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ABSTRACT 

 

Previous research has shown that the First Order Reliability Method (FORM) can be an efficient 
method for estimation of outcrossing rates and extreme value statistics for stationary stochastic 
processes. This is so also for bifurcation type of processes like parametric roll of ships. The 
present paper discusses this solution procedure with a focus on the computational efficiency of 
FORM as compared with Monte Carlo Simulation (MCS). 
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INTRODUCTION 
Currently, extensive work is going on within the International Maritime Organization (IMO) in the 
development of Second Generation Intact Stability Criteria for ships. These completely revised rules 
include the possibility to account for the dynamics of ships using time-domain simulations of the roll 
motion under different operational conditions, considering different failure scenarios (pure loss of 
stability, parametric roll, dead ship, excessive acceleration and surf riding / broaching) and involve 
different levels of complexity and corresponding accuracy. Tompuri et al. (2015) discuss in details 
computational methods to be used in the Second Generation Intact Stability Criteria, focussing on 
level 1 and level 2 procedures for parametric roll, pure loss of stability and surf-riding/broaching. 
These methods are based on the analysis of the ship in regular waves with different wave height and 
thus do not directly provide extreme value statistics.  

The rules might not only be used in the design phase, but also be needed under operation as GM limit 
curves cannot always be formulated using the new rules, e.g. IMO (2017). For the more detailed 
analyses in Level 3, and for operational guidelines/limitations, a direct account for the statistical 
properties of the ocean waves will be needed and so will effective statistical estimation procedures  
to cover the full operational profile of a vessel. 

France et al. (2003) present an excellent and very thorough description of the physics in parametric 
roll; with discussions based on both numerical studies and model test results. Hence, the present 
paper will focus on an extreme value prediction procedure applicable as an extension to more 
deterministic formulations of parametric roll. 

The First Order Reliability Method (FORM) is an efficient procedure for extreme value predictions 
for time-invariant stochastic processes, e.g. Der Kiureghian (2000), Jensen and Capul (2006), Jensen 



(2015). Jensen (2007) uses FORM for estimation of the probability of parametric roll. In the present 
paper the same one degree-of-freedom formulation of parametric roll is used, but two simple and 
effective optimization procedures, easy to implement in any time-domain code for FORM 
evaluations, are presented. Furthermore, some characteristic response behaviour in parametric roll is 
discussed. A recent study by Choi et al. (2017) gives a somewhat similar treatment of intact stability 
under dead ship conditions. 

 

FIRST ORDER RELIABILITY PROCEDURES 
The basic assumption for the application of the FORM method herein is that the response can be 
considered as a stationary time-domain process, depending solely on a load process in time t and 
space X, defined in terms of some deterministic quantities and a set of statistical independent and 
standard normal distributed variables { }, ; 1,2,..,i iu u u i n= = . For wave responses, the long-crested 
wave elevation process ( , )H X t  is such a process, e.g. Jensen and Capul (2006): 
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where the deterministic coefficients are 
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Here iω  and 2 /i ik gω=  are the n discrete frequencies and wave numbers applied, respectively.  
Furthermore, g is the acceleration of gravity, ( )S ω  is the wave spectrum and, idω  is the 
increment between the discrete frequencies. Stochastic wind speed can also be modelled in a similar 
way, e.g. Choi et al. (2017). 

For a set of u , the wave elevation is used as input to a time-domain formulation for the response 
( , )t uφ . Due to the assumption of a stationary stochastic process, the response at any point in time 

0t t=  can be applied in the limit state function 

  ( )0 0( ) , 0G u t uφ φ= − =           (0) 

without changing the result for the probability of exceedance at a given threshold response level 0φ . 
The only restriction is that the point in time 0t  chosen must be so far away from the initial 
conditions that these do not influence the response. For parametric roll 300s was found in Jensen 
(2007) to be sufficient. For other wave responses 60s might be sufficient, e.g. Jensen (2015). 

The main part of any FORM procedure is an optimization routine for determination of the point *u
on the limit state function ( ) 0G u = with the shortest distance from origin. The distance to this 
point is denoted the reliability index β . Two optimization routines: 1) A modified Hasofer-Lind 
procedure (MHL) and, 2) the Hasofer-Lind method supplemented with a circle and line search 
(CLS) are used here.  

In the original Hasofer-Lind iteration procedure, Hasofer and Lind (1974), a new iteration point 
1ku +  is determined from the previous point ku  as 
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Here ∇ is the gradient operator and  the length of the vector. However, for the problems 

considered here, this procedure does not generally converge towards the design point *u . This lack 
of robustness of the Hasofer-Lind procedure is discussed in details in Liu and Der Kiureghian 
(1991) and several remedies are suggested.    

In the Modified Hasofer-Lind method, Liu and Der Kiureghian (1991), the new iteration point 

1ku +  is determined from a line search along the line: 

 ( )1k ku a uς ς= + −   (0) 

where ka is given by Eq. (4). The scalar ς  is determined by a simple stepping procedure until the 

merit function ( )m u  
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attains a minimum value, yielding 

 ( ){ }1 minku u m u
ς+ = =   (0) 

The weight factor c  can be taken in a wide range from 1,000 to 10,000 without changing the 
convergence significantly for the present problems, where the response 0φ  in the limit state 
function, Eq. (3), is the roll angle in radians. This insensitivity of convergence rate with c  is in 
agreement with the findings in Liu and Der Kiureghian (1991) considering very different examples. 
The range investigated for ς  is ] ]0,2ς ∈  with a step size of 0.025. The procedure is very easy to 

implement and convergence is found in all cases considered here. The procedure is, however, rather 
CPU expensive as it requires gradient calculations ( )G u∇  for all values of ς  used in Eq. (5).  

An alternative is the Hasofer-Lind procedure supplemented with a circle and line search, Choi et al. 
(2017).  Based on the previous iteration step  ku   the new iteration point 1ku +  is determined 
from first a circle search along the circle: 
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where ka  is given by Eq. (4). The scalar ς  is determined by a simple stepping procedure until 

the limit state function ( )G u  attains a minimum value. The corresponding value of u  is denoted 



u . Thereafter a line search along the line u uξ=   is performed. The scalar ξ  is determined 
such that ( ) 0G u =  yielding 

                              { }1 ( ) 0ku u G u
ξ

ξ ξ+ = =    (0) 

A Newton-Raphson approach is applied based on previous values at iteration step i and i-1:  
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For the first step, 1 1 0.01 ( ) / eG u Gξ = +   is found useful. Here, eG  is the user-defined convergence 

criterion for the limit state function. With the threshold angles 0φ  measured in radians, 

0.002eG =  has been found adequate.  

The convergence property of this scheme is just as good as for the MHL procedure, in all cases 
considered, and the scheme provides a large reduction of CPU time although the number of iteration 
steps generally is larger. The reason is that gradient calculations are not needed during the circle–
and-line search as opposite to the MHL method. With a large number of components in u , say 100 
as used later in the next example, the CPU time is thereby reduced by a factor of three to five. Both 
procedures, however, converge for all cases tested to the same design point *u u= .  

The distance to the design point *u  is the reliability index β and from it extreme value 
predictions can easily be obtained, e.g. Jensen and Capul (2006), 

                   ( )2
0 0 0max (t) 1 exp exp( 0.5 ( ) )

T
P v Tφ φ β φ 
  

> = − − −   (0) 

Here T is the time period considered, e.g. three hours, and 0ν  the mean zero- upcrossing rate, 
roughly equal to the roll natural frequency in Hz. It should, however, be noted that Eq. (11) does not 
account for possible grouping of the threshold angles. This is not investigated here, where the focus 
is on comparison between reliability indices from FORM and MSC, but the procedure suggested by 
Naess and Gaidai (2009) could for instance be implemented in the time domain simulations to 
account for the clustering effect. Thereby, Eq.(11) is replaced by a somewhat similar expression, 
Naess and Gaidai (2009). 

 

EFFECTIVE WAVE FOR GZ CALCULATIONS 
Parametric roll in head sea depends on the variation of the instantaneous GZ curve in waves. In 
principle the roll restoring moment can be calculated at each point in time, e.g. Vidic-Perunovic and 
Jensen (2009), but this is computationally expensive. Therefore it is often estimated by interpolation 
in predefined GZ curves derived from hydrostatic results with the ship ‘resting’ in regular waves 
with a wave length equal to the length L of the vessel. The wave height ( )h t  and wave crest 



position ( )cx t  used in this interpolation are found by a least square approximation to the incident 
wave ( , )H X t , Eqs. (1)-(2), cf. Jensen (2007):  
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Here eL  is an effective wave length used in the analytical approximation for the GZ curve in 
waves. In Jensen (2007), the calculations of the two integrals were performed numerically using 
Gaussian Quadrature at every time step. However, due to the sinusoidal form of Eq. (1), analytical 
integration can be carried out, resulting in a significant decrease in computational time: 
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Here c  is the heading angle (180 degree for head sea) and V the forward speed. It is seen that 
( )a t  is the original Grim wave, Grim (1961), with the wave crest assumed always amidships. The 

inclusion of ( )b t  makes estimation of the instantaneous wave crest position possible. 

 

FIRST ORDER RELIABILITY RESULTS FOR PARAMETRIC ROLL 

The analysis is done for the same Panamax container ship and operational data as in Jensen (2007). 
The length, breadth and draft of the vessel are L = 284m, B = 32.2m and 10.5m, respectively. The 
operational condition is head sea with a forward speed of 6m/s and a sea state characterized by a 
JONSWAP spectrum with significant wave height SH = 12m and a wave spectral peak period of 
15s. This is of course a very severe sea state, but chosen such that MCS are possible with 
reasonable CPU time even for large threshold angles. Later a moderate sea state will be considered. 
The metacentric height GM = 0.89m and the GZ curve, ( )swGZ φ , in calm water is shown in Fig. 1 
as function of the roll angle φ . With a ship speed of 6m/s, the encounter spectral wave peak period 
becomes 12s and hence parametric roll can be expected.  



 
Fig. 1. GZ curve in calm water.               

The degree of parametric roll depends on the variation of the GZ curve in waves, and Fig.2 shows 
the assumed variation, ( , , ( ))w cGZ x tφ , with the roll angle and for different positions of the wave 
crest. Regular waves with a fixed wave height of 0.05L is used for the results in the figure, and in 
the time domain analysis, a linear variation of GZ with wave height ( )h t is assumed: 

                   ( ) { }( ), ( ) ( , ( )) ( )
0.05sw w c sw
h tGZ t GZ GZ x t GZ

L
φ φ φ φ= + −  (0) 

Here ( )h t and ( )cx t  are calculated at each time instant using Eq. (12). Instead of the 
approximation, Eq. (14), a direct calculation of the restoring moment at each time step can be 
implemented, see e.g. Vidic-Perunovic and Jensen (2009), of course at the expense of larger CPU 
time. A comparison in Vidic-Perunovic and Jensen (2009) between the results using direct restoring 
moment calculations and the results from the procedures in Bulian et al (2006) and Jensen (2007) 
shows some differences, but overall the same maximum roll angle for the specific vessel 
considered. Another example in Choi et al. (2016) shows that the calculated restoring moment and 
roll motion from Eq.(14) are in reasonably good agreement with the results from the direct 
calculation, when the linearization factor (0.05L in this study) is properly determined according to 
the input wave condition.  

 
Fig. 2. GZ curves in regular waves with the wave length L and a wave height equal to 0.05L. Wave 

crest positions are at cx = 0, 0.25L, 0.5L, and 0.75L, Jensen (2007). 



For the present discussion focusing on applicability the FORM procedure Eq. (14) is therefore 
considered acceptable as it makes a large number of MCS calculations feasible and hence 
estimation of very low probabilities of exceedance possible. 

The time domain results for the roll motion ( )tφ are obtained by solving a standard one 
degree-of-freedom roll equation with three damping terms, e.g. Bulian et al. (2006): 
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3
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     (0) 

using a fourth order Runge-Kutta procedure with 0.5s as step size, terminated at 0t = 300s. The 
damping coefficients are taken quite arbitrary as 1 2 3)( , ,ε ε ε = (0.012, 0.40, 0.42), while a roll 

radius of gyration of 0.4B is assumed and, finally, / (0.4 )gGM Bφω = . 

The FORM results are shown in Fig. 3a-b together with the results of 34 million simulations based 
on MCS. The horizontal axis is the user-specified threshold roll angle 0φ  and the vertical axis is 
the reliability index β . For the MCS-results the reliability index is calculated as 

  1 1( ) 1iMCS
i
Mβ φ −  

 
 

−= −Φ −   (0) 

where Φ  is the standard normal distribution function with the threshold angles ordered: 

1; 1,2,...,i i i Mφ φ + =≤ , with M being the total number of simulations. Both FORM and MCS results 

are based on ensemble analysis using time domain simulations each of length 300s and taking the 
roll angle at 300s as the realization. Thus no discussion of ergodicity is made as only ensemble 
analyses are performed, but reference is made to Bulian et al. (2006) for a very thorough and 
interesting discussion of practical ergodicity for problems like parametric rolling.  

Only positive values of the roll angle are considered as the results are nearly symmetric about 0 as 
seen in Fig.4, showing the MCS results for an arbitrary subset of 500,000 simulations. The slight 
offset due to the initial roll angle of 0.5deg used in the analysis is not visible and the curve is fairly 
symmetric. The mean value, standard deviation, skewness and kurtosis of the 500,000 roll angles is 
-0.48deg, 10.5deg, 0.016 and, 2.78, respectively. The low value of the skewness indicates also that 
the effect of the initial condition is small. The value of the kurtosis is smaller than for a normal 
distribution (i.e. 3) in agreement with the flattening of the results in Figs 3-4 for large roll angles.  

Several minima exist on the failure surface, cf. Eq.(3), and Fig. 3a-b includes two FORM results: 
the global minimum (being ‘FORM’ for 0φ >20deg and ‘FORM-2’ for 0φ <20deg) and the local 

minimum closest to the global minimum (being ‘FORM’ for 0φ <20deg and ‘FORM-2’ for 0φ
>20deg). The ‘FORM’ result requires about 60,000 calls to the time domain code (each of length 
300s) to cover the range of threshold angles in Fig. 3a-b, whereas the ‘FORM-2’ curve only requires 
about 20,000 calls, both using the Hasofer-Lind procedure with a circle-and-line search (denoted 
CLS). When the modified Hasofer-Lind procedure (denoted MHL) is applied, the corresponding 



number of calls is 150,000 and 100,000, respectively. In both cases, this is only a small fraction of 
the 34 million calls used for the MCS. For the first threshold angle, the iteration is initiated using a 
random wave, and here the MHL procedure converges faster than the CLS procedure. Each call 
takes about 0.027s on a standard PC. Thereby, the FORM calculations become fast enough, less 
than one minute on a standard PC for each threshold angle, to be used in on-board decision support 
systems (DSS), e.g. Nielsen and Jensen (2011), whereas the 34 million MCS requires 250 hours of 
CPU time.  

 
Fig. 3a. Reliability index β as function of threshold roll angle 0φ , derived from FORM and MCS.  

 

Fig. 3b. Reliability index β as function of threshold roll angle 0φ , derived from FORM and MCS. 
Zoom of Fig. 3a on the tail behaviour. 



 

Fig. 4. Reliability index β as function of threshold roll angle 0φ , derived from 500,000 MCS.  

The calculations have been redone a large number of times using new random input waves and new 
threshold angles and in all cases these two curves, ‘FORM’ and ‘FORM-2’ have given the lowest 
reliability indices. For threshold angles lower than 20deg also other local minima have been found, 
but with larger reliability indices. The reason why the ‘FORM-2’ calculations requires fewer 
iterations is probably that the failure surface around the ‘FORM’ result has a higher curvature than 
the ‘FORM-2’, leading to a slower convergence rate in both the MHL and CLS procedures. This 
will be further discussed in connection with Figs 5-11 dealing with the corresponding critical wave 
scenarios. 

Fig. 3a-b shows that the FORM results are fairly close to the MCS results when the reliability index
β  is greater than two, corresponding to threshold angles 0φ  larger than about 20 degrees (for this 
operational condition). For a lower reliability index the linearization in the FORM procedure makes 
both the ‘FORM’ and ‘FORM-2’ results non-conservative. For a reliability index greater than two, 
the ‘FORM-2’ curve is generally closer to the MCS results than the ‘FORM’ curve, except at very 
high threshold angles (>45 degrees, Fig. 3b), where ‘FORM’ seem to better match the MCS, albeit 
these MCS results have a large uncertainty (confidence interval).  

An explanation for the close agreement between MCS and ‘FORM-2’ can be found by looking at 
the critical wave and roll scenarios for a given threshold angle. An example is shown in Figs. 5 and 
6 for a threshold angle of 34 deg (0.6 rad). The wave scenarios are those measured amidships.  

Fig. 5 shows that the critical wave scenario, at the global minimum ‘FORM’ looks very much like a 
regular wave of a magnitude just initiating parametric roll superimposed by a short transient wave 
with a peak depending on the prescribed threshold roll angle. On the other hand, the critical wave 
scenario for the local minimum ‘FORM-2’ shown in Fig.6 has a larger transient part implying a 
lower probability of occurrence, i.e. larger reliability index β . The encounter wave periods in Figs. 
5-6 are about half the roll natural period in waves of 22-24s and, hence, as expected for parametric 
roll initiation. 



 

Fig 5. ‘FORM’. Threshold roll angle 0φ = 34 deg, ( )0β φ = 3.73. 

 

Fig. 6. ‘FORM-2’. Threshold roll angle 0φ =34 deg, ( )0β φ = 4.03. 

The linearization in FORM inevitably leads to differences between FORM and MCS. The fact that 
MCS follow the local minimum ‘FORM-2’ in Fig. 3a-b can possibly be explained by differences in 
the linearization error. The failure surface at the global minimum ‘FORM’ must have a high 
curvature (non-linearity) because pure parametric rolling is very sensitive to the environmental and 
operational condition. This leads to a high error in the linearization. On the other hand, the local 
minimum ‘FORM-2’ is less dependent on the operational condition having a larger transient wave 
and hence leads to a smaller error in the linearization. It is noted that the results from model test 
shown in France et al. (2003) resemble Fig. 6 better than Fig. 5, supporting this discussion. Taking 
the MCS results as the ‘true’ values indicates that the linearization around the ‘FORM’ results 
moves real ‘safe’ regions into ‘unsafe’ regions. It is possible that a Second Order Reliability (SORM) 
calculation could change especially the ‘FORM’ results, such that ‘FORM-2’ reliability index then 
becomes lower than the ‘FORM’ results. This has not been considered due to the increase in CPU 
time required to calculate the SORM correction and the rather good agreement between FORM and 
MCS.   

Note, if the threshold angle is zero, the FORM results will not necessarily be zero due to the 
linearization of the limit state function around the design point; which is opposite to the MCS result 
using Eq. (16). 

Similar results are shown in Figs. 7-8 for the threshold angle equal 47.7 deg. This threshold angle is 
the largest threshold angle obtained from the 34 million simulations using MCS, and the 
corresponding MCS scenario is shown in Fig. 9. The same trend is found here with the local 
minimum (‘FORM-2’) having a slightly larger transient wave part and a more gradual increase of 
the ‘regular’ initial part of the wave than the global minimum ‘FORM’. The difference in roll 



response also looks the same, although with a more smooth increase to the threshold angle for the 
global minimum case. 

 

Fig 7. ‘FORM’. Threshold roll angle 0φ = 47.7 deg, ( )0β φ = 5.42. 

 

Fig. 8. ‘FORM-2’. Threshold roll angle 0φ =47.7 deg, ( )0β φ = 5.61. 

 

Fig. 9. MCS result with largest threshold angle ( 0φ =47.7 deg) among 34 million simulations. 

( )0β φ = −Φ (1/34,000,000)= 5.42. 

Compared to the MCS result in Fig. 9, for the same threshold angle, the reliability index is the same 
as the global minimum ‘FORM’ result. This is to be expected due to the asymptotic convergence of 
FORM to the correct result for large roll angles (equivalent to a very low probability level). Of 
course the confidence bounds for MCS are very large for the high threshold values, as indicated in 
Fig. 3a-b for the two threshold angles 40 and 41 degrees, so the exact agreement here with β = 
5.42 is a coincidence. However, it is interesting to see that, whereas the two roll response curves in 
Figs. 7 and 9 are fairly close to each other, the wave scenarios leading to the responses are very 
different. The critical wave episode in Fig. 7 represents the average of all wave scenarios, like the 



one in Fig. 9 leading to a threshold angle of 47.7 deg. This is in agreement with the relative small 
wave elevation in the beginning followed by a large transient part at the last stage of the excitation 
in Fig. 9. 

Figs. 10 and 11 show examples of the critical wave elevation and corresponding roll angle variation 
for the results in Fig. 3a-b, but with a focus on reliability indices less than 2. 

 
Fig 10. ‘FORM’. Threshold roll angle 0φ = 12.9 deg, ( )0β φ = 1.66. 

 

 Fig 11. ‘FORM-2’. Threshold roll angle 0φ = 12.9 deg, ( )0β φ = 1.48. 

The curves in Figs 10-11 show the same behavior as the curves in Fig. 5-6 and Figs. 7-8. However, 
now the global minimum reliability index is found for the ‘FORM-2’ curve implying that a slowly 
increasing wave elevation, towards the wave elevation triggering parametric roll, has a higher 
probability of occurrence than the nearly regular wave elevation shown in Fig. 10. A reason is that a 
regular wave with an amplitude of about 1.5m is needed for this vessel to initiate parametric roll; in 
this case leading to a constant roll amplitude of about 20 degrees, Jensen (2007). Thus as seen in 
Fig. 10, a threshold angle lower than 20 degrees can lead to a critical regular wave where the wave 
elevation actually must decrease close to the threshold angle exceedance. This scenario is here 
found less probable than the more transient scenario in Fig.11, where the wave elevation gradually 
increases. Furthermore, at least one other local minimum exists at the particular threshold angle, i.e. 
one with β = 1.71. With several (nearly) equal global minima, the FORM analysis should be 
modelled as a series system instead of a single system as done here. This might lead to a lower 
probability of exceedance. However, this is not considered further as FORM usually only is 
applicable for low exceedance probabilities.  

A direct application of the critical wave scenarios shown in Figs. 5-11 is in a Model Correction 
Factor approach, Ditlevsen and Arnbjerg-Nielsen (1994). The basic idea is to use these deterministic 
wave profiles as input in a time domain simulation where the hydrodynamics are modelled more 



accurately than by Eq.(15), for instance, by a 6DOF model. The resulting roll angle is then 
associated with the reliability index from the input wave, yielding an approximation of the statistics 
of the 6DOF model. In this context it could be interesting to see whether the critical scenarios also 
can be estimated from MCS. Thus, from 1,000,000 MCS, 30 cases are found with a (threshold) roll 
angle at t = 300s between 33.5 and 34.5 deg. The average wave elevation and roll scenarios from 
these cases are shown in Fig. 12. The average roll scenario is close to the similar FORM results in 
Figs. 5-6. However, the average wave scenario is quite different as it misses the more regular wave 
part in the beginning needed for initiation of parametric roll. This is illustrated in Fig. 13 showing 
the roll scenario determined using the average wave elevation in Fig. 12 as input. Clearly, no 
parametric roll is found. Hence, MCS is not a feasible way to determine critical wave scenarios to 
be used in e.g. a Model Correction Factor approach for parametric roll estimation. 

 
Fig. 12. Average wave and roll scenarios from 30 MCS with threshold roll angles between 33.5 and 

34.5 deg 

 
Fig. 13. Roll scenario obtained using the average wave elevation in Fig. 12 as input. 

Next similar calculations are presented for the same operational condition except that the significant 
wave height SH is changed from 12m to 6m. Thereby, the same FORM results for the critical wave 
and roll scenarios are still valid, only the reliability index β  should be multiplied by the inverse of 
the ratio between the new and old significant wave height, i.e. by 2, e.g. Jensen (2015). These 
FORM predictions are compared with 4,000,000 new simulations using MCS, since results of MCS 
cannot be scaled due to the non-linear effects in Eq. (15). Indeed, this is also seen by comparing the 
MCS results in Fig. 3a and Fig. 14. The reason for the slight offset from (0,0) in Fig. 14 for the 
MCS results is that an initial roll angle of 0.5 degrees is used in Eq. (15); which for this lower sea 
state has a small influence on the lower part of the probability of exceedance. The rapid increase of 
the reliability index for small threshold angles is due to the need for a certain wave elevation to 



trigger parametric roll. The same asymptotic agreement between the MCS and FORM results for 
large values of the reliability index β is seen again.  

If the probability of exceedance were to be requested for the whole range of threshold angles, the 
most effective procedure is to use MCS for the lower range and FORM for the higher range of β . If 
a Coefficient of Variation CoV of 10 percent on the probability of exceedance is required for the 
MCS, then the number of exceedance in the considered simulation should be around 100 and the 
total number of MCS roughly equal to 100 / ( 3)Φ − = 75,000, or about 2,000s in CPU time. An 
example of this interpolation is included in Fig. 14 where the FORM result for a threshold angle of 
30 degrees is used as the upper point on this interpolation line. Approximately 80,000 calls (75,000 
for the MCS and 5,000 for the single FORM result for 0φ = 30 degrees) are required to obtain this 
line; and, this number should be compared to the 4,000,000 simulations needed if the probability of 
exceedance is to be calculated up to a threshold angle equal to 30 degrees by MCS alone. Of course, 
other interpolation schemes can be applied between MCS and FORM results, e.g. Jensen (2015), 
but the important point is that it is interpolation and not extrapolation, as in the case using only 
MCS results.   

 

Fig. 14. Reliability index β as function of threshold roll angle 0φ , derived from FORM and MCS. 

SH = 6m. 

CONCLUSION 
The paper suggests the use of the First Order Reliability method as a candidate for extreme value 
prediction of the maximum roll angle in parametric roll in random sea states. The method is fast and 
accurate for low probability of exceedance, and, combined with Monte Carlo simulation for high 
exceedance probabilities, fast and accurate extreme value predictions can be achieved. This can be 
useful, especially, in connection with operational guidelines and direct stability calculations for a 
specific operational profile for a ship.  
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