of biofuels and value-added bioproducts is
proposed. As presented in Figure 5.4, the twelve unique products are: ethanol, poly-3-
hydroxybutyrate, lactic acid, succinic acid, propionic acid, 1,3-PDO, 1,2-PDO, hydrogen,
acrolein, n-butanol, isobutanol and epichlorohydrin. Moreover, the products are produced
by applying different technologies, which are included in this case study, through the
definition of different process conversions, separation and purification technologies (see
Table 5.5).
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Figure 5.4: Superstructure of connections for the potential glycerol-based integrated biocrefinery.
Where kGP represents the glycerol separation and purification; kC1 to kC12 represents the con-
version technologies; and, kSP 1 to kSP 12 represents the separation and purification technologies
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5.4.2 Market Demands

The market demands for the above-mentioned twelve products were collected from re-
ports, publications and public communications. To be as much representative of the
European market as possible, a total of 5 top markets were identified for each product
and the corresponding demands were collected, and they are summarized in Table5.6.
The transportation costs regarding the transport of products to the markets depends on
the distance and the transportation mode and its corresponding cost. In this work, we
consider cross-country product delivery, thus the transportation mode used is by truck.
The storage of non-sold products is centralized, and the distances between the production
plant sites and the markets is assumed to be the distance point to point between the cen-
ter of the countries, respectively. They are reported in the matrix of distances presented
in Table D.1 in Appendix D.

Table 5.6: Market demands for each product, corresponding main assumptions and respective
references.

Products Markets Demand per market Assumptions Refs

(103 ton/year)

Germany 8.82x103

France 4.97x103 Potential addressable market is [182]

PHB Italy 3.37x103 replacement of polypropylene (PP) [197], [207]

United Kingdom 2.64x103 and polyethylene

Spain 2.60x103

Germany 1.20x106

United Kingdom 7.89x102 [197]

Ethanol France 6.71x102 Ethanol used as biofuel [203]

Spain 2.96x102

Italy 2.84x102

Germany 5.36x103

France 3.02x103 Production of PLA, with an addressable market as [197]

Lactic acid Italy 2.05x103 replacement of polystyrene (PS), polypropylene (PP) and PET. this market [197], [207], [208]

United Kingdom 1.60x103 represents 39% of the total market of lactic acid

Spain 1.85x103

United Kingdom 2.56x102

Spain 2.52x102 Production of PLA, with an addressable market is as

Succinic acid Germany 8.54x102 Addressable markets are given by plasticizers, [207], [209], [210]

Italy 4.81x102 BDO, polyester polyols, alkyl resins, PBS and PBST

France 3.26x102

Germany 1.22x103

France 6.87x102

1,3-Propanediol Italy 4.66x102 For the production of PTT, which is [197],[207]

United Kingdom 3.65x102 a biodegradable replacement for PET

Spain 3.60x102

Germany 4.90x102

Netherlands 80 [182]

1,2-Propanediol France 80 Top-5 major propylene glycol producers [154]

Spain 95 a biodegradable replacement for PET

Belgium 50

Germany 2.44x106

France 1.78x106 16% of the world demand corresponds to western

H2 Netherlands 5.54x105 Europe, top-5 distribution based on the GDP of the [211], [212]

Belgium 3.36x105 individual countries

Austria 2.77x105
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Table 5.7: cont. of Table 5.6.
Products Markets Demand per market Assumptions Refs

(103 ton/year)

Bulgaria 9.15x102

Germany 6.35x102 Addressable market is acrylic acid and the demand was

Acrolein Belgium 3.20x102 given in total for eastern and western Europe, the top-5 [211],[213], [214]

France 2.75x102 distribution was given based on the GDP of the

Czech Republic 55 individual countries

Germany 67.5

France 49.3 Propionic acid demand in the world, where 16% is for

Propionic acid Netherlands 15 Europe. GDP was used to find the top-5 consumers [215]

Belgium 92.7

Austria 7.65

Germany 2.19x102

United Kingdom 1.58x102

n-Butanol France 1.65x102 European demand of n-butanol [216], [217], [211]

Italy 35.3

Spain 82

Belgium 2.19x102

Portugal 1.58x102 Isobutanol is used as a precursor of terephtalic acid,

Isobutanol Spain 1.65x102 which is s a precursor of PE. The same distribution as [218],[219]

Poland 35.3 the one for plastics in Europe

United Kingdom 82

Germany 1.58x102 Addressable market is the production of epoxy resins.

Netherlands 1.42x102 For this, bisphenol A (BPA) is used along with

Epichlorohydrin Belgium 96.7 epichlorohydrin. 30% of the consumption of BPA is for the production of epoxy resins. [220], [9], [221]

Spain 86.8 World demand of BPA and the respective percentage for Europe. Top-5

Italy 42.7 consumers of BPA assumed to be the same for epichlorohydrin

5.4.3 Economic Analysis

As mentioned before, the discounted cash flow analysis model was employed to estimate
the NPV over the biorefinery lifetime of 20 years (planning time period), where the
investors owned 100% equity. This model, based upon the Eqs. (5.26) to (5.29) presented
in section 5.3.2, is estimated as the sum of a time series of cash flows discounted to the
present year over a 10% interest rate (minimum rate of return). Capital depreciation is
recorded for tax purposes as a portion of the fixed capital investment obtained by following
and IRS (Internal Revenue Service) schedule. In this work, the Modified Accelerated Cost
Recovery System (MACRS) for ten years is used as tax depreciation system, in which
the capitalized cost of property is salvaged over a specific time by yearly deductions
for depreciation. Income tax is paid on taxable income with at a 35% tax rate where
we assume that losses after start-up are not forwarded. Finally, the working capital
is assumed to be 5% of the fixed capital investment. Table 5.8 presents the market
prices of each product considered in the design space (see superstructure in Figure 5.4).
Furthermore, the techno-economic models respective to each technology were collected
and are reported in previous work [15]; a summary of the information used as reference
regarding capacity and economics is presented in Table D.2 in Appendix D.

Linearization of capital investment

As previously mentioned, since linear programming is computationally efficient, the non-
linear power-law function (Eq. 5.14) is linearized by using a disjunctive formulation, which
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Table 5.8: Products market spot prices.
Product Selling price ($/kg) [ref ] Product Selling price ($/kg) [ref ]
SA 2.0 [15] H2 0.536 [15]
1,3-PDO 2.02 [15] n-BuOH 1.558 [15]
PA 1.590 [15] EtOH 0.707[15]
PHB 4.5 [15] Acrolein 2.0 [15]
1,2-PDO 1.662 [15] Epichlorohydrin 1.992 [206]
LA 2.0 [15] Isobutanol 1.524 [15]

is transformed sequentially into mixed integer linear programming (see section 5.2.2). To
improve the resolution of the capital cost estimation, we propose three capacity levels
for the processing technologies introduced in this work, namely (ton/year): (i) small
(5,000 to 40,000); (ii) medium (40,000 to 200,000); and, (iii) large (200,000 to 600,000),
as proposed in [222] for a biorefinery of similar size. Within each level there is a linear
relationship between the capacity and capital investment, where the slope represents
the unit variable capital-related costs and the intercept value stands for the fixed capital-
related costs. The greater the plant capacity, the larger will be the fixed capital investment
costs, although the unit variable capital investment costs will be lower. In Figure 5.5, an
example is shown for the piecewise linear estimation of purchased capital investment for
the production of succinic acid. Finally, following the same procedure, the data regarding
the disjunctive relationships between purchased capital investment (PCI) and capacity
(Cap) for all production technologies are presented in Table 5.9. As previously mentioned,
the reference data needed to estimate the linear regression parameters is reported in D.2
in Appendix D.

Figure 5.5: Capital investment estimation corresponding to the succinic acid case at small,
medium and large capacity levels. The original cost curve is presented in black.
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Table 5.9: Data for the estimation of the purchased capital investment (PCI) through disjunctive
relationships, where P CI(MM$) = slopeq · Cap(ton/y) + interceptq.

Product
Capacity interval (ton/year)

Small (5000 to 40000) Medium (40001 to 400000) Large (400001 to 600000)
slope1 intercept1 slope2 intercept2 slope3 intercept3

EtOH 8.56E-04 3.70 4.87E-04 18.5 3.79E-04 61.7

PHB 2.06E-03 8.90 1.17E-03 44.5 9.13E-04 148.7

LA 3.74E-04 1.62 2.13E-04 8.07 1.66E-04 26.98

SA 7.05E-04 3.04 4.01E-04 15.2 3.12E-04 50.83

1,3-PDO 5.34E-04 2.31 3.04E-04 11.5 2.37E-04 38.51

1,2-PDO 3.26E-04 1.84 1.66E-04 8.25 1.22E-04 25.63

H2 2.15E-03 12.2 1.10E-03 54.5 8.09E-04 169.3

Acrolein 4.71E-04 2.66 2.40E-04 11.9 1.77E-04 37.05

PA 4.05E-04 1.75 2.30E-04 8.72 1.79E-04 29.18

n-BuOH 8.66E-04 3.74 4.93E-04 18.7 3.84E-04 62.43

Isobutanol 4.83E-04 2.73 2.46E-04 12.2 1.81E-04 39.78

Epichlorohydrin 4.12E-04 2.32 2.09E-04 10.4 1.55E-04 32.35

5.5 Results and Discussion
In this section, the results are presented regarding the application of the GlyThink model
for the identification of the optimal integrated glycerol biorefinery supply chain. So as
to understand the sensitivity of the strategic and operational decisions, as well as the
project feasibility and economic performance, a group of scenarios were set up for analysis
as represented in Figure 5.6.

single 
plant

A2

max NPV
max NPV 

+
revenue-neutral tax 

incentive

max NPV 
+

10 years tax 
exemption

A2.1 A2.2

A1

multi
plant

B2 B2.1 B2.2

B1

C.1 C.2

Figure 5.6: Formulation of scenarios analyzed.

The scenarios pictured in Figure 5.6 were built to understand the influence of: (i)
constraining the model to a certain production capacity, and (ii) having the SC structure
based upon a single plant site location or on multiple locations. They are described as
follows:
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• Scenario A1: leads to the optimization of the supply chain network allowing the
model to determine the amount of glycerol converted into products per plant site
location, if only one plant location is allowed, so that NPV is maximized;

• Scenario A2: the optimization problem set in A1 is further constrained to convert
the total amount of glycerol available (4.10×106ton/year) if only one plant location
is allowed to be selected, so that NPV is maximized;

• Scenario B1: leads to the optimization of the supply chain network allowing the
model to identify a combination of best plant site locations (allowing the selection of
more than one plant), by also determining the optimal amount of glycerol converted
into value added products, so that NPV is maximized;

• Scenario B2: the optimization problem set in B1 is further constrained to convert the
total amount of glycerol available (4.10 × 106ton/year), also allowing the selection
of more than one plant, so that NPV is maximized.

So as to understand the effect of possible government policies in the economic perfor-
mance and feasibility, as well as in the strategic and operational decisions, the following
scenarios were built:

• Scenario A2.1: leads to the identification of the optimal SC structure through the
optimization problem set in scenario A2 and having the government revenue neutral
incentive of $0.11 per kg of bio-based building block chemical, which has been
implemented in several states in the U.S. [223];

• Scenario A2.2: identify the optimal SC structure through the optimization problem
set in scenario A2 and having the government incentive based upon the example
of Malaysia, which has been giving 10 years of full tax exemption for biobased
industries [224],[225].

• Scenario B2.1: identify the optimal SC structure through the optimization problem
set in scenario B2 and having the government revenue neutral incentive of $0.11 per
kg of bio-based building block chemical;

• Scenario B2.2: identify the optimal SC structure through the optimization problem
set in scenario B2 and having the government incentive of 100% tax exemption for
10 years;

• Scenario C.1: identify the optimal SC structure through the optimization problem
set in scenario A2 by constraining the model to consume the glycerol amount ob-
tained at the break-even point and having the government revenue neutral incentive;

• Scenario C.2: identify the optimal SC structure through the optimization problem
set in scenario A2 by constraining the model to consume the glycerol amount ob-
tained at the break-even point and having the government incentive of tax exemption
for 10 years.
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Comparison between scenarios A1 & A2
In this section the results aim to illustrate: (i) how the optimal configuration and prof-
itability of the supply chain network depend on the facility location; and, (ii) the effect
of the amount of glycerol converted on the economic performance and feasibility. The
NPV obtained for scenarios A1 and A2, along with the corresponding potential plant site
locations for the installation of the glycerol integrated biorefinery, are depicted in Figure
Figure 5.7.
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1.61

1.57Italy
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Netherlands

Germany-10.16 

-10.32 

-10.18 

-10.97 
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A2 A1

NPV (MM$ ⨉103)

Figure 5.7: NPV obtained for all plant locations for A1 (light green, right) and A2 (dark green,
left).

The glycerol converted in all potential plant site locations is approximately 14% (5.60×
105 ton/year) of the total amount of glycerol available in Europe (4.10 × 106 ton/year).
This leads to a consistent optimal product portfolio composed by the production of SA
and LA, where the revenue is able to absorb the costs. Thus, positive yearly cash-flows
are obtained for all locations within scenario A1, consequently leading to positive NPVs.
In Figure 5.7, one can see that the optimal location to build the plant site seems to be
in Germany with a NPV of 1.66 × 103MM$, closely followed by the Netherlands and
France. As an example, the SC structure based upon Germany as the plant site location
is presented in Figure 5.8.

Germany	
(14%) GermanyA1

Scenario Supplier(s) Plant	site(s)	
location

Product(s)

SA

LA

Market(s)Transported	
(kton/y)

572	kton/y

68.4	kton/y

Germany

Germany

Figure 5.8: SC structure of the integrated glycerol biorefinery located in Germany obtained
through scenario A1.

Through scenario A2, as presented in Figure 5.9, when converting the total amount
of glycerol available (4.10 × 106ton/year), it leads to solutions with negative NPVs -
meaning that they are not economically feasible - for the SCs based upon all locations.
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Even though the optimal SC obtained for all locations presents negative NPV, Germany
still stands out as the best alternative due to the (i) higher product demands observed
for this market, and (ii) the reduced implied transportation costs. The negative values of
NPV result from the increased inflow of glycerol to be compulsory converted, leading to
the production of additional products besides SA and LA (identified as the most profitable
products in 5.8) because these products have reached their full integrated capacity (level
3 of capacity for both LA and SA production units, as presented in Table 5.9). Therefore,
to be able to convert the total amount of glycerol, the product portfolio is extended to
include PHB, acrolein and epichlorohydrin as presented in Figure 5.9 (for Germany as an
example). All in all, scenario A2 presents in fact an unfeasible solution since the increased
production due to the full conversion of the glycerol available, requires higher investment
and production costs, which are not balanced by the revenue obtained.

Germany	
(36%)

GermanyA2

Scenario Supplier(s) Plant	site(s)	
location

Product(s)

SA

LA

Market(s)Transported	
(kton/y)

577	kton/y

703	kton/y

Germany

Germany
France	(24%)

Netherlands	
(21%)

Spain
(11%)

Italy
(7%)

Acro 71	kton/y Germany

PHB 621	kton/y Germany

Epi 158	kton/y Germany

142	kton/y Netherlands

97	kton/y Belgium

87	kton/y Spain

43	kton/y Italy

Figure 5.9: SC structure of the integrated glycerol biorefinery located in Germany obtained
through scenario A2.

Comparison of scenarios B1 & B2
As mentioned above, in scenarios B1 and B2, the model is free to choose the best combi-
nation of plant sites to maximize the NPV of the integrated glycerol biorefinery SC. The
NPV values corresponding to the optimal solutions obtained with scenarios B1 and B2
are presented in Figure 5.10, corresponding to a glycerol inflow of 2.15 × 106 ton/year
and 4.10 × 106 ton/year (total available), respectively.

The SC structures are presented in Figures 5.11 and 5.12, for scenarios B1 and B2,
respectively. B1 identifies the optimal SC as resulting of the combination of four plant
sites whose locations are: Germany, France, the Netherlands and Italy. As presented in
Figure 5.11, the total fraction of glycerol that is converted is approximately 53% of the
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6.12

Germany
France 

Netherlands
Italy

B2

B1

0.45
Germany
France 

Netherlands
Spain
Italy

NPV (MM$ ⨉103)

Figure 5.10: NPV of the optimal SC obtained with B1 (light green) and B2 (dark green).

total amount available in Europe per year, being mostly sourced by their own markets
except for the plant site in Italy which acquires glycerol not only in Italy but also from
France. Moreover, the product portfolio obtained in scenario B1, enforces the fact that SA
and LA are the potentially the most profitable products. Also, although there are higher
investment costs as a consequence of building more plant sites, the revenue of opening
plants closer to the markets compensates the investment costs and NPV is maximized
in such a scenario. This is observed by the fact that the demand of SA is being fully
satisfied in Germany, France, and UK markets, along with 94% satisfaction in Italy. Also,
as presented in Figure Figure 5.11, the LA obtained as co-product of the SA production
in each plant is sent, as expected, to the closest market to the corresponding plant sites.

Germany Germany	
(14%)

B1

Scenario Supplier(s) Plant	site(s)	
location

Product(s)

SA

LA

Market(s)Transported	
(kton/y)

545	kton/y

68	kton/y

Germany

Germany

France

Netherlands

Italy

France
(14%)

Netherlands	
(14%)

Italy
(11%)

SA 27	kton/y Italy

SA

LA

319	kton/y

68	kton/y

France

France

SA 252	kton/y Spain

SA

LA

309	kton/y

68	kton/y

Germany

Germany

SA 256	kton/y UK

SA 7	kton/y France

LA 54	kton/y Italy

SA 454	kton/y Italy

Figure 5.11: SC structure of the integrated glycerol biorefinery obtained through scenario B1,
resulting in a combination of 4 plant site locations in Europe.

The SC structure obtained through scenario B2 has a low positive NPV, and the cor-
responding SC structure is presented in Figure 5.12. In order to maximize the NPV but
consuming all glycerol available, a combination of the possible five possible locations is
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set up in order to have the production closer to the demand markets; where Germany con-
sumes 45% of the glycerol available, followed by France consuming 15% and the remaining
plants consuming from 14% to 11% of the total glycerol available. The co-production of
SA and LA stand out once more as the most profitable solution since the demand of SA
in Germany, France, Spain, Italy and UK is being fully satisfied, and the LA co-produced
along with SA is sent to the markets closest to the production plants. However, since the
SA production capacity has been reached and its demand in the markets has been fully
satisfied, the product portfolio is further extended to include the production of PHB and
epichlorohydrin in the plants closer to their markets for these products so as to fulfill the
glycerol capacity. These products are selected due to their high selling price, but they are
for example not chosen in scenario’s A1 and B1 due to their high associated investment
and production costs (specially due to the separation and purification stages).

Germany Germany	
(45%)

B2

Scenario Supplier(s) Plant	site(s)	
location

Product(s) Market(s)Transported	
(kton/y)

France

Netherlands

Italy

France
(15%)

Netherlands	
(14%)

Italy
(11%)

SA

LA

283	kton/y

68	kton/y

Germany

Germany

LA 58	kton/y Italy

SA 481	kton/y Italy

Spain Spain	
(13%)

PHB 469	kton/y Germany

LA 65	kton/y Spain

SA 293	kton/y France

SA 252	kton/y Spain

Epi

74	kton/y Germany

142	kton/y Netherlands

97	kton/y Belgium

87	kton/y Spain

SA 256	kton/y UK

SA 34	kton/y France

SA 572	kton/y Germany

LA 68	kton/y Germany

Figure 5.12: SC structure of the integrated glycerol biorefinery obtained through scenario B2,
resulting in a combination of 4 plant site locations in Europe.

Comparison of scenarios A & B

As observed in Figures 5.7 and 5.10, the optimal solution is given by the SC structure
obtained through the multi-plant scenario B1 since it provides the highest NPV among
all scenarios within scenarios A and B. This is due to the fact that the revenue attained
is higher than the incurred costs related to the production and fixed capital investment.
Furthermore, it is worth noticing that throughout the scenarios discussed, SA and LA are
consistently selected as part of the product portfolio (see Figures 5.8, 5.9, 5.11 and 5.12).
This results from the combination of favorable conditions, such as the high SA yield,
the fact that LA is produced as a co-product of SA production, and their high selling
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price which allow the revenue attained to compensate the investment, production and the
logistic costs. Additionally, SA and LA have also been identified as the best potential
products to be produced from glycerol in an earlier techno-economic study where the SC
was not considered, where SA and LA were identified as two of the products having the
lower associated economic risk [15].

A more detailed analysis of the operating cost for all discussed scenarios is presented
in Figures 5.13 (A1-Germany, A2-Germany, B1 and B2). Common to all scenarios, is the
fact that the production cost (glycerol purchase and utilities) has the most significant
cost share, ranging from 58% to 61% in A1 and A2, to 65% in B1 and B2 due to the
total conversion of glycerol. Furthermore, the cost of utilities associated with the purifica-
tion of crude glycerol is approximately 4 to 5% of the total utilities cost for all scenarios
considered. Therefore, if the degree of purity of the crude glycerol inflow increases, the
costs associated to its purification will decrease, but the impact on the overall production
costs will not be substantial. The transportation cost has a rather small contribution
to the total cost of the supply chain, in particular for the cases where the model is not
constrained to convert all glycerol due to full satisfaction of market demands farther away
from the plants, in which case A1 and B1 would become unfeasible solutions (negative
NPV). However, as expected, the transportation cost is more significant for the cases
where the model is constrained to consume the total glycerol (A2 and B2), since more
markets have to be served in order to fulfill the glycerol capacity, and as a consequence
transport distance increases. Similarly, in these scenarios, the storage cost becomes im-
portant, since the high production capacity leaves by-products such as H2 in storage,
which is not worth of delivering due to its low selling price and related transportation
cost. Also, the higher the investment, the higher the importance of the operation and
maintenance (O&M) cost, since it directly depends on the FCI. The difference between
the revenue and costs is higher in A1 and B1, and therefore, as expected, the taxable
income and the tax paid are both higher for these scenarios.

Sensitivity analysis of the NPV to the variation of the glycerol conversion

The sensitivity analysis has been performed to understand the influence of the glycerol
conversion on the economic feasibility of the project (NPV). Therefore, as an example the
single plant located in Germany is represented in Figure 5.14.

As presented in Figure 5.14, the optimal NPV is obtained for the SC structure that
converts approximately 14% of the glycerol available in Europe, and its structure has
been previously depicted in Figure 5.8. Also, the sum of discounted cash-flows, here
represented through the Annual Present Value (APV in Eq. 5.26, green line in Figure
5.14), is rising with the increasing glycerol conversion, attaining its maximum along with
the optimal NPV, which occurs when the net earnings are also at their maximum (given by
the difference between the revenue and the total costs). From this moment on, the NPV
steadily decreases, reaching zero (break-even point) at around 30% glycerol conversion,
where the APV equals the total fixed capital investment (tFCI, orange line). The SC
structure corresponding to the break-even point is presented in Figure 5.15, where the
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Figure 5.13: Break-down of costs in terms of their corresponding impact on the total cost of the
SC obtained in scenarios A1, A2, B1 and B2; where on the left this is represented in terms of
monetary units and on the right it is presented as percentage of the total costs.
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Figure 5.14: Sensitivity analysis of the NPV to the variation of the glycerol conversion, for the
integrated glycerol biorefinery SC based upon a single plant located in Germany. NPV, Sales,
total cost, APV and tFCI, represented in dark blue, grey, yellow, green and orange, respectively.

SC structure changes from the optimal one by adding the epichlorohydrin production.
Furthermore, from the break-even point on, the increase in sales due to increased

production capacity does not compensate the extra costs incurred, leading to low net
earnings, and corresponding low APV. Additionally, the fixed capital investment (tFCI,
orange line) increases greatly, finally heading to a vast decline in NPV. The SC structure
identified through scenario A2, corresponding to approximately total conversion of the



5.5 Results and Discussion 115

Germany	
(30%) GermanyC

Scenario Supplier(s) Plant	site(s)	
location

Product(s)

SA

LA

Market(s)Transported	
(kton/y)

572	kton/y

98	kton/y

Germany

Germany

Epi 158	kton/y Germany

142	kton/y Netherlands

97	kton/y Belgium

3	kton/y Italy

Figure 5.15: SC structure of the integrated glycerol biorefinery located in Germany obtained at
the break-even point between costs and revenue.

glycerol available, it has also been presented previously in Figure 5.9. Therefore, by
analyzing Figures 5.8, 5.9 and 5.15 one can see that the SA production capacity is at its
maximum limit in all three SC structures. It is then followed by an expansion on the
LA production capacity when moving from scenario A1 towards scenario A2, where it
also reaches its maximum capacity. Therefore, there is an investment in the production
of other value added products (epichlorohydrin, acrolein and PHB) to attain the total
conversion of glycerol inflow, where the optimal configuration leads to highly negative
NPV.

Sensitivity analysis of the NPV to the product prices

In this section, a sensitivity analysis of the NPV value was performed so as to understand
the potential effect of price variation on the projects economic feasibility and overall prof-
itability. Therefore, Figure 5.16 presentes the results corresponding to a price variation
of - 50% to 150% of the original prices applied for the products on which the supply chain
is primarily based upon, the SA and LA.

As observed in Figure 5.16, the NPV fluctuates with the price variation in all scenarios
tested. Common to all cases is the fact that, when the SA and LA prices crash to 50%, as
expected and previously explained, the SC structure turns heavily to the production of
PHB and epichlorohydrin, being the products with the higher selling price and relatively
high demand. However, important to note is that the least affected scenario is scenario
A1, due to the fact that its SC structure is based upon the single-plant (in Germany)
having the lowest flexibility. However, scenario B2 is the one that shows to be the most
impacted by price fluctuation, showing to be more flexible and capable of adapting to
changes in external conditions. Thus, when facing high selling prices of SA and LA,
B2 reacts with by expanding the production capacity, thus modifying the SC structure
from Figure 5.12, replacing the production of PHB and epichlorohydrin by additional
production (and distribution) of LA in Germany, France and the Netherlands.



116 5 Supply chain design: the GlyThink model development and application

-20 

-15 

-10 

-5 

0

5

10

15

20

25

0.50 0.75 1.00 1.25 1.50

N
PV

 (M
M

$ 
x1

03 )

% of the LA and SA prices

B1 B2 A1 A2

Figure 5.16: Sensitivity analysis of the NPV to the variation of LA and SA prices, with a range
of variation from 50% to 150% of the original prices.

The impact of potential government incentives

In this section, the impact of government incentives on the economic feasibility and the
obtained SC structure is analyzed. Furthermore, the cases where there is total conversion
of glycerol, corresponding to scenario A2 and B2, are here re-tested under conditions
involving potential government incentives. In Table 5.10 a summary of the scenarios
analyzed in this work is presented. However, the NPV obtained with the revenue neutral
incentive (A2.1) for the single-plant SC when converting the total glycerol available (A2.1)
is still highly negative and the structure obtained is identical to the SC structure presented
in Figure 5.9. This is thereby demonstrating that converting such an amount of glycerol
in a single plant is not economically feasible, even when considering potential government
incentives, due to the fact that the production, investment and logistic costs are very high
when compared to the revenue attained. Furthermore, the tax exemption incentive is not
suitable to be applied in this case (A2.2) due to the fact that the total yearly costs are
always higher than the revenue, which leads to a situation with zero taxable income on
which tax should be paid.

Furthermore, a meaningful improvement of the NPV is detected when applying both
incentives to the multi-plant SC structure when the total glycerol is being converted (B2.1
and B2.2). Here it is observed that, as expected, the tax exemption incentive leads to
higher NPV. The obtained SC structure for B2.1 is identical to the one for scenario B2
presented in Figure 5.12. The SC structure corresponding to the scenario B2.2 is different,
and presented in Figure 5.17. The latter differs significantly from B2 by moving the
production of epichlorohydrin from France to Germany and moving the PHB production
from Germany to France (satisfying this market instead). For the glycerol conversion
obtained at the break-even point, both incentives (C.1 and C.2) lead to positive NPV,
which is evidence that the government support could be fundamental for the growth of a
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Table 5.10: Summary table of the scenarios tested to highlight the effect of potential government
incentives.

Scenarios NPV (×103MM$) Products SC structure
A1 1.66 LA, SA Figure 5.8

A2 -10.2 LA, SA, Acro, PHB, Epi Figure 5.9

A2.1 -7.58 LA, SA, Acro, PHB, Epi Figure 5.9

A2.2 - - -

B1 6.12 LA, SA Figure 5.11

B2 0.45 LA, SA, Acro, PHB, Epi Figure 5.12

B2.1 3.54 LA, SA, Acro, PHB, Epi Figure 5.12

B2.2 4.22 LA, SA, Acro, PHB, Epi Figure 5.17

C.1 1.00 LA, SA, Epi Figure 5.16

C.2 1.22 LA, SA, Epi Figure 5.16

robust bio-based industry. The SC structures obtained for C.1 and C.2 are identical to the
SC structure obtained at the break-even point as represented in Figure 5.15. However, on
the longer term, as the past experience with lignocellulosic biofuels industry has shown,
for a bio-based production concept to be successful, it has to stand out on its terms
and be cost-competitive against other competing producers in the market place especially
since government incentives are temporary and may expire once the volatile political
environment changes.

Germany Germany	
(29%)

B2.2

Scenario Supplier(s) Plant	site(s)	
location

Product(s) Market(s)Transported	
(kton/y)

France

Netherlands

Italy

France
(32%)

Netherlands	
(14%)

Italy
(13%)

SA

LA

283	kton/y

68	kton/y

Germany

Germany

LA 58	kton/y Italy

SA 481	kton/y Italy

Spain Spain	
(11%)

LA 57	kton/y Spain

SA 252	kton/y Spain

SA 224	kton/y France

Epi

142	kton/y Netherlands

158	kton/y Germany

97	kton/y Belgium

3	kton/y Italy

SA 256	kton/y UK

SA 33	kton/y France

SA 572	kton/y Germany

LA 68	kton/y Germany

PHB 469	kton/y France

SA 69	kton/y Italy

Figure 5.17: SC structure of the integrated glycerol biorefinery obtained through scenario B2.2,
resulting in a combination of 5 plant site locations in Europe
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Many factors related to supply chain analysis of the glycerol biorefinery can be studied
with the help of the GlyThink supply chain model. Sensitivity analysis has indicated that
the economic feasibility and profitability of any given supply chain is subject to external
disturbances such as price volatility among others. In future studies, we will comprehen-
sively investigate the effect/impact of inherent uncertainties [15], such as demand and
product prices, volatility in glycerol feedstock price and the impact of additional plants
on the price changes, on the integrated glycerol biorefinery SC, in order to explore and
fully understand the impact of external factors on the economic and overall sustainability.

5.6 Conclusions
A novel MILP multi-period, multi-stage model (GlyThink) is proposed for the identifica-
tion of the optimal supply chain network of glycerol conversion into value-added products,
maximizing the Net Present Value as the objective function. Optimal decisions regard-
ing design, operation and strategy provided by the model include supply chain network
layout, facility location and sizing, technology selection, yearly production planning and
cross-country logistics. The GlyThink model was demonstrated on a superstructure build
based on 5 possible plant site locations, 12 available conversion technologies, 12 avail-
able separation and purification technologies, 12 unique products, and 5 markets were
identified for each one of the products. The analysis was performed over a number of
scenarios where it has been observed that: (i) throughout all scenarios tested the product
portfolio is primarily composed of SA and LA, produced in an integrated fashion which
makes sense from an engineering point of view given that they are co-products and have
relatively higher selling prices; (ii) when the model is constrained to convert as much
as possible of glycerol, the production of SA and LA reaches their maximum and the
portfolio is further supplemented with the production of PHB and epichlorohydrine; (iii)
the production cost is the most significant share of the total manufacturing costs of the
SC; (iv) a SC structure based upon a multi-plant site integrated biorefinery leads to an
improved economic performance, where the optimum is given by the combination of four
locations (Germany, France, Netherlands and Italy); and finally, (v) both government
incentives tested have shown to lead to improvement of the NPV of the SC proving that
government support could be important for the growth of a bio-based economy. All in
all, GlyThink aims at being a decision-making tool through supply chain optimization,
leading to the identification of optimal glycerol integrated biorefinery concepts at the
early-stage of design, by maximizing the economic performance and identifying the opti-
mal product portfolio, alongside with supporting the most efficient strategic and design
decisions. Furthermore, accompanying studies will investigate the economic feasibility of
the integrated glycerol biorefinery SC when taking into account the presence of inherent
uncertainties on significant input parameters, such as, among others, product demand
and product prices.



CHAPTER 6
Optimal design and planning of

sustainable glycerol-based
biorefinery supply chains under

uncertainty
In this chapter, a decision-making framework is proposed to holistically optimize the
design and planning of the glycerol-based biorefinery supply chains under uncertainties.
This framework presents a multi-layered strategy composed of different steps, and it is
strongly based on optimization techniques, detailed economic and environmental assess-
ment, and multi-objective optimization in a stochastic environment. To maximize the
business value, the economic objective is measured by the Net Present Value (NPV),
whereas the environmental performance is measured by the estimation of a Single Indi-
cator (SI) through the application of LCA methods, in this case the ReCiPe method.
The proposed framework ultimately leads to the identification of the optimal design and
planning decisions for the development of environmentally conscious biorefinery supply
chains, where the consequences of external economic uncertainties on the environmental
objective function are analyzed and the trade-offs identified. The effectiveness of the pre-
sented approach is demonstrated through its application to the realistic case study of the
glycerol-based biorefinery in Europe.

This chapter of the thesis is based upon following article:

Optimal design and planning of sustainable glycerol-based biorefinery supply chains
under uncertainty. L. Gargalo, C., Carvalho, A., Gernaey, K. V. & Sin, G. Submitted.
(2017)

Nomenclature

Subscript indices

i Components

k Technologies

x Plant site locations

t Time periods

r Reactions

q Capacity levels
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m Final markets

z Suppliers

Sets

I Set of all components i

Ip Set of components i that are final products

Irm Set of components i that are raw materials

Iut Set of components i that are utilities and/or chemicals/solvents

Ir Set of components i that are reactants

K Set of all technologies k

KGP Set of technologies k used for the purification of raw materials

Kconv
Set of technologies k used for the conversion of raw materials to final products
i ∈ Ip

KSP
Set of technologies k used for the separation and purification of final products
i ∈ Ip

X Set of plant locations x

T Set of time periods t

R Set of reactions r

Q Set of capacity levels q

M Set of final markets m

Z Set of all suppliers z

Parameters

Technology

ϕi,z,t Raw materials i available from supplier z in time period t

αi,k Specific utility consumption of i in k

θi,k,r Conversion of reactant i in technology k where r occurs

γi,k,r Reaction stoichiometry for every component i in technology k and reaction r

µi,k
Fraction of chemicals/solvents mixed with process stream of component i in
technology k

SWi,k Fraction of component i that is separated as waste in k

Technology capacity and cost

Hmin
k,q

Minimum capacity for each capacity level q for technology k

Hmax
k,q

Maximum capacity for each capacity level q for technology k

slopek,q,x Linearization constant for technology k and interval q

bk,q,x Intercept value for the linearized interval q for technology k

cmax
k

Maximum cost of technology k

wct Operating supplies cost for time period t

mst Maintenance cost for time period t

Transportation

Dp,m,t Demand of product p in market m in time period t

L Total load of transport mode per trip traveled

pR Cost of rail freight per ton.km

dx,m Distance of market m from plant site location i
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Cost related parameters

pRM Price of raw materials i ∈ Irm

pUTi Price of utilities per component i ∈ Iut

pSTp Storage price per final product i ∈ Ip

pPi Price of final product i ∈ Ip

ω Interest rate (%)

φ Tax rate (%)

γt Capital depreciation in time period t

LCA related parameters

CFi,c
Characterization factor to convert inventory of component i into impact
category c

nc Normalization factor for impact category c

λcsi,k

Emissions of component i linked to the separation and purification per unit of
reference component flow in technology k

λsli,k

Emissions of component i linked to the usage of solvents/ chemicals/ catalysts
per unit of reference component flow in technology k

λeni,k

Emissions of component i linked to the usage of energy per unit of reference
component flow in technology k

λpli,k

Emissions of component i linked to the product loss in the separation and
purification per unit of reference component flow in technology k

Decision variables

Continuous variables

F in
i,k,x,t,s

Inflow of components i into technology k in plant location x in time period t
and in scenario s

Fi,k,x,t,s
Outflow of components i from technology k in plant location x in time period t
in scenario s

Ui,k,x,t,s
Flow of utilities i added in technology k in plant location x in time period t in
scenario s

P ri,k,x,t,s
Flow of components i produced/consumed in technology k in plant location x
in time period t

F tri,x,m,t,s
Transported flow of component i ∈ Ip from plant location x to final markets m
in time period t in scenario s

Wi,k,x,t,s
Flow of components i separated as waste in technology k in plant location x in
time period t in scenario s

RawMi,z,x,t,s

Flow of raw materials i from supplier z to plant location x in time period t in
scenario s

LCIi,t Life cycle inventory of component i in time period t

Fb,k,x,t
Flow reference of product b being manufactured in unit k in plant x in time
period t

F in
g,k,x,z,t

Inflow of glycerol g from supplier z into the pre-treatment unit k in plant x in
time period t

Costk,x,t Cost of technology k in plant location x in time period t

Ck,q,x,t Cost of technology k in each capacity interval q in time period t

h′
k,q,x,t

Disaggregated flow rate variable of technology k with capacity interval q in
time period t

Integer variables

Tx,m,t,s
Number of trips performed by truck from plant site x to markets m in time
period t in scenario s

Tz,x,t,s
Number of trips performed by truck from supplier z to plant site x in time
period t in scenario s
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Binary variables

yk,q,x,t =1 if technology k with capacity q is installed in location x in time period t

Auxiliary variables for the objective function

NP V Net Present Value

CFt,s Cash flow in time period t in scenario s

NEt,s Net earnings in time period t in scenario s

F CIk,x,t Fixed capital investment of technology k in plant location x and time period t

CDt,s Capital depreciation in time period t in scenario s

Sc Impact category c

SI Single indicator for environmental assessment

b Representative of all 1st variables

bs Representative of all 2nd variables

6.1 Introduction

As discussed in the Introduction section of this thesis, the primal objective function used
for the design and planning of biorefinery supply chain networks under uncertainties is
based on economic metrics. In the works where both the economic and environmen-
tal objectives are present and tested under uncertainties, the environmental indicator is
only given by CO2 emissions. Among these, the most frequently used are single-period
optimization problems, maximizing the total profit or minimizing the total costs. More-
over, studies covering the full supply chain including design and planning decisions all
the way from the feedstock supplier, technology and capacity selection, and delivery to
the final markets, are limited. Therefore, our contribution arises from these identified re-
search gaps, by providing a holistic multi-level decision-making framework, strongly based
on optimization techniques, detailed economic and environmental assessment, and multi-
objective optimization under stochastic environment. The proposed integrated framework
ultimately leads to the identification of the optimal design and planning decisions for the
development of environmentally conscious biorefinery supply chains, where the conse-
quences of external economic uncertainties on the economic and environmental objective
function are analyzed and the trade-offs identified.

The remainder of the chapter is organized as follows. Section 6.2 introduces and
describes in detail the framework proposed in this work for the design and planning of
glycerol supply chains. The results and the discussion are presented in Section 6.3. Lastly,
key conclusions are drawn and ‘take home’ messages are formulated in Section 6.4.
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6.2 Framework for design and planning of supply chains

under uncertainty
The main goal of this work is to identify and critically analyze the optimal integrated
glycerol-based biorefinery supply chain for the valorization of glycerol into high value-
added products. Therefore, in this section, the integrated framework for the design,
planning and analysis of glycerol-based biorefinery supply chains under uncertainties is
proposed and presented in Figure 6.1.
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Figure 6.1: Framework for optimal early-stage design and planning of biorefinery supply chains
under uncertainty.
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6.2.1 Step 1: Problem statement, data collection and management

In this step of the methodology, the problem is identified by stating the goals, objectives
and the scope of the study. Glycerol is an immediate by-product of the biodiesel industry,
being produced independently of the type of raw material used for the biodiesel manu-
facture. Since it is nowadays a surplus product, with low market prices, it may lead to a
potential environmental problem as it cannot be directly disposed into the environment
[15]. Thus, in this work, the aim is to optimize the supply chain of the glycerol-based
biorefinery, which is defined by a three-echelon SC (supplier-plant-market) as presented
in Figure 6.2. It includes five stages and they are as follows: 1) transportation of crude
glycerol from the biodiesel production plants to the glycerol conversion plant site(s); 2)
glycerol purification process; 3) process of glycerol conversion into value added products;
4) product separation and purification process; and, 5) distribution of the products to the
final markets.

……
…
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plant sites, z 

Markets, m
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Crude 
Glycerol

… …

Separation 
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& 

purification 
of the final 
products

Figure 6.2: Three-echelon glycerol-based biorefinery supply chain (suppliers-plants-markets).

As stated, the objective of this study is to maximize the Net Present Value, while
accounting for the environmental impact associated with the glycerol-based integrated
biorefinery supply chain under uncertainties, by determining the design and planning
decision variables. Furthermore, a key aspect is how to assess the alternatives in the de-
sign space also regarding environmental considerations. In this work, the single indicator
is used as comparison metric, which is estimated based upon the LCA principles. As
described in the literature review (Introduction section), its calculation follows the four
main LCA steps [107]. In this study, the boundaries of analysis for the LCA are limited to
the sphere of the supply chain defined in Figure 6.2, which includes the 5 stages described.
Correspondingly, the required data to estimate the environmental impact categories is
collected, which consists of the mass and energy balances for all the operations included
in the system boundaries [226]. In summary, the data concerning the characterization of
technologies, logistics and characterization factors of LCA is collected and the superstruc-
ture reflecting all possible alternatives is generated. Therefore, this is the main input for
the next step of the proposed methodology.
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6.2.2 Step 2: Deterministic formulation

To address the optimal design and planning of the glycerol-based biorefinery supply chain,
a multi-period, multi-stage and multi-product Mixed Integer Linear Programming opti-
mization model, called GlyThink has been proposed in chapter 5. In this step, the Gly-
Think model is extended to include the environmental impact assessment calculations.
The complete description of the model and the corresponding mathematical formulation
is presented in chapter 5, section 5.2 and 5.3. As stated, in this work, the GlyThink
model is extended to include the estimation of the environmental impact. The math-
ematical description of the life cycle assessment of the SC (formulated in this chapter)
is firstly obtained by estimating the life cycle inventory of the SC activities/operations,
whose related emissions can be expressed as a function of continuous decision variables
of the model. Thus, the energy consumption, chemicals, solvents and catalysts used are
cataloged and quantified, alongside with wastes released to the environment. The mathe-
matical description of the SC activities and operations as shown in Figure 6.2 is presented
in Eq. 6.1.

LCIi,t =
Z∑
z

X∑
x

K∑
k

λtr,i ·
F in

g,k,x,z,t

L
· 2 · Dz,x · AvCons+

Z∑
z

X∑
x

K∑
k

(
λcsi,k + λsli,k + λeni,k

)
· F in

g,k,x,z,t+

X∑
x

K∑
k

λeni,k · Fb,k,x,t+

T∑
t

X∑
x

K∑
k

(
λcsi,k + λsli,k + λeni,k + λpli,k

)
· Fp,k,x,t+

X∑
x

Ip∑
i

M∑
m

λtr,i · F tri,x,m,t

L
· 2 · Dx,m · fc,

∀i ∈ Ip ∧ k ∈ K ∧ q ∈ Q ∧ x ∈ Xz ∈ Z ∧ t ∈ T ∧

(6.1)

In this equation λtr,i, λcsi,k
, λsli,k

, λeni,k
and λpli,k

represent the life cycle inventory
entries (released emissions) per stage related to the flow of the component used as refer-
ence. For example, λeni,k

represents the emissions of component i linked to the usage of
energy per unit of reference component flow in technology k at plant x in time t. The
remaining details of the parameters are described in the nomenclature section. The next
step is to convert the gathered data into a meaningful group of environmental impact
categories. This is achieved by using damage models that connect the emissions to their
consequent environmental damage.

Sc =
Ic∑
i

LCIi × CFi,c (6.2)
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Consequently, in this study, these are then normalized and weighted in order to be
aggregated into a single indicator (single indicator, SI).

SI =
C∑
c

Sc · wc (6.3)

where, wc are the weighting factors. Since the LCIA method has been decided upon
in the Step 1 of the methodology, the CFi,c and the wc values are then correspondingly
selected.

The output of this step is the deterministic solution of the extended GlyThink model
which will be used for comparison with the model solution after the superstructure reduc-
tion performed in the next step of the framework.

6.2.3 Step 3: Superstructure reduction

The aim of Step 3 of the methodology is to decrease the complexity of the optimization
problem in order to decrease the computational effort, so that a stochastic model can be
run. This is attained by reducing the superstructure that will be further handled and opti-
mized through stochastic modeling (in Step 4). To this end, the first stage is to select the
sources of uncertainty that one knows, through literature research and/or expert knowl-
edge on similar problems, that might affect significantly the feasibility and optimality of
the network. In this study, the input sources that might carry uncertainty are categorized
into endogenous or exogenous sources, where endogenous refer to process design and tech-
nical performance, while exogenous stands for all parameters that the engineer do not
control or predict in advance. The former might be derived from the data collection step,
if data is obtained from different sources, for example regarding the estimation of the
fixed capital investment. The exogenous sources of uncertainty are given by the intrinsic
variability, such as price forecast and market demands, among others. After identifying
the potential sources of uncertainty, the impact of the propagation of input uncertainties
to the model outputs of interest, such as the economic objective function and the environ-
mental criteria, is quantified. This is achieved through a comprehensive scenario-based
sensitivity analysis, which applies the extended deterministic model presented in Step 2.
Analyzing the influence of the input variation of the uncertain parameters on the: (i)
the objective functions (economic -NPV and environmental- LCA); and, (ii) SC design,
one can ascertain a set of SC structures (links) that are consistently not selected under
extreme variation of the parametric uncertainties. In this way, the superstructure can be
reduced by removing the links that are not utilized, leaving only the links corresponding
to the SC structures that are most frequently selected. Henceforth, the outcome of this
step is twofold: (i) the identification of parameters that have high impact on the model
outputs (uncertainty domain); and, (ii) a reduced superstructure obtained by eliminating
the links that are not used when subject to extreme variation of uncertainty factors.
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6.2.4 Step 4: Planning and assessment under uncertainty

This part of the methodology intends to provide the user with a tool to deal with inherent
uncertainty by explicitly incorporating it into the decision-making. To this end, in step
4.1 NS samples are generated that represent NS possible future uncertain events; in step
4.2, the two-stage stochastic model is developed; and, in step 4.3, a thorough assessment
is proposed in the form of three solution approaches for the decision under uncertainty
(S1, S2 and S3).

6.2.4.1 Step 4.1: Monte Carlo technique

The sources of uncertainty identified in the step 3 as being the ones having more effect on
the model outputs and SC structures, are now represented in terms of probability distri-
bution functions (e.g. normal, log-normal, uniform, etc.), with characteristic parameters
(e.g. mean and standard deviation for normal distribution). When possible, the probabil-
ity density functions are built upon historical data. However, this information is often not
available in the early stage of process design, especially regarding new biotechnological
routes. Therefore, in these circumstances, expert knowledge is used, where typical ranges
of variation are inferred and uncertainty classes are assigned. Furthermore, possible cor-
relation between the input sources of uncertainty are analyzed, and if present they are
defined by estimating the pairwise covariance from an historical data set. Henceforth, the
uncertainty domain obtained in step 3 is used as input data for the Monte Carlo sampling,
where Latin Hypercube sampling with Iman and Conover rank correlation control is used,
leading to a set of samples (representing future equally probable uncertain events). This
set of samples is employed as discretization points to approximate the probability integral
in the objective function of the optimization problem under uncertainty presented in the
next step of the framework.

6.2.4.2 Step 4.2: Stochastic mathematical formulation - 2S-GlyThink model

In this step of the framework, uncertainty is explicitly incorporated by reformulating the
extended version of the GlyThink model chapter 5 developed in Step 2, into a two-stage
stochastic optimization problem, called 2S-GlyThink. Decisions concerning the design and
planning of the biorefinery supply chain are made in two stages: the 1st stage decisions
(’here-and-now’) are taken before the exact realization of uncertainty; and the 2nd stage
decisions are made after the realization of uncertainty (’wait-and-see’), being therefore
adjustable to its occurrence, also called recourse or corrective actions. In this work, the
1st stage decisions are the initial production capacities of the plants and their capacity
expansions over the time horizon, thus directly associated with the fixed investment of
the project which has to be taken in the beginning of the time horizon. The 2nd stage
decisions consist of planning decision variables, such as inflow of raw materials, production
levels and flow of products to the market sinks, and they are depicted in Figure 6.3.
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Figure 6.3: Exemplification of the planning decisions as 2nd variables to be identified through
solving the 2S-GlyThink model.

To achieve this, the 2S-GlyThink model is formulated as a multi-period, multi-product
and multi-stage (three-echelon) MILP, targeting at maximizing the NPV of the corre-
sponding SC structure. The following sections describe in length the variables and con-
straints of the 2S-GlyThink model. The mathematical formulation of the 2S-GlyThink
model, is developed so as to allow the flow delivered between the suppliers and plant site
locations, production levels, and flows transported to the markets, and associated costs
to change with time and with uncertain event realization. The model constraints are
grouped into 1st stage constraints that include (6.4) to (6.13) and 2nd stage constraints
which includes constraints (6.14) to (6.23). The economic objective function is presented
in Eq. (6.25). The definitions of the sets, variables and parameters are given at the
beginning of this chapter.

1st stage constraints
A binary variable, yk,q,x,t, is introduced in constraints (6.4) and (6.5) to impose the
selection of technologies k, with capacity level q, in biorefinery location x, and time
period t.

X∑
x

yk,q,x,t ≥ 1, ∀k ∈ K ∧ q ∈ Q ∧ t ∈ T (6.4)

X∑
x

yk,q,x,t ≤ Nx, ∀k ∈ K ∧ q ∈ Q ∧ t ∈ T (6.5)

where yk,q,x,t is equal to 1 if technology k with capacity level q is built at location x
and time period t; and corresponds to the total number of plant site locations available
for the construction of the biorefineries. Constraint (6.4) and constraint (6.5) states that
at least one and at most Nx locations can be simultaneously selected for the construction
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of the biorefinery(ies). Also, as stated in constraint (6.6), if at time period t, technology
k with capacity level q is selected to be built at plant site location x, then it is assumed
that it must be selected/open during all time periods greater than t.

yk,q,x,t+1 ≥ yk,q,x,t, ∀k ∈ K ∧ x ∈ X ∧ q ∈ Q ∧ t ∈ T − 1 (6.6)

The convex hull technique has been used to linearize the power law equation for
the estimation of the fixed capital investment, as proposed in chapter 5. The obtained
algebraic equations are as follows.

Q∑
q

yk,q,x,t ≤ 1, ∀k ∈ K ∧ x ∈ X ∧ t ∈ T (6.7)

Q∑
q

h′
k,q,x,t = 1

NS
·

NS∑
s

Ip∑
i

Fi,k,x,t,s, ∀s ∈ NS ∧ i ∈ Ip ∧ k ∈ K ∧ x ∈ X ∧ t ∈ T (6.8)

Hmin
k,q · yk,q,x,t ≤ h′

k,q,x,t ≤ Hmax
k,q · yk,q,x,t, ∀k ∈ K ∧ q ∈ Q ∧ x ∈ X ∧ t ∈ T (6.9)

Ck,q,x,t = bk,q,x · yk,q,x,t + slopek,q,x · h′
k,q,x,t, ∀k ∈ K ∧ q ∈ Q ∧ x ∈ X ∧ t ∈ T (6.10)

Ck,q,x,t ≤ cmax
k · yk,q,x,t, ∀k ∈ K ∧ q ∈ Q ∧ x ∈ X ∧ t ∈ T (6.11)

FCIk,x,t = 6.7 ·
Q∑
q

Ck,q,x,t, ∀q ∈ Q ∧ k ∈ K ∧ x ∈ X ∧ t ∈ T (6.12)

C0 =
X∑
x

K∑
k

FCIk,x,t=1 +
T∑
t

[
X∑
x

K∑
k

FCIk,x,t −
X∑
x

K∑
k

FCIk,x,t−1

]
,

∀k ∈ K ∧ x ∈ X ∧ t ∈ T

(6.13)

Firstly, only one segment q per technology k at location x in time period t can be
selected, as presented in Eq. (6.7). In Equation (6.8), the continuous variable representing
the flow rate in k is disaggregated for each segment q, h′

k,q,x,t. This is set to be the
expected average of the total flow of components leaving technology k, at location x and
in time period t, over the range of uncertainties s ∈ NS. The disaggregated variable
representing the cost, Ck,q,x,t is estimated as presented in Eq. (6.10). Lastly, upper
and lower limits are set for the disaggregated variables as presented in (6.9) and (6.11)
for the flow and cost, respectively. For all other remaining instances, the Boolean and
binary variables are false and 0, respectively. Therefore, as the upper boundaries are given
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by constraints (6.9) and (6.11) for the segments not selected, the associated continuous
disaggregated variables are 0; and, the variables that can have values higher than 0 are the
ones obtained for the disjunctive term selected. Furthermore, Eqs. (6.8) and (6.12) state
that the continuous variables are equal to the disaggregated variables for the disjunctive
term chosen, and their relationships are described through these disaggregated variables
by constraints (6.8), which is only active when the related binary variables are 1.

2nd stage constraints
The mass balance must hold for each node within the network. Therefore, the overall
mass balance for each component i in technology k at plant site location x at each time
period t and scenario s is set by Eq. (6.14). For each technology k at site location x

in time period t and scenario s, the inflow of i (F in
i,k,x,t,s) plus the amount of i produced

(Pri,k,x,t,s), must be equal to the amount of i separated as waste (Wi,k,x,t,s) plus the
output flow (Fi,k,x,t,s) to be delivered to the customers or to be stored in location x.

Z∑
z

RawMi,z,x,t,s +
Kconv∑

k

P ri,k,x,t,s + αi,k ·
K∑
k

Ui,k,x,t,s =

KGP ∪KSP∑
k

Wi,k,x,t,s +
KSP∑

k

Fi,k,x,t,s,

∀i ∈ I ∧ x ∈ X ∧ t ∈ T ∧ s ∈ NS

(6.14)

Furthermore, in Eq. (6.14), Kconv represents the set of technologies used for the con-
version of raw materials into value-added products, and finally KSP , represents the set
of technologies to be used for the separation and purification of the above-mentioned
products. Also, αi,k is the fraction of a chemical or utility mixed with the process stream
(iIut), being 1 if the utility/chemical/solvent i is directly added to the flow stream (e.g.
direct steam, and 0 otherwise (e.g. cooling water). The amount of component i produced
or consumed in the conversion technologies, Pri,k,x,t, is given in Eq. (6.15).

Kconv∑
k

Pri,k,x,t,s =
Kconv∑

k

R∑
r

Rct∑
rct

γi,k,r · θrct,k,r · F in
rct,k,x,t,s,

∀i ∈ I ∧ x ∈ X ∧ t ∈ T ∧ s ∈ NS

(6.15)

where, γi,k,r and θrct,k,r represent the reaction stoichiometry for each component i

in technology k and reaction r, and conversion of key reactant i in technology k where
r occurs, respectively. The total amount of chemicals or utilities consumed/added i is
obtained as a fraction of the total flow in the technologies k and it is given in Eq. (6.16)
as follows.

K∑
k

Ui,k,x,t,s = µi,k ·
I /∈Iut∑

i

F in
i,k,x,t,s,

∀i ∈ Iut ∧ x ∈ X ∧ t ∈ T ∧ s ∈ NS

(6.16)
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where, µi,k is the fraction of chemicals/solvents i ∈ Iut mixed with the process stream in
technology k.

In constraint (6.17), the inflow of component i ∈ Irm into plant site location x coming
from supplier z in time period t and in scenario s, RawMi,z,x,t,s, is enforced to be lower
or equal to the total amount of i available from supplier z in time period t (ϕi,z,t).

X∑
x

RawMi,z,x,t,s ≤ ϕi,z,t, ∀i ∈ Ifeed ∧ z ∈ Z ∧ t ∈ T ∧ s ∈ NS (6.17)

X∑
x

Z∑
z

RawMi,z,x,t,s ≤
Z∑
z

ϕi,z,t, ∀i ∈ Ifeed ∧ t ∈ T ∧ s ∈ NS (6.18)

Ifeed∑
i

RawMi,z,x,t,s ≤ L · Tz,x,t,s, ∀x ∈ X ∧ z ∈ Z ∧ t ∈ T ∧ s ∈ NS (6.19)

Furthermore, constraint (6.18) imposes that the maximum flow of raw material i

delivered to all locations x coming from all suppliers z cannot exceed the total amount of
raw materials i available from all suppliers z in time period t. Finally, constraint (6.19)
sets the total flow of raw materials to be delivered to the plant site locations x to be lower
or, at most, equal to the available transportation capacity over the planning time period.

Constraint (6.20) sets the maximum limit of product being transported to the markets
m, Ftrp,x,m,t,s, as the maximum amount of product p being produced at plant site x in
time period t and scenario s, where the Sti,k,x,t,s is the amount of product i to be stored
at location x, in time period t and scenario s. Constraint (6.21) enforces that, the amount
of product p delivered to a market m must not exceed the demand in that same market
m. Furthermore, constraint (6.22) imposes that the maximum flow of product p delivered
to all markets m cannot exceed the total demand of product p in all markets m. Finally,
constraint (6.23) sets the product flow delivered to the markets (Ftrp,x,m,t,s) to be lower
or, at most, equal to the available transportation capacity over the planning time-period.

Ftri,x,m,t,s +
K∑
k

Sti,k,x,t,s ≤
K∑
k

Fi,k,x,t,s,

∀i ∈ Ip ∧ x ∈ X ∧ m ∈ M ∧ k ∈ KSP ∧ t ∈ T ∧ s ∈ NS

(6.20)

X∑
x

Ftri,x,m,t,s ≤ Dp,m,t,s, ∀i ∈ Ip ∧ m ∈ M ∧ t ∈ T ∧ s ∈ NS (6.21)

X∑
x

M∑
m

Ftri,x,m,t,s ≤
M∑
m

Dp,m,t,s, ∀i ∈ Ip ∧ m ∈ M ∧ t ∈ T ∧ s ∈ NS (6.22)

Ftrp,x,m,t,s ≤ L · Tp,x,m,t,s, ∀x ∈ X ∧ m ∈ M ∧ t ∈ T ∧ s ∈ NS (6.23)
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Furthermore, the environmental impact assessment calculations presented in Eqs.
(6.1) to (6.3) are reformulated in order to include uncertainty in the material flows, but
it is not necessary to repeat the equations here.

Objective Function
As previously mentioned, in this work, the measure of economic performance is given by
the Net Present Value (NPV ) as the objective function of the supply chain, and it is
presented as follows. The NPVs is estimated as the sum of yearly cash-flows discounted
to the present year, at a specific interest rate (ω), as presented in Eq.(6.24).

NP Vs =
T∑
t

CFt,s

(1 + ω)t
=

T∑
t

NEt,s

(1 + ω)t
− C0 = AP Vs − C0 =

T∑
t

[
1

(1 + ω)t
· [St,s − P Ct,s − Lct,s − T rCt,s − SCt,s − W Ct−

[φ · (St,s − P Ct,s − Lct,s − T rCt,s − SCt,s − CDt)]
]

+C0 ·
(

sv

(1 + ω)t
− 1
)

, ∀s ∈ NS

(6.24)

where, St,s and PCt,s, represent the revenue (product sales) and production cost, re-
spectively; Lct,s, TrCt,s, and SCt,s, represent the labor costs, transportation cost and
storage cost, respectively; CDt and WCt, represent the capital depreciation and working
capital, respectively. TIt,s and C0 stand for the taxable income and total initial capital
investment.

Finally, the NPVs is fully given by Eq.(6.25).

NP Vs =
T∑
t

[
(1 − φ)
(1 + ω)t

·

[
X∑
x

M∑
m

KSP∑
k

Ip∑
i

F tri,x,m,t,s · pPi,s −
X∑
x

KP G∑
k

Ifeed∑
i

F in
i,k,x,t,s · pRMi,s

−
X∑
x

Kconv∪KSP∑
k

Ip∑
i

Ui,k,x,t,s · pUTi − op · ns · avSalt ·
X∑
x

KP G∑
k

Ifeed∑
i

F in
i,k,x,t,s

−
X∑
x

M∑
m

Ip∑
i

[
Ti,m,x,t,s ·

(
2 · dx,m · (fc + trMa) +

(
2 · dx,m

sp
+ lut

)
· dw

)]
X∑
x

M∑
m

Ip∑
i

[
Tz,x,t,s · (2 · dz,m · (fc · pF + trMa) +

(
2 · dz,m

sp
+ lut

)
· dw)

]
− 2 · trGEt

−
X∑
x

KSP∑
k

Ip∑
i

Sti,k,x,t,s · pSti − (wct + mst) · C0

]

+ φ

(1 + ω)t
· γk,x,t · C0

]
+
(

sv

(1 + ω)t
− 1
)

· C0

(6.25)
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6.2.5 Step 4.3: Solution under uncertainty
In this step of the methodology, three solution approaches for an informed decision un-
der uncertainty are given to decision-maker (S1, S2 and S3). These solutions are based
upon: (S1) the stochastic single-objective optimization maximizing the NPV of the SC;
(S2) detailed analysis, by mapping the SC structures of all solutions obtained from the
implementation of the Monte-Carlo method; and, (S3) the stochastic multi-objective op-
timization, maximizing the NPV and minimizing the environmental impact of the supply
chain.

Solution S1 – stochastic single-objective optimization

The main goal of the mathematical formulation is to maximize the expected value of the
Net Present Value (NPV) as presented in Eq. (6.26). The MILP formulation can be
expressed as follows:

maximize
b,bs,y

E[NPV (b, bs, y, θ)]

subject to (6.4) to (6.23)
(6.26)

where, b represents 1st stage decision variables, bs represents 2nd stage variables (plan-
ning) that are scenario dependent and y stands for the binary variables. θ is the vector of
uncertain data and the E[NPV (b, bs, y, θ)] is the expected value of the objective function
NPV over the θ space. The estimation of the expected value of the objective function (in
this case, NPV) requires the evaluation of a multidimensional probability integral. Thus,
in large problems the evaluation of this integral might result in a heavy and complex
procedure, requiring a high computational effort. Therefore, a common way to tackle
this in stochastic programming is based upon the Monte Carlo sampling method for the
approximation of the expected value of the objective function called Sample Average Ap-
proximation [227]. Where, as above-mentioned, the generated set of samples are employed
as discretization points to approximate the probability integral. This is exemplified in Eq.
(6.27), where the expected value of the objective function E[NPV] is approximated by the
expected value of the resulting distribution. Where prs is the probability of occurrence
of a certain scenario s and NS is the total number of scenarios s.

E[NP V (b, bs, y, θ)] ≈
NS∑

s

(prs · NP V (b, bs, y, θs)) = 1
NS

NS∑
s

NP V (b, bs, y, θs) (6.27)

Therefore, the optimization problem is finally expressed as,

maximize
b,bs,y

E[NPV (b, bs, y, θ)] = 1
NS

NS∑
s=1

NPV (b, bs, y, θs)

subject to (6.4) to (6.23)

(6.28)

Given the (fixed) sample s to NS, the function E[NPV (b, bs, y, θ)] is deterministic, thus
deterministic optimization algorithms can be used to solve the problem.
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6.2.5.1 Solution S2 – SC structure mapping and analysis

In this solution approach, the consequences of named uncertainties on the SC structure
and, on the objective function, are mapped and analyzed. To this end, the deterministic
optimization problem formulated in Step 2, is solved for each one of the samples generated
in Step 4.1, as described by the problem formulation presented below in Eq.(6.29). This
falls under the ’wait and see’ category of optimization problems, since it is built on
the premise that the decision-making will wait and be made upon the realization of the
uncertain event. A distribution of the objective function values is achieved, i.e. a different
objective function value is obtained for every sample, to which corresponds to a certain
design and planning SC structure. The application of this solution approach enables the
analysis of the robustness of the SC structure, which provides information about how
sensitive a selected SC structure is against future uncertainties.

maximize
B,y

NPVs, ∀s ∈ NS

subject to (6.4) to (6.23)
(6.29)

6.2.5.2 Solution S3 – multi(bi)-objective

The overall bi-objective formulation can be expressed as follows:

maximize
b,bs,y

E{[NPV ]; −SI}

subject to (6.4) to (6.23)
(6.30)

The solution of this problem is given by a set of Pareto alternatives representing the
optimal trade-offs between the two objectives, in order to manage the environmental
consequences. In this study, these solutions are obtained via ϵ-constraint method as
defined in Ehrgott (2004) [228] that leads to the solution of the following single-objective
function for various instances of the parameter ϵ:

maximize
b,bs,y

E{[NPV ]}

subject to (6.4) to (6.23)
SI ≤ ϵ

ϵmin ≤ ϵ ≤ ϵmax

(6.31)

where ϵmin and ϵmax represent the lower and upper limits within which the ϵ must fall
are given by the optimization of each separate objective function (economic-NPV and
environmental- LCA). Therefore, ϵmin is obtained following the mathematical formulation
presented below in Eq. (6.32).

(
b, bs, y

)
= argmin

b,bs,y
{SI}

subject to (6.4) to (6.23)
(6.32)
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where,
(
b, bs, y

)
stand for, 1sst stage decision variables, 2nd decision variables and binary

variables that correspond to the optimal SC structure when maximizing the expected
value of SI as objective function. The ϵmax is obtained when maximizing the expected
value of NPV of the supply chain, and it is obtained through the formulation presented
in Eq. (6.33). (

b̄, b̄s, ȳ
)

= argmax
b,bs,y

{E[NPV ]}

subject to (6.4) to (6.23)
(6.33)

where,
(
b̄, b̄s, ȳ

)
stand for, 1sst stage decision variables, 2nd decision variables and binary

variables that correspond to the optimal SC structure when maximizing the expected
value of the economic objective function (NPV).

6.3 Results & Discussion

6.3.1 Step 1: Problem definition, data collection & management
This work, aims to identify the optimal supply chain of the glycerol-based integrated
biorefinery in Europe under multi-level uncertainties. To this end, the starting point is
to characterize the superstructure of alternatives obtained in chapter 5 for the glycerol
conversion to chemicals and biofuels. However, in this study, this superstructure is focused
to only include bio-based chemicals, based upon a price screening and based upon the fact
that, through deterministic assessment, biofuels have not been selected as an economically
sustainable alternative for the glycerol valorization [15]. Therefore, the superstructure
of alternatives used is presented in Figure 6.4. Included in this network are: several
alternative suppliers, plant site locations, technologies (and corresponding products), and
demand sinks. The products included in the superstructure are: polyhydroxybutyrate
(PHB), lactic acid (LA), succinic acid (SA), 1-2-propanediol (1,2-PDO), 1,3-propanediol,
(1,3-PDO), acrolein (Acro) and epichlorohydrin (Epi). The corresponding processing
technologies are described in Table 6.4. The total glycerol availability in Europe is 4.10×
106 ton/year as discussed in chapter 5. The suppliers are given by the top-5 major
producers (and consumers) of biodiesel currently in Europe, and they are: Germany,
France, The Netherlands, Spain and Italy (see chapter 5). The glycerol available per
supplier is given in chapter 5 Table 5.4. The market demands for the above-mentioned
products were collected from reports, publications and public communications. To be as
much representative of the European market as possible, a total of 5 top markets were
identified for each product and the corresponding demands were collected. They are
reported in chapter 5, Table 5.6. The product prices needed for the economic analysis are
presented in Table 5.8. Furthermore, regarding the data required for the environmental
assessment, the ReCiPe [229] was the life cycle impact assessment method (LCIA) selected
[54], thus all impact categories and characterization factors needed to convert the material
flows into impact categories are defined, along with the normalization and weighting
factors.
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Figure 6.4: Superstructure representing the alternatives in the design space.

Table 6.4: Process description for all the alternatives in the superstructure.
Symbol Product Description

kC1 & kSP1
Polyhydroxybutyrate
(PHB)

Glycerol fermentation by an engineered strain of C. necator
to Polyhydroxybutyrate (PHB) + blending w/ surfactant
solution + hypochlorite digestion centrifugation + spray
drying [141]

kC2 & kSP2 Lactic acid (LA)
Glycerol fermentation by an engineered strain of E.coli to
Lactic acid (LA) + reactive extraction w/ TOA and DCE
[121]

kC3 & kSP3 Succinic acid (SA)
Glycerol fermentation by an engineered strain of B. succinis
producens DD1 to Succinic acid (SA) + reactive extraction w/
TOA and 1-octanol [106], [205]

kC4 & kSP4
1,3-propanediol
(1,3-PDO)

Glycerol fermentation by an engineered strain of K
pneumoniae to 1,3-propanediol (1,3-PDO) + reactive
extraction w/ isobutyraldehyde hydrophilic alcohol/salt
mixture (ethanol/K2HP O4) [162],[139],[140]

kC5 & kSP5
1,2-propanediol
(1,2-PDO)

Sequential processes of dehydrogenation-hydrogenation via
hydroxyacetone to 1,2-propanediol (1,2-PDO) [142] [143]

kC6 & kSP6 Acrolein Glycerol dehydration [148]

kC7 & kSP7 Epichlorohydrin (Epi) Glycerol hydrochlorination to Epichlorohydrin (Epi) [206]

6.3.2 Step 2: Deterministic solution
The deterministic optimization problem defined in Step 2 is here solved. As proposed in
chapter 5, two scenarios were built to understand the influence of constraining the model
to a certain production capacity. They are described as follows:

• Scenario B1: leads to the optimization of the supply chain network allowing the model
to identify a combination of best plant site locations (allowing the selection of more than
one plant), by also determining the optimal amount of glycerol converted into value added
products, so that NPV is maximized;

• Scenario B2: the optimization problem set in B1 is further constrained to convert the total
amount of glycerol available (4.10×106 ton/year), also allowing the selection of more than
one plant, so that NPV is maximized.
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The main characteristics of the optimal SC structures obtained for B1 and B2 are
described in Table 6.6, also presented in chapter 5 in Figures 5.11 and 5.12, respectively.

Table 6.5: Details on the deterministic solutions: B1 and B2.
Scenarios NPV (MM$ ×103) SI SC structure main characteristics

B1 6.115 0.085

Plant site locations: Germany, France, The
Netherlands, Italy

Suppliers: Germany, France, The Netherlands, Italy

Products: SA, LA

Markets served:

LA – Germany, France, Italy

SA – UK, Spain, Germany, Italy, France

Qglyc = 2.13x103 kton/year

B2 0.452 0.257

Plant site locations: Germany, France, The
Netherlands, Italy, Spain
Suppliers: Germany, France, The Netherlands, Italy,
Spain

Products: SA, LA, PHB, Epi

Markets served:

LA – Germany, Italy, Spain

SA – UK, Spain, Germany, Italy, France

PHB – Germany

Epi – Germany, The Netherlands, Belgium, Spain

6.3.3 Step 3: Superstructure reduction

This step has a two-fold objective: (i) to identify the parameters that have the highest
impact on the objective function; and, (ii) to provide the user with a reduced superstruc-
ture by analyzing the SC structures obtained when subjecting the supply chain model
to extreme variations of the input parameters, so as to reduce the problem complexity.
To this end, a scenario-based sensitivity analysis is performed based on the deterministic
single-objective optimization of the NPV. The sources of uncertainty identified are based
on most common uncertainty sources studied in the works presented in the literature
reviewed in Table 1.3. Therefore, in this work, the sources of uncertainty under analysis
are: product demand, glycerol price, product price, and technology evolution (FCI and
glycerol conversion). According to the sources of uncertainty identified, a relevant set of
scenarios was built as presented in Figure 6.5.

The set of scenarios represented in Figure 6.5 were developed so as to analyze the
impact of extreme variation of the parameter values on the (a) objective function- NPV;
(b) consequences of external techno-economic uncertainties on the environmental impact
- SI; and, (c) SC structure and product portfolio selected. The scenarios description is as
follows:

• Pp-Sc1: variation of 0.50 and 1.50 of the original price value regarding all products, to
represent extreme cases of price variation.

• Pp-Sc2: variation of 0.50 and 1.50 of the original price value regarding the most frequently
selected products: SA, LA, PHB and Epi. To represent extreme cases of price variation of
the products selected in the deterministic solution of B2.
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Figure 6.5: Scenarios analyzed through the deterministic sensitivity analysis.

• Pp-Sc3: variation of 0.50 and 1.50 of the original price value regarding the most frequently
selected products: SA and LA. To represent extreme cases of price variation of the products
selected in the deterministic solution of B1.

• D-Sc1: variation of 0.50 and 1.50 of the original demand value regarding all products, to
represent extreme cases of demand variation.

• D-Sc2: variation of 0.50 and 1.50 of the original demand value regarding the most fre-
quently selected products: SA, LA, PHB and Epi. To represent extreme cases of price
variation of the products selected in the deterministic solution of B2.

• D-Sc3: variation of 0.50 and 1.50 of the original demand value regarding the most fre-
quently selected products: SA and LA. To represent extreme cases of price variation of
the products selected in the deterministic solution of B1.

• D-Sc4: variation of demand following a normal distribution [230], [231] (with 10% standard
deviation and original value as expected value) for the twenty years of plant life time. This
represents a more realistic scenario of demand variation along the plant life time.

• FCI-Sc1: variation of 0.50 and 1.50 of the original FCI value regarding all products, to
represent extreme cases of price variation.

• FCI-Sc2: variation of 0.50 and 1.50 of the original FCI value regarding the most frequently
selected products: SA, LA, PHB and Epi. To represent extreme cases of price variation of
the products selected in the deterministic solution of B2.

• FCI-Sc3: variation of 0.50 and 1.50 of the original FCI value regarding the most frequently
selected products: SA and LA. To represent extreme cases of price variation of the products
selected in the deterministic solution of B1.

• Conv-Sc1: variation of 0.50 and 1.50 of the original conversion value of all products, to
represent extreme cases of price variation.

• Conv-Sc2: variation of 0.50 and 1.50 of the original conversion value of the most selected
products: SA, LA, PHB and Epi. To represent extreme cases of price variation of the
products selected in the deterministic solution of B2.

• Conv-Sc3: variation of 0.50 and 1.50 of the original conversion value of the most selected
products: SA and LA. To represent extreme cases of price variation of the products selected
in the deterministic solution of B1.
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• Pglyc-Sc1: variation of 0.50 and 1.50 of the original crude glycerol price, in order to
represent extreme cases of price variation.

• pFuel-Sc1: variation of 0.50 and 1.50 of the original fuel price, used for the transportation
by truck.

The deterministic sensitivity analysis results obtained by the single-objective optimiza-
tion maximizing the NPV of the supply chain are graphically represented in Figure 6.6
for B1 conditions, and in Figures E.1 and E.2 for B2 conditions. Furthermore, all corre-
sponding SC structures were analyzed, and a summary of the main characteristics of the
scenarios that show the highest variation of the NPV are summarized in Table 6.6 below.
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Figure 6.6: Sensitivity analysis of the NPV (left), SI (right) and corresponding SC structure to
parameter variation, corresponding to B1 conditions.

Hence, significant insights on the consequences of these techno-economic uncertainties
on the NPV, SI and corresponding SC structures are discussed as follows.

Influence on the NPV
The analysis of Figures 6.6 (left hand side) and E.1, shows that the sources of uncertainty
that have the highest impact on the NPV are: product price, product demand and FCI.
In more detail, by analyzing the NPV of the scenarios Pp-Sc1, Pp-Sc2 and Pp-Sc3 under
B1 and B2 conditions, it can be observed that the Pp-Sc1 and Pp-Sc2 scenarios have
approximately the same impact, i.e., the variation of all prices and the variation of prices
of the products SA, LA, Epi and PHB lead to the same results, which supports the
fact that in fact these are the most relevant products to be included in the design space.
Similar conclusions are reached by looking at the scenarios where the demand and the
FCI are under parametric variation.

Influence on the SI
As can be observed in Figures 6.6 (right hand side) and E.2 for scenarios corresponding to
B1 and B2, respectively, through the analysis of the SI, both product price and demand
uncertainties have a significant impact on the SC structures, and on the corresponding
SI, under B1 and B2 conditions. Whereas in case of B1 conditions, the variation of
the FCI only affects the NPV (Figure 6.6), where there is no variation on the SI of the
corresponding solutions, i.e., the SC structure obtained through deterministic analysis is
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robust regarding the effects of the variation of the FCI. However, under B2 conditions,
when varying the FCI corresponding to the most frequently selected products (observed
in FCI-Sc1 and FCI-Sc2, on Figure E.2), the SI is slightly changed. This is due to the fact
that, to compensate for the higher fixed investment costs of these products, and to fulfill
the demand for full conversion of the available glycerol, the production of SA and LA
is decreased and the production of PHB increased, which leads to higher environmental
impact. The augmented environemental impact is due to the higher consumption of
utilities in the separation and purification stages of the PHB production, leading to higher
carbon footprint and terrestrial acidification potential. This is explained by the fact that
production of PHB is a heavier consumer of utilities than the production of SA, LA and
Epi. All in all, higher variation of the NPV and SI is observed in scenario B2 conditions
(Figure E.1 and E.2), since in this case the production is constrained to convert the total
amount of glycerol available in Europe at a given year; while, in scenario B1 (Figure 6.6,
left and right hand side) the production can be adjusted to the uncertain events in order
to reach an optimal solution.

Table 6.6: Summary of the main characteristics of the SC structures corresponding to the highest
variation of NPV. Where Pp and D stand for product price and demand, respectively.
Scenarios ∆θ NPV (MM$ ×103) SI SC structure main characteristics

Pp-Sc1+B1

-50% -7.329 0.084596

Plant site locations: Germany, France, Netherlands, Spain
Suppliers: Germany, France, Netherlands, Spain
Products: LA, SA
Markets served:
LA – Germany, France, Spain
SA - Germany, France, Spain, UK, Italy

50% 22.129 0.30779

Plant site locations: Germany, France, Netherlands, Spain, Italy
Suppliers: Germany, France, Netherlands, Spain, Italy
Products: LA, SA, Epi, PHB
Markets served:
LA - Germany, France, Spain, Italy
SA - Germany, France, Spain, UK, Italy
PHB – Germany
Epi – The Netherlands, Belgium

Pp-Sc1+B2

-50% -21.01 0.25621

Plant site locations: Germany, France, Netherlands, Spain, Italy
Suppliers: Germany, France, Netherlands, Spain, Italy
Products: LA, SA, Epi, PHB
Markets served:
LA – Germany, Italy, Spain
SA - Germany, France, Spain, UK, Italy
PHB – Germany
Epi – Germany, The Netherlands, Belgium, Spain

50% 22.129 0.30779

Plant site locations: Germany, France, Netherlands, Spain, Italy
Suppliers: Germany, France, Netherlands, Spain, Italy
Products: LA, SA, Epi, PHB
Markets served:
LA – Germany, Italy, Spain, France
SA - Germany, France, Spain, UK, Italy
PHB – Germany
Epi –The Netherlands, Belgium
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Table 6.7: cont. Table 6.6.
Scenarios ∆θ NPV (MM$ ×103) SI SC structure main characteristics

D-Sc3 + B

-50% 3.05 0.04235

Plant site locations: France, Netherlands
Suppliers: France, Netherlands
Products: LA, SA
Markets served:
LA – Germany, France
SA - Germany, The Netherlands, UK, Spain, Italy

50% 8.136 0.11161

Plant site locations: Germany, France, Netherlands, Spain, Italy
Suppliers: Germany, France, Netherlands, Spain, Italy
Products: LA, SA
Markets served:
LA – Germany, France, Italy, Spain
SA - Germany, France, Spain, Italy

D-Sc3 + B2

-50% -6.152 0.3778

Plant site locations: Germany, France, Netherlands, Spain, Italy
Suppliers: Germany, France, Netherlands, Spain, Italy
Products: LA, SA, PHB, Epi
Markets served:
LA – Germany, Spain
SA - Germany, France, Spain, Italy, UK
PHB – Germany, France
Epi – Germany, The Netherlands, Belgium, Spain, Italy

50% 5.069 0.12077

Plant site locations: Germany, France, Netherlands, Spain, Italy
Suppliers: Germany, France, Netherlands, Spain, Italy
Products: LA, SA, Epi
Markets served:
LA – Germany, Spain, Italy, Spain
SA - Germany, France, Spain, Italy
Epi – Germany, The Netherlands, Belgium, Spain, Italy

Based upon the previous analysis, the superstructure has been reduced based on the
following considerations: (i) the set of products selected is constant (see Table 6.6) and
it is composed of SA, LA, PHB and Epi, thus the links corresponding to other products
(technologies and markets) have been excluded; also, (ii) by analyzing the SC structures in
Table 6.6, one can see a pattern of the most frequently selected links between production
plants and markets. These are the ones kept in the reduced superstructure. Thus, having
these facts into consideration, the initial superstructure as presented in Figure 6.4 has
been reduced to the one presented in Figure 6.7. Furthermore, since the products and the
corresponding links identified as optimal in the deterministic solution for scenarios B1 and
B2 have been kept as part of the reduced superstructure (see Table 6.5), the deterministic
solution corresponding to B1 and B2 scenarios after superstructure reduction are equal
to the SC structures obtained for B1 and B2 before the superstructure reduction (which
characteristics have been reported in Table 6.5). In this way, validating the reliability of
the reduced superstructure obtained, which will be the starting point of the step 4.



142 6 Optimal design and planning of sustainable glycerol-based biorefinery supply chains under uncertainty

Products

Crude 
glycerol 

suppliers
Markets

z1

z2

z3

z4

PHB

LA

SA

Epiz5

x1

x2

x3

x4

x5

Germany

Italy

UK

France

Spain

Netherlands

Belgium

Glycerol 
conversion 

plants

Italy

Figure 6.7: Reduced superstructure obtained through scenario sensitivity analysis (original su-
perstructure is represented in Figure 6.4.)

6.3.4 Step 4: Planning and assessment under uncertainty

Step 4.1: Monte Carlo technique

The uncertain data identified through deterministic sensitivity analysis as having high
impact on the economic and environmental performance are considered for further analysis
in the following steps. The application of this technique has been described in detail in in
[15]. For the uncertainty on the prices, the premise is that the product price will vary in
the future in the same manner as it did in the past. To this end, historical price data trends
of the products under consideration have been surveyed over the past 10 years and used
to construct the historical price distributions for each product [15]. Also, the presence
of correlation between the price data was investigated and quantified by estimating the
pairwise covariance. For the uncertainty on the product demand, it is assumed that
it follows a normal distribution with 10% standard deviation [230], [231], along the 20
years of the biorefinery plant life time. Furthermore, through Latin Hypercube Sampling
NS future uncertainty events were generated, where the rank correlation control method
proposed by Iman Conover is used in order to reflect the correlation between the uncertain
parameters in the generated future scenarios.

Step 4.2: Solution under uncertainty

Solution S1 - stochastic single-objective optimization

In solution S1, the problem corresponding to the formulation of the stochastic single-
objective optimization presented in Eq. (6.28) is solved for different sources of uncertainty.
As identified in Step 4.1, the uncertainty domain to be tested is composed of the product
price and product demand uncertainties. Therefore, scenarios were built to test the effect
of sources of uncertainty, independently and combined, on the economic objective function,
under B1 and B2 conditions. The generated scenarios are the following:
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• Pp + B1: uncertainty on the product price, under B1 conditions.

• Pp + B2: uncertainty on the product price, under B2 conditions.

• D + B1: uncertainty on the product demand, under B1 conditions.

• D + B2: uncertainty on the product demand, under B2 conditions.

• Pp + D + B1: uncertainty on the product demand and product price, under B1 conditions.

• Pp + D + B2: uncertainty on the product demand and product price, under B2 conditions.

The results obtained by solving the stochastic single-objective optimization for each one
of the scenarios above are depicted in Figure 6.8 and reported in Table 6.8, and compared
to the deterministic solutions.
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Figure 6.8: Results of the solution S1, where the E[NPV] is estimated through SAA for different
uncertainty conditions. The triangles represent the deterministic solutions.
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Table 6.8: Stochastic solutions for the scenarios generated (S1).
Scenarios NPV (MM$) SI SC structure

Pp + B1 6011 0.0846

Plant site locations: Germany, France, The Netherlands, Italy
Suppliers: Germany, France, The Netherlands, Italy
Products: SA, LA
Markets served:
LA – Germany, France, Italy
SA – UK, Spain, Germany, Italy, France
Qglyc= 2.13×103 kton/year

D + B1 3286.1 0.04459

Plant site locations: Germany, France
Suppliers: Germany, France
Products: LA, SA
Markets served:
LA – Germany, France
SA - Germany, France, Spain, UK, Italy

Pp + D + B1 3230.3 0.04458 Same as scenario (D + B1)

B1 det. 6115 0.085

Plant site locations: Germany, France, The Netherlands, Italy
Suppliers: Germany, France, The Netherlands, Italy
Products: SA, LA
Markets served:
LA – Germany, France, Italy
SA – UK, Spain, Germany, Italy, France
Qglyc= 2.13×103 kton/year

Pp + B2 373.6 0.25611

Plant site locations: Germany, France, The Netherlands, Italy, Spain
Suppliers: Germany, France, The Netherlands, Italy, Spain
Products: SA, LA, PHB, Epi
Markets served:
LA – Germany, Italy, Spain
SA – UK, Spain, Germany, Italy, France
PHB – Germany
Epi – Germany, The Netherlands, Belgium, Spain

D + B2 -5493.7 0.34542

Plant site locations: Germany, France, Netherlands, Spain, Italy
Suppliers: Germany, France, Netherlands, Spain, Italy
Products: LA, SA, PHB, Epi
Markets served:
LA – Italy, Spain
SA - Germany, France, Spain, Italy, UK
PHB – Germany, France
Epi – Germany, The Netherlands, Belgium, Spain, Italy

Pp + D + B2 -5525.8 0.34542 Same as scenario (D + B2)

B2 det. 452 0.257

Plant site locations: Germany, France, The Netherlands, Italy, Spain
Suppliers: Germany, France, The Netherlands, Italy, Spain
Products: SA, LA, PHB, Epi
Markets served:
LA – Germany, Italy, Spain
SA – UK, Spain, Germany, Italy, France
PHB – Germany
Epi – Germany, The Netherlands, Belgium, Spain

The results presented in Figure 6.8 and Table 6.8 have shown that the demand has
a high impact on the objective function (NPV), and that the product price uncertainty
further decreases the NPV of the project. In the B1 case, since the model has an addi-
tional degree of freedom compared to scenario B2, the model is flexible enough to adjust
the production in face of uncertainty. In the present case, the demand uncertainty leads
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to a decrease in the production and accordingly a decrease in the environmental impact.
Whereas under B2 conditions, the NPV drops significantly when compared to the de-
terministic counterpart not being flexible with regards to the inflow of glycerol. Thus,
under demand uncertainty, the optimal NPV is obtained when increasing the production
of PHB and correspondingly decreasing the production of SA and LA. This is accompa-
nied by an increase in the environmental impact since the production of PHB is a heavier
consumer of utilities at the separation and purification stages than the other products.
Furthermore, it can be observed that following the realistic scenario when both sources
of uncertainty play a role in the market environment (scenario Pp + D+ B1 and B2 in
Table 6.8 and Figure 6.8), the NPV of the project decreases, for both B1 and B2. In
summary, since the combination of both uncertainties composes a realistic scenario, and
given that it has high impact of the model outcomes, this will be the scenario that will
be analyzed in detail in the next solution approach, S2.

Solution S2 – SC structure mapping and analysis

In this step, a deterministic optimization problem corresponding to the solution of the
problem formulated in Eq. (6.29), is solved for each one of the scenarios generated
by the Monte Carlo sampling performed in Step 4.1. Immediate consequences of the
data uncertainty on the decision-making problem are statistically analyzed. The result
is composed of a distribution of 50 optimal (NS) NPV and SI values (points) that are
mapped and statistically analyzed. Every point solution of sample s is characterized by
an SC structure, reflecting design and planning decisions. Moreover, so as to decrease
the computational effort (by reducing the number of equations), the SI calculation is
reduced to include only two of the categories of impact. To this end, a significance test
was performed so as to pinpoint which are the two categories that weigh more in the
single indicator (SI) for both the B1 and B2 deterministic cases (see Appendix E, Figure
E.6). Therefore, the scenario where both product price and product demand are sources
of uncertainty is here analyzed in more detail through S2, under conditions corresponding
to scenarios B1 and B2. The results regarding the B2 scenario are presented in Appendix
E, Figures E.3 and E.4. The results concerning scenario B1 are discussed in detail below.

In Figure 6.9 the optimal NPV obtained for the optimization problem resulting of
each Monte Carlo sample is presented. Comparing to the B1 base case (deterministic)
it is observed that the probability of NPV being lower than the deterministic B1 result
is 98% (Figure 6.10), where the average (3.28 × 103 MM$) corresponds to 46% of the
deterministic NPV (see Table 6.5). This is due to the adjustment of the planning decisions
to the uncertainty realization characterizing the scenarios s, where the market demand
instability and reduced product price, leads to a lower optimal inflow of glycerol converted
(1120 kton/y), when compared to the optimal nominal inflow identified in the B1 base
case (2126 kton/y) as presented in Figure 6.9. Also, as depicted in Figures 6.9 and
6.10, the maximum NPV reached is approximately 80% higher than the minimum NPV
reported. This mainly results from the increase in the product market price in the markets
when moving from left to right in Figure 6.9, which also justifies the slight change in the
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markets served. Furthermore, as above-mentioned, there is a significant difference between
the expected deterministic NPV and the stochastic solution, thus carrying economic risk.
Therefore, it is critical to consider the inherent presence of uncertainties and its potential
effect on the optimal SC structure and corresponding inflow of crude glycerol.
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Figure 6.9: NPV variation for all scenarios along with the highlighting of some significant SC
structures and their characteristics for B1.

The alternative that presents a high probability of having a positive NPV and thus
having the project being approved, even under market uncertainty, is scenario B1. This
is due to the fact that B1 has an extra degree of freedom when compared to B2, where
B1 is capable of adjusting the inflow of glycerol, and thus the production, according to
the market environment, which leads to positive NPV’s. In contrast, the SC structures
obtained under B2 conditions are economically unfeasible for all uncertainty realizations
(see Figure E.3), as expected from the results obtained by applying solution approach S1.

Therefore, a more detailed analysis was performed into the topology of the obtained
solutions under B1 conditions. The main characteristics and the frequency of selection
are presented in Table 6.9. It is observed that the topology-1 (Top-1) is selected in 96%
of the events, which is characterized by having the plants located in Germany and France
for the production of SA and LA. These production plants are also characterized by the
maximum level of production capacity (q=3), which is stable in 90% of the uncertainty
realizations (see Figure E.5). Thus, Top-1 is considered to be a robust solution under
the stochastic conditions. This conclusion is further supported by the results obtained
through solution approach S1.
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Figure 6.10: Cumulative probability distribution of the NPV and frequency of selection of the
corresponding SC structures for B1.

Table 6.9: SC topology and corresponding frequency of selection.
Topologies Frequency

of selection Technology Suppliers Plant site
location Markets

Top-1 96%
Glycerol conversion to SA
and LA (kC3 & kSP3 in

Table 6.4) (q=3)

Germany:

LA - Germany

Germany, Germany SA - UK, Germany, Italy

France France France:

LA - France

SA - Spain, France, Germany, Italy

Top-2 4%
Glycerol conversion to SA
and LA (kC3 & kSP3 in

Table 6.4) (q=3)

Germany:

LA - Germany, France

Germany, Germany SA - Germany, France, Italy

The
Netherlands

The
Netherlands The Netherlands:

LA - Germany

SA - UK, Spain, France, Germany

Overall, this theoretical analysis performed on the glycerol-based biorefinery supply
chain (based on the SC description provided in the step 1 of the framework), suggested
that an economically feasible project could be obtained based upon a decentralized setup
of plants located in Germany and France for the production of SA and LA. This cor-
responds to an expected NPV of approximately 3.28 ×103 MM$, under stochastic con-
ditions, for the conversion of 2.13 ×103 kton of glycerol/year. Therefore, economies of
scale are observed when comparing to the analysis carried out in chapter 3, which led
to the production of LA as the best alternative in a small scale biorefinery, converting
only 10 kton glycerol/year, with a NPV of 11.2 MM$. Noteworthy is that, in case the
user acquires better or more sound information, the model developed in chapter 5, and
further extended in this chapter, is flexible and can be solved for different or additional
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constraints, reflecting other market environments and/or business models.
Furthermore, it is important to note that the stress test performed on the prices of

LA and SA, where these crash to 50% of their original value, has demonstrated that it
might have drastic consequences on the feasibility of the project, potentially leading to
a negative NPV (see Table 6.6). This further emphasizes the need to better understand
the correlation between the product price patterns and demand, considering the increase
or decrease products availability in the market. Hence, more investigation into the dy-
namics between the availability of a product in the market and its consequent price is
recommended as future work, by, for example, applying the recognized theory of supply
and demand, as the first step towards understanding how market prices are defined and
how they shape production and consumption decisions.

Solution S3 – stochastic multi(bi)-objective optimization

The aim of this solution approach, as formulated in Eq. (6.31), is to identify the existing
trade-offs between the economic (NPV) and environmental (SI) performances, in this
way providing control over the variability of the SI. The first step is to estimate the lower
bound and the upper bound for the SI. The lower bound (ϵmin) is obtained by solving
Eq. (6.32). The SI upper bound (ϵmax) is obtained by solving Eq. (6.33), where SI
corresponds to the optimal NPV obtained for the B1 scenario under product price and
product demand uncertainties. The optimization problem, as stated in Eq.(6.31) was
then solved for several instances between ϵmin and ϵmax values, leading to the Pareto
solutions portrayed in Figure 6.11.

All the optimal solutions that take into account the NPV and SI objectives lie on
the Pareto curve. Therefore, the solutions above the curve in Figure 6.11 are subopti-
mal solutions, and all solutions below this curve are infeasible. The trend of this Pareto
curve reveals a clear tradeoff, where a gain in NPV leads to a lower environmental per-
formance. This is due to the fact that, NPV is increased when the inflow of glycerol and
corresponding production is raised. The increase in the production leads to a higher envi-
ronmental burden since the production emissions are augmented. As it can be observed
in Figure 6.11, the minimum environmental burden is obtained for the conversion of 8
kton/y, producing 5 kton/y of epichlorohydrin, with NPV of -124 MM$. The stochastic
maximum leads to the production of SA and LA, by consuming 1121 kton/y with NPV
of 3230 MM$. Additionally, the deterministic Pareto front is also shown. As expected,
the NPV of the deterministic set of solutions is slightly higher than under uncertainty.
This is especially noticed between the maximum NPV achievable through deterministic
and uncertainty conditions, where the deterministic maximum dominates the stochastic
solution by approximately 90%.

Furthermore, an additional analysis was carried out in order to understand the vari-
ation of the NPV and the SI when the optimization problem is moving from the B1
conditions to B2 conditions, and results are presented in Figure 6.12. The ϵmax,2 is the SI
corresponding to the maximum NPV obtainable under stochastic B2 conditions, where
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Figure 6.11: Pareto front of optimal solutions, highlighting the trade-offs observed between the
NPV and SI under demand and product price uncertainties. ϵmax,1 represents the maximum
value of SI obtained maximizing the NPV of the supply chain, under B1 conditions. ϵmin is the
SI corresponding to the minimum SI obtainable under B1 conditions.

the problem is constrained to convert the total glycerol available in Europe in a given
year.

As observed in Figure 6.12, there is a strong trend when moving from ϵmax,1 to ϵmax,2,
where the NPV of the optimal SC structure is declining along with an increase in the SI
values. This is due to the fact that the amount of glycerol converted is increasing, thus
moving away from the optimal value corresponding to the ϵmax,1. This is accompanied by
significant changes in the optimal SC structure given by the increase in the SA and LA
production, along with the production of Epi and PHB, whose production is increased
until all glycerol is converted (optimal SC structure at B2 conditions). Moreover, as
expected from previous solutions S1 and S2, there is a significant reduction on the NPV
from the deterministic to the stochastic solution, where the deterministic solution is always
above the stochastic solutions depicted. This is a clear argument on the importance of
not overlooking the inherit presence of uncertainties, especially regarding the market
uncertain circumstances.
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Figure 6.12: Set of solutions corresponding to the monitoring of the environmental impact,
under product price and product demand uncertainty. ϵmax,1 represents the maximum value of
SI obtained maximizing the NPV of the supply chain, under B1 conditions. ϵmax,2 stands for
the SI corresponding to the maximum NPV obtainable under B2 conditions.

6.4 Conclusions

A novel decision-making framework to holistically optimize the design and planning of
the glycerol-based biorefinery supply chains under uncertainties is proposed in this work.
The set of optimal decisions regarding design, operation and strategy provided by the
multi-layered framework, including supply chain network layout, facility location and siz-
ing, technology selection, yearly production planning and cross-country logistics. The
framework was demonstrated on a superstructure build based on 5 possible plant site
locations, 7 available conversion technologies, 7 available separation and purification tech-
nologies, 7 unique products, and 5 markets were identified for each one of the products.
The results have shown that: (i) market uncertainties highly affect the economic and
environmental performances of the optimal SC structure when compared to the nominal
threshold; (ii) under market uncertainty, the economic performance is maximized for the
case where the SC is flexible and not constrained to convert all glycerol available (scenario
B1); (iii) the set of SC structures obtained under stochastic conditions are robust,where,
with 96% frequency of selection, the optimal SC structure is characterized by a decentral-
ized production of SA and LA in the production plants located in Germany and France,
despite given future uncertainties; and, (iv) the multi-objective optimization results in
Pareto-optimal curves that reveal the tradeoff between the economic and environmental
dimensions of the glycerol-based biorefinery supply chains with higher economic profit
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associated with increased environmental impact. All in all, the proposed framework is
expected to serve as a decision-making tool through supply chain optimization, leading to
the identification of the optimal design and planning decisions for the development of en-
vironmentally conscious glycerol biorefinery supply chains. Furthermore, despite the fact
that it has been developed for the optimal design and planning of glycerol-based biorefin-
ery supply chains, the proposed framework is flexible and adaptable to other biorefineries
similar in nature.
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CHAPTER 7
Overall conclusions &

suggestions for future research
For each chapter in this thesis, the conclusions and relevant future work are described. In
this last chapter, these considerations are brought together, along with suggestions that
could be considered to extend and further improve this work in the future.

Part I: Process design, optimization and analysis

A methodology for the environmental evaluation of early stage process concepts (E3BU)
under uncertainties has been developed in Chapter 2 to assess and rank potential bio-
conversion routes for the valorization of glycerol. This methodology, built upon the LCA
principles, deals with the inherit presence of uncertainties in the life cycle inventory (LCI)
and in the life cycle impact assessment (LCIA). This is achieved by (i) firstly, proposing
a data validation algorithm to provide consistent mass fluxes, and therefore reduce the
uncertainty in the data collection step (LCI); and, (ii) secondly, by using the Monte Carlo
technique to bring on board the inbuilt uncertainty on the characterization factors used
for the conversion of material flows into environmental burdens (LCIA). This enabled
the establishment of sound quantitative thresholds for the comparison of alternatives un-
der uncertainties, which has proven to be a consistent and robust way of ranking the
alternatives across different weighting systems. Following this methodology, lactic acid
has ranked best, thus being the most environmentally friendly solution among the set
of alternatives used as starting point (ethanol, succinic acid, 1,3-PDO, PHB, propionic
acid and lactic acid). Therefore, it has been shown that the methodology extended the
state-of-the-art by providing a robust analysis at the conceptual design stage of biotech-
nological processes by considering and dealing with uncertainties in the decision-making.
Although built to aid/support the challenges faced in this thesis while developing process
understanding concerning the conversion of glycerol into bioproducts, this methodology
is applicable and it provides valuable insights on the assessment of new biotechnological
routes at the concept screening stage. Furthermore, this methodology could be further
improved and expanded to include the characterization of other sources of uncertainty
such as uncertainty regarding the efficiency of separation and purification technologies,
in order for a more accurate and robust screening of alternatives.

In Chapter 3, an extended superstructure of eleven gate-to-gate possible early stage
pathways for the production of chemicals and biofuels from glycerol is evaluated in terms
of their economic feasibility. Therefore, in order to do this, a systematic methodology
for the detailed economic assessment under uncertainties has been proposed, that can



154 7 Overall conclusions & suggestions for future research

be used for all types of applications as guiding tool for robust evaluation of process con-
cepts. Where, in order to portray future scenarios, exogenous and endogenous sources of
uncertainty such as market prices (including a description of possible correlations) and
the fixed capital investment, are characterized and incorporated into the analysis. As in
Chapter 2, the Monte Carlo technique is used to propagate the uncertainties on the input
data into the model outputs, such as Net Present Value, thus enabling the estimation of
the associated economic risk through a probabilistic interpretation framework. This has
shown to be an efficient tool to rank alternatives from a gate-to-gate perspective, which
led to a top-3 list of products/processes that potentially carry lower economic risk. The
top-3 list of alternatives is composed of the conversion of glycerol into lactic acid, suc-
cinic acid and 1,2-PDO. Furthermore, as risk is a direct effect of variability/uncertainty, a
global sensitivity analysis was performed so as to better understand the quality of the es-
timated NPV. This global sensitivity analysis is thereby helping to better assess economic
feasibility under a broad range of uncertainties and ultimately give valuable suggestions
to manage/decrease this variance and the corresponding risk of potential business failure.
It was observed that economic feasibility, and its variance, highly depends upon: (i) the
product selling price; and, (ii) both magnitude and sign of the correlation among input
uncertainties. Additionally, the results have also shown that there are effective strategies
for the mitigation of the economic risk associated to the project of converting glycerol into
value added products, such as (i) the development of a multi-product plant, allocating
the production depending on the market environment, such as in the case of co-producing
lactic and succinic acid; and, (ii) by installing the glycerol conversion plant as an add-on
into a running biodiesel plant. Therefore, as to further improve/advance this work, a
comprehensive analysis on potential synergies would be of significant value, for example
by (a) exploring potential relationships between the glycerol conversion module and lo-
cal running plants; (b) applying mass and energy integration; and, (c) using ’in house’
by-products with low economic value, such as H2, as energy carriers. In this way one
could possibly identify promising solutions that can potentially enhance the bioindustry’s
robustness and overall sustainability.
The framework presented in Chapter 4 has been built as a natural extension of the method-
ologies proposed in previous chapters. The target of this approach is to provide an holistic
picture associated to a certain decision on a ’gate-to-gate’ dimension of analysis. To this
end, based upon the monetization of both economic and environmental risks, every alter-
native has an associated pair of coordinates which will give its position within the risk
assessment matrix. The main benefit of this approach is given by the visual aid enabled by
the risk assessment matrix that, not only facilitates a trade-offs aware decision-making,
but also eases the communication of results between different management levels. A
further enhancement of this work could be achieved by coupling this tool with multi-
ple criteria decision making (MCDM), which is a flexible method used in of operational
research that deals with finding optimal results in complex scenarios including several
criteria, conflicting objectives and performance indicators [232].
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Part II: Towards the sustainable design of biorefinery supply chains

In Part II, the boundaries of design and analysis are broadened so as to include the
supply/value chain in order to consolidate the knowledge on the glycerol-based biorefin-
ery. In Chapter 5, the GlyThink model was developed for the identification of the optimal
glycerol-based biorefinery supply chain, maximizing the Net Present Value as the objective
function. Therefore, GlyThink was built as a multi-period, multi-stage and multi-product
MILP model that is able to identify operational decisions, including locations, capacity
levels, technologies and product portfolio; as well as strategic decisions such as inventory
levels, production amounts and transportation flows to the final markets. The superstruc-
ture of alternatives for the conversion of glycerol to value-added products was extended
based upon Chapter 3, and the locations for the suppliers, production plants and demand
sinks are based on realistic data characterizing the European market. The results have
shown that the optimal NPV is obtained by establishing a multi-plant supply chain for
the glycerol-based integrated biorefinery, built upon four plant site locations (Germany,
France, the Netherlands and Italy). Moreover, the optimal product portfolio is strongly
based on the production of succinic acid and lactic acid, as expected from the analysis per-
formed in Chapter 3, followed by epichlorohydrin and poly-3-hydroxybutyrate (PHB). It
has also been showed that government incentives could be very important for the healthy
growth of a bio-based economy. So as to improve this work, the GlyThink model could
be further extended to allow the selection and possible combination of different trans-
portation modes. Lastly, Chapter 6 aims at providing a decision-support tool towards
the design and planning of biorefinery supply chains under uncertainties. It leads to the
identification of a set of optimal design and planning decisions for the development of
environmentally conscious biorefinery supply chains, where the consequences of external
economic uncertainties on the environmental objective function are analyzed and the po-
tential trade-offs identified. The main goal of this chapter is to identify and critically
analyze the optimal integrated glycerol-based biorefinery supply chain for the valoriza-
tion of glycerol into high value-added products. The results have mainly shown that: (i)
market uncertainties such as demand highly affect the economic and environmental per-
formances of the optimal SC structure when compared to the deterministic threshold; (ii)
the economic performance is maximized for the case where the inflow of glycerol into the
SC is flexible and according to the market environment, where the optimal is obtained for
the decentralized production of SA and LA in the production plants located in Germany
and France; (iii) there are tradeoffs between the economic and environmental dimensions
of the glycerol-based biorefinery supply chains revealed by the Pareto-optimal curves.
A suggestion for further development of this work would be to overcome the great challenge
posed by the faulty knowledge of product price and demand. A deeper understanding
of the market could be obtained by developing a price and demand forecasting model
that, through for example the use of machine learning techniques as suggested by [233],
would portray the correlation product price and demand by using historical data. Fur-
thermore, extending the superstructure by including the upstream supply chain of the
glycerol/biodiesel production in Europe would bring very interesting and strong insights
on the optimal design and strategy for the establishment of a sound symbiotic integrated
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biorefinery, for the production of biofuels and value-added bioproducts. In this way, it
would be possible to: (i) assess the impact of sources of uncertainty characteristic to the
upstream, such as biomass yield and biomass supply; and, (ii) expand the analysis to
include the valorization of additional upstream supply chain by-products. Moreover, to
move towards the sustainable development and implementation of the glycerol biorefin-
ery supply chains, the social dimension should be considered as an additional objective
function by, for example, quantifying indicators such as job creation and GDP growth.

Furthermore, despite the fact that all methods and tools derived in this thesis have
been developed to address the optimal design and planning of the glycerol-based biorefin-
ery, they are flexible and applicable to other biorefineries that are similar in nature.
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Table A.1: Database of early-stage design of glycerol-based biorefinery concepts.

Product PS
Mixing

µi,k(αi,k = 1)
(kg/kg glycerol)

Stoichiometry
γi,k(θi,k = 0.985)

(C-mol/ C-mol glycerol)

Waste
Separation

(SWi,k)

Product
Separation

(Spliti,k)
Description

Glycerol purification to
88% or/and 98%*

2 - - - - -
Esters 0.452 Methanol separation,

to be redirected to the
biodiesel process

Methanol 0.108

Glycerol 0.997

3 NaOH 0.009 -
NaOCH3 0.99

Solid settling and separa-
tionProtein/ 0.99

solids

4 - - -

esters 0.99

- - Methanol and solids sepa-
ration

Methanol 0.997

H2O 0.913

Glycerol 0.0217

NaOCH3 0.9

Ethanol 5

H20 29.7 X 0.999

- -
Glycerol bioconversion
to EtOH + separation

and dehydration

−CH8/3O − 0.0124NH3 +
0.67CH3O1/3 + 0.042CH6/4O +
0.158H2 + 0.242CO2 +
0.05CH1.8O0.5N0.25 = 0

H2O 0.999

NH3 0.0041
HSuc 0.999

CO2 0.999

H2 0.999

PHB 6

NH3 0.038
−CH8/3O − 0.115NH3 +
0.502CH2O1/2 + 0.116H2 + 0.039CO2 +
0.459CH1.8O0.5N0.25 = 0

solids 0.999

- -

Glycerol bioconversion
to PHB + H2O2

washing, evaporation
and spray drying

H2O 30.1 H2O 0.999

NaOCl 0.41 CO2 0.999

Enzyme 0.62

Lactic Acid 7

−CH8/3O − 0.009NH3 + 0.045CH2O +
0.008CH3/2O + 0.859CH2O +
0.006CH2O3 + 0.045CO2 +
0.037CH1.8O0.5N0.25 = 0

X 0.999

- -
Glycerol bioconversion

to D-lactic acid +
reactive extraction

H2O 14.2 H2O 0.999

NH3 0.003 HForm 0.999

O2 0.133 HSuc 0.999

TOA 0.0296 HAc 0.999

DCE 2.22 CO2 0.999

TOA 0.999

DCE 0.999

Succinic Acid 8

H2O 28.8 X 0.999

- -
Glycerol bioconversion

to succinic acid +
reactive extraction

NH3 0.0044
−CH8/3O − 0.0132NH3 − 0.55O2 +
0.544CH3/2O + 0.064CH2O +
0.009CH4/3O + 0.303CO2 +
0.066CH1.8O0.5N0.25 = 0

H2O 0.999

TOA 0.341 HLac 0.998

1-octanol 2.63 NH3 0.999

O2 0.341 TOA 0.9568

1-octanol 0.9568

CO2 0.999

Propionic Acid 13

H2O 11.3 X 0.999

- -
Glycerol bioconversion
to propionic acid +
reactive extraction

NH3 0.008 −CH8/3O − 0.0235NH3 +
0.7086CH2O2/3 + 0.0523CH2O +
0.088CH3/2O3 + 0.057CO2 + 0.224H2 +
0.094CH1.8O0.5N0.25 = 0

H2O 0.97

TOA 0.928 HAc 0.81

Ethylacetate 11.4 HSuc 0.998

Ethyalcetate 0.994

TOA 0.999

CO2 0.999

1,3-PDO 9
−CH8/3O − 0.014NH3 +
0.594CH8/3O2/3 + 0.112CH2O +
0.0436CH2/3H2O1/3 + 0.193CO2 +
0.276H2 + 0.0575CH1.8O0.5N0.25 = 0

X 0.999

- -
Glycerol bioconversion
to 1,3-PDO + reactive

extraction

H2O 0.999

Isobut. 8.93 HAc 0.4

NH3 0.006 EtOH 0.99

H2O 13.8 CO2 0.998

H2 0.998

Isobut. 0.998
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Table A.2: List of components.
Symbol Component CAS
comp1 glycerol (1,2,3-propenetriol) 56-81-5

comp2 glycerol -biodiesel mass allocation + only gas natural as fossil + palm oil 56-81-5

comp3 12PDO (propylene glycol) 57-55-6

comp4 acrolein 107-02-8

comp5 methylesters - biodiesel + only gas natural as fuel + palm oil 79-20-9

comp6 esters -methyacetate 79-20-9

comp7 ethanol 64-17-5

comp8 succinic acid 110-15-6

comp9 PHB 107-89-1

comp10 lactic acid 10326-41-7

comp11 13PDO 504-63-2

comp12 acetic acid 64-19-7

comp13 propionic acid 79-09-4

comp14 butanol 71-36-3

comp15 isobutanol 78-83-1

comp16 epychlorohydrine 106-89-8

comp17 formic acid 000064-18-6

comp18 methanol 000067-56-1

comp19 co2 000124-38-9

comp20 N2 7727-37-9

comp21 isobutiraldehyde 78-84-2

comp22 1-octanol 111-87-5

comp23 H2O2 7722-84-1

comp24 methane, biogenic 74-82-8

comp25 methane, fossil 74-82-8

comp26 ethylene glycol 107-21-1

comp27 formaldehyde 50-00-0

comp28 acetaldehyde 75-07-0

comp29 NH3 7664-41-7

comp30 H2 1333-74-0

comp31 Nox - N2O 10024-97-2

comp32 2,3 Butanediol 513-85-9

comp33 dichloroethane 107-06-2

comp34 NaOCl 7681-52-9

comp35 ethylacetate 141-78-6

comp36 TOA 1116-76-3

comp37 oleyc acid 112-80-1

comp38 SO2 007446-09-5
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Figure A.1: CFs sampling.



APPENDIX B
Chapter 3

Description of process alternatives

Figure B.1: Design space representation by superstructure (for details see Table B.1)

Figure B.2: Generic input-output model. Example based on the production of succinic acid from
glycerol by fermentation.
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Table B.1: Database of early-stage design of glycerol-based biorefinery concepts.

Product PS

Mixing
µi,k(αi,k = 1)

(kg/kg
glycerol)

Stoichiometry
γi,k(θi,k = 0.985)

(C-mol/ C-mol glycerol)

Waste
Separation

(SWi,k)

Product
Separation

(Spliti,k)
Description

Glycerol purification
to 88% or/and 98%*

2 - - - - -
Esters 0.452 Methanol separation,

to be redirected to the
biodiesel process

Methanol 0.108

Glycerol 0.997

3 NaOH 0.009 -
NaOCH3 0.99

Solid settling and sepa-
rationProtein/ 0.99

solids

4 - - -

esters 0.99

- - Methanol and solids
separation

Methanol 0.997

H2O 0.913

Glycerol 0.0217

NaOCH3 0.9

Ethanol 5

H20 29.7 X 0.999

- -
Glycerol bioconversion
to EtOH + separation

and dehydration

−CH8/3O − 0.0124NH3 +
0.67CH3O1/3 + 0.042CH6/4O +
0.158H2 + 0.242CO2 +
0.05CH1.8O0.5N0.25 = 0

H2O 0.999

NH3 0.0041
HSuc 0.999

CO2 0.999

H2 0.999

PHB 6

NH3 0.038
−CH8/3O − 0.115NH3 +
0.502CH2O1/2 + 0.116H2 +
0.039CO2 + 0.459CH1.8O0.5N0.25 =
0

solids 0.999

- -

Glycerol bioconversion
to PHB + H2O2

washing, evaporation
and spray drying

H2O 30.1 H2O 0.999

NaOCl 0.41 CO2 0.999

Enzyme 0.62

Lactic Acid 7

−CH8/3O − 0.009NH3 +
0.045CH2O + 0.008CH3/2O +
0.859CH2O + 0.006CH2O3 +
0.045CO2 + 0.037CH1.8O0.5N0.25 =
0

X 0.999

- -
Glycerol bioconversion

to D-lactic acid +
reactive extraction

H2O 14.2 H2O 0.999

NH3 0.003 HForm 0.999

O2 0.133 HSuc 0.999

TOA 0.0296 HAc 0.999

DCE 2.22 CO2 0.999

TOA 0.999

DCE 0.999

Succinic Acid 8

H2O 28.8 X 0.999

- -
Glycerol bioconversion

to succinic acid +
reactive extraction

NH4OH 0.0044
−CH8/3O − 2.037NH4OH −
CO2 + 1.0623CH3/2O +
0.09815CH2O + 0.06614CH4/3O +
0.0582CH1.8O0.5N0.25 = 0

H2O 0.999

TOA 0.341 HLac 0.998

1-octanol 2.63 NH3OH 0.999

TOA 0.9568

1-octanol 0.9568

CO2 0.999

Propionic Acid 13

H2O 11.3 X 0.999

- -
Glycerol bioconversion
to propionic acid +
reactive extraction

NH3 0.008 −CH8/3O − 0.0235NH3 +
0.7086CH2O2/3 + 0.0523CH2O +
0.088CH3/2O3 + 0.057CO2 +
0.224H2 + 0.094CH1.8O0.5N0.25 = 0

H2O 0.97

TOA 0.928 HAc 0.81

Ethylacetate 11.4 HSuc 0.998

Ethyalcetate 0.994

TOA 0.999

CO2 0.999

1,3-PDO 9

−CH8/3O − 0.014NH3 +
0.594CH8/3O2/3 + 0.112CH2O +
0.0436CH2/3H2O1/3 + 0.193CO2 +
0.276H2 +0.0575CH1.8O0.5N0.25 = 0

X 0.999

- -
Glycerol bioconversion
to 1,3-PDO + reactive

extraction

H2O 0.999

Isobut. 8.93 HAc 0.4

NH3 0.006 EtOH 0.99

H2O 13.8 CO2 0.998

H2 0.998

Isobut. 0.998

n-Butanol 14

NH3 −44C3H8O3 − 3NH3 + 3C4H7O2N +
18C4H10O + 4C3H82O2 +
36CO2 + 36H2 + 10H2O +
0.0575CH1.8O0.5N0.25 = 0

X 0.999

- -
Glycerol bioconversion

to n-Butanol +
vacuum stripping

H2O 1,3-PDO 0.999

CO2 0.998

H2 0.998

Isobutanol 15

H2O 4.5 −C3H8O3 + C3H4O + 2H2O = 0
−C3H4O − H2 + C3H6O = 0
CH4 − O2 + CH2O + H2O = 0
−CH2O−C3H6O+C4H6O +H2O =
0
−C4H6O − 2H2 + C4H10O = 0

- -

glycerol to propanal via
acrolein + methanol

conversion to methanal +
methanal and propanal

condensed to methacrolein +
hydrogentation of

methacrolein to isobutanol

H2 0.2 Methanol 0.999

Methanol 1 Methanal 0.999

oxygen 1.5 Propanal 0.999

Methacrolein 0.999

1,2-PDO 10
H2O 4 −C3H8O3 −2H2 +C3H8O2 +H2O =

0
H2O 0.999

- -
Sequential dehydrogenation-

hydrogenation via
hydroxiacetoneH2 0.3 C-based compounds 0.999

Acrolein 12 H2O 15

−C3H8O3 + C2HO + H2 + H2O +
CO = 0
−C3H8O3 + C3H4O + 2H2O = 0
−C3H8O3 + CO + CxHy = 0
−C3H8O3 + 3C + H2O + H2 = 0

CO 0.999
- - Glycerol dehydrationH2 0.999

C-based compounds 0.999
H2 11 H2O 0.1 −C3H8O3 −3H2O+3CO2 +7H2 = 0 CO2 0.999 - - Steam Reforming of Glycerol

over Ni/SiO2 Catalyst
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Economic model and assumptions

Discount rate

A regularly used profitability measurement/standard/benchmark is the minimum accept-
able/attractive rate of return (mar). It is a rate of earning that must be achieved by
an investment in order for it to be acceptable to the investor. The term mar, minimum
acceptable rate of return per year, can be set based on (a) the highest rate of earning
on safe investments such as corporate bonds, government bonds and loans (the reasoning
behind is that, any investment in a project must show earnings at a rate that is at least
equal to the highest safe alternative opportunity available to a company or corporation);
and, (b) the cost of capital. Then, mar is adjusted to account for the uncertainties as-
sociated with a new project. Uncertainties are related to future behavior of the overall
economy due to the uncertain future of price and demand for a particular product, and
this risk is further increased whenever most of the capital is invested in equipment and
plant construction, because the capital is not liquid, i.e. it not easily recoverable if needed.
Therefore, the practice is to adjust the mar in order for it to reflect the risk, where the
basic rate is sufficiently increased to make it attractive considering the risk, arriving at a
mar which can be used in project evaluations. Table 3 presents the suggested values for
mar, reflecting situations from medium risk to very high risk [149]. The discounted cash
flow rate of return (DCFR) is the return attained from an investment in which all cash-
flows and investments are discounted, i.e. DCFR is a measure of the maximum interest
rate that the project could pay and still break even by the end of the project life. It is
solved by setting the Net Present Value (NPV) to zero, and solving for the discount rate
that satisfies the resulting equation. Clearly, if the NPV equals zero the mar used is the
DCFR (discounted cash flow rate of return). As guidance, mar is a good starting point
because the discounted cash flow rate of return will be greater than the mar used. When
the NPV is favorable, the DCFR will necessarily be favorable and it will correspond to
the actual rate of the investment, if NPV is below zero, then the project is not favorable
and the rate of return will be lower than the minimum acceptable rate of return (mar)
[149]. In this work, the overall project to be undertaken represents the implementation
of new technologies not yet proven at a commercial scale, and therefore the project risk
is considered to be somewhere between medium to high, and so the mar is set to be 24%.

Equity, Construction Start-up time

It is assumed that the plant will be 40% equity financed, where the loan is taken for
ten years with 8% interest. Additionally, the plant is considered to be built within three
years (1 for engineering planning and two years for construction), where the principal
investment is paid in stages over these three years together with the respective interest
[152]. According to Perry and Green [234], the start-up should be approximately 25% of
the construction time, for a reasonably complex plant. In this case study, the startup-
time is 0.50 years (0.25×24 months). Moreover, a typical rate of 50% of the production
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capacity is considered to be achieved during that period, while sustaining 75% and 100%
of variable and the fixed costs, respectively.

Depreciation, Plant Life Taxes
For this analysis, to estimate the capital depreciation for the calculation of federal taxes
to be paid, the IRS Modified Accelerated Cost Recovery System (MACRS) is the most
frequently used [149], [152]. It is a combination of the declining-balance method and
the straight-line method. The declining-balance method is used until the depreciation
charge becomes less than it would be under the straight-line method, at which point
the MACRS switches to charge the same as the straight-line method [153]. The plant’s
lifetime is considered to be 20years, in which during the first 10 years of operation, no
income tax is paid since the depreciation and loan interest deductions are bigger than the
net income. After that period, the federal corporate tax rate used is 35% [152].

Capital Investment Production Cost
For currently existing technologies, like fairly old chemical processes, the comparison to
historical data is a relatively easy and reliable method to estimate capital investment
[164], [88]. However, in the case of new technologies, it presents additional challenges
since historical data are nonexistent or not accessible [164]. Moreover, when analyzing
new technologies, the latest product and raw materials prices, along with equipment and
utilities costs are mandatory [164]. In this work, we go one step further, and say that
the volatility of market prices, the inaccuracy of capital investment, errors and techni-
cal imprecisions, need also to be accounted for, when performing economic assessment
of new technologies. Regardless of the great number of uncertainties surrounding new
technologies, the basic data needed to perform an economic analysis is well-established,
which includes material and energy balances and major pieces of equipment. Production
costs are the costs required for producing a product, and they can be expressed per units
produced or on a time basis [149],[152], [164],. They are divided into variable and fixed
production costs (Table B3). Opposite to variable costs, the fixed costs are independent
of the plant capacity. The capital cost, one of the most important parts of the fixed cost,
is classified into two parts, the fixed capital investment (mostly tangibles) and the working
capital. Since the fixed-capital investment may take up to 80% of the production costs, it
may determine the economic feasibility of a certain technology. Peters, Timmerhaus and
Wets (2003) [149] described seven methods to estimate the fixed capital investment (FCI),
which vary mostly due to: (a) available detailed information; and, (b) level of accuracy
obtained with the analysis. In this work, the fixed capital investment (direct and indirect
costs) is estimated based on the factorial methodology (Table B2), which is based on
percentages of delivered equipment cost (DEq.). The DEq. is estimated by using the
power relationship (six/seven-tenths rule). This rule is widely used for approximations of
equipment and even total process costs when cost data is not available for the particular
size or capacity [149],[164]. The total capital investment (TCI) is given by the sum of
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the FCI and the working capital. Working capital is the capital invested in maintaining
plant operations, by retaining the money needed for covering for one or two months of
salaries, few months of raw materials supplies and other operating supplies. It is regu-
larly renewed with income from sales and stays at approximately the same throughout
the plant’s lifetime [152], [164],[149].

Figure B.3: NChemical Engineering Plant Cost Index (averaged over year) [235].

Table B.2: Factorial methodology for estimation of capital investment based on the delivered
equipment cost [152], [149].

Fraction of delivered equipment cost
Direct costs

Purchased equipment, E’ E’
Delivery, fraction of E’ 0.10 x E’
Subtotal: delivered equipment, DEq. (1+0.10) x E’
Purchased equipment installation 0.47 x DEq.
Instrumentation & Controls (installed) 0.36 x DEq.
Piping (installed) 0.68 x DEq.
Electrical systems (installed) 0.11 x DEq.
Buildings (including services) 0.18 x DEq.
Yard improvements 0.10 x DEq.
Service facilities (installed) 0.70 x DEq.
Total direct costs 2.60 x DEq.

Indirect costs

Engineering and supervision 0.33 x DEq.
Construction expenses 0.41 x DEq.
Legal expenses 0.04 x DEq.
Contractor’s fee 0.22 x DEq.
Contigency 0.44 x DEq.
Total Indirect Costs 1.44 x DEq.
Fixed capital investment (FCI) total indirect costs + total direct costs
Working capital (WC) 0.05 x FCI
Total capital investment (TCI) FCI + WC
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Table B.3: Factorial methodology to estimate the fixed and variable costs [152], [149].
Item Default factor [149] Basis

Variable costs

Raw materials

Operating labor

Operating supervision 0.15 of operating labor

Utilities

Maintenance and repairs 0.06 of FCI

Operating supplies 0.0035 of maintenance and repairs

Laboratory charges operating labor

Royalities 0.0035 of c0

Fixed costs

Taxes (property) 0.02 of FCI

Financing (interest) of FCI

Insurance 0.01 of FCI

Rent of FCI

Depreciation Calculated based on MACRS method

Plant overhead, general 0.6 of labor, supervision and maintenance

Manufacturing cost Plant overhead + fixed costs + variable costs

General expenses

Administration 0.2 of labor, supervision and maintenance

Distribution and selling 0.05 of c0

Research and development 0.04 of c0

Total Product Cost without Depreciation c0

Table B.4: Price of utilities [149].

Utility Price

Electricity 0.045 $/kWh

Cooling water 4.40/1000 $/kg

Process water 0.08/1000 $/kg

Waste water disposal 0.53/1000 $/kg

Non-hazardous waste disposal 36.00/1000 $/kg

Skilled labor 33.67 $/h
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Table B.5: Equipment list and costs for section (1) – glycerol separation and purification. 1.7
conversion factor between the purchased and installed cost.

Equipment list Section (1) 2003$ 2014$
glycerol storage tank 2.20E+04 5.48E+04
pumps storage 8.80E+03 2.19E+04
glycerol/methanol tank 6.00E+03 1.49E+04
methanol dist. tower preheater 4.00E+03 9.96E+03
methanol dist. tower preheater 9.50E+04 2.36E+05
dist. reboiler 5.00E+03 1.24E+04
dist. condenser 1.30E+04 3.24E+04
fatty acid storage tank 1.00E+04 2.49E+04
NaOH mix feeder 5.00E+03 1.24E+04
glycerol NaOH mix tank 6.00E+03 1.49E+04
glycerol dist tower 1.60E+04 3.98E+04
glycerol dist reboiler 2.60E+04 6.47E+04
glycerol dist post condenser 2.00E+03 4.98E+03
2 pumps 1.30E+04 3.24E+04
utilities system 1.03E+04 2.57E+04
Total purchased cost 1.61 MM$
Total installed cost 2.73 MM$

The optimization formulation
max

x
NP V (B.1)

Subject to the following constraints:
(i) process models: material balances according to the generic block model;

Raw materials,
F

out
i,k = ϕi,k (B.2)

Mixing,

Ri,k = µi,k ×
∑

i,k

Fi,k,kk

F
M
i,k =

∑
k

Fi,k,kk + αi,k × Ri,k

(B.3)

Waste separation,

F
out
i,k = F

R
i,k × (1 − SWi,k)

F
waste
i,k = F

R
i,k − F

out
i,k

(B.4)

Reaction,

F
R
i,k = F

M
i,k + MWi ×

∑
rr

γi,rr × θreact,rr × F M
i,k

MWreact
(B.5)
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Product separation,

F
out1
i,k = F

out
i,k × Spliti,k

F
out2
i,k = F

out
i,k × (1 − Spliti,k)

(B.6)

(ii) Process flow constraints: flow constraints;

F
1
i,k,kk ≤ F

out1
i,k × Sp

F
2
i,k,kk = F

out2
i,k × (S − Sp)

Fi,k =
∑

k

(F
1
i,k,kk − F

2
i,k,kk)∑

k

F
1
i,k,kk = F

out1
i,k∑

k

F
2
i,k,kk = F

out2
i,k∑

i

F
out
i,k = F

max
k

(B.7)

(iii) Structural constraints:
Raw materials, PS1, PS2, PS3, PS4,

y1 ≤ 1; y2 ≤ 1; y3 ≤ 1; y4 ≤ 1 (B.8)

PS5: conversion,
y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15 ≤ 1 (B.9)

PS6: separation and purification,

y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15 ≤ 1y16 → y27; y19 → y28; y24 → y29; y25 → y30 (B.10)

PS7: Products,
y31 + y33 + y34 + y35 + y37 + y38 + y39 + y40 + y41 + y42 ≤ 1 (B.11)

(iv) big-M formulation,

F
out
i,k ≤ M × ykRi,k ≤ M × ykyk ≤ M ×

∑
i

F
out
i,k

∑
i

F
in
i,k = M × yk (B.12)

Uncertainty characterization
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Table B.6: Correlation control matrix.
Glycerol Succinic acid Ethanol n-butanol H2 1,2-PDO Propionic acid PHB Lactic acid Isobutanol 1,3-PDO Acrolein

Glycerol 1 0.999 -0.761 0.688 0.487 -1 -0.472 -1 0.595 0.5 0.12 0.457

Succinic acid 1 1 -0.749 0.674 0.503 -1 -0.455 -1 -0.293 -0.432 0.446 0.741

Ethanol -0.761 -0.749 1 -0.994 1 1 0.931 1 -0.265 -0.614 0.669 0.5

n-butanol 0.688 0.674 -0.994 1 -0.299 -1 -0.965 -1 -0.534 0.678 0.6 0.891

H2 0.487 0.503 1 -0.299 1 -1 0.541 -1 -0.209 0.002 0.681 0.047

1,2-PDO -1 -1 1 -1 -1 1 1 -1 0.619 0 0.232 0.398

Propionic acid -0.472 -0.455 0.931 -0.965 0.541 1 1 -1 -0.573 -0.037 0.6 0.012

PHB -1 -1 1 -1 -1 -1 -1 1 0.481 -0.517 -0.198 0.863

Lactic acid 0.595 -0.293 -0.265 -0.534 -0.209 0.619 -0.573 0.481 1 -0.3 0.725 0.213

Isobutanol 0.5 -0.432 -0.614 0.678 0.002 0 -0.037 -0.517 -0.3 1 -0.559 -0.38

1,3-PDO 0.12 0.446 0.669 0.6 0.681 0.232 0.6 -0.198 0.725 -0.559 1 0.427

Acrolein 0.457 0.741 0.5 0.891 0.047 0.398 0.012 0.863 0.798 -0.38 0.427 1

Figure B.4: Network fre-
quency of selection for sce-
nario (i).

Figure B.5: Network fre-
quency of selection for sce-
nario (ii).

Figure B.6: Network fre-
quency of selection for sce-
nario (iii).
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Table C.1: Database of early-stage design of glycerol-based biorefinery concepts.

Product PS

Mixing
µi,k(αi,k = 1)

(kg/kg
glycerol)

Stoichiometry
γi,k(θi,k = 0.985)

(C-mol/ C-mol glycerol)

Waste
Separation

(SWi,k)

Product
Separation

(Spliti,k)
Description

Glycerol purification
to 88% or/and 98%*

2 - - - - -
Esters 0.452 Methanol separation,

to be redirected to the
biodiesel process

Methanol 0.108

Glycerol 0.997

3 NaOH 0.009 -
NaOCH3 0.99

Solid settling and sepa-
rationProtein/ 0.99

solids

4 - - -

esters 0.99

- - Methanol and solids
separation

Methanol 0.997

H2O 0.913

Glycerol 0.0217

NaOCH3 0.9

Succinic Acid 8

H2O 28.8 X 0.999

- -
Glycerol bioconversion

to succinic acid +
reactive extraction

NH3 0.0044
−CH8/3O − 0.0132NH3 − 0.55O2 +
0.544CH3/2O + 0.064CH2O +
0.009CH4/3O + 0.303CO2 +
0.066CH1.8O0.5N0.25 = 0

H2O 0.999

TOA 0.341 HLac 0.998

1-octanol 2.63 NH3 0.999

O2 0.341 TOA 0.9568

1-octanol 0.9568

CO2 0.999

1,3-PDO 9

−CH8/3O − 0.014NH3 +
0.594CH8/3O2/3 + 0.112CH2O +
0.0436CH2/3H2O1/3 + 0.193CO2 +
0.276H2 +0.0575CH1.8O0.5N0.25 = 0

X 0.999

- -
Glycerol bioconversion
to 1,3-PDO + reactive

extraction

H2O 0.999

Isobut. 8.93 HAc 0.4

NH3 0.006 EtOH 0.99

H2O 13.8 CO2 0.998

H2 0.998

Isobut. 0.998
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Table C.2: Summary of the assumptions used for the discounted cash-flow rate of return.
Parameter Assumption
Plant life (years) 30
Discount Rate (mar) 10%
Depreciation Period (Years) 5 (MACRS system)
Equity 40%
Interest 8%
Loan Term (Years) 10
Construction Period (Years) 3
% Spent in Year -2 8%
% Spent in Year -1 60%
% Spent in Year 0 32%
Start-up Time (Years) 0.50
Product production/ Feedstock use (% of Normal) 50%
Variable Costs (% of Normal) 75%
Fixed Cost (% of Normal) 100%
Income Tax Rate 35%
Cost Year for Analysis 2014
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Table D.1: Matrix of distances between the plant site and the markets (information obtained in
Google Maps)

(km) Germany France Netherlands Spain Italy
Germany 383.5 1032.7 467.3 2058.7 1376.3

France 1032.7 529.5 853.9 1001.6 1298

Italy 1376.3 1298 1621.9 1974.1 410

UK 1471.5 1428 1017.3 2311.3 2472.5

Spain 2058.7 1001.6 1753.9 471 1974.1

The Netherlands 467.3 853.9 131.4 1753.9 1621.9

Belgium 543.2 658 224.7 1549.7 1467.2

Austria 685.6 1308.4 1024.6 2242 933.9

Bulgaria 1972.8 2390.9 2412.9 3270.6 1962.5

Czech Republic 529.4 1313 932.4 2416.9 1371.1

Poland 755.9 1710 1023.5 2716.8 3053.9

Portugal 2397.3 1340.2 2092.6 477.8 2389.5

Table D.2: Reference capacity and reference purchased capital investment.
Product Reference capacity (ton/year) Purchased capital investment (MM$)

Succinic acid (SA) 10200 11.217 (21)
1,3-propanediol (13pdo) 5500 5.347 (21)
Propionic acid (PA) 6796 4.747 (21)

Polyhydroxybutyrate (PHB) 3600 15.020 (21)
1,2-propanediol (12pdo) 7740 4.713 (21)

Lactic acid (LA) 7931 4.929 (21)
Isobutanol (Isob) 7300 6.705 (21)
Hydrogen (H2) 659 5.551 (21)

n-Butanol (BuOH) 3000 5.202 (21)
Ethanol (EtOH) 5211 8.227 (21)
Acrolein (Acro) 4870 4.927 (21)

Epichlorohydrin (epi) 100000 (22) 166 (23)
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Figure E.1: Sensitivity analysis of the NPV and corresponding SC structure to parameter varia-
tion, corresponding to B2 conditions.

0.000 0.100 0.200 0.300 0.400 0.500

Pp - Sc1 
Pp - Sc2
Pp - Sc3

D - Sc1 
D - Sc4 
D - Sc3 
D - Sc4 

Pglyc
pFuel

FCI - Sc1 
FCI - Sc2

FCI - Sc3 
Conv - Sc1
Conv - Sc2
Conv - Sc3

B2 - SI

0.5

1.5

Figure E.2: Sensitivity analysis of the SI and corresponding SC structure to parameter variation,
corresponding to B2 conditions.
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B2
In Figure E.3 the optimal NPV obtained for the optimization problem resulting of each
Monte Carlo sample is presented. Opposite to the previous sub-section where the model
was free to choose the optimal flow of glycerol to convert in order to maximize the NPV,
under B2 conditions the model is constrained to convert the total amount of glycerol
available. Therefore, as consequence of the uncertainty on the product prices and demand,
the NPV obtained with all scenarios is significantly lower than the deterministic B2 (with
−5.21 × 103 MM$ as average value), making the project unfeasible over the entire range,
as the maximum and the minimum NPV attained are negative (Figure E.3).
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NPV increase = 73.6%
SI decrease = 0.11 %

Plant locations: Germany, France, The Netherlands, 
Spain
Products: SA, LA, EPI, PHB
SA, LA (The Netherlands, q=3), (Spain, q=3) 
QSA= 1.14x103 kton/y, QLA= 1.37x102 kton/y
PHB(France, q=2) (The Netherlands, q=3) QPHB= 8.31x105

kton/y
Epi (France, q=2) QEpi= 4.0x102 kton/y

Markets served:
LA – Germany, Spain
SA – UK, Spain, Germany, Italy, France
PHB - Germany, France
Epi – Germany, The Netherlands, Belgium, Spain, Italy

Plant locations: Germany, France, The Netherlands, Spain, Italy
Products: SA, LA, EPI, PHB
SA, LA (Germany, q=3), (Spain, q=1) , (Italy, q=3) 
QSA= 1.16x103 kton/y, QLA= 1.37x102 kton/y
PHB (Germany, q=2) (France, q=3) QPHB= 8.29x105 kton/y
Epi (The Netherlands, q=2) QEpi= 4.0x102 kton/y

Markets served:
LA – Germany, Spain, Italy
SA – Spain, Germany, Italy, France
PHB - Germany, France
Epi – Germany, The Netherlands, Belgium, Spain, Italy

Figure E.3: NPV variation for all scenarios along with the highlight of some significant SC
structures and their characteristics for B2.
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Figure E.4: Cumulative probability distribution of the NPV and frequency of selection of the
corresponding SC structures for B2.
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GHG TA POP FE HT 
B1 0.057312906 0.895928824 0.046265578 0.000431414 6.12782E-05
B2 0.057319809 0.895939138 0.046262542 0.000375471 0.00010304
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Figure E.6: Test SI: GHG and TA are the categories with more impact, and thus are selected to
be included in the analysis of S2.
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