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ABSTRACT	

Approximately	twenty	years	have	passed	since	the	beginning	of	concentrated	investigations	on	the	
evolution	and	ecology	of	skates.	The	evidence	generated	thus	far	suggested	that	this	monophyletic	
group	have	experienced	multiple,	parallel	adaptive	radiations	at	a	regional	scale,	which	contributed	
to	 the	 delineation	 of	 strong	 phylogeographical	 signal	 since	 the	 Cretaceous.	 This	 background	
represented	 the	guiding	 light	of	 the	work	described	 in	 this	 thesis,	where	 two	main	 themes	were	
developed.	The	first	one	focused	on	the	investigation	of	Raja	miraletus	L.	species	complex	through	
the	analysis	of	genetic	variation	derived	from	both	mtDNA	and	nuDNA.	The	results	presented	herein	
assessed	 the	presence	of	a	 restricted	gene	 flow	and	different	degree	of	divergence	between	 the	
South	African	and	Mediterranean	samples,	ascribing	these	patterns	to	oceanographic	discontinuities.	
Despite	 the	 high	 species	 diversity	 characterising	 the	 Family,	 most	 Rajidae	 show	 a	 stable	 gross	
morphology	and	peculiar	dorsal	pigmentation	patterns,	which	may	have	been	implicated	in	cryptic	
speciation.	 Nonetheless,	 the	 adaptive	 value	 and	 the	 genetic	 basis	 of	 these	 traits	 remain	 poorly	
investigated.	To	fill	this	gap,	this	thesis	also	describes	the	application	of	RNA-sequencing	technology	
on	recently	diverged	skate	species	with	sibling	and	sister	phylogenetic	relationships.	Therefore,	the	
second	goal	of	this	research	consisted	 in	 investigating	the	molecular	basis	of	pigmentation	 in	five	
non-model	species.	To	this	end,	the	transcriptome	profiling	of	different	skin	tissues	was	performed	
using	 the	 Illumina	 platform,	 whereas	 longer	 sequencing	 data	 were	 obtained	 from	 R.	 miraletus	
multiple	organs	using	the	Ion	Torrent	technology.	After	the	assembly	of	a	reference	transcriptome	
and	 the	mapping	of	 Illumina	 reads,	 the	Differential	Gene	 Expression	between	 skin	 tissues	 across	
species	was	performed,	revealing	the	expression	of	transcripts	mainly	related	to	metabolic	process	
and	catalytic	activity	in	which	pigmentary	genes	appeared	involved.	This	work	could	be	considered	
the	basis	for	future	studies	aiming	to	disentangle	how	pigmentary	traits	evolved	in	skates	and	other	
chondrichtyans,	 to	 evaluate	 whether	 the	 same	 or	 alternative	 traits	 have	 been	 used	 in	 parallel	
adaptations	to	similar	environments	and	to	understand	if	these	traits	follow	species	divergence	or	
hybridisation. 
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Chapter	1.	General	introduction	

	 	

1.1. Thesis	objectives	and	overview	

	

This	dissertation	 focuses	on	Rajidae	 (Chondrichthyes),	a	 family	of	 cartilaginous	 fish	 inhabiting	 the	

continental	shelf	and	slope	of	oceans	worldwide	and	whose	evolutionary	history	is	far	from	being	

fully	elucidated.	

The	goals	of	this	PhD	research	can	be	divided	in	two	main,	although	interconnected,	themes.	First,	

the	 detection	 of	 genetic	 diversity,	 phylogeographic	 patterns	 and	 population	 structure	 of	 Raja	

miraletus	L.	complex	aimed	to	highlight	the	cryptic	evolution	hidden	under	the	differentiation	of	at	

least	three	lineages	inhabiting	the	Mediterranean	Sea	and	off	the	Atlantic	coast	of	Africa.	

Second,	this	research	aimed	to	identify	the	molecular	basis	underpinning	skates’	pigmentation	along	

with	other	genes	connected	to	skin	functions	(i.e.	collagen	structures,	metabolism,	mucus	production	

and	immune	response).	Most	of	all,	the	work	aimed	to	identify	transcripts	related	to	pigmentation,	

to	 perform	 the	 Differential	 Gene	 Expression	 (DGE)	 analysis	 of	 differently	 pigmented	 and	 non-

pigmented	skin	and	eventually	compile	a	transcript	catalogue	for	this	tissue.	The	surplus	value	of	this	

research	was	adding	a	tile	to	the	genomic	resources	currently	available	for	five	non-model	species	

and	 lastly,	opening	 the	door	 to	 the	 investigation	on	 the	evolution	of	pigmentary	genes	and	 their	

patterns	 of	 adaptation	 to	 specific	 ecological	 conditions	 (e.g.	 as	 an	 effect	 of	 convergence	 or	 the	

repeated	evolution	of	similar	phenotypes	serving	the	same	ecological	function	in	two	or	more	taxa).	

Specific	research	tasks	and	questions	were	separately	addressed	in	each	chapter.	

	

Chapter	1	begins	with	a	brief	introduction	to	the	species	concept	and	the	undertones	assumed	within	

this	thesis,	putting	in	the	spotlight	those	taxa	which	are	hidden	under	the	same	nominal	species	and	

highly	contribute	to	enrich	the	biodiversity	inventory.	Chapter	1	thus	focuses	on	cryptic	speciation	in	

bony	fish	and	chondrichthyans,	reporting	the	most	interesting	and	significant	cases.	

	

In	Chapter	2	the	case	of	the	brown	skate	Raja	miraletus	 is	described	as	an	additional	evidence	of	

cryptic	 evolution	 within	 a	 species	 complex.	 The	 genetic	 variability	 and	 differentiation	 between	

different	geographical	populations	was	investigated	at	the	mitochondrial	and	nuclear	DNA	level.	The	

existence	of	at	least	three	different	lineages	was	discussed,	supporting	the	identification	of	the	South	

African	brown	skate	as	a	resurrected	species,	Raja	ocellifera,	included	in	the	nominal	Raja	miraletus	
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since	1967.	

	

Chapter	3	illustrated	the	path	leading	to	the	Illumina	sequencing	of	different	skin	tissues	belonging	

to	 five	 different	 species	 of	 genus	 Raja,	 which	 are	 phylogenetically	 related	 by	 sibling	 and	 sister	

relationships	and	display	different	dorsal	patterning,	ascribable	to	their	adaptation	to	the	benthic	life.	

	

Chapter	 4	 focused	 on	 the	 production	 of	 long	 sequencing	 reads	 for	 the	 reconstruction	 of	 a	 draft	

transcriptome	for	R.	miraletus,	from	the	sampling	phase	to	the	library	preparation	and	Ion	Torrent	

sequencing.	 The	 transcriptome	 has	 been	 then	 used	 during	 the	 mapping	 of	 the	 Illumina	 reads	

obtained	from	skin	tissues,	to	lastly	perform	the	Differential	Expression	analysis	(DE),	as	described	in	

chapter	5.	

	

Chapter	 5	 introduced	 to	 the	 main	 critical	 points	 and	 issues	 especially	 related	 to	 RNA-seq	 data	

analysis.	Details	about	the	methods	chosen	are	discussed.	This	final	section	includes	the	main	results	

of	DE	analysis	between	different	skin	tissues	across	five	target	species	and	provides	a	first	overview	

on	the	functional	role	of	the	identified	genes.	Finally,	suggestions	are	given	for	future	experiments	

that	can	validate	and	expand	on	the	knowledge	presented	here.	In	fact,	results	of	this	work	could	be	

considered	 the	 starting	 point	 for	 a	 deeper	 and	wider	 exploration	 of	 chondrichthyan	 pigmentary	

genes.	
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1.2. Species	and	cryptic	diversity	

	

While	reading	‘How	many	species	are	there	on	Earth?’	today,	the	3	to	5	million	species	estimated	in	

1988	(May	1988)	appear	far	from	the	most	recent	biodiversity	inventory,	where	about	8.7	million	

eukaryotic	species	are	predicted	to	be	inhabiting	the	planet.	It	has	also	been	appraised	that	86%	of	

terrestrial	 and	91%	of	marine	 species	have	not	been	described	yet	 (Mora	et	al.	 2011).	How	 long	

should	it	take	to	fill	this	gap	in	our	knowledge	and	how	should	we	proceed	in	those	under-sampled	

regions	characterized	by	high	species	richness	or	simply	not	physically	reachable?	While	answering	

these	 questions,	 Mora	 et	 al.	 (2011)	 raised	 an	 interesting	 paradox:	 considering	 6,200	 species	

described	 per	 year,	 24.8	 new	 species	 described	 per	 taxonomist	 and	 assuming	 that	 these	 values,	

together	 with	 the	 current	 rate	 of	 extinction,	 will	 remain	 constant	 in	 time	 and	 among	 taxa,	

characterizing	new	species	may	take	as	long	as	1,200	years	and	the	industry	of	303,000	taxonomists,	

meaning	 that	many	species	will	become	extinct	before	we	would	know	they	walked	 the	earth	or	

‘swam	the	oceans’	(Mora	et	al.2011).	Nonetheless,	it	is	plausible	that	this	filling-the-gap-issue	would	

be	 simplified	 if	 considering	 the	 integration	 of	 DNA-based	 technologies	 to	 traditional	 taxonomy	

(Cariani	et	al.	2017;	Landi	et	al.	2014;	Costa	et	al.	2012).	

In	general,	underestimating	diversity	and	overestimating	species	ranges	are	the	main	obstacles	to	

the	compilation	of	a	comprehensive	biodiversity	inventory,	especially	if	build	on	‘taxonomic	lumping’,	

i.e.	the	practice	of	combining	morphologically	similar	forms	from	different	geographic	regions	under	

a	 single	 species	 name.	As	 a	matter	 of	 fact,	 this	 procedure	 could	 concern	 subspecies,	 geographic	

forms,	morphotypes,	and	other	nominally	intraspecific	taxa	that	have	been	recognized	on	the	basis	

of	divergence	in	particular	traits	(Funk	&	Omland,	2003).	According	to	Funk	&	Omland	(2003),	the	

monophyletic	origin	of	one	or	more	intraspecific	taxa	within	a	nominal	species	could	be	a	symptom	

of	genetic	isolation	of	these	taxa	from	other	‘conspecifics’.	Therefore,	when	reproductive	isolation	is	

placed	between	distinct	but	sympatric	clades,	we	are	likely	in	front	of	different	species,	but	when	

distinct	clades	are	also	geographically	separated,	then	the	evidence	of	reproductive	compatibility	is	

not	fully	ascertainable	and	the	decision	of	whether	to	recognize	them	as	separate	species	becomes	

more	difficult.	

The	two	centuries-debate	about	the	definition	of	species	is	still	open	and	contributes	to	a	forced,	but	

necessary,	 categorization	 of	 what	 we	 simply	 consider	 as	 the	 fundamental	 taxonomic	 unit	 of	

classification	(Leliaert	et	al.	2014;	De	Queiroz	2007;	Brookfield	2002).	Reaching	the	species	essence	

on	its	whole	has	always	involved	in	some	degree	both	biologist	and	philosophers	(Hull	1965;	Sobert,	
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2008;	Claridge	et	al.	1997),	who	questioned	on	species	ontological	status	as	natural	kinds,	individuals	

or	 sets	 of	 organisms	 or	 focused	on	membership	 and	 explanatory	 requirements	 described	by	 the	

puzzling	 Relational	 Essentialism	 (Malpas,	 J.	 ‘Donald	 Davidson’,	 The	 Stanford	 Encyclopaedia	 of	

Philosophy,	2012).	The	choice	of	species	concept	when	describing	biodiversity	is	fundamental	for	our	

knowledge	of	diversity	and	distribution	and	affects	our	understanding	of	species	evolutionary	history.	

The	Morphological	Species	Concept	(MSC)	is	certainly	the	oldest	theory	defining	species	according	

to	their	phenotypic	differences	(Cracraft	1983),	although	not	the	most	accurate	as	described	later.	In	

this	thesis,	the	species	denotation	should	be	then	interpreted	mainly	according	to	the	Phylogenetic	

(PSC;	Cracraft	1989)	and	Biological	(BSC;	Mayr	1963)	species	concepts,	as	a	group	of	organisms	bound	

by	a	unique	ancestry	that	can	successfully	interbreed	and	produce	fertile	offspring	(Freeland	&	Boag	

2016;	Cracraft	1983;	Bush,	2016;	Mayr	1942).	This	choice	 is	concordant	with	Avise	and	Ball	work	

(1990)	who,	in	the	effort	to	integrate	speciation	concepts,	advanced	the	use	of	multiple	independent	

loci	 in	 species	 definition.	 The	 authors	 suggested	 that	 the	 time	 necessary	 to	 major	 phylogenetic	

distinctions	 to	 accumulate	 concordantly	 at	 independent	 loci	 is	 presumably	 adequate	 for	 intrinsic	

reproductive	 barriers	 to	 form.	 Consequently,	 populations	 showing	 concordant	 and	 reciprocally	

monophyletic	patterns	over	those	loci	are	hence	estimable	as	single	taxonomic	units.	In	addition,	the	

Phylogeographic	facet	will	be	fundamental	as	well	throughout	this	thesis,	since	it	adds	a	timescale	to	

the	 understanding	 of	 population	 structure	 and	 genealogies,	 reproductive	 isolation	 of	 population	

units	and	speciation	events.	

In	 general,	morphologically	 well-differentiated	 species	 are	 often	 characterized	 by	 similar	 genetic	

traits	due	to	rapid	divergence	mechanisms	at	times	accompanied	by	incomplete	lineage	sorting	or	

hybridization	(i.e.	rapid	adaptive	radiations	in	African	cichlids,	Böhne	et	al.	2016	;	Ivory	et	al.	2016;	

Malinsky	&	Salzburger	2016	or	in	lizards,	Feiner,	2016;	Medina	et	al.	2016;	Barley	et	al.	2013).	The	

widespread	 detection	 of	 an	 alternative	 paradigm,	where	 evolutionary	 lineages	 are	 discriminated	

genetically,	but	not	morphologically,	can	be	an	issue	for	species	identification	and	a	contribution	to	

the	underestimation	of	biodiversity	 in	systems	 involving	 ‘nonadaptive	 radiations’	 (Rundell	&	Price	

2009;	Jockusch	&	Wake	2002;	Gittemnerger	1991)	and	‘cryptic	evolution’	in	species	complexes	(Clare	

2011;	Funk	et	al.	2012;	Pfenninger	&	Schwenk	2007;	Stuart	et	al.	2006).	

Anyone	googling	‘cryptic	species	on	the	web,	would	hunt	approximately	4,290,000	entries.	A	total	of	

983	academic	papers	are	available	on	public	portals,	corresponding	to	about	one	tenth	of	the	records	

obtained	using	any	scientific	 literature	database	(e.g.	 ISI	Web	of	Knowledge	roughly	counts	9,681	

entries,	 among	 articles,	 reviews,	 proceeding	 papers,	 meeting	 abstracts	 and	 editorial	 materials).	
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Beside	the	meaning	of	these	fast-changing	numbers,	what	is	the	significance	of	cryptic	diversity?	

Cryptic	species	can	be	defined	as	two	or	more	distinct	but	morphologically	similar	species	that	were	

ranked	and	hidden	as	a	single	nominal	one	(Bickford	et	al.	2007;	Pfenninger	&	Schwenk	2007).	The	

discovery	of	this	phenomenon	boosted	with	the	advent	of	PCR-based	approaches,	 in	particular	of	

DNA	 barcoding	 (Hebert	 et	 al.	 2004),	 which	 has	 shown	 to	 be	 helpful	 in	 species	 diagnosis,	 even	

between	 closely	 related	 species	 (Moore	 2016;	 Avise	 &	 Walker	 1999;	 Hebert	 et	 al.	 2003).	 This	

approach	 highly	 contributed	 in	 revealing	 the	 astonishing	 diversity	 around	 us	 and	 arose	 both	

questions	 and	 criticisms	 about	 cryptic	 taxa	 acknowledgment,	 frequency,	 age,	 distribution	 and	

boundaries.	

Moreover,	these	species	are	the	most	studied	and	criticized	since	two	decades.	Particular	caution	

should	be	paid	when	observing	deep	genetic	divergences	within	species,	which	do	not	always	imply	

cryptic	 speciation	 events	 (Horne	 et	 al.	 2008).	 Conversely,	 when	 deep	 evolutionary	 splits	 are	 in	

agreement	across	both	mitochondrial	and	nuclear	DNA	markers	(henceforth	mtDNA	and	nuDNA),	are	

geographically	isolated	or	show	morphological	and	behavioural	dissimilarities	(Victor	2015;	Knudsen	

&	Clements	2012)	then	the	signal	of	a	cryptic	speciation	event	might	be	loud	and	clear.	As	a	matter	

of	fact,	an	increasing	number	of	DNA-based	studies	suggest	that	morphologically	similar	species	can	

be	the	product	of	ancient	speciation	events	(Beheregaray	&	Caccone	2007).	

Despite	criticisms	regarding	the	‘taxonomic	inflation’	issue	and	other	controversies	(Trontelj	&	Fiser	

2009;	Meiri	&	Mace	2007;	Rubinoff	&	Holland	2005)	cryptic	diversity	has	been	richly	documented	

among	marine	invertebrates	(Knowlton	2009)	as	foraminifera	(de	Vargas	et	al.	1999),	crustaceans	

(Baldanzi	 et	 al.	 2016;	 Pilgrim	 et	 al.	 2013;	Navarro-Barranco	 et	 al.	 2013;	 Schiffer	&	Herbig	 2016),	

annelids	(Grosemans	et	al.	2016;	Johnson	et	al.	2016;	Kawauchi	&	Giribet	2014),	mollusc	(Huelsken	

et	al.	2013;	Barco	et	al.	2013;	Jörgeret	et	al.	2012)	and	echinoderms	(Boissin	et	al.	2011),	which	show	

paradoxical	wide	distribution,	but	theoretical	low	dispersal	capacity.	

More	and	more	case	studies	are	focusing	also	on	vertebrate	hidden	species	among	ascidians	(Kwan	

et	 al.	 2014;	 Pérez-Portela	 et	 al.	 2013),	 teleost	 (Nirchio	 et	 al.	 2016;	 Fernandez-Silva	 et	 al.	 2015;	

Bradbury	et	al.	2014;	Corander	et	al.	2013),	amphibians	(Funk	et	al.	2012;	Elmer	et	al.	2007),	birds	

(Friesen	et	al.	1996),	reptiles	(Ukuwela	et	al.	2014)	and,	unexpectedly,	on	mammalian	megafauna	

(Clare	2011;	Brown	et	al.	2007;	Dalebout	et	al.	2002;	Garcia-Rodriguez	et	al.	1998).	Their	discovery	

and	cataloguing	are	fundamental	and	critical	for	their	conservation	and	habitat	management,	legal	

protection	and	distribution	of	limited	resources	(Crozie	et	al.	2005;	Agapow	et	al.	2004;	Daugherty	et	

al.	1990).	
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The	striking	underestimate	of	global	species	diversity	is	particularly	important	because	it	can	occur	

in	 biodiversity	 conservation	hotspots	 (Brown	&	Diesmos	 2009),	 but	 it	 can’t	 be	 excluded	 in	 other	

realms,	as	the	marine	one,	where	speciation	events	and	different	evolutionary	radiations	are	more	

and	more	extensively	documented	(Henriques	et	al.	2016;	Hodge	&	Bellwood	2016;	Pereira	et	al.	

2016;	Siqueira	et	al.	2016;	Frable	et	al.	2015;	Henriques	et	al.	2015;	Craig	et	al.	2009;	Neilson	&	

Stepien,	2009;	Ward	et	al.	2008;	Knowlton	2000;	Palumbi	1992).	

According	to	Bickford	et	al.	(2007),	the	basis	of	the	un-correlation	between	morphological	change	

and	 species	 delimitation	 should	 be	 sought	 in	 two	 main	 recurrent	 conditions:	 the	 lack	 of	 visual	

communication	among	conspecifics	and	the	conservation	of	the	external	gross	morphology.	

Regarding	 the	 first	 condition,	 a	nonvisual	 language	 is	 likely	 to	be	 intensified	 in	 the	marine	 realm,	

where	organism	interact	via	chemical	or	electric	signals	(Klimley	2013;	Feulner	et	al.	2009;	Sisneros	

&	Tricas	2002;	Sisneros	&	Tricas	2002;	Knowlton	2000).	These	features	could	be	considered	the	key	

of	survival	for	those	species	arisen	so	recently	that	most	morphological	traits	have	not	yet	diverged	

but,	on	the	other	hand,	the	conservation	of	external	morphology	could	be	the	result	of	stabilizing	

selection	on	important	adaptive	traits	in	species	occupying	similar	habitat	types	and	ecological	niches	

(Losos	&	Glor	2003;	Schonrogge	et	al.	2002).	Some	authors	also	refer	to	morphological	and	ecological	

stasis	as	the	result	of	a	‘living-fossil’	condition,	being	the	latter	typically	characterized	by	bradytely	

(Eldredge	&	Stanley	1984)	and	a	relatively	unmodified	gross	morphology	associated	with	molecular	

divergences	(Erdmann	et	al.	1999;	Bowen	et	al.	1993).	Considered	the	rarity	of	living	fossils,	in	most	

cases	a	strong	selection	may	be	driving	the	conservation	of	external	morphological	traits,	even	if	the	

evidence	of	this	phenomenon	is	not	always	easily	ascertainable.	Furthermore,	the	maintenance	of	

similar	external	traits	can	vary	a	lot	on	the	evolutionary	scale,	meaning	that	in	some	cases	a	consistent	

species	 diagnosis	 based	 on	 morphological	 characters	 is	 not	 possible,	 whereas	 in	 other	 cases	

morphological	 differentiation	 appears	 to	 have	 occurred	 in	 minor	 measure,	 involving	 only	 slight	

differences	in	body	size,	for	instance.	

Among	tropical	fish,	for	example,	the	molecular	divergence	between	evolutionary	lineages	can	be	

congruent	with	the	observed	morphological	distinction,	e.g.	the	commercially	valuable	Cephalopholis	

hemistiktos	 (Rüppell,	 1830),	 the	 yellow-fin	 hind	 (Priest	 et	 al.	 2016),	 while	 other	 species	 show	 a	

morphological	stability	on	a	strikingly	wide	range.	An	example	of	species	differentiation	driven	by	

stabilizing	selection	is	the	tropical	and	subtropical	genus	Albula	(Scopoli,	1777)	which	has	diverged	

3–20	Mya	because	of	 the	balancing	 selective	 force	 acting	 in	 sand	habitats	 (Andrews	et	 al.	 2016;	

Galdino	Brandão	et	 al.	 2016;	Henriques	et	 al.	 2016;	Henriques	et	 al.	 2015;	Colborn,	 et	 al.	 2001),	
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considered	ecologically	homogenous	all	over	the	world	(Bowen	&	Karl	2006).	

Theoretically,	 a	 high	 number	 of	 cryptic	 events	 should	 be	 detected	 in	 the	 richest	 hotspots	 for	

biodiversity.	This	is	the	case	of	the	Coral	Triangle,	where	the	genus	Eviota	(O.P.	Jenkins,	1903)	has	

started	developing	23	Mya,	after	the	geological	formation	of	the	hotspot	(Renema	et	al.	2008)	and	

evolved	during	the	Pleistocene	in	more	recent	species	complexes	characterized	by	different	regional	

colour	morphs	and	at	least	six	genetic	lineages	per	complex	(Tornabene	e	t	al.	2015).	

From	 one	 end	 to	 another,	 extreme	 habitats	 can	 also	 be	 the	 nest	 of	 cryptic	 evolution.	 Around	

Antarctica,	 the	 peculiar	 geological,	 climatic	 and	 oceanographic	 conditions	 fostered	 the	 endemic	

marine	fauna	to	exhibit	a	higher	than	expected	species	richness,	including	cryptic	species	(Strugnell	

&	Allcock	2013;	Allcock	&	Strugnell	2012;	Thatje	2012;	Thornhill	et	al.	2008;	Wilson	et	al.	2007;	Allcock	

et	al.	2011).	The	yellow-fin	rockcod	Lepidonotothen	nudifrons	(Lönnberg,	1905)	is	one	of	them,	having	

demonstrated	 to	 comprise	 two	genetically	distinct	 and	geographically	 isolated	partitions	 that	are	

morphologically	 identical	 because	 of	 a	 speciation	 event	 fitting	 into	 adaptive	 radiation	 theory	

(Dornburg	et	al.	2016).	The	authors	found	that	the	hidden	diversity	of	this	species	could	be	a	result	

of	the	frequent	glacial	cycles	occurred	over	the	past	5	million	years,	which	could	have	forced	niches’	

shifts	and/or	 restricted	gene	 flow	over	 long	distances	 (Dornburg	et	al.	2016)	 instead	of	providing	

ecological	 opportunities	 for	 phenotypic	 change	 likewise	 other	 Antarctic	 fauna	 (Near	 et	 al.	 2012;	

O’Loughlin	et	al.	2011).	According	to	the	authors,	the	lack	of	morphological	diversification	involves	

the	 ‘flexible-stem	 model’	 proposed	 by	 West-Eberhard	 (2003),	 which	 states	 that	 phenotypic	

diversification	 requires	 developmental	 plasticity:	 the	more	 flexible	 is	 the	 ancestral	 population	 in	

terms	of	ecology,	natural	selection	and	adaptive	capacity,	the	more	phenotypic	diversity	would	be	

characterizing	the	radiating	lineage	in	function	of	time	and	population	size.	More	specifically,	large	

populations	persisting	over	long	timescales	would	be	more	prone	to	develop	a	higher	measure	of	

flexibility,	necessary	for	further	phenotypic	change	(West-Eberhard	2003).	

Cryptic	evolutionary	mechanism	has	been	shown	to	occur	into	another	extreme	habitat	which	has	

not	been	extensively	sampled:	 the	deep	sea.	 Independent	 lineages	were	recorded	 in	genus	Etelis	

(Couvier,	1828),	the	Deepwater	snappers	(Andrews	et	al.	2016),	where	the	nominal	E.	carbunculus	

was	 indeed	composed	of	 two	partitioned	species,	co-occurring	 in	North-Western	Australia,	Cocos	

Island,	 New	 Caledonia,	 Tonga,	 Wallis	 and	 Futuna,	 Fiji	 and	 Samoa.	 Concordantly	 with	 extensive	

morphological	 similarity,	 the	 lineages	 have	 diverged	 4-5	Mya	 in	 an	 historic	 period	 comprising	 a	

reduced	 water	 flow	 between	 the	 separated	 Indian	 and	 Pacific	 Basins	 (16–8	 Mya)	 and	 the	 flow	

fluctuations	occurred	during	the	Pleistocene	(2.6–0.12	Mya;	Andrews	et	al.	2016).	
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According	to	the	reported	examples,	 the	role	and	 importance	of	paleoclimatic	history	and	hydro-

geographic	 discontinuities	 in	 driving	 genetic	 diversity,	 population	 divergences	 and	 species	

demography	became	evident.	 But	what	 could	we	expect	 from	ancient	 and,	 in	 some	 cases,	 slow-

mutating	species	(Martin	&	Palumbi	1993)?	

	

1.3. Cryptic	lineages	in	chondrichthyans	

	

The	evolutionary	history	of	cartilaginous	fish	dates	back	to	the	early	Devonian,	about	400	Mya	and	

200	Ma	before	 the	origin	of	 teleost,	 as	 revealed	by	 the	 fossil	 records	 collected	between	Europe,	

Lebanon	and	North	Africa	 (Maisey	2012).	Despite	 their	ancient	origin,	 this	 class	 is	 far	 from	being	

strictly	primitive.	On	the	contrary,	chondrichthyans	evolved	sophisticated	reproductive	strategies	and	

means	of	communication.	Elasmobranchs	like	mammals,	perform	courtship,	internal	fertilization	and	

females	experience	gestation,	during	which	an	extended	development	may	be	necessary	to	enhance	

the	mediation	of	complex	social	and	sexual	behaviour	(Demski	1990a).	Tricas	et	al.	(1995)	have	also	

described	the	role	of	the	electro-sensory	system	and	the	neuroendocrine	system	while	localizing	the	

sexual	partner	(e.g.	Urolophus	halleri	produces	a	weak	electric	signal	that	is	rhythmically	modulated	

by	the	movements	of	the	spiracles	and	gills	during	ventilation.	The	signal	is	detected	by	other	buried	

skates	via	the	ampullae	of	Lorenzini).	Nevertheless,	 their	slow	growth	and	 longevity	(Cailliet	et	al.	

1995;	Camhi	et	al.	1998),	low	recovery	capacity,	low	fecundity	and	late	maturity	(i.e.	between	10	and	

20	years	for	males	and	11.5	to	30	years	for	females	of	Etmopterus	baxteri;	Irvine	et	al.	2006)	are	well	

known	among	marine	biologists	and	conservationists:	most	species	spend	relatively	long	gestation	

periods	(approximately	one	year)	and	produce	few	egg-capsules	per	season	(Dudgeon	et	al.	2012;	

Pratt	&	Carrier	 2001).	 This	 K-selected	 life	 history	 trait	makes	 this	 Class	 particularly	 vulnerable	 to	

anthropogenic	stressors	and	environmental	change	(Cariani	et	al.	2017;	Ball	et	al.	2016;	Kousteni	et	

al.	2015;	Griffiths	et	al.	2010;	Richards	et	al.	2009;	Corrigan	et	al.	2008;	Abercrombie	et	al.	2005),	and	

because	 of	 their	 intrinsic	 sensitivity	 and	 susceptibility	 to	 overfishing	 and	 by-catch,	 erasing	 any	

taxonomic	uncertainty	is	fundamental	to	their	survival	and	conservation	(Bonello	et	al.	2016).	

It	 has	 been	 estimated	 that	 more	 than	 1100	 cartilaginous	 fish	 species	 (sharks,	 skates,	 rays	 and	

chimaeras)	inhabit	the	oceans	worldwide,	while	the	Mediterranean	Sea	alone	hosts	89	species	(about	

7%	of	the	global	diversity;	Cariani	et	al.	2017).	Speaking	of	cryptic	diversity,	could	we	predict	a	similar	

scenario	as	the	one	observed	among	marine	teleost?	This	is	certainly	the	case.	

Despite	fewer	cases	than	among	other	taxa,	molecular	approaches	have	been	used	to	distinguish	
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cryptic	 species	 for	elasmobranch	groups	as	well	 (Pavan-Kumar	et	al.	2014;	Ovenden	et	al.	2011).	

Angel	 sharks	 Squatina	 spp.	 (Solé-Cava	&	 Levy	 1987),	 thresher	 sharks	Alopias	 spp.	 (Eitner,	 1995),	

hound	sharks	Mustelus	spp.	(Gardner	et	al.	2002;	(Heemstra	1997),	shovelnose	guitarfish	Rhinobatos	

spp.	(Sandoval-Castillo	et	al.	2004),	catsharks	Galeus	spp.	(Castilho	et	al.	2007),	wobbegong	sharks	

(Corrigan	et	al.	2008),	the	spotted	eagle	ray	Aetobatus	(Richards	et	al.	2009)	and	Atlantic	skates	genus	

Dipturus	(Griffiths	et	al.	2010;	Iglésias	et	al.	2010)	have	all	demonstrated	to	hide	parallel	or	intricate	

genealogies	driven	by	hydrographic	barriers	and	paleo-geological	events.	Below,	two	interesting	case	

studies	are	reported	and	one	more	has	been	developed	and	investigated	within	this	PhD	research	

(see	Chapter	2).	

Among	 Squaliformes,	 the	 deep-sea	 lanternsharks	 genus	 Etmopterus	 are	 not	 commercially	

interesting,	but	they	represent	a	significant	by-catch	component	of	deep-water	trawl	and	longline	

fishery	 (Clarke	et	al.	2005;	Compagno	et	al.	2005;	 Jakobsdóttir	2001;	Wetherbee	&	Nichols	2000;	

Wetherbee	et	al.	1996).	The	taxonomic	confusion	characterising	the	genus	still	endangers	species	

conservation	and	reflects	an	even	more	tangled	pattern	of	interspecific	and	intraspecific	relationships	

within	at	least	six	nominal	species.	As	other	relatives	(e.g.	Schaaf	da	Silva	&	Ebert	2006;	Ward	et	al.	

2008;	 2005),	 lanternsharks	 display	 an	 unclear	 cryptic	 diversity	 within	 the	 Southern	 Hemisphere	

(Straube	et	al.	2011).	Paleoclimatic	events	mainly	related	to	the	deep-sea	cooling	(e.g.	temperatures	

decreased	from	12°C	down	to	4.5°C	about	34	Mya;	Zachos	et	al.	2001)	and	ice	sheet	development	

on	Antarctica	were	the	cause	of	its	separation	from	the	surrounding	continents.	The	opening	of	the	

Tasman	and	Drake	passages	allowed	circumpolar	circulation	and	thermal	isolation	(Dingle	&	Lavelle	

2000).	

Many	 authors	 have	 demonstrated	 the	 existence	 of	 a	 cryptic	 Atlantic	 lineage	 related	 to	 the	

cosmopolitan	and	endangered	Sphyrna	 lewini	 (Griffith	&	Smith	1834),	 the	scalloped	hammerhead	

shark	(Abercrombie	et	al.	2005;	Duncan	et	al.	2006).	This	species	shows	a	deep	divergence	between	

the	 Atlantic	 and	 Indo-Pacific	 monophyletic	 populations	 according	 to	 mtDNA	 and	 morphological	

differentiation	as	well	(Quattro	et	al.	2006).	The	corresponding	two	morphs	previously	described	by	

Springer	(1941)	as	S.	diplana	(from	Atlantic	Ocean)	and	S.	lewini	(from	Indo-Pacific	region)	were	later	

synonymized	via	‘taxonomic	lumping’	by	Fraser-Brunner	(1950)	and	Gilbert	(1967).	A	third,	deeper	

and	isolated	lineage	was	also	detected	along	the	coasts	from	North	Carolina	to	Florida,	which	earned	

the	name	of	Carolina	hammerhead,	aka	S.	gilberti	sp.	Nov	(Quattro	et	al.	2013)	and,	more	recently,	

along	the	Western	Atlantic	Coasts	(Pinhal	et	al.	2011),	widening	the	distributional	area	of	the	species	

of	more	than	7,000	km.	The	uplift	of	the	Isthmus	of	Panama	(3.1-3.5	Mya;	Coates	et	al.	2004;	Avise	
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et	al.	2000;	Coates	&	Obando	1996)	seems	to	have	influenced	the	phylogeographic	history	of	the	

scalloped	 hammerhead	 shark	 (Duncan	 et	 al.	 2006;	 Quattro	 et	 al.	 2006),	 as	 well	 as	 many	 other	

terrestrial,	freshwater	and	marine	species	(Andrews	et	al.	2016;	Hodge	&	Bellwood	2016;	Schiffer	&	

Herbig	2016;	Bowen	&	Karl	2006;	Colborn	et	al.	2001;	Bermingham	et	al.	1997),	 including	batoids	

(Richards	et	al.	2009).	

In	 the	next	 chapter	 the	 case	of	 the	Raja	miraletus	 species	 complex	will	 be	 reported	as	 a	 further	

exemplification	of	hidden	diversity	among	the	family	Rajidae.	
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Chapter	2.	The	name	game:	when	evolution	hides	behind	unchanging	morphology	

	

2.1.	 Introduction	

	

Skates	 (Rajoidei,	 Rajiformes)	 are	marine	 and	 brackish	 elasmobranchs	 distributed	 worldwide	 that	

paradoxically	exhibit	an	extraordinary	species	diversity	and	high	degree	of	endemism	paired	with	

high	levels	of	morphological	and	ecological	stasis	(Ebert	&	Compagno	2007).	They	are	bottom	dweller	

organisms	 that	 generally	 inhabit	 the	 sandy	 habitats	 of	 continental	 plates	 and	 shelves,	which	 are	

frequently	up	to	1,500	m	in	depth	(Ebert	&	Compagno	2007).	 Instead	of	visual	signals,	they	use	a	

highly	efficient	electro-sensory	system	for	mating	recognition	(Tricas	et	al.	1995)	and	detection	of	

prey	(Camperi	et	al.	2007).	Skates	are	oviparous	and	lay	very	large	and	benthic	egg	capsules,	usually	

with	a	single	embryo	(Chiquillo	et	al.	2014).	Species	diversity	and	zoogeography	of	skates	are	well	

described	 in	 the	 regional	 shelf	 areas	 that	 have	 been	 surveyed	 intensely	 by	 scientific	 trawling	

programs	(e.g.	the	north-eastern	Atlantic-Mediterranean	[Stehmann	&	Bürkel	1984]	and	the	south-

eastern	Atlantic	and	western	Indian	Oceans	[Compagno	&	Ebert	2007]).	Skate	faunas	of	the	north-

eastern	 Atlantic	 and	 Mediterranean	 shared	 several	 nominal	 species	 with	 the	 central	 and	 south	

African	faunas	(Froese	&	Pauly	2017).	Among	them,	the	brown	skate	(or	twineye	skate)	Raja	miraletus	

L.	1758	is	distributed	more	widely	than	expected	given	the	limited	potential	of	dispersal	conditioned	

by	a	relatively	dominant	residential	behaviour	of	adults	and	juveniles	(Neat	et	al.	2015;	Frisk,	et	al.	

2014;	Wearmouth	&	Sims	2009;	Hunter	et	al.	2005a	;	2005b)	and	the	lack	of	egg	dispersal	(Musick	&	

Ellis	2005).	The	brown	skate	is	a	small-sized,	fairly	fecund	species	that	is	reported	to	be	distributed	

from	northern	Portugal,	the	whole	Mediterranean	and	along	the	western	and	south-eastern	coasts	

of	 Africa	 (Compagno	&	 Ebert	 2007;	 Stehmann	&	 Bürkel	 1984).	 This	 skate	 exhibits	 a	 pronounced	

benthic	ecology,	with	depth	range	from	shallow	waters	to	~450	m,	but	with	most	records	from	10m	

to	 150m	 on	 sandy	 and	 hard	 bottoms	 (Serena	&	Mancusi	 2010;	 Compagno	&	 Ebert	 2007)	 and	 a	

generalist	 feeding	behaviour	 (Kadri	et	al.	2014;	Šantić	et	al.	2012).	Because	of	 its	high	and	stable	

abundance	 over	 its	 distribution,	 the	 small	 body	 size	 and	 the	 early	 maturation	 (age	 at	 maturity	

estimated	 at	 2.7	 years;	 Tsikliras	 &	 Stergiou	 2014),	 the	 brown	 skate	 is	 considered	 resilient	 to	

exploitation	and	assessed	as	Least	Concern	in	the	Red	List	(IUCN	2009).	Raja	miraletus	also	exhibits	

high	levels	of	stasis	of	the	external	rough	morphology	along	with	its	range,	with	two	very	distinctive	

tricolored	(blue,	black	and	yellow)	bright	eyespots	on	the	upper	ochre-brownish	surface	at	the	base	

of	pectoral	fins	(Compagno	et	al.	1989;	Stehmann	&	Bürkel	1984).	
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Unexpectedly,	 the	 flattened	 variation	 of	 external	 rough	 distinctive	 features	 contrasted	 with	 the	

pronounced	differences	in	several	fine	internal	and	external	morphometric	and	meristic	characters.	

This	contrast	had	started	and	conducted	a	“name	game”	for	R.	miraletus,	namely	a	taxonomic	and	

evolutionary	game	whose	moves	aim	to	lay	upon	taxonomic	boundaries	onto	natural	evolution	in	this	

enigmatic	skate.	The	first	“move”	of	the	game	was	played	by	McEachran	et	al.	(1989)	that	observed	

a	significant	variation	of	morphometric	and	meristic	characters	over	its	range	and	recognized	at	least	

three	 distinct	 groups	 of	 brown	 skates	 in	 the	 Mediterranean,	 West	 and	 South	 Africa.	 The	

Mediterranean	and	South	African	samples	resulted	the	most	differentiated,	while	those	from	West	

Africa	(i.e.	including	samples	from	Mauritania-Senegal,	Gulf	of	Guinea-equatorial	Africa	and	Angola)	

were	similar	to	each	other.	Among	the	West	African	samples,	the	Angolan	brown	skates	were	the	

most	 distinct,	 even	 if	 for	 some	 characters	 displayed	 intermediate	 variation	 between	 the	

Mediterranean	 and	 South	 African	 specimens	 (McEachran	 et	 al.	 1989).	 The	 subtle	 variation	 of	

characters	amongst	groups	and	the	cline	trend	of	some	of	them,	 lead	McEachran	et	al.	 (1989)	to	

consider	R.	miraletus	a	polymorphic	species	with	at	least	three	parapatric	or	allopatric	populations	

(i.e.	 located	 in	 the	Mediterranean,	West	Africa	and	South	Africa).	Two	oceanographic	 fronts	with	

steep	thermal	gradients	in	the	Eastern	Atlantic,	namely	the	upwelling	areas	at	Cape	Blanc	(21°N)	and	

Cape	Frio	 (18°S)	may	act	as	barriers	 to	maintain	the	partial	 reproductive	separation	among	these	

populations	(McEachran	et	al.	1989).	The	second	“move”	of	the	game	has	been	played	20	years	later	

by	 Naylor	 et	 al.	 (2012)	 and	 Caira	 et	 al.	 (2013)	 who	 provided	 a	 preliminary	 evidence	 of	 cryptic	

speciation	in	R.	miraletus	by	integrating	results	from	mitochondrial	DNA	analysis,	morphology	and	

host-parasite	 relationships	 from	 specimens	 collected	 in	 Senegal	 and	 South	 Africa.	 These	 authors	

suggested	the	existence	of	at	least	three	clusters	within	R.	miraletus	and	the	species	was	updated	to	

a	complex	of	species	(Naylor	et	al.	2012).	Two	clusters	are	sympatric	in	Senegal	and	the	third	was	

located	in	South	Africa.	Specimens	of	each	clade	host	different	Diphyllidean	flatworm	species	of	the	

genus	Echinobothrium	 (Caira	 et	 al.	 2013)	 and,	 even	 if	 additional	material	 should	 be	 collected	 to	

formally	describe	these	taxa,	these	independent	data	strongly	corroborate	cryptic	speciation	of	R.	

miraletus	(Caira	et	al.	2013;	Naylor	et	al.	2012).	A	third	“move”	of	this	taxonomic	and	evolutionary	

game	has	been	recently	played	by	Last	and	Séret	(2016)	that,	according	to	deep	morphometric	and	

meristic	analyses	of	specimens	that	were	mtDNA-typed	(Naylor	et	al.	2012	and	unpublished	data),	

recognized	R.	miraletus	as	a	species	complex	of	at	least	four	valid	species:	1)	the	northernmost	R.	

miraletus,	 occurring	 in	 the	 Mediterranean	 and	 adjacent	 North	 Eastern	 Atlantic	 waters,	 2)	 the	

southernmost	R.	ocellifera	occurring,	in	the	Atlantic,	off	South	Africa	and	Namibia	and,	in	the	Indian	
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Ocean,	from	False	Bay	to	Durban,	3)	the	central	African	R.	parva	sp.	nov.,	distributed	from	Senegal	to	

Angola	and	4)	a	still	not	described	species,	occurring	from	Mauritania	to	Senegal	where	it	is	therefore	

sympatric	with	R.	parva.	This	 latter	 taxon	can	be	 identified	by	divergent	mtDNA	haplotype	at	 the	

NADH2	gene	(Naylor	et	al.	2012).	

The	advent	of	high-throughput	DNA	technologies	and	the	launch	of	global	biodiversity	assessments	

(e.g.	 the	DNA	 barcoding	 based	 on	mtDNA	universal	markers	 as	 the	 fragment	 of	 the	 cytochrome	

oxidase	 subunit	 I,	 COI;	 Hebert	 et	 al.	 2003),	 are	 providing	 raw	 data	 to	 go	 deeply	 in	 determining	

taxonomic,	 ecological	 and	 evolutionary	 issues	 of	 cryptic	 (sensu	 Bickford	 et	 al.	 2007)	 and	 sibling	

species,	where	the	term	‘sibling’	connotes	species	with	a	recent	common	ancestry,	implying	a	sister-

species	relationship	(Knowlton	1986)	and	even	more	challenging	conservation	issues	(Bickford	et	al.	

2007).	However,	 the	use	of	molecular	methods	coupling	mitochondrial	and	nuclear	DNA	markers	

better	resolved	species	boundaries	as	well	as	gene	introgression/hybridization	phenomena	in	marine	

fish	and	in	closely	related	elasmobranches	(Frodella	et	al.	2016;	Arlyza	et	al.	2013;	Morgan	et	al.	2012;	

Pasolini	et	al.	2011).	

This	study	aims	to	play	again	“the	name	game”	by	measuring	genetic	variation	at	both	mtDNA	(i.e.	

the	 COI	 barcode	 sequence	 marker)	 and	 nuDNA	 markers	 (i.e.	 eight	 EST-linked	 polymorphic	

microsatellite	loci;	El	Nagar	et	al.	2010)	in	323	individuals	exhibiting	the	distinctive	phenotype	of	the	

“R.	miraletus”	species	complex	(Compagno	et	al.	1989;	Stehmann	&	Bürkel	1984).	Individuals	were	

collected	from	Mediterranean,	North-eastern	Atlantic,	Senegal,	Angola	and	South	Africa,	thus	likely	

representing	most	of	 the	diversity	of	 the	“Raja	miraletus	 species	complex”	at	multiple	 taxonomic	

levels.	With	these	data,	we	tested	the	hypothesis	that	restricted	gene	flow	and	genetic	divergence	

within	 this	 species	 complex	 are	 associated	 with	 climatic/oceanographic	 discontinuities	 (e.g.	

oceanographic	 fronts,	 depth	 barriers	 and	 environmentally	 unsuitable	 habitats)	 and	 parallelise	

morphological	 and	parasite	 variation	assessed	 independently	 (Caira	et	 al.	 2013;	McEachran	et	al.	

1989).	Furthermore,	we	inferred	the	time	of	the	most	recent	common	ancestor	and	reconstructed	

the	relative	historical	demography	of	the	R.	miraletus	species	complex	to	estimate	the	timeframe	of	

populations	and	species’	evolutionary	dynamics.	
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2.2.	 Materials	and	methods	

	

2.2.1.		 Sampling	

 
Specimens	 and	 tissues	 were	 collected	 from	 Mediterranean	 individuals	 caught	 during	 scientific	

research	 programs.	No	 specific	 approval	 of	 this	 vertebrate	work	 is	 required	 since	 the	 individuals	

sampled	in	this	study	were	obtained	for	scientific	and	commercial	activities.	A	total	number	of	323	

brown	skates	were	collected	from	2000	to	2014	(Table	S1	in	Appendix	I).	Most	of	the	individuals	were	

collected	 by	 international	 scientific	 trawl	 survey	 campaigns	 carried	 out	 in	 South	 Africa	 (Africana	

cruises),	 Angola	 (Nansen	 cruises),	 the	 whole	Mediterranean	 Sea	 (MEDITS	 scientific	 surveys)	 and	

national	scientific	trawl	surveys	(the	Italian	GruND;	Relini	2000;	the	Portuguese	scientific	surveys	of	

the	Instituto	Português	de	Investigação	Marítima).	Additional	samples	were	provided	by	contracted	

commercial	fishermen	(Senegal,	Levantine	Sea	and	Israel)	or	collected	at	local	fish	markets	(Algeria).	

Therefore,	sampling	covered	most	of	the	wide	geographical	distribution	of	Raja	miraletus	(Figure	1).	

All	individuals	were	easily	assigned	to	R.	miraletus	on	the	basis	of	their	very	distinctive	morphotype	

and	species-specific	diagnostic	characters	(Stehmann	&	Burkel	1984;	Compagno	et	al.	1989).	Fin	clips	

and	muscle	tissues	were	cut	from	each	individual	using	sterile	tweezers	and	clippers,	transferred	to	

a	clean	tube	filled	with	96	%	ethanol	and	stored	at	-20°C	for	subsequent	DNA	analyses.	

	

2.2.2.	DNA	isolation	and	PCR	amplification	

 
Total	genomic	DNA	(gDNA)	was	extracted	from	about	20	mg	of	fin	clip	or	muscle	tissue	using	the	

Invisorb®	 Spin	 Tissue	 Mini	 Kit	 (Stratec®molecular)	 according	 to	 manufacturer’s	 protocol	

(http://www.stratec.com/en/molecular/Products_Molecular/Genomic_DNA/Invisorb_Spin_Tissue_

Mini_Kit/Invisorb_Tissue_Mini.php).	

	

2.2.3.	mtDNA	COI	sequence	

 
From	the	extracted	gDNA,	a	fragment	of	the	mitochondrial	COI	gene	of	about	650bp	was	amplified	

using	the	COI-3	primer	cocktail	described	by	Ivanova	et	al.	(2007).	The	PCR	reactions	were	performed	

in	50μL	total	volume	containing	4µL	of	pure	gDNA	corresponding	to	~25ng,	10µL	of	buffer	(1X),	5µL	

of	MgCl2	(2.5mM),	0.5µL	of	dNTP	mix	(0.1mM	each),	1	µL	of	each	primer	(0.2mM)	and	0.25U	of	Taq	

DNA	 Polymerase.	 All	 PCR	 reagents	 were	 supplied	 by	 Promega®,	 except	 for	 primers,	 supplied	 by	
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LifeTechnologies®.	The	cycle	was	planned	with	the	following	thermal	profile:	94°C	for	2	min,	35	cycles	

of	94°C	for	30	sec,	52°C	for	40	sec,	72°C	for	1	min	and	a	final	extension	step	at	72°C	for	10	min	and	it	

was	performed	on	a	Biometra	T-Gradient	Thermocycler.	The	PCR	products	were	electrophoresed	on	

agarose	 gel	 at	 2	 %	 and	 amplicons	 were	 stored	 at	 -20ºC	 until	 shipping	 to	 Macrogen	 Europe	

(Amsterdam,	the	Netherlands).	Individual	Sanger	sequencing	was	carried	out	on	Applied	Biosystems	

3730xl	DNA	Analyser.	

	

2.2.4.	Expressed	Sequence	Tag-linked	microsatellite	loci	

 
Eight	Expressed	Sequence	Tag-linked	microsatellite	loci	(henceforth	EST-SSRs)	developed	from	the	

little	skate	Leucoraja	erinacea	and	cross-amplifying	in	several	skate	species	(El	Nagar	et	al.	2010)	were	

optimized	 for	 cross-amplification	 in	 the	R.	miraletus	 species	 complex.	 The	 EST-SSR	PCR	 reactions	

were	performed	in	a	10µL	total	volume	containing	3µL	of	gDNA	corresponding	to	~20ng,	2µL	of	PCR	

Buffer	 (1X),	 0.5µL	 of	MgCl2	 (1.25mM),	 0.8µL	 of	 dNTP	mix	 (0.05mM	 each),	 0.5µL	 of	 each	 primer	

(0.5µM;	0.25µM	 for	 LERI	26)	and	1U	of	Taq	DNA	Polymerase.	All	 PCR	 reagents	were	 supplied	by	

Promega®,	except	the	primers	which	were	from	LifeTechnologies®.	DNA	amplifications	were	run	on	

a	 Biometra	 T-Gradient	 Thermocycler	 as	 follows:	 after	 an	 initial	 denaturation	 at	 94°C	 for	 3	 min,	

amplification	was	performed	with	30	cycles	consisting	of	denaturation	at	94°C	for	30	sec,	annealing	

at	53°C	for	30	sec,	extension	at	72°C	for	30	sec,	followed	by	a	final	extension	at	72°C	for	10	min.	

Amplicons	were	electrophoresed	on	2.5	%	agarose	gel	and	stored	at	-20ºC	until	shipping	to	Macrogen	

Europe	 (Amsterdam,	 the	Netherlands).	 Individual	genotyping	was	performed	on	ABI3100	Genetic	

Analyser	(Applied	Biosystems),	using	labelled	forward	primers	and	LIZ	HD500	(Applied	Biosystems)	as	

internal	size	standard.	

	

2.2.5.	Data	analysis	

 
A	 total	of	275	COI	 sequence	electropherograms	was	manually	edited	and	aligned	by	CLUSTAL	W	

software	(Thompson	et	al.	1994)	and	incorporated	into	MEGA	v.6.0	(Kumar,	Stecher	&	Tamura	2015).	

The	 correct	 amino	 acidic	 translation	 was	 assessed	 to	 exclude	 the	 presence	 of	 stop	 codons	 and	

sequencing	errors	 (Moulton	et	al.	2010).	For	each	 individual,	consensus	COI	sequences	were	 first	

compared	with	published	sequences	from	both	the	NCBI	 (http://www.ncbi.nlm.nih.gov/genbank/)	

and	 the	 Barcode	 of	 Life	 Data	 System	 (Ratnasingham	 et	 al.	 2007;	 BOLD	 at	

http://www.boldsystems.org)	 on-line	 databases	 through	 the	 BLAST	 algorithm	
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(http://blast.ncbi.nlm.nih.gov/Blast.cgi)	in	order	to	rule	out	any	error	due	to	mishandling	of	samples	

on	board	or	during	the	laboratory	activities.	Additional	homologous	COI	sequences	of	R.	miraletus	

were	 retrieved	 from	 both	 on-line	 databases	 selecting,	 when	 accessible,	 records	 from	 different	

geographical	origins:	South	Africa,	Sicilian	Channel,	Aegean	Sea	and	Israel	(Table	S1).	The	retrieved	

sequences	 were	 aligned	 with	 those	 newly	 generate	 and	 a	 final	 dataset	 of	 306	 COI	 homologous	

sequences	was	obtained.	

The	number	of	polymorphic	sites	(S),	the	number	of	haplotypes	(H),	the	haplotype	diversity	(Hd),	the	

nucleotide	diversity	(π;	Nei	1987)	and	their	standard	deviations	were	calculated	using	DNASP	v.5.0	

(Librado	et	al.	2009).	Genetic	distances	were	assessed	using	MEGA.	The	same	software	package	was	

also	 used	 to	 estimate	 the	 best	 evolutionary	 substitution	 model	 following	 the	 corrected	 Akaike	

Information	 Criterion	 (AICc;	 Akaike	 1981).	 The	 haplotype	 frequencies	 were	 estimated	 using	

ARLEQUIN	v.3.5.2.2.	(Excoffier	et	al.	2010).	

A	 total	 of	 256	 chromatograms	 for	 each	 of	 the	 eight	 EST-SSR	 loci	 were	 obtained	 and	 manually	

inspected	using	GENEMAPPER	v.5.0	(Applied	Biosystems).	The	allele	calling	and	binning	have	been	

performed	with	GENEMAPPER	v.5.0.	ML-NullFreq	 (Kalinowski	et	al.	2006)	and	FreeNA	(Chapuis	&	

Estoup,	2007)	were	used	to	test	for	the	presence	of	stuttering,	large	allele	dropout	and	null	allele’s	

artefacts.	The	multilocus	EST-SSR	genotypes	were	analysed	using	GENETIX	v.4.05	(Belkhir	et	al.	2004)	

to	estimate	the	observed	(HO)	and	expected	heterozigosity	(HE)	and	number	of	alleles	(NA).	Jackknifing	

over	 loci	 was	 performed	 to	 assess	 the	 single-locus	 effects	 on	 Weir	 &	 Cockerham’s	 F-statistics	

estimators.	The	deviation	from	the	Hardy–Weinberg	equilibrium	(HWE)	and	Linkage	Disequilibrium	

(LD)	was	investigated	using	GENEPOP	on	the	web	v.4.2	(Rousset	2008).	The	allelic	richness	(Ar)	and	

the	inbreeding	coefficient	(Fis)	were	estimated	using	FSTAT	v.2.9.3.2	(Goudet	2002).	

The	phylogenetic	 relationships	 among	 individual	haplotypes	were	 inferred	by	parsimony	network	

analysis	implemented	in	the	software	HAPLOVIEWER	(http://www.cibiv.at/~greg/haploviewer)	and	

the	dnapars	program	of	the	PHYLIP	package	v.3.6	(Felsenstein	2005).	The	graphical	representation	

of	the	resulting	network	has	been	modified	with	Adobe	Photoshop.	

The	average	genetic	distances	observed	within	 and	between	 the	 two	 identified	Central-Southern	

African	and	the	NE	Atlantic-Mediterranean	clades	of	R.	miraletus	were	calculated	with	MEGA	using	

the	Tamura-Nei	(1993)’s	model	implemented	therein	and	compared	with	the	range	of	COI	genetic	

distances	estimated	among	other	congeneric	species.	Homologous	COI	sequences	of	Raja	straeleni,	

Raja	microocellata,	Raja	asterias,	Raja	brachyura,	Raja	clavata,	Raja	montagui,	Raja	polystigma,	Raja	
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radula	and	Raja	undulata	were	retrieved	from	on-line	databases	(NCBI	and	BOLD)	and	inter-species	

distances	were	calculated	applying	the	Tamura-Nei	model.	

The	population	connectivity	of	R.	miraletus	was	investigated	by	estimates	of	Fst	and	FST	values	using	

ARLEQUIN	with	10,000	permutations,	p<0.05.	The	Tamura	and	Nei	(1993)	substitution	model	was	

applied	to	the	mtDNA	dataset	to	estimate	FST	values.	The	virtual	spatial	differentiation	and	genetic	

relationships	among	geographical	population	samples	were	assessed	through	Principal	Coordinate	

Analysis	(PCoA)	and	were	conducted	on	genotypic	and	haploid	genetic	distance	matrixes.	PCoA	plots	

were	generated	using	the	packages	‘ade4’	(Dray	&	Dufour	2007)	and	‘ape’	(Paradis	et	al.	2004)	in	R	

environment	3.0.2	(R	Core	Team	2013).	The	genetic	heterogeneity	among	the	geographical	samples	

was	also	assessed	by	the	hierarchical	analysis	of	molecular	variance	(AMOVA,	Excoffier	et	al.	1992).	

Significance	was	assessed	using	a	null	distribution	of	the	test	statistic	generated	by	10,000	random	

permutations	 of	 the	 individuals	 in	 the	 samples.	 The	 significance	 threshold	 of	 the	 pairwise	

comparisons	 (p<0.05)	 was	 adjusted	 with	 the	 sequential	 Bonferroni	 correction	 for	 multiple	

simultaneous	comparisons	(Rice	1989)	implemented	in	the	software	SGoF+	v.3.8	(Carvajal-Rodriguez	

&	de	Uña-Alvarez	2011).	Different	grouping	of	the	geographical	samples	was	tested,	following	both	

a	priori	subdivisions	according	to	geographical	areas	of	collection	and	PCoA	groups.	

In	order	to	unravel	the	individual-based	genetic	clustering,	the	EST-SSR	dataset	was	analysed	using	

the	Bayesian	algorithm	 implemented	 in	STRUCTURE	v.2.3.4	 (Falush	et	al.	2007).	This	analysis	was	

carried	out	assuming	an	admixture	ancestry	model	with	the	geographical	origin	of	samples	as	prior	

information	 (LOCPRIOR	models),	 associated	with	 a	 correlated	 allele	 frequencies	model.	 For	 each	

simulation	of	K	(1-20),	five	independent	replicates	were	run,	setting	a	burn-in	of	200,000	iterations	

and	500,000	iterations	for	the	Markov	Chain	Monte	Carlo	(MCMC)	simulation.	The	most	likely	value	

for	K	based	on	the	STRUCTURE	output	was	determined	by	both	by	plotting	ln	Pr	(X|K)	vs	K	(Pritchard	

et	al.,	2000)	and	assessing	the	ΔK	statistic	(Evanno	et	al.	2005)	based	on	a	rate	of	change	in	the	log	

probabilityof	the	data	as	implemented	in	STRUCTURE	HARVESTER	(Earl	&	von	Holdt	2012).	The	results	

were	averaged	over	multiple	runs	using	CLUMMP	(Jakobsson	and	Rosenberg,	2007)	and	displayed	

using	DISTRUCT	(Rosenberg,	2004)	to	obtain	a	bar	plot	representing	the	membership	coefficients	for	

each	individual	in	each	geographical	population.	

The	phylogenetic	relationships	between	the	Central-Southern	African	and	NE	Atlantic-Mediterranean	

COI	 lineages	was	estimated	using	a	Bayesian	coalescent	approach,	 implemented	 in	BEAST	v.1.8.3	

(Drummond	&	Rambaut	2012).	Sequences	of	R.	undulata,	the	closest	related	species	to	R.	miraletus,	

were	used	as	outgroup.	The	Bayesian	reconstruction	was	obtained	using	the	Hasegawa,	Kishino	and	
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Yano	(HKY+G)	model	of	evolution	(Hasegawa	et	al.	1985),	as	the	most	appropriated	model	inferred	

by	 MEGA	 software,	 a	 strict	 molecular	 clock	 model,	 the	 Yule	 Process	 as	 species	 tree	 prior,	 the	

Piecewise	linear	and	constant	root	as	population	size	prior.	To	ensure	convergence	of	the	posterior	

distributions,	an	MCMC	run	of	60,000,000	generations	sampled	every	1,000	generations	with	the	

first	25	%	of	the	sampled	points	removed	as	burn-in	was	performed.	We	analysed	the	log	file	using	

TRACER	V.1.6	(Rambaut	&	Drummond	2007)	to	calculate	the	robustness	of	the	posterior	distributions	

for	all	parameters	and	recover	average	divergence	time	and	95%	confidence	intervals.	The	plausible	

trees	obtained	with	BEAST	were	summarized	using	the	program	TREEANNOTATOR	and	the	resulting	

phylogenetic	relationships	among	population	samples	and	the	posterior	probabilities	at	nodes	were	

visualized	with	FigTree	v.1.4.2	(Rambaut	2014).	
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2.3.	 Results	

	

2.3.1.	Genetic	diversity	

 
The	COI	dataset	counted	306	sequences	over	23	geographic	population	samples,	while	the	EST-SSR	

dataset	was	made	up	of	a	total	of	256	individuals	distributed	in	20	geographic	population	samples	

(Figure	1	and	Table	S1)

	
	
Figure	1	Geographical	distribution	of	the	sampling	locations	for	the	European	(north-eastern	Atlantic	and	Mediterranean)	and	
African	Raja	miraletus	(aka	R.	ocellifera	from	south-eastern	Atlantic	and	western	Indian	Ocean).	Acronyms	are	used	as	in	Table	
S1.	 Sampling	 locations	 are	 overlayered	 to	 the	 IUCN	 distribution	 map	 of	 R.	 miraletus	 available	 at	
http://maps.iucnredlist.org/map.html?id=161599. 



	

The	final	COI	alignment	consisted	of	529	nucleotide	positions	and	counted	76	variable	sites	(14.3%)	

and	 64	 parsimony	 informative	 sites	 (12.1%).	 The	mitochondrial	 gene	 polymorphism	 showed	 low	

nucleotide	 diversity	 (π)	 and	 very	 high	 haplotype	 diversity	 (Hd).	 AANG	 sample	 was	 the	 most	

polymorphic	(Hd	=	0.858	±	0.041	SD,	π=	0.02543	±	0.00380	SD,	K	=	13.453;	Table	S5	in	Appendix	I).	

The	 average	Tamura-Nei	 genetic	 distances	 (DTN)	 among	geographical	 samples	of	 the	NE	Atlantic-

Mediterranean	were	extremely	low	(DTN	=0.0025	±	0.0011	SE;	Table	S4	in	Appendix	I)	while	those	

observed	among	geographical	samples	of	the	Central-Southern	Africa	were	an	order	of	magnitude	

higher	(mean	TN	=	0.0188	±	0.0031	SE).	The	DTN	between	NE	Atlantic-Mediterranean	and	Central-

Southern	Africa	samples	were	much	higher	(mean	DTN	=	0.0734	±	0.0115	SE)	and	slightly	greater	than	

those	 estimated	 from	 the	 pairwise	 comparison	with	 the	 outgroup	R.	 undulata	 (DTN	 ranged	 from	

0.0364	to	0.0697;	Table	S4	in	Appendix	I).	
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Thirty-eight	haplotypes	were	found	and	

none	 of	 which	 was	 shared	 between	

samples	 from	 the	 North-Eastern	

Atlantic-Mediterranean	 and	 Central-

Southern	 African	 (Fig.	 2	 and	 Table	 S5	

Appendix	I).	The	parsimony	network	of	

the	 COI	 haplotypes	 (Fig.	 2)	 identified	

two	 main	 haplogroups,	 which	 are	

differentiated	by	at	least	30	mutations	

and	 correspond	 to	 the	 Central-

Southern	 African	 and	 the	 NE	 Atlantic-

Mediterranean	 samples.	 The	 former	

haplogroup	included	22	haplotypes	that	

grouped	into	four	largely	differentiated	

geographic	 clusters	 occurring	 in	

Senegal,	 Angola	 and	 Angola/South	

Africa.	 The	 Senegalese	 cluster,	 which	

coincided	with	the	ASEN	sample	(N	=5),	

showed	 three	 slightly	 differentiated	

private	 haplotypes.	 On	 the	 contrary,	

the	 Angolan	 sample	 (AANG,	 N	 =	 28)	

showed	 strongly	 differentiated	

haplotypes	 grouped	 in	 two	 endemic	

Angolan	subclusters	together	and	in	a	third	cluster	shared	with	the	South	African	samples	(ASAF,	total	

N	=	40).	

The	NE	Atlantic-Mediterranean	haplogroup	included	16	weakly	divergent	haplotypes	(Fig.	2	and	Table	

S5	Appendix	I).	Four	of	them	were	shared	by	several	samples	and	areas:	i)	the	haplotype	Hap_23	was	

shared	 by	 Portuguese,	 Algerian	 and	 Sicilian	 Channel	 samples;	 ii)	 the	most	 frequent	 Hap_24	was	

shared	by	12	samples	from	Algeria,	Balearic	Islands,	Sardinia,	Sicilian	Channel,	Tuscany	and	Adriatic	

Sea;	iii)	the	H_26	was	shared	by	samples	from	Algeria,	Sicilian	Channel	and	Ionian	Sea;	iv)	the	Hap_31	

was	shared	by	Adriatic	and	Greek	samples.	In	contrast,	three	endemic	haplotypes	characterized	the	

Eastern	Mediterranean	samples	of	the	Israeli	coasts	and	Levantine	Sea.		

Figure	2	Parsimony	network	of	 the	COI	 haplotypes	of	 the	European	 and	
African	R.	miraletus.	The	confidence	 interval	was	 at	95%.	The	size	of	 the	
circles	 is	 proportional	 to	 the	 number	 of	 individuals	 that	 shared	 that	
haplotype.	The	haplotypes	are	 indicated	by	codes	as	given	in	Table	S1	in	
Appendix	 I.	 Dashed	 red	 lines	 correspond	 to	 the	 principal	 oceanographic	
fronts	of	Cape	Blanc	(21°N)	and	Cape	Frio	(18°S).	For	graphical	reasons	only	
the	most	 frequent	COI	 haplotypes	 found	 in	 the	Mediterranean	Sea	were	
reported.	
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The	summary	statistics	of	the	eight	polymorphic	microsatellite	loci	per	geographical	sample	and	over	

all	the	loci	considered	is	shown	in	the	Table	S6	in	the	Appendix	I.	The	number	of	alleles	(NA)	ranged	

from	six	(LERI	40)	to	15	(LERI	27).	After	Bonferroni	correction,	no	significant	LD	was	detected	between	

any	pairs	of	locus	and	the	average	mean	observed	and	expected	heterozygosity	(HO/HE)	at	eight	loci	

was	0.2595/0.3920.	After	applying	the	Bonferroni	correction,	significant	HWE	departures	were	found	

over	 all	 loci	 in	 all	 samples,	 apart	 from	ASEN,	 APOR,	MALG/03,	MMAL/02,	MION	 and	MLEV.	 The	

Portuguese	sample	was	monomorphic	at	five	loci	(LERI	26,	LERI	34,	LERI	63,	LERI	40	and	LERI	44).	Ml-

Nullfreq	and	FreeNA	results	detected	the	presence	of	null	alleles	at	loci	LERI	40,	LERI	50	and	LERI	44.	

Nevertheless,	we	did	not	exclude	any	of	them,	since	Jackknife	analysis	didn’t	reveal	outliers	over	the	

confidence	interval.	

	

2.3.2.	Population	connectivity	

 
Because	the	small	sample	size	affecting	some	geographical	areas	and	the	subsequent	decrease	 in	

power	 of	 the	 analyses,	 an	 appropriate	 caution	 should	 be	 applied	 while	 interpreting	 the	 results	

obtained	 here.	 However,	 similar	 experimental	 designs	 and	 analytical	 approaches	 proved	

geographical	population	structure	and	genetic	differentiation	at	multiple	taxonomic	levels	in	other	

skate	species	(Pasolini	et	al.	2011;	Plank	et	al.	2010;	Chevolot	et	al.	2006a).	

The	PCoA	(Principal	Coordinate	Analysis)	based	on	the	haploid	COI	genetic	distance	(Figure	3a)	was	

performed	 to	assess	 the	virtual	 spatial	differentiation	among	geographical	populations.	The	PCo1	

strongly	 separated	 the	 Central-Southern	 African	 samples	 from	 those	 of	 the	 NE	 Atlantic-

Mediterranean	Sea.	Within	the	former	group,	PCo1	also	differentiated	the	AANG	from	ASAF	while	

the	PCo2	markedly	separated	the	Senegalese	sample	(ASEN).	The	ASAF	temporal	replicates	were	in	
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contrast	not	differentiated.	Within	

NE	 Atlantic-Mediterranean	 Sea,	

the	 PCo2	 separated	 geographical	

samples	 according	 to	 a	

longitudinal	 gradient	 with	 the	

Israeli	temporal	samples	(MISR/09	

and	MISR/14)	as	the	most	distinct	

samples	followed	by	the	Levantine	

and	 Ionian	 Sea	 samples	 as	

intermediately	 differentiated.	

Similarly,	 the	 PCoA	 based	 on	 the	

genetic	distance	matrix	computed	

on	 the	 EST-SSR	 data	 (Figure	 3b)	

mainly	 separated	 Central-

Southern	African	and	NE	Atlantic-

Mediterranean	samples.	A	smaller	

level	 of	 differentiation	 than	 that	

revealed	 by	 COI	 data	 was	

observed	 between	 ASAF	 and	

AANG	 samples.	 In	 contrast,	

microsatellite	data	 confirmed	 the	

genetic	 distinction	 of	 the	 Senegalese	 sample.	 The	 EST-SSR	 genetic	 variation	 also	 confirmed	 the	

longitudinal	 pattern	 of	 differentiation	 of	 the	 NE	 Atlantic-Mediterranean	 samples	 with	 a	 marked	

separation	of	Portuguese	and	Central	Western	Mediterranean	samples	(APOR,	MALG/03,	MALG/10,	

MBAL,	MSAR,	MTUS/06,	MTUS/10,	MADV	and	MMAL/02)	 from	 those	of	 the	Central-Eastern	 and	

Eastern	Mediterranean	(MION,	MNAD1,	MNAD2,	MSAD1,	MSAD2	and	MLEV	and	MIRS/09).	

The	genetic	differentiation	among	23	samples	based	on	COI	data	showed	highly	significant	pairwise	

Фst	values,	even	after	the	Bonferroni	correction	was	applied	(Table	S7	in	Appendix	I).	High	levels	of	

differentiation	were	observed	between	the	Atlantic	African	and	NE	Atlantic-Mediterranean	samples,	

but	 also	 between	Western	 and	 Eastern	Mediterranean.	 Accordingly,	 the	 EST-SSR	 data	 showed	 a	

similar	pattern	of	genetic	differentiation	even	after	the	Bonferroni	correction	was	applied	(Table	S8	

	

	
	
Figure	3a	Left	side	-	Plot	of	the	PCoA	carried	out	on	COI	haplotype	genetic	distance	
matrix	over	all	geographical	and	temporal	samples	of	the	Raja	miraletus	species	
complex.	Figure	3b	Right	side	-	Plot	of	the	the	PCoA	carried	out	on	genotypic	EST-
SSR	 genetic	 Rey’s	 distance	 matrix	 over	 all	 geographical	 samples	 of	 the	 Raja	
miraletus	species	complex.	
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in	Appendix	 I).	No	 significant	differentiation	was	detected	between	 temporal	 replicates	 from	 the	

same	geographical	areas,	either	with	mitochondrial	and	nuclear	data.	

The	hierarchical	AMOVA	performed	on	the	COI	dataset	and	testing	five	sample	groupings,	confirmed	

that	89.81%	of	the	genetic	variation	was	significantly	attributable	to	differences	between	the	two	

main	groups	(AMOVA	1,	Table	S3).	In	contrast,	such	proportion	of	differentiation	between	two	groups	

was	much	lower	based	on	EST-SSRs	loci	(26.07%,	P	=	0.0006).	However,	the	proportion	of	genetic	

variation	among	populations	within	groups	was	high	and	indicated	a	significant	genetic	heterogeneity	

within	groups	(23.93%,	P	=	0).	The	grouping	tested	in	the	AMOVA	5	(seven	groups)	better	explained	

the	total	mitochondrial	genetic	variation	among	samples	with	a	very	low	proportion	of	the	genetic	

variation	among	populations	within	groups	over	that	among	groups	(1%).	On	the	contrary,	the	lowest	

proportion	of	the	genetic	variation	among	populations	within	groups	over	that	among	groups	with	

the	EST-SSR	data	was	obtained	in	the	AMOVA	3	(16.9%)	with	five	groups	separating	the	three	Central	

Southern	African	samples,	the	NE	Atlantic	and	Western	Mediterranean	samples	(including	those	of	

the	Sicilian	Channel)	and	the	Eastern	Mediterranean	samples	(including	the	Ionian	sample).		
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The	analysis	of	STRUCTURE	outputs	did	not	provide	a	clear	indication	of	the	most	likely	number	of	

clusters,	therefore	results	from	K=2	to	K=7	were	assessed	(Figure	4).	The	barplot	of	the	clustering	

K=2	 revealed	 the	 separation	 of	 the	 samples	 from	 NE	 Atlantic-Mediterranean	 Sea	 and	 Central-

Southern	Africa	(Figure	4)	with	an	admixed	genetic	composition	of	the	Senegalese	individuals.	The	

clustering	 K=3	 and	 K=4	 further	 discriminated	 between	 samples	 from	 Western	 and	 Eastern	

Mediterranean	as	well	as	the	Angolan	sample	from	those	of	the	South	Africa.	The	clustering	K	=	5,	

corresponding	to	the	best	grouping	revealed	by	AMOVAs	(Table	S3)	contributed	to	differentiate	the	

samples	 from	 Sicilian	 Channel	 (MADV	 and	 MMAL/02)	 from	 the	 other	 NE	 Atlantic	 and	 Western	

Mediterranean	 samples	 while	 any	 relevant	 separation	 within	 the	 Eastern	 Mediterranean	 was	

appreciated.	 This	 AMOVA	 revealed	 that	 AANG	 displayed	 an	 intermediate	 genetic	 composition	

between	the	South	African	and	Senegalese	clusters	and	that	the	Senegalese	genetic	component	was	

also	 exhibited	 by	 two	 South	African	 individuals.	 The	 clustering	 K=6-7	 did	 not	 contribute	 a	 better	

resolution	of	population	structure		

	
	
Figure	4	Barplots	of	the	STRUCTURE	analysis	of	Raja	miraletus	species	complex	based	on	the	complete	EST-SSRs	dataset	and	with	
estimated	K=2-7.	On	the	horizontal	axis	are	reported	the	geographic	samples,	while	on	the	vertical	axis	is	reported	the	percentage	
of	 individual	membership	 to	 a	given	 genetic	cluster.	Single	vertical	bar	 represents	one	 individual.	 Fractions	of	colour	of	 a	bar	
represent	the	estimated	membership	to	a	certain	genetic	group	of	that	individual.	Vertical	black	lines	separate	different	sampling	
locations	as	set	a	priori.	
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Bayesian	 approach	 using	MCMC	 simulation	was	 used	 to	 test	 any	 speciation	 signal	 (Yule	 process)	

between	the	Central-Southern	African	and	NE-Atlantic-Mediterranean	lineages	(Figure	5,	see	Table	

S5	 in	Appendix	 I	 for	haplotype	distribution	among	samples).	All	effective	sample	size	 (ESS)	values	

exceeded	200,	indicating	a	solid	evaluation	of	all	parameters.	The	model	based	on	the	substitution	

rate	estimated	for	mtDNA	showed	a	clear	separation	between	the	Central-Southern	African	(from	

Hap_1	to	Hap_23)	and	the	NE-Atlantic-Mediterranean	haplotypes	(Hap_24	to	Hap_30;	Fig	4),	with	

exception	of	the	Hap_12	(an	Angolan	haplotype)	that	clustered	together	with	the	haplotypes	of	the	

NE-Atlantic-Mediterranean	lineage.	The	phylogenetic	relationships	among	lineages	and	haplotypes	

were	congruent	with	the	relationships	obtained	with	the	parsimony	network	results	(Figure	2).	

Furthermore,	within	the	main	Central-Southern	African	lineage,	three	clusters	of	haplotypes	were	

reconstructed	with	high	posterior	probability	 (p=1):	 the	most	basal	cluster	 formed	by	six	Angolan	

haplotypes	(Hap_11,	Hap_13,	Hap_15,	Hap_16,	Hap_18	and	Hap_19),	a	Senegalese	cluster	(Hap_20,	

Hap_21	 and	Hap_22),	 and	 a	 third	Angolan/South	African	 cluster	 formed	by	 all	 the	 South	African	

haplotypes	(Hap_1-9)	and	the	Angolan	Hap_14	and	Hap_17.	

	 	

	
	
Figure	5	 Phylogenetic	 relationships	 of	Raja	miraletus	 species	 complex	based	 on	 the	COI	 haplotypes.	 Refer	 to	 Tab	 S3	 for	 the	
distribution	of	 the	COI	 haplotypes	 among	R.	miraletus	 geographical	 samples.	Raja	undulata	 was	used	 as	 an	outgroup	 for	 the	
analysis.	Numbers	near	nodes	represent	the	posterior	probability	value.		
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2.4.	 Discussion	and	conclusions	

	

The	evolutionary	and	phylogenetic	history	of	skates	has	been	recently	described	with	the	increased	

popularity	of	DNA-based	molecular	techniques.	Many	authors	have	demonstrated	the	correlations	

between	Earth’s	paleo-climatic	events	or	 the	occurrence	of	oceanographic	barriers	and	 the	great	

levels	of	diversification	of	skates	at	multiple	taxonomic	levels	(Naylor	et	al.	2012;	Pasolini	et	al.	2011;	

Iglesias	et	al.	2010;	Compagno	&	Ebert,	2007;	Chevolot	et	al.	2006;	Valsecchi	et	al.	2005).	In	parallel,	

the	ability	of	integrated	methodological	approaches	combining	morphological	and	molecular	data	in	

detecting	 taxonomic	 and	 geographic	 species	 boundaries	 of	 skates	 have	 amplified	 the	 number	 of	

studies	and	the	amount	of	knowledge	supporting	species’	risk	assessment	and	conservation	action	

plans	(Dulvy	&	Reynolds	2009;	Iglesias	et	al.	2010;	Griffiths	et	al.	2010;	Cannas	et	al.	2010;	Frodella	

et	al.	2016;	Cariani	et	al.	2017).	The	combination	between	massive	sampling	and	DNA	barcoding	of	

skates	 carried	 out	 prevalently	 in	 the	 Atlantic	 and	 in	 the	Mediterranean	 over	 broad	 geographical	

ranges	have	revealed	the	occurrence	of	several	cryptic	species	and	species	complexes	behind	the	

high	level	of	morpho-anatomical	and	ecological	stasis	(Iglesias	et	al.	2010;	Naylor	et	al.	2012;	Frodella	

et	al.	2016;	Cariani	et	al.	2017).	The	recent	achievement	that	Raja	miraletus,	behind	a	distinctive	and	

quite	constant	pattern	of	the	dorsal	body	side,	has	a	status	of	species	complex	(i.e.	three	valid	species	

R.	miraletus,	R.	ocellifera,	R.	parva	sp.	nov.	together	with	a	not	yet	described	taxon	only	identified	by	

the	mtDNA	haplotype	at	the	NADH2	gene;	Naylor	et	al.	2012;	Last	&	Séret	2016),	skyrocketed	the	

interest	for	an	evolutionary	appraisal	based	on	a	deeper	and	more	extensive	analysis	using	massive	

sampling	and	nuclear/mitochondrial	combined	genetic	data.	

This	study,	based	on	an	unprecedented	number	of	individual	specimens	of	the	Raja	miraletus	species	

complex	collected	from	the	areas	where	the	four	taxa	occurred	and	on	the	coupling	of	the	sequence	

variation	 of	 the	 universal	 COI	 barcode	 and	 the	 allele	 frequency	 of	 eight	 polymorphic	 EST-	 linked	

microsatellite	loci,	provided	advances	in	resolving	the	“name	game”	in	this	intriguing	and	enigmatic	

skate.		

Mitochondrial	 and	 microsatellite	 data	 I	 obtained	 consistently	 agreed	 in	 genetically	 defining	 the	

taxonomic	and	geographical	boundary	of	Raja	miraletus	L.	1758	which	 is	distributed	 in	the	whole	

Mediterranean	Sea	and	in	the	adjacent	NE	Atlantic	Ocean,	at	least	in	the	Portuguese	coastal	waters.	

The	great	divergence	of	this	taxon	shown	by	a	Tamura-Nei	genetic	distance	estimated	between	the	

NE	Atlantic-Mediterranean	clade	and	 the	Central-Southern	African	clade	 (0.073)	greater	 than	 the	

corresponding	pairwise	interspecific	estimates	obtained	among	several	congeneric	species	spoke	in	
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favour	of	a	specific	level	of	differentiation.	In	the	NE	Atlantic	and	Mediterranean	area,	such	species	

resulted	 structured	 in	at	 least	 two	main	populations	genetically	well	differentiated:	 the	 “western	

population”	inhabiting	the	NE	Atlantic	coastal	waters	and	those	of	the	Western	Mediterranean	from	

Gibraltar	 Strait	 to	 the	 Sicilian	 Channel	 and	 the	 “eastern	 population”,	 inhabiting	 the	 Eastern	

Mediterranean	Sea	from	the	Ionian	and	Adriatic	Sea	to	the	easternmost	Israeli	coasts.	The	transition	

area	in	the	Sicilian	Channel	that	separates	Western	and	Eastern	Mediterranean	biogeographic	sectors	

(Bianchi	2007;	Coll	et	al.	2010)	showed	a	slight	genetic	differentiation	of	the	brown	skates	living	in	

this	area	within	the	Western	Mediterranean.	The	genetic	similarity	of	temporal	replicates	tested	only	

some	 geographical	 areas	 (Algeria,	 Tuscany,	 Sicilian	 Channel	 and	 Israel)	 over	 a	 time	 range	

corresponding	 to	 two	 generations	 of	 R.	miraletus	 speaks	 in	 favour	 of	 an	 interannual	 stability	 of	

population	genetic	structure.	Even	if	the	evident	unbalance	in	the	sampling	design	of	R.	miraletus	

between	Mediterranean	and	adjacent	NE	Atlantic,	there	was	no	differentiation	between	populations	

of	R.	miraletus	 from	the	two	areas.	This	suggested	that	the	Gibraltar	strait	does	not	represent	an	

effective	geographical	barrier	to	gene	flow	between	Atlantic	and	Mediterranean	populations.	On	this	

debate,	controversial	patterns	were	obtained	 in	the	thornback	skate	R.	clavata	by	Chevolot	et	al.	

(2006)	and	Pasolini	et	al.	(2011).	Whilst	Chevolot	et	al.	(2006)	detected	spatial	genetic	differentiation	

and	restricted	gene	flow	between	NE	Atlantic	and	Mediterranean	thornback	skates	by	analysing	the	

genetic	variation	at	the	cytochrome	b	and	species-specific	microsatellite	loci,	Pasolini	et	al.	(2011)	

did	not	detect	 substantial	divergence	between	population	 samples	of	 the	 same	species	 collected	

from	the	two	areas	using	more	polymorphic	loci	such	as	the	mitochondrial	non-coding	region	D-loop	

and	genomic	markers	as	the	Amplified	Fragment	Length	Polymorphisms	(AFLPs).	Using	the	D-loop	

sequence	marker	and	only	two	samples	of	small	size	(N	=	14),	Griffiths	et	al.	(2010)	also	detected	a	

weak	but	significant	divergence	and	restricted	or	null	gene	flow	between	longnosed	skates	Dipturus	

oxyrhinchus	collected	from	the	NE	Atlantic	(Norway,	Rockall)	and	Western	Mediterranean	(Balearic	

Islands).	This	comparative	data	led	to	suppose	that	the	Strait	of	Gibraltar	cannot	always	represent	a	

barrier	to	gene	flow	for	skates	and	other	marine	organisms,	rather	than	an	accession	gate	to	ancient	

refugia	(Patarnello	et	al.	2007).		

The	marked	population	genetic	 structure	of	R.	miraletus	 detected	within	 the	Mediterranean	was	

never	detected	in	other	Raja	species	by	previous	population	genetic	studies	carried	out	with	similar	

sampling	design	and	genetic	markers	(i.e.	uniparental	polymorphic	mitochondrial	DNA	sequences,	

biparental	genomic	and	nuclear	 loci).	Within	the	Mediterranean	R.	clavata,	Chevolot	et	al.	 (2006)	

have	analysed	the	variation	of	the	mtDNA	cytochrome	b	and	species-specific	microsatellite	 loci	 in	
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three	geographical	samples	(Corsica,	Adriatic	Sea	and	Black	Sea)	detecting	any	significant	structure.	

Pasolini	et	al.	(2011)	found	a	weak	but	detectable	genetic	divergence	only	of	the	thornback	skates	

collected	from	the	Eastern	Mediterranean,	without	any	restriction	of	gene	flow	between	western	

and	eastern	Mediterranean	samples.	Recently,	Frodella	et	al.	(2016)	using	the	same	markers	I	used	

in	R.	miraletus,	have	detected	genetic	homogeneity	and	high	 level	of	genetic	connectivity	among	

Western	and	Central	Mediterranean	population	samples	of	the	spotted	skate	R.	polystigma,	a	small-

sized	species	endemic	of	the	basin.	Only	a	weak	but	detectable	divergence	was	shown	by	the	Adriatic	

deme	because	a	private	 fixed	COI	haplotype	 characterized	by	a	 single	nucleotide	mutation.	 Such	

divergence	 is	 quite	 similar	 to	 that	 observed	 in	 the	 R.	 miraletus	 collected	 from	 the	 Eastern	

Mediterranean	(Israeli	and	Levantine	coastal	waters)	which	showed	fixed	private	haplotypes	slightly	

differentiated	by	1-3	nucleotide	mutations	from	the	closest	haplotype	distributed	prevalently	in	the	

population	 samples	 of	 the	 Adriatic	 and	 Aegean	 Seas.	 Subtle	 genetic	 divergence	 in	 marine	 fish	

populations	 with	 shallow	 evolutionary	 histories	 can	 be	 better	 assessed	 by	mtDNA	markers	 than	

nuclear	 ones	 (Hoarau	 et	 al.	 2004).	 Haploid	 maternal	 inheritance	 of	 mtDNA	 can	 lead	 to	 smaller	

effective	population	size	(Birky	et	al.	1989)	and	thus	faster	genetic	drift.	Population	structure	within	

the	Mediterranean	could	be	related	to	bathymetry	and	hydrogeological	fronts	or	discontinuities.	The	

shallow	 bathymetry	 characterizing	 the	 Southwest	 part	 of	 the	 basin	 would	 likely	 enhance	 the	

transition	of	brown	skate,	except	for	the	Ionian	area	from	which	the	divergence	pattern	displayed	a	

shift.	 The	 area	 ranging	 from	 the	 easternmost	 part	 of	 Sicily	 and	 the	 adjacent	 geo-morphological	

depression	of	the	Calabrian	Arc	(down	to	3,000m	of	depth)	is	dominated	from	cyclonic/anti-cyclonic	

inversions	of	water	masses.	The	combination	of	these	environmental	features	could	have	driven	the	

differentiation	of	the	Eastern	Mediterranean	samples.	

The	“name	game”	appeared	more	complicated	to	be	resolved	in	the	Central-Southern	African	taxa	

of	the	R.	miraletus	species	complex	than	in	the	NE	Atlantic	and	Mediterranean.	Mitochondrial	and	

nuclear	markers	contributed	differently	to	define	taxonomic	and	geographical	species	boundaries.	It	

has	to	be	considered	that	molecular	taxonomic	methods	using	both	nuclear	and	mitochondrial	data	

have	proven	useful	in	assessing	relationships	between	pairs	of	morphologically	similar	taxa	(Morgan	

et	al.	2012,	Arlyza	et	al.	2013)	and	that	the	maternal	inheritance	of	mtDNA	in	Vertebrates	combined	

with	ecological	and	behavioural	processes	such	as	natal	homing	and	phylopatry	can	lead	to	profound	

discordance	between	genetic	patterns	of	structuring	obtained	with	mitochondrial	DNA	markers	with	

respect	to	those	obtained	with	biparentally-inherited	nuclear	DNA	markers	on	the	same	individuals	

(see	for	an	example	Pardini	et	al.	2001).	According	to	the	concept	of	biological	species,	speciation	is	
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the	acquisition	of	reproductive	isolation	by	natural	populations	(Mayr	1942,	1963).	Thus,	nuclear	DNA	

markers	 are	 the	 best	 candidate	 tools	 to	 assess	 reproductive	 isolation	 and	 species	 boundaries	 in	

bisexual	 organisms	while	mitochondrial	 DNA	markers	 are	more	 devoted	 to	 resolve	 phylogenetic	

relationships	and	evolutionary	histories	among	taxa.		

The	EST-SSR	genetic	variation	of	Central-Southern	African	taxa	of	the	R.	miraletus	species	complex	

disentangled	 by	 both	 individual-based	 and	 allele	 frequency-based	 statistical	 methods	 of	 analysis	

indicated	the	occurrence	in	this	group	of	at	least	three	taxa	whose	genetic	differentiation	seemed	to	

correspond	to	the	species	level.	Despite	the	paucity	of	individuals	analysed	(N	=	5),	the	Senegalese	

genetic	cluster	(ASEN)	displayed	a	deep	nuclear	genetic	divergence	as	revealed	by	STRUCTURE	and	

distance-based	 analyses	 (e.g.	 PCoA,	 Fst	 and	 phylogenetic	 reconstruction).	 A	 great	 mtDNA	 and	

phylogenetic	divergence	of	this	cluster	fully	overlapped	with	the	reproductive	isolation	of	this	cluster.	

Presently,	I	cannot	indicate	that	this	Senegalese	genetic	cluster	of	the	R.	miraletus	species	complex	

corresponded	to	R.	parva	sp.	nov.	reported	and	described	by	Last	&	Séret	(2016)	because	I	did	not	

perform	deep	morphological	analyses	of	the	five	specimens	included	in	this	analysis	and	no	mtDNA	

sequences	have	been	deposited	in	the	public	repositories	by	Last	&	Séret	(2016).		However,	it	is	likely	

that	the	Senegalese	genetic	cluster	I	targeted	and	characterized	could	correspond	to	the	new	species	

reported	by	Last	&	Séret	(2016)	R.	parva	(the	African	brown	skate),	which	spread	in	Senegal,	Liberia	

and	Angola	and	likely	wider	within	the	West	Africa.	However,	since	Last	&	Séret	(2016)	reported	that	

a	further	taxon,	identified	as	Raja	cf.	miraletus	and	characterized	by	a	broader	disc,	more	broadly	

pointed	snout,	 larger	 spiracles,	and	a	slightly	 longer	and	broader	 tail,	 co-occurred	 in	Senegal	and	

Mauritania,	additional	comparative	molecular	and	morphological	investigations	are	needed	to	solve	

the	intriguing	evolutionary	histories	of	such	taxa.	

A	second	taxon	differentiated	at	the	species	level	identified	by	the	microsatellite-based	analyses	is	

the	southernmost	genetic	cluster	formed	by	the	South	African	samples	collected	in	the	South	Coast	

(Western	 Indian	 Ocean).	 The	 great	 number	 of	 specimens	 of	 the	 ASAF	 population	 samples	 here	

analysed	 (N	 =	 39)	 and	 the	 marked	 interannual	 genetic	 stability	 tested	 over	 a	 time	 range	

corresponding	 to	 two	 generations	 (2007	 and	 2011)	make	 robust	 the	 evidence	 that	 such	 genetic	

cluster	is	assigned	to	Raja	ocellifera	Regan	1906,	a	species	that	has	been	recently	resurrected	by	Last	

&	Séret	 (2016).	The	EST-SSR	 results	of	 the	STRUCTURE	analysis	and	PCoA	as	well	as	 those	of	 the	

AMOVAs	 3	 and	 4	 carried	 out	 splitting	 the	 South	 African	 population	 samples	 from	 the	 Angolan	

individuals	clearly	 indicated	the	genetic	uniqueness	of	this	cluster	at	the	nuclear	 loci.	The	nuclear	

uniqueness	and	divergence	of	this	cluster	at	the	nuclear	loci	is	fully	coherent	with	the	mitochondrial	
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uniqueness	given	by	the	occurrence	of	a	private	geographical	lineage	formed	by	nine	closely-related	

haplotypes	(Hap_1	–	Hap_9).	

The	third	taxon	identified	by	the	genetic	analyses	based	on	EST-SSR	data	corresponded	to	the	genetic	

cluster	 formed	by	the	Angolan	 individuals	that	was	well	defined	by	both	STRUCTURE	analysis	and	

PCoA.	 The	 Angolan	 genetic	 cluster	 has	 however	 an	 admixed	 genetic	 composition	 intermediate	

between	 the	 Senegalese	 and	 South	 African	 clusters.	 Phylogenetic	 trees	 and	 haplotype	 network	

clearly	revealed	that	the	Angolan	sample	possessed	a	highly	heterogeneous	mitochondrial	gene	pool	

(k	 =	 13.453;	 Table	 S2)	 including	 at	 least	 three	 extremely	 differentiated	 COI	 lineages:	 the	 former	

lineage	 is	 represented	 by	 the	 Hap_12	 exhibited	 by	 four	 individuals	 that	 is	 more	 related	 to	 the	

Mediterranean	COI	lineage	than	to	the	other	two	Angolan	lineages;	the	second	lineage	(formed	by	

the	most	 frequent	Hap_16	and	other	 five	 satellite	weakly-differentiated	haplotypes)	 resulted	 the	

most	ancient	being	at	the	basal	position	in	the	phylogenetic	tree;	the	third	lineage	(formed	by	the	

most	frequent	Hap_10	and	other	two	haplotypes)	was	the	more	recent	and	showed	great	sequence	

similarity	 with	 the	 South	 African	 lineage.	 Therefore,	 the	 Angolan	 taxon	 exhibited	 contradictorily	

genetic	homogeneity	at	the	nuclear	 loci	together	with	extraordinary	mitochondrial	heterogeneity.	

Such	 pattern	 could	 have	 been	 arisen	 by	 repeated	 secondary	 contacts	 in	 this	 area	 and	 gene	

introgression	events	that	occurred	in	the	past.		

Whether	these	three	taxa	can	be	elevated	to	the	rank	of	sibling	species	or	maintained	at	the	status	

conspecific	polymorphic	populations	as	suggested	at	the	beginning	of	the	name	game	by	McEachran	

et	al.	(1989)	is	a	debate	that	needs	to	be	solved	by	integrating	at	the	individual	level	the	mitochondrial	

DNA	data	I	obtained	with	those	obtained	by	Naylor	et	al.	(2012)	and	Last	&	Séret	(2016).	At	any	rate,	

the	amount	of	genetic	divergence	among	them	expressed	as	COI	genetic	distance	within	the	Central-

Southern	African	cluster	(DTN	=	0.0188;	Table	S4	in	the	Appendix	I)	fell	down	into	the	lower	end	of	

the	range	of	the	pairwise	interspecific	genetic	distances	among	congeneric	species	(Table	S4	in	the	

Appendix	 I;	R.	 clavata	 vs	R.	 straeleni:	 0.015	–	R.	asterias	 vs	R.	microocellata:	 0.088).	 It	 has	 to	be	

noticed	that	the	lower	end	of	this	range	was	occupied	by	interspecific	genetic	distance	of	allopatric	

and	parapatric	sibling	species	(i.e.	cryptic	sister	species;	sensu	Bickford	et	al.	2007)	as	R.	clavata	and	

R.	straeleni	(DTN	=	0.015)	and	R.	polystigma	and	R.	montagui	(DTN	=	0.023).	It	is	likely	that	the	low	level	

of	 mtDNA	 sequence	 divergence	 of	 sibling	 skate	 species	 is	 linked	 to	 the	 slowed	 down	 mtDNA	

substitution	rate	in	the	cartilaginous	fishes	(Martin	and	Palumbi	1993).	

The	playing	of	 “the	name	game”	 led	 to	a	 systematic	 scenario	 in	which	 the	Central	 and	Southern	

African	species	R.	parva,	R.	ocellifera	and	the	Raja	cf	miraletus	taxa	from	Senegal	and	Mauritania	(Last	
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&	Séret	2016)	and	from	the	Angola	(this	study)	together	with	the	more	differentiated	NE	Atlantic-

Mediterranean	R.	miraletus	can	be	considered	a	specious	complex	of	parapatric/sympatric	sibling	

species	 (i.e.	 the	 concept	 of	 super-species	 namely	 a	 monophyletic	 group	 of	 allopatric	 or	 nearly	

allopatric	taxa	that	are	known	or	believed	to	have	evolved	to	the	species	level;	Rensch	1929;	Mayr	

1931).	According	to	Amadon	(1966)	this	super-species	can	be	named	in	the	Linnean	nomenclature	

as	Raja	[miraletus]	and	it	includes	the	following	species	R.	[miraletus]	miraletus,	R.	[miraletus]	parva,	

R.	[miraletus]	ocellifera	and	the	Raja	[miraletus]	cf	miraletus	taxa	from	Senegal	and	Mauritania	and	

Angola.	

The	evolutionary	history	and	cladogenetic	events	of	this	super-species	need	to	be	still	completely	

disentangled	 and	 unravelled.	Within	 an	 evolutionary	 trajectory,	 they	 likely	 represent	 hierarchical	

stages	of	increasing	complexity	of	the	geographical	speciation	process.	In	this	species	complex,	stages	

of	this	hierarchical	series	ranged	from	panmictic	populations	to	recently	diverged	sibling	species,	with	

morphologically	 identical	 populations	 spread	 over	 a	 continuous	 range	 (Mayr	 1954;	 Palumbi	 and	

Lessios	 2005).	Within	 the	 evolutionary	 trajectories	 experienced	 by	 the	 skates	 of	 the	 genus	Raja,	

geographical	sibling	species	could	be	intermediate	frames	in	the	micro-evolutionary	animation	that	

was	proposed	by	Ernst	Mayr	to	model	geographical	speciation	(Mayr	1954).	Such	a	continuum	in	the	

process	of	geographical	speciation	begins	with	polytypic	species	that	inhabit	a	continuous	range	and	

ends	with	super-species,	which	correspond	to	a	group	of	geographical	species	that	show	complete	

reproductive	isolation	with	respect	to	gross	morphological	traits.	The	abundance	of	cryptic	species	

in	the	elasmobranches,	marine	fish	that	 intrinsically	exhibit	biological	and	reproductive	traits	 that	

enhance	species	vulnerability	and	risk	of	extinction	(Dulvy	et	al.	2003),	poses	relevant	questions	for	

the	conservation	of	genetic	and	species	diversity	(Bickford	et	al.	2007;	Dulvy	et	al.	2000;	Dulvy	and	

Reynolds	2009;	Iglésias	et	al.	2010).	

The	Quaternary	 and	 present	 oceanographic	 discontinuities	 that	 occur	 along	 the	western	 African	

continental	 shelf	 (e.g.,	 Cape	 Blanc	 and	 the	 Angola–Benguela	 Front;	 Gasse	 et	 al.	 2008)	 might	

contribute	 to	 the	maintenance	 of	 low	 or	 null	 levels	 of	 gene	 flow	 between	 these	 closely	 related	

siblings.	The	African	Atlantic	marine	faunas	can	be	subdivided	into	three	zoogeographic	provinces	by	

two	 main	 oceanographic	 discontinuities,	 which	 correspond	 to	 steep	 thermal	 gradients	 in	 the	

upwelling	areas	of	Cape	Blanc	at	21°N	and	of	Cape	Frio	at	18°S	(Briggs	1974).	The	oceanographic	

discontinuity	at	Cape	Blanc	(Mauritania)	acts	as	a	physical	barrier	against	the	southwards	dispersal	

of	the	endemic	R.	[miraletus]	miraletus	from	the	Mediterranean	and	northeastern	Atlantic	shelves.	

Here	the	inter-tropical	Canary/Angola	currents	inflowing	from	northeast	could	have	thus	influenced	
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also	 the	diversification	of	 the	Senegalese	R.	 [miraletus]	parva	and	 likely	of	 the	Raja	 [miraletus]	cf	

miraletus	 (sensu	 Last	 &	 Séret	 2016)	 whose	 migration	 northward	 would	 be	 opposed	 by	 the	

intermittent	Cape	Blanc	upwelling	area.	The	upwelling	at	Cape	Frio	and	the	Angola–Benguela	front	

are	the	southern	limit	of	the	tropical	skate	faunas	(Hulley	1972).	In	particular,	the	Angola–Benguela	

Current	region	ranges	from	Cape	Agulhas	to	Cape	Frio,	where	the	upstreaming	flow	meets	the	down-

streaming	Angola	 current.	 The	deriving	 front	would	have	 likely	 reduced	with	 the	gene	 flow	of	R.	

[miraletus]	ocellifera	and	R.	[miraletus]	cf	miraletus	(sensu	this	study).		

The	 accumulated	 genetic	 differences	 among	 the	 Raja	 [miraletus]	 species,	 and	 their	 parallel	

morphological	stasis	might	be	the	evolutionary	outputs	of	stabilizing	selection	that	has	tended	to	

conserve	a	well-adapted	phenotype	across	 the	wide-ranging	distribution	of	 the	clade	 (Williamson	

1987),	 in	 relation	 to	 the	stasis	of	marine	communities	on	evolutionary	 time	scales	 (Colborn	et	al.	

2001;	 Jackson	and	Sheldon	1994).	 From	Chapter	3	 the	methods	aiming	 to	 identify	 the	 candidate	

genes	 regulating	 peculiar	 phenotypic	 traits	will	 be	 described	 and	 discussed,	 setting	 the	 basis	 for	

addressing	the	investigations	of	stabilizing	selection	and	phenotypic	stasis	in	R.	[miraletus]	miraletus	

and	R.	[miraletus]	ocellifera	and	in	other	related	skate	species. 
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Chapter	3.	Retrieving	skates’	skin	transcripts	by	Illumina	sequencing	

	

3.1.	 Introduction	

	

Skates’	 species	 diversity	 can	 be	 considered	 as	 striking	 as	 their	 tendency	 to	 maintain	 analogous	

ecological	 and	 morphological	 traits	 at	 the	 evolutionary	 scale.	 As	 well	 as	 other	 batoids,	 skates	

abandoned	 the	 body	 conformation	 typical	 of	 ancestral	 Neoselachians	 for	 a	 depressed,	 rounded	

pectoral	disk	supported	to	the	snout	tip	by	fin	radials,	a	short	tail,	reduced	caudal	and	dorsal	fins	

(Aschliman	et	al.	2012)	and	a	pigmentation	associable	to	aposematism,	signalling,	mimicry	and,	most	

likely,	 camouflage	 strategies.	 Probably,	 the	 minor	 use	 of	 visual	 signals	 in	 favour	 of	 an	 efficient	

electrosensory	system	for	conspecific	recognition	(Tricas	et	al.	1995)	and	prey	detection	(Camperi	et	

al.	2007)	could	explain	the	lack	of	exaggerated	phenotypes,	even	if	some	exceptions	are	observable	

in	nature	(e.g.	the	blue-spotted	ribbontail	ray,	Taeniura	lymma	Forsskål,	1175).	

The	 extremely	 pronounced	 conservatisms	 of	 benthic	 habits	 and	 the	 preference	 for	 soft	 bottoms	

characterizing	 this	 Order	 drove	 to	 develop	 similar	 synapomorfies	 (e.g.	 oviparous	 development,	

alar/malar	thorns	in	mature	males,	cartilage	modification	and	specialization;	Mceachran	et	al.	1998)	

and	 to	 follow	 multiple	 parallel	 adaptive	 radiations	 at	 a	 regional	 scale	 (Valsecchi	 et	 al.	 2005),	

responsible	for	strong	phylogeographical	and	population	structuring	(Frodella	et	al.	2016;	Pasolini	et	

al.	2011;	Griffiths	et	al.	2010;	Chevolot	et	al.	2007;	Chevolot	et	al.	2006).	

Aside	from	the	mere	records	of	albinism,	leucism	(i.e.	abnormal	integumentary	pigmentation	with	

normal	 iris	 pigmentation)	 and	 piebaldism	 (i.e.	 localized	 patches	 of	 reduced	 pigmentation	

interspersed	with	the	normal	patterning;	Acevedo	et	al.	2009;	Bechtel	1995;	Ebert	1985)	observed	

among	different	elasmobranch	orders	(Ball	et	al.	2016;	Bigman	et	al.	2015;	Wakida-Kusunoki	2015;	

Diatta	et	al.	2013;	Hoare	et	al.	2009;	Bottaro	et	al.		2008;	Sandoval-Castillo	et	al.	2006;	Clark	2002;	

Ishihara	 et	 al.	 2001),	 no	 studies	 have	 been	 conducted	 on	 the	 genetic	 base	 of	 elasmobranch	

pigmentation,	which	can	be	quite	variable	according	to	latitude,	age,	habitat	and	feeding	behaviour	

(Ari	2014;	Visconti	et	al.	1999).	Among	skates	the	adaptive	value	of	some	phenotypic	traits	as,	for	

instance,	peculiar	ornaments	of	the	dorsal	part	of	the	body,	remains	poorly	understood.	Therefore,	

the	relationship	existing	between	skin	pictorial	motifs	(e.g.	horizontal	stripes,	dots,	pseudo-eyespots,	

eyespots,	undulate	bands)	and	their	evolutionary	or	adaptive	purpose	remains	enigmatic,	although	

their	involvement	in	camouflage	and	aposematism	systems	seemed	to	be	the	most	probable.	

Understanding	how	these	traits	evolved	represented	the	biggest	questions	here.	Coupling	genomics	
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and	evolutionary	biology	would	likely	be	a	significant	success	in	understanding	how	morphological	

variation,	molecular	patterning	and	genetic	factors	could	have	influenced	the	evolution	of	different	

colour-morphs.	Here,	we	investigated	for	the	first	time	some	of	the	pigmentary	features	specifically	

found	among	non-model	skate	species,	representing	an	interesting	ecological	model	system.	

Taking	advantage	of	 improvements	 in	genome	research	such	as	next	generation	RNA	sequencing	

technology	(RNA-seq)	we	attempted	the	identification	of	novel	transcripts	of	pigmented	and	non-

pigmented	 skin	 tissues	 of	 recently	 diverged	 species	 with	 sibling	 and	 sister	 species	 phylogenetic	

relationships	(Raja	clavata	L.,	R.	straeleni	Poll,	1951	and	R.	asterias	Delaroche,	1809	respectively)	and	

in	species	that	are	easily	recognized	by	specific	patterning	traits	and	show	strong	monophyly	(the	

Mediterranean	R.	miraletus	L.	and	the	South	African	R.	ocellifera	Regan,	1906).	

While	model	species	are	considered	precious	proxies	for	a	wide	fan	of	known	pathways	and	traits,	

non-model	ones	are	more	flexible	in	letting	explore	the	molecular	basis	of	specific	traits	in	greater	

detail	 (Parsons	&	Albertson	 2013).	 For	 their	 intrinsic	 nature,	 this	 sort	 of	 organisms	 brings	 bigger	

limitations	 in	 terms	 of	 genomic	 resources,	 making	 the	 challenge	 even	 harder.	 Fortunately,	 the	

advancing	technology	of	Next	Generation	sequencing	(henceforth	NGS),	the	progressive	lowering	of	

costs	of	some	of	the	currently	available	platforms	and	the	more	and	more	robust	computational	tools	

highly	simplify	and	encourage	their	employment	(Grabherr	et	al.	2011;	Wheat	2010;	Bräutigam	et	al.	

2008).	

NGS	technologies	generally	differ	in	the	average	length	and	number	of	reads	generated	(Holt	&	Jones	

2008).	Short-read	technologies	 (30	 to	125bp	reads)	usually	produce	more	sequence	data	per	 run	

(Million	reads)	than	long-read	technologies	(200	to	500bp	reads;	Mardis	2008b).	At	the	same	time,	

the	formers	are	less	successful	in	assembling	large,	complex	genomes	or	transcriptomes	(Whiteford	

et	al.	2005).	Thus,	long-reads	obviate	this	limitation,	whereas	short-read	technologies	remain	suitable	

for	experimental	projects	where	a	reference	genome	or	transcriptome	is	already	available	for	their	

mapping	(Schuster	2008;	Whiteford	et	al.	2005).	

As	 in	 this	 case,	many	evolutionary	questions	need	experimental	designs	based	on	highly	 variable	

genetic	markers.	Among	these,	coding	sequences	can	be	easily	detected	in	mRNA	transcripts	(retro-

transcribed	 in	 cDNA),	 usually	 not	 as	 complex	 to	 assemble	 as	 genomic	 sequences.	 Furthermore,	

transcripts	are	non-uniformly	represented	in	an	organism:	transcripts	of	highly	expressed	genes	are	

expected	to	be	highly	abundant,	whereas	those	of	lower	expressed	genes	are	less	represented.	For	

this	reason,	RNA-seq	cannot	provide	uniform	coverage.	
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In	 general,	 comparative	 transcriptomics	 based	 on	 quantitative	 data	 favour	 the	 exploration	 of	

interesting	changes	in	gene	expression	and	transcript	complexity	in	a	way	that	even	families	of	genes	

underpinning	phenotypes	can	be	identified.	For	this	reason,	the	Illumina	sequencing	technology	was	

used	 to	 produce	 short	 reads	 containing	 transcripts	 belonging	 to	 three	 different	 skin	 tissues,	

corresponding	 to	 different	 body	 areas	 carrying	 different	 patterning.	 Their	 mapping	 to	 a	 newly-

reconstructed	reference	transcriptome	of	Raja	miraletus	will	allow	to	compare	skin	tissues	transcripts	

and	 measure	 their	 Differential	 Gene	 Expression	 (DGE)	 across	 differently	 pigmented	 and	 non-

pigmented	tissues,	among	five	different	species.	

	

3.1.1.	Skin	structure	in	elasmobranchs	

	

Linking	teleost	and	cartilaginous	fish	skin	organization	is	certainly	a	natural	and	effective	basis	for	the	

comparison	of	structures	and	mechanisms.	Nonetheless,	many	differences	can	be	highlighted	and	

many	similarities	to	other	 less	obvious	taxa	can	be	found.	Besides	the	fundamental	role	of	skin	 in	

stabilizing	and	protecting	the	body	from	external	stimuli,	environmental	threats,	mechanical	abrasion	

and	pathogen	attacks	(Tsutsui	et	al.	2009),	many	aspects	of	this	natural	barrier	are	still	poorly	known	

in	rays	and	skates.	For	instance,	the	meaning	of	different	number	of	secretory	cells	per	unit	area	in	

relation	to	the	cell	layer,	the	lack	of	sex-related	epidermal	thickness	variations	(Hay	et	al.	1976)	or,	

the	meaning	of	the	absence	of	mesenchymal	tissues	and	dermal	endothelium	(i.e.	a	single	cell	sheet	

between	the	dermis	and	hypodermis;	Whitear	1986b)	are	pending	questions.	

In	 certain	measure,	 chondrichthyan	 skin	 appears	 simpler,	 although	 effective	 in	many	 aspects,	 in	

comparison	to	other	Class	where	keratin	gene	products	are	much	more	numerous	(Froschauer	et	al.	

2006).	

Despite	 slight	 differences	 in	 some	 components	 clearly	 detectable	 between	 Selachii	 and	Batoidea	

subdivisions,	 three	 are	 the	 main	 layers	 characterizing	 elasmobranchs’	 skin.	 Hypodermis	 is	 the	

deepest	skin	layer,	located	between	the	body	musculature	and	the	dermal	stratum	compactum.	It	is	

recognizable	by	varying	sizes	of	blood	and	lymphatic	vessels	and	fat	cells	that,	depending	on	the	food	

abundance,	are	variably	interspersed	with	loose	connective	tissue.	

Dermis’	 strong	mechanical	power	 relies	on	high	amounts	of	 collagenous	 fibres	and	 fibre	bundles	

(fibroblasts	and	fibrocytes)	characterizing	its	stratum	compactum	and	contributing,	for	example,	to	a	

faster	swimming	capacity	(Meyer	&	Seegers	2012).	Other	free	cells	as	melanocytes,	macrophages	

and	 mast-cells	 contribute	 to	 pigmentation,	 anti-inflammation	 and	 immune	 responses.	 Among	
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batoids	an	 inconspicuous	melanocyte	 layer	constitutes	the	dermis,	while	cells	of	haemolymphatic	

capillaries	 show	 short	 protrusions	 of	 the	 internal	 cell	 membrane	 towards	 the	 lumen,	 filled	 with	

mitochondria.	 These	 structures	 seem	 to	 be	 related	 to	 the	 maintenance	 of	 low	 Na+	 and	 Cl-	

concentration	in	body	fluids	in	relation	to	the	surrounding	tissues,	to	regulate	the	intensity	of	osmotic	

exchange	and	save	precious	energy	when	necessary	(Meyer	&	Seegers	2012).	

The	epidermis	is	composed	in	turn	of	three	more	layers.	The	monolayer	stratum	basale	is	in	perpetual	

mitotically	 active	 status.	 Cells	 normally	 have	 a	 large	 nucleus	 with	 one	 to	 two	 nucleoli	 and	 a	

homogeneous	cytoplasm	containing	mitochondria,	a	very	dense	network	of	cytofilaments,	a	rough	

endoplasmatic	 reticulum	 with	 numerous	 closely	 contacting	 cisternae,	 a	 low	 number	 of	 free	

ribosomes	 and,	 especially	 in	 batoids,	 several	 electron-dense	 vesicles.	 The	 stratum	 spinosum	 is	

characterized	by	many	highly-connected	cells	and	long	protrusions	of	melanocytes	filled	with	melanin	

granules	and	reaching	the	stratum	superficiale.	The	latter	is	constituted	of	secretory	cells,	which	are	

typically	 fewer	 in	 skates.	 Among	 sharks,	 many	 columnar-like	 secretory	 cells	 predominate	 the	

epidermal	layer,	while	these	cells	are	fewer	and	with	an	irregular	distribution	among	skates	and	rays.	

Epidermis	is	also	crossed	by	free	nerve	fibres	and	is	characterised	by	many	mucus	cells,	appearing	as	

large	 balls	 (Meyer	 &	 Seegers	 2012),	 lymphocytes,	 macrophages	 and	 several	 types	 of	 granular	

leucocytes.	

The	most	important	feature	distinguishing	elasmobranchs	(in	sharks	and	in	most	skates	and	rays)	is	

the	 presence	 of	 ectomesodermal	 placoid	 scales	 enriching	 the	 skin.	 These	 structures	 are	 firmly	

anchored	in	the	dermal	stratum	compactum	by	strong	collagenous	fibres	bundles	and	they	are	not	

imbricated.	 Scales	 body	 coverage	 highly	 depends	 on	 the	 swimming	 strategy:	 shark-swimming	

elasmobranchs	(sharks,	guitarfish	and	sawfish)	are	characterised	by	scales	covering	the	entire	body,	

while	 among	 other	 batoid	 taxa,	 the	 undulatory/oscillatory	movement	 contributed	 to	maintain	 a	

sparse	 scales	 coverage,	 mainly	 concentrated	 on	 the	 tail.	 In	 some	 species,	 these	 features	 are	

completely	 absent	 (Myliobatiformes),	 but	 a	 thick	 mucus	 layer	 seems	 to	 compensate	 this	 lack	

(Marshall	1978).	

Some	secondary	structures	likely	derived	from	enlarged	placoid	scale	are	generally	called	‘thorns’.	

They	are	very	common	 in	skate	species	and	they	typically	show	a	secondarily	 thickened,	acellular	

bony	base	and	a	narrow,	hook-shaped	and	curved	crown	(Reif	1979).	Nuchal	and	scapular	thorns	are	

present	 in	both	males	and	females	as	well	as	some	median	row	spines	distributed	along	the	disc.	

Males’	 alar	 thorns	were	deeply	 investigated	by	McEachran	 (1984;	1977).	Because	of	 their	 shape,	

position	and	orientation	they	are	involved	into	courtship	and	mating,	while	anchoring	to	the	female	
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pelvic	 fins.	 For	 this	 reason,	 alar	 spines	 are	 considered	 secondary	 sexual	 characters	 and	maturity	

indicators	(Bigelow	&	Schroeder	1953).	

Similarly,	malar	thorns	are	seated	lateral	to	the	orbits	and	spiracles	in	maturing	male	skates	and	their	

orientation	on	the	dorsal	disk	is	oblique.	Some	authors	attempted	to	use	skates’	alar	and	malar	thorns	

orientation	and	squamation	to	unravel	the	phylogenetic	and	population	structure	between	two	main	

clades,	although	no	evidence	of	differentiation	was	found	(McEachran	&	Konstantinou	1996).	On	the	

contrary,	 these	and	other	21	meristic	 characters	contributed	 to	delineate	at	 least	 three	different	

clades	of	brown	skate	Raja	miraletus	 inhabiting	 the	Southern	and	Atlantic	African	Coasts	and	the	

Mediterranean	Sea	(McEachran	et	al.	1989).	

Within	this	tissue	hides	an	extraordinary	sophisticated	sensory	system	constituted	by	pit	organs,	the	

lateral	line	organ	and	the	ampullae	of	Lorenzini	(Meyer	&	Seegers	2012).	

Pit	organs	are	 sensory	units	 set	 in	correspondence	of	bigger	or	modified	placoid	 scales,	near	 the	

lateral	 line	 (Peach	&	Rouse	 2004;	Maruska	 2001;	 Tester	&	Nelson	 1967).	 They	 are	 connected	 to	

cranial	 nerves	 and	 cover	 both	 dorsal	 and	 ventral	 body	 portions	 in	 shark,	 even	 if	 they	 are	 highly	

reduced	in	skates	and	rays	ventral	part	because	of	adaptation	of	living	close	to	the	sea-floor	(Peach	

&	Marshall	 2009,	 2000;	 Peach	&	Rouse	2004).	 These	organs	 are	 involved	 in	 capturing	 the	water	

motion	 and	 velocity,	 generated	 by	 water	 flow,	 predators,	 conspecifics	 or	 distortions	 in	 the	

surrounding	water	while	the	animal	is	swimming.	

The	same	function	is	carried	out	by	the	bilaterally	symmetrical	network	of	lateral	line	canals	(Maruska	

&	Tricas	2004),	constituted	by	sub-epidermal	dorsal	pored	and	ventral	non-pored	canals.	Neuromasts	

are	 the	 sensory	units	at	 the	basis	of	 this	 system	and	are	constituted	by	hair	and	supportive	cells	

covered	by	a	cupula	(Kasumyan	2003;	Maruska	2001).	The	vesicles	of	Savi	are	specialized	units	of	the	

lateral	line	organ	peculiar	of	skates,	rays	and	benthic	sharks.	They	are	set	in	the	ventral	portion	of	the	

body	 and	 have	 a	mechanic-tactile	 functions,	which	 enable	 the	 consciousness	 of	 the	 skin	 surface	

displacements.	

Differently,	 the	 ampullae	 of	 Lorenzini	 allow	 the	 caption	 of	 electric	 fields.	 Discovered	 by	 Stefano	

Lorenzini	in	1678,	these	canals	are	used	during	navigation	and	the	detection	of	mates,	predators	or	

preys	 (Wilkens	2005;	 Tricas	et	 al.	 1995).	 	 Each	ampulla	 system	 lies	 in	 the	hypodermis	 in	 form	of	

connected	alveoli	and	consists	of	each	somatic	pore	leading	to	a	jelly-filled	canal.	Ampullae	cluster	

together	in	capsules	of	connective	tissue	allowing	the	suppression	of	interference	from	the	animal’s	

own	 electric	 field	 (Meyer	&	 Seegers	 2012).	 The	 interior	 portion	 of	 the	 alveoli	 is	 also	 covered	 by	



	 20 

sensory	epithelium	cells	developing	from	the	neural	crest.	Neurons	are	connected	to	this	system	as	

afferents	and	are	in	contact	with	multiple	receptor	cells.	

As	it	has	been	briefly	described	here,	the	complexity	of	skin	structure	is	fundamental	to	its	functions.	

At	the	same	time,	this	condition	has	been	an	obstacle	to	the	laboratory	praxis	on	one	hand	and	it	has	

been	recalled	within	the	data	analyses	aiming	to	rule	out	the	genetic	characterization	of	skin	features	

on	the	other.	

	

3.1.2.	Skin	ornaments	and	pigmentation	structures	

	

Differently	from	endotherms,	teleost	and	cartilaginous	fish	display	several	classes	of	pigment	cells,	

or	chromatophores,	that	retain	their	pigments	 intracellularly	(Bagnara	&	Matsumoto,	2006;	Clark,	

2002).	In	these	groups,	body	patterning	relies	on	the	distribution,	density	and	aggregation	of	these	

different	integumentary	cell-units.	Among	fish	in	particular,	the	colours	we	perceive	are	the	result	of	

both	light	absorption	and	reflection	capability	of	pigments	contained	in	different	kind	of	these	cells:	

melanophores	 contain	black	 eumelanin	pigment,	 erythrophores	 and	 xanthophores	 are	 filled	with	

yellow-red	 carotenoid	 or	 pteridine	 pigments	 and	 cyanophores	 contain	 blue	 pigment.	 The	 typical	

metallic	iridescence	depends	on	light	reflection	of	the	iridophores	or	leucophores,	containing	purine	

crystals	(Leclercq	et	al.	2010;	Braasch	et	al.	2010;	Goda	&	Fujii	1995;	Taylor	&	Bagnara	1972).	Fish	

can	synthesise	eumelanin	from	tyrosine,	while	carotenoids	need	to	be	provided	by	the	diet	(Sefc	et	

al.	2014).	

This	complex	variety	of	colour	structure	seems	to	be	less	known	among	cartilaginous	fish,	where	the	

physiological	 colour	 control	 is	more	 similar	 to	 amphibians	 rather	 than	 teleost,	 since	 no	 nervous	

control	is	involved	(Hogben	1936;	Wykes	1936).	Hogben	(1936)	identified	in	Mustelus	canis	(Mitchhill,	

1835)	three	kinds	of	chromatophores,	one	seated	in	the	epidermis,	one,	larger,	in	the	dermis	and	

xantophores.	 It	 has	 been	 demonstrated	 that	 the	 pituitary	 gland	 secretions	 (e.g.	 alpha-MSH,	

Melanophores	Stimulating	Hormone	or	‘darkening	hormone’;	Gelsleichter	2012;	Kemp	1999;	Visconti	

&	 Castrucci	 1993)	 are	 responsible	 of	 the	 regulation	 of	 body	 darkening	 and	 paling	 in	 Leucoraja	

erinacea	and	other	cartilaginous	fish	after	an	exposure	of	nine,	twelve	up	to	twenty-four	hours	to	

different	light	conditions	(Claes	&	Mallefet	2010;	Parker	1993;	Bagnara	&	Hadley	1973).	Furthermore,	

only	melanocytes	where	previously	described	among	class	Chondrichthyes	(Meyer	&	Seegers	2012;	

Kemp	1999).	
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In	many	skate	and	ray	species,	the	dorsal	body	colour	is	uniformly	black	(e.g.	genus	Mobula)	or	brown	

and	often	enriched	with	spots,	dots,	eyespots	and	pseudo-eyespots,	undulated	bars	and	blotches.	

Thus,	skin	ornaments	or	pictorial	motifs	are	variable	in	shape,	colour	and	position,	depending	not	

only	on	the	geography	(geographic	colour	pattern	differentiation	is	usually	accompanied	by	genetic	

differentiation,	even	if	not	all	species	with	distinct	population	structure	show	phenotypic	variation	

e.g.	Koblmüller	et	al.	2011;	Duftner	et	al.	2006),	but	also	age	(Ari,	2014)	and	behaviour.	As	well	as	for	

teleost	and	other	vertebrates,	patterning	in	skates	depends	on	pigments	and	structural	colours	(Sefc	

et	al.	2014)	and,	differently	 from	other	species,	no	sexual	dimorphism	 is	 reflected	by	pigmentary	

traits.	

Among	the	skate	species	considered	in	this	dissertation,	a	considerable	variety	of	dorsal	ornaments	

and	colours	are	observable.	Raja	clavata	dorsal	side	hues	from	grey	to	dark	brown	with	either	a	dark,	

marbled	appearance	or	with	numerous	dark	spots	and	brownish	blotches	(i.e.	 larger	and	irregular	

pigmented	patches	with	 ill-defined	boundaries;	Santos	et	al.	2016).	Specimens	may	also	display	a	

larger	black	eyespot	at	each	pectoral	fin	base.	Dark	and	light	bands	alternate	on	the	tail,	while	the	

ventral	skin	is	white	(Serena	&	Mancusi	2010).	

The	sibling	R.	straeleni	is	brown	to	grey	dorsally,	with	small	to	large	black	spots,	whorls	and	blotches,	

and	a	larger	eyespot	at	each	pectoral	fin	base.	The	underside	is	plain	white.	Juveniles	lack	the	dark	

dorsal	spots	(Froese	et	al.	2014).	

The	 sister	 R.	 asterias	 is	 brown-yellowish	 with	 lighter,	 yellowish	 small	 blotches	 asymmetrically	

distributed	and	numerous	dark	dots.	Ventral	side	is	also	white	(Serena	&	Mancusi	2010).	

A	very	different	patterning	 is	showed	by	R.	miraletus	and	the	South	African	R.	ocellifera,	 that	are	

characterized	by	a	sibling	relationship	and	a	well-recognizable	and	strikingly	similar	pigmentation:	on	

the	upper	ochre-brownish	surface	scattered	with	dark	spots	(Stehmann	&	Bürkel	1984;	Compagno	

et	 al.	 1989),	 two	well-defined	 bright	 blue-purple	 eyespots	 stand	 clearly	 out	 at	 the	 base	 of	 both	

pectoral	fins.	However,	whereas	in	R.	miraletus	specimens	from	Senegal	these	spots	are	surrounded	

by	a	black	and	then	a	yellow	ring,	in	R.	ocellifera	from	South	Africa	blue	spots	are	encircled	by	a	ring	

of	 tight	brown	 spots	 and	 then	a	 ring	of	 tight	 yellow/white	 spots	 (Caira	et	 al.	 2013).	Ocelli	 in	 the	

Mediterranean	brown	skate	are	slightly	smaller	than	Angolan	or	Senegalese	specimens	(Last	&	Séret	

2016).	 Furthermore,	 the	presence	of	 these	 features	 is	 not	 associated	with	body	development	or	

reproductive	stages.	Ventral	side	is	white	(Serena	&	Mancusi	2010).	

The	pictorial	motifs	described	here	are	the	main	elements	of	interest	in	this	part	of	the	dissertation.	
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3.1.3.	Pigmentary	genes	

	

Entering	 the	 field	 of	 skin	 pigmentation	 is	 a	 challenge.	 Vertebrate’s	 pigmentation	 is	 regulated	 by	

multiple	 genes.	 Some	 of	 them	 are	 involved	 in	 pigment	 development,	 others	 are	 components	 of	

melanosomes	and	their	precursors,	or	are	responsible	for	melanosome	construction	and	transport.	

Among	vertebrates	more	than	370	genes	are	involved	in	colorations	and	128	of	them	regulate	the	

pigment	 synthesis	 in	 zebrafish	 (Braasch	 et	 al.	 2010),	 while	 some	 of	 them	 underpin	 interesting	

patterning	in	teleosts	(Santos	et	al.	2016,	Sefc	et	al.	2014).	More	in	general,	pigments	synthetized	by	

an	 organism	 are	 mainly	 regulated	 by	 the	 interaction	 of	 two	 units:	 the	 melanocortin-1	 receptor	

(MC1R)	 and	 the	 Agouti.	 The	 mechanism	 is	 virtually	 simple:	 the	 signalling	 activity	 of	 the	

transmembrane	 MC1R	 at	 the	 surface	 of	 melanocytes	 favour	 the	 production	 of	 brown-black	

eumelanin.	Alternatively,	the	binding	of	the	antagonist	Agouti,	causes	a	switch	into	the	synthesis	of	

yellow-red	phaeomelanin.	Actually,	 the	genetic	basis	of	 this	system	 is	more	than	complex,	 thus	 it	

represents	the	utmost	question	for	many	Evolutionary	Biologists.	

As	 it	 has	 been	demonstrated	by	Manceau	et	 al.	 (2010),	 different	 pigmentary	 genes	 can	produce	

similar	patterning	among	closely	related	species	(Manceau	et	al.	2010).	At	the	same	time,	an	exact	

amino	 acid	mutation	 in	 the	 same	gene	 (e.g.	 Arginine	 to	Cysteine	 amino	 acid)	 can	 lead	 to	 similar	

phenotypes	 in	 highly	 distant	 species,	 like	 the	 Alabama	 beach	 mice	 (Peromyscus	 polionotus	

ammobates	Bowen,	1969)	and	mammoth	(Römpler	et	al.	2006).	Again,	a	mutation	in	different	genes	

can	regulate	very	different	functions,	but	lead	to	similar	patterning	(Arendt	&	Reznick	2008).	

The	MC1R	generally	controls	the	synthesis	of	eumelanin	through	the	regulation	of	the	expression	of	

different	genes	belonging	to	the	melanin	pathway	(e.g.	Proopiomelanocortin	or	POMC,	Prohormone	

convertase	PCSK1/3,	PCSK2	and	ASIP;	Vachtenheim	&	Borovansky	2010)	and	generally	controls	the	

eumelanin-pheomelanin	switch.	Mutations	at	these	genes	can	affect	MC1R	location,	 its	affinity	to	

bind	at	other	ligands	(i.e.	alpha-Melanin	Stimulating	Hormone	and	ASIP)	and	the	G	protein	coupling	

activity	(Dessinioti	et	al.	2011).	Alterations	of	the	G	protein	can	subsequently	influence	the	expression	

and	 activity	 of	 downstream	 genes	 involved	 in	 the	melanin	 pathway	 as	well.	 For	 instance,	 in	 the	

European	population	of	barn	owls	(Tyto	alba	Scopoli,	1769),	MC1R	is	polymorphic	for	the	amino	acid	

126,	where	a	valine-to-isoleucine	substitution	explains	about	30%	of	variation	in	ventral	coloration	

(Burri	et	al.	2016;	San-Jose	et	al.	2013).	
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The	 Agouti	 gene	 is	 antagonist	 to	 MC1R	 which	 is	 known	 for	 producing	 a	 transcriptional	 isoform	

expressed	 in	 the	 ventral	 skin	 and	associated	with	dorsal–ventral	 differences	 in	pigmentation	and	

cryptic	adaptation	to	the	environment	(Barsh	1996;	Bultman	et	al.	1994;	Vrieling	et	al.	1994).	

The	totality	of	pigmentary	genes	has	been	categorized	according	to	their	function	(as.	melanophore	

development,	components	of	melanosomes,	melanosome	biogenesis	and	 transport,	 regulation	of	

melanogenesis,	 systemic	 effect,	 xantophore	 development,	 pteridine	 synthesis,	 iridophore	

development	and	unidentified	function).	The	complexity	of	these	functions	and	structures	in	bony	

fish	 is	 strongly	 related	 to	 the	 two	 rounds	 of	whole	 genome	 duplication	 that	 involved	 vertebrate	

groups,	amplified	by	the	migration	of	more	pigment	cells	from	the	neural	crest.	This	developmental	

trait	 led	 teleost	 to	 display	 approximately	 30%	 more	 pigmentary	 genes	 than	 other	 vertebrates	

(Braasch	et	al.	2009,	2007).	

According	to	the	recent	Santos	et	al.	(2016),	29	genes	seem	to	be	involved	into	the	evolution	of	egg-

spots	in	Astatotilapia	burtoni	(Günter,	1894).	Among	these	genes,	the	endothelin	B	receptor	(EDNRB),	

the	transcription	factors	SOX9	and	MITF	(microphthalmia)	and	the	cell-adhesion	molecule	binding	

periostin-like	isoform	X2	(POSTN)	can	be	involved	in	egg-spot	morphogenesis	on	male’s	anal	fin.	This	

peculiar	trait	is	likely	responsible	for	the	breeding	behaviour	of	the	species	and	are	involved	in	sexual	

selection.	

Starting	from	a	different	point	of	view,	totally	unbound	from	sexual	behaviour	in	favour	of	cryptism	

or	aposematism	mechanisms,	the	recovery	of	similar	proteins	and	genes	is	expected	among	skates’	

skin	samples,	after	comparing	different	body	areas	carrying	(or	not)	eyespots	and	pseudo-eyespots.	

	

3.2.	 Materials	and	methods	

	

3.2.1.	The	development	of	a	sampling	protocol	and	experimental	scheme	

	

The	sampling	protocol	was	established	starting	from	standard	guidelines	for	gene	expression	profiling	

(i.e.	FishPopTrace	Project;	https://fishpoptrace.jrc.ec.europa.eu).	To	ensure	a	sterilized	environment	

during	the	whole	procedure,	a	careful	preparation	of	materials	needed	to	be	carried	out	before	this	

phase.	In	particular,	2	ml	Nuclease-free	microtubes	with	cap	and	O-ring	were	previously	labelled	with	

Sample	 ID	 (code	and	replicate	 ‘a’	or	 ‘b’)	and	 filled	with	1.2	ml	of	RNAlater®	Stabilization	Solution	

(ThermoFisher	Scientific).	A	minimum	of	10	volumes	of	RNAlater®	reagent	 (10μl/1mg	of	 tissue)	 is	

recommended	by	the	user	guide	(https://tools.thermofisher.com/content/sfs/manuals/7020M.pdf).	
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The	working	surface	and	the	surgical	instruments	(scissors,	tweezers	and	scalpel	blades)	were	washed	

and	cleaned	with	denaturised	Ethanol	and	then	with	RNaseZap®	RNase	Decontamination	Solution	

(ThermoFisher	Scientific).	The	operator	had	to	wear	clean	surgical	gloves	and	rub	gloved-hands	up	

with	RNAse	Zap®	if	necessary.	Instruments	were	cleaned	up	and	sterilized	after	the	sampling	of	each	

tissue	and	clean	gloves	were	replaced	after	sampling	each	specimen.	

Tissues	used	in	this	study	were	collected	from	Mediterranean	and	South	African	individuals	caught	

during	scientific	research	programs.	No	specific	approval	of	this	vertebrate	work	is	required	since	the	

individuals	sampled	in	this	study	were	obtained	for	scientific	and	commercial	activities.	

Withering	specimens	were	delicately	washed	and	quickly	scrubbed	with	clean	paper	towel	to	get	rid	

of	eventual	organic	and	inorganic	materials	and	sediment.	Then,	they	were	accommodated	on	an	

aluminium	layer	sprayed	with	RNAse	Zap®	and	placed	on	ice.	Biometric	measures	were	taken	(total	

length,	disk	length,	disc	width	and	weight)	and	sex	was	determined.	Skin	slices,	less	than	0.5	cm	thick,	

were	collected	in	correspondence	of	the	dorsal	colour	motif,	 in	the	adjacent	area	where	skin	was	

uniformly	pigmented	and	the	non-pigmented	ventral	skin.	Samples	were	taken	symmetrically	from	

each	body	side,	trimming	fat	and	muscle	tissue	and	transferring	them	to	the	corresponding	tube.	

Tubes	were	 first	stored	at	4°C	overnight,	 then	at	−20°C	until	 further	processing	 to	maximize	RNA	

fixation.	Samples	were	transported	in	dry	ice	during	their	transfer	to	the	laboratory.	

Three	skin	samples	differing	in	pigmentation	patterns	(the	dorsal	ornament,	the	adjacent	uniformly	

pigmented	skin	and	the	un-pigmented	ventral	skin)	were	collected	from	skate	species	caught	during	

scientific	and	commercial	surveys	carried	out	in	the	Adriatic	Sea,	Sicilian	Channel	and	Tyrrhenian	Sea	

between	 August	 and	December	 2014	 during	 the	 SoleMon	 (FAO-Adriamedn	 Project)	 and	MEDITS	

scientific	 surveys	 (http://www.sibm.it/SITO%20MEDITS/principaleprogramme.html)	 or	 commercial	

vessels.	While	samples	from	around	Italy	were	personally	collected,	samples	of	R.	ocellifera	and	R.	

straeleni	from	off	South	Africa	were	gathered	in	May	2015	during	the	Afrikaan	cruise,	see	(Ebert	&	

Compagno	2007),	carried	out	by	the	Department	of	Agriculture	and	Fisheries	of	the	South	African	

Government	of	Cape	Town	(see	Fig	S1,	S2	and	Table	S9	in	Appendix	II	for	details).	

The	 initial	 intent	 of	 boarding	 in	 North-Eastern	 Atlantic	 and	 include	 interesting	 species	 in	 the	

experimental	design	(i.e.	Raja	montagui	Delaroche,	1809	or	R.	undulata	Lacepède,	1802)	was	not	

supported	 because	 of	 the	 lack	 of	 a	 Basic	 Sea	 Survival	 Certificate	

(http://www.rya.org.uk/wheresmynearest/Pages/CourseDetail.aspx?code=BSSCC).	

Based	on	the	available	specimens	collected	during	the	sampling	phase,	an	experimental	design	was	

ideated	to	perform	the	Illumina	sequencing	of	differently	pigmented	tissues	and	compare	group	of	
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sibling	species	with	similar	patterning	(e.g.	Raja	clavata,	R.	straeleni	vs	R.	miraletus,	R.	ocellifera)	and	

sister	species	showing	different	pictorial	ornaments	(R.	asterias	vs	R.	clavata	and	R.	straeleni).	A	total	

of	five	individuals	per	species,	three	skin	tissues	per	individual,	were	included	in	the	experimental	

phase	(Fig	6).	

	

	

	

	

3.2.2.	RNA	isolation	

	

3.2.2.1.	 RNA	extraction	using	TRIzol®	Reagent	

	

The	 first	 RNA	 extraction	 attempts	 were	 performed	 at	 the	 GenoDREAM	 lab	 of	 Ravenna	 (Dept.	

Biological,	Geological	&	Environmental	Sciences,	University	of	Bologna).	

	

Standard	TRIzol®	extraction	protocol	(ThermoFisher	Scientific)	was	initially	tested	on	Raja	asterias.	

Skin	tissues	were	carefully	trimmed	from	muscle	and	collagenous	tissues	and	homogenized	with	a	

T10	 basic	 ULTRA-TURRAX®	 (Ika,	 Germany)	 following	 the	 manufacturer’s	 instructions	

(https://tools.thermofisher.com/content/sfs/manuals/trizol_reagent.pdf).	 RNA	 was	 suspended	 in	

25μl	and	its	purity	measured	using	a	MBA200	spectrophotometer	(Perkin	Elmer).		

	

3.2.2.2.	 RNA	extraction	using	the	Direct-zol™	RNA	MiniPrep	Kit	

	

Using	R.	asterias	individual	replicates,	the	Direct-zol™	RNA	MiniPrep	Kit	(ZymoResearch,	Germany)	

was	 also	 tested	 (http://www.zymoresearch.com/downloads/dl/file/id/467/r2050i.pdf)	 after	 tissue	

Figure	5	The	experimental	scheme	for	Illumina	sequencing.	S	dorsal	spot.	D	dorsal	uniform	matrix.	W	ventral	white	skin.	
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homogenation	with	a	T10	basic	ULTRA-TURRAX®	as	well.	RNA	was	suspended	in	25μl	and	its	purity	

measured	using	a	MBA200	spectrophotometer.	

	

3.2.2.3.	 RNA	extraction	using	the	Maxwell®	16MDx	Instrument	

	

Skin	samples	of	Leucoraja	melitensis	were	used	for	testing	the	Maxwell®	16MD	Instrument	(Promega)	

for	 nucleic	 acids	 extraction.	 After	 homogenizing	 tissues	with	 scissors	 and	mortar	 and	 pestle,	 the	

extraction	 phase	 was	 prepared	 as	 indicated	 by	 the	 manufacturer	 (https://ita.promega.com/-

/media/files/resources/protocols/technical-bulletins/101/maxwell-16-total-rna-purification-kit-

protocol.pdf).	

The	 whole	 procedure	 was	 completely	 automatized.	 RNA	 purity	 was	 measured	 using	 a	 MBA200	

spectrophotometer.	

	

3.2.2.4.	 RNA	extraction	using	the	BeadBeater	

	

The	 following	 steps	 were	 carried	 out	 at	 the	 Zoological	 Institute	 (Dept.	 of	 Evolutionary	 Biology,	

University	of	Basel)	under	the	supervision	and	support	Salzburger	group.	

	

Isolation	of	RNA	from	Leucoraja	melitensis	skin	tissues	was	carried	out	testing	Santos	et	al.	(2014)	

protocol,	 developed	 and	 optimised	 on	 cichlid	 fins	 and	 currently	 in	 use	 at	 the	 Salzburger	 lab	

(http://www.salzburgerlab.org).	Basically,	RNA	extraction	was	performed	according	 to	 the	TRIzol®	

protocol	after	incubating	the	dissected	tissues	in	750 μl	of	TRIzol®	at	4 °C	overnight	or,	alternatively,	

for	8–16 h	to	increase	the	RNA	yield	after	long-term	storage.	Tissues	were	then	homogenized	at	6s/m	

for	 1	minute	with	 a	 BeadBeater	 (FastPrep-24,	MP	 Biomedicals,	 France)	 and	 Zirconia-silica	 beads	

(1.0mm	diameter;	BioSpec	Products).	This	step	was	repeated	when	necessary.	Subsequent	DNase	

treatment	was	performed	with	DNase	I	(Sigma-Aldrich).	RNA	quantity	and	quality	was	determined	

with	a	NanoDrop	ND-1000	spectrophotometer	(ThermoFisher	Scientific).	

	

3.2.2.5.	 Combining	RNA	isolation	protocols	

	

Since	 the	 RNA	 yield	 conspicuously	 increased	 with	 the	 use	 of	 the	 zirconia-silica	 spheres	 and	

BeadBeater	as	homogenizers,	the	Direct-zol™	RNA	MiniPrep	kit	was	tested	again.	An	optimal	method	
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for	isolating	good	quality	RNA	was	finally	established	combining	Santos	et	al.	(2014)	and	the	Direct-

zol™	protocols,	and	applied	to	five	main	species,	on	a	total	of	132	individuals.	

Key	 steps	of	 the	 combined	procedure	 involved	 a	 first	 purification	of	 homogenised	 samples	 (with	

10mm	of	zirconia-silica	beads	at	4s/m	for	1	minute)	with	200μl	of	Chloroform	without	Isoamyl	alcohol	

(officially:	 2:10	Chloroform:TRIzol)	 in	 order	 to	 get	 rid	 of	 proteins,	 pigments	 and	other	 interfering	

substances.	 After	 centrifuging,	 the	 aqueous	 phase	 was	 collected	 and	 transferred	 to	 the	

corresponding	 1.5ml	 Lo-bind	 Eppendorf	 tube	 filled	 with	 400μl	 of	 fresh	 99%	 EtOH.	 The	 cocktail	

obtained	was	then	transferred	to	the	spin	columns	and	hence,	the	Direct-zol™	protocol	was	followed,	

adding	two	more	washing	steps	with	Washing	Buffer	(WB)	to	increase	RNA	purity.	Genomic	DNA	was	

also	carefully	eliminated	 from	RNA	preparations	by	on-column	digestion	using	DNase	 I	 set	as	 the	

manufacturers	recommended	in	their	protocol.	RNA	concentration	and	purity	were	measured	using	

a	NanoDrop	spectrophotometer,	whereas	RNA	integrity	was	assessed	according	to	the	intensity	and	

shape	of	28S	and	18S	 rRNA	peaks	on	 the	Bioanalyzer	2100	using	 the	Agilent	RNA	6000	Nano	Kit	

(Agilent	 Technologies,	 Germany).	 The	 five	 best	 RNA	 extractions	 per	 species,	 including	 the	 dorsal	

ornament,	 dorsal	 uniform	 matrix	 and	 the	 un-pigmented	 ventral	 skin,	 were	 chosen	 for	 library	

preparation	and	following	Illumina	sequencing	(refer	to	Table	S10	in	Appendix	for	codes-conversion).	

The	choice	was	strictly	based	on	sample	concentration	(ng/μl),	the	260/280	and	260/230	absorbance	

ratios	which	are	considered	as	proxies	of	RNA	purity,	and	RNA	integrity,	indicated	by	the	BioAnalyzer	

as	a	RNA	integrity	number	(hereafter	RIN).	

	

3.2.3.	Library	preparation	and	sequencing	

	

Library	preparation	and	sequencing	were	performed	at	the	Department	of	Biosystems	Science	and	

Engineering	of	Basel	(ETH	Zürich;	https://www.bsse.ethz.ch).	

A	total	amount	of	200ng	of	high-quality	RNA	was	used	for	preparing	libraries	from	75	samples.	The	

TruSeq	 Stranded	 RNA	 Library	 Prep	 HS	 Kit	 (Illumina,	 San	 Diego,	 USA)	 was	 applied	 following	 the	

manufacturer’s	 instructions	 (http://support.illumina.com/content/dam/illumina-

support/documents/documentation/chemistry_documentation/samplepreps_truseq/truseqstrand

edtotalrna/truseq-stranded-total-rna-sample-prep-guide-15031048-e.pdf).	 In	 general,	 this	 kit	 is	

particularly	 effective	 in	 eliminating	 rRNA	 by	 a	 poly-A	 enrichment,	 even	 with	 low	 quality	 or	 low	

abundant	 RNA	 (10-100ng).	 Target	 enrichment	 is	 fundamental	 when	 working	 on	 eukaryotic	

organisms,	 since	 it	 produces	 sufficient	 mRNA	 population	 and	 separates	 mRNA	 from	 rRNA	
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contaminants.	 Despite	 the	 verified	 efficiency	 of	 the	 kit,	 some	 biases	 toward	 the	 3ʹ-end	 of	 the	

expressed	transcripts	can	be	encountered	because	of	random	hexamer	priming	(Hansen	et	al.	2010).	

Library	quality	was	measured	on	a	2200	TapeStation	Instrument	(Agilent	Genomics)	and	multiplexed	

applying	appropriate	double	indices	which	were	incorporated	and	sequenced	as	a	separate	read	for	

each	 flow	 cell	 cluster.	 The	 25-sample	 libraries	 were	 pooled,	 aliquoted	 and	 randomly	 distributed	

across	each	of	 three	 lanes	of	 the	 flow	cell.	 Sequencing	was	performed	on	an	 Illumina	HiSeq2500	

sequencer	 using	 the	 125bp	 single-end	mode,	 which	 enables	 about	 250	Million	 reads	 of	 output.	

Sequence	reads	were	then	demultiplexed	by	index	using	CASAVA	v.1.8.2	software	(Wilson-Leedy	&	

Ingermann	2007).	The	quality	checking	of	raw	reads	was	then	performed	using	the	FastQC	algorithm	

(http://	www.	bioinformatics.	babraham.	ac.	uk/	projects/	fastqc/	).	FastQ	files	from	individual	lanes	

were	merged	for	each	sample	and	were	employed	as	input	for	the	following	analyses.	

	

3.2.4.	Raw	reads	quality	check	

	

In	bioinformatics,	 the	raw	read	quality	 is	 the	cornerstone	 for	obtaining	reasonable	data,	avoiding	

false	positives	and	bias	which	are	 likely	 related	 to	 the	previous	 steps	of	 the	experimental	phase.	

Despite	the	de	novo	assembly	generally	requires	much	cleaner	reads	than	alignment	to	a	reference	

genome	or	transcriptome,	the	best	practice	is	to	perform	a	read	filtering	step	and	discard	or	trim	

those	reads	containing	adapters	and	low	quality	bases.	Illumina	reads	are	known	to	have	a	higher	

error	rate	as	moving	towards	the	3ʹ-end	of	the	transcript,	so	if	a	drop-in	quality	is	detected	within	

the	read,	trimming	the	rest	of	the	read	off	is	necessary.		

The	sequencing	reads,	along	with	the	corresponding	base	call	qualities	(i.e.	the	probability	of	a	correct	

call)	are	displayed	as	a	FASTQ	file	(which	has	the	extension	‘.fastq’	or	‘.fq’).	These	FastQ	files	contain	

a	 four-line	 record	 for	 each	 read,	 including	 its	 nucleotide	 sequence,	 a	 ‘+’	 sign	 separator	 and	 a	

corresponding	ASCII	string	of	quality	characters,	each	one	corresponding	to	an	integer	i	ranging	from	

-5	to	41	(depending	on	the	version	of	Illumina	software	used	for	base-calling).	

One	 of	 the	 tools	 providing	 quality	 control	 checks	 on	 raw	 sequence	 data	 is	 FastQC	

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),	which	quickly	 identifies	any	issue	or	

problem	that	must	be	considered	before	proceeding	with	further	analysis.	

A	 typical	 FastQC	 report	 consist	 of	 twelve	 sections	 (see	

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/	 for	

details).	
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The	‘Basic	Statistics’	module	reports	the	original	filename	of	the	file	analysed,	the	actual	base	calls,	

the	ASCII	encoding	of	quality	values	used,	the	total	number	of	processed	sequences,	the	flagged	ones	

to	 be	 removed	 from	 all	 analyses,	 the	 sequence	 length	 and	 the	 overall	 %GC	 of	 all	 bases	 in	 all	

sequences.	

The	‘Per	Base	Sequence	Quality’	displays	the	range	of	quality	values	across	all	bases	at	each	position	

in	the	file.	In	the	plot,	the	central	red	line	is	the	median	value,	the	yellow	box	represents	the	inter-

quartile	range	(25-75%),	the	upper	and	lower	bars	represent	the	10%	and	90%	points,	whereas	the	

blue	line	represents	the	mean	quality.	The	y-axis	on	the	graph	shows	the	quality	scores	and	the	graph	

background	colours	divide	the	y	axis	into	very	good	quality	calls	(in	green),	calls	of	reasonable	quality	

(in	orange),	and	calls	of	poor	quality	(in	red).	

The	‘Per	Tile	Sequence	Quality’	encodes	the	flowcell	tile	from	which	each	read	came.	Using	cold	and	

hot	colour	scales	the	module	shows	the	deviation	from	the	average	quality	for	each	tile	and	to	check	

any	losses	in	quality	associated	with	only	one	part	of	the	flowcell.	

The	‘Per	Sequence	Quality	Scores’	allows	to	identify	subsets	of	sequences	with	low	quality	values.		

The	‘Per	Base	Sequence	Content’	plots	the	proportion	of	each	base	position	in	a	file	for	which	each	

of	the	four	DNA	bases	(G,	A,	T,	C)	has	been	called.	Because	of	the	stochastic	character	of	libraries,	we	

would	expect	to	be	little	or	no	difference	between	the	bases	of	a	sequence	run.	

The	‘Per	Sequence	GC	Content’	quantifies	the	content	of	GC	bases	across	the	whole	length	of	each	

sequence	and	compares	it	to	a	modelled	normal	distribution.	

The	‘Per	Base	N	Content’	indicates	N	substitutions	to	conventional	base	call,	plotting	the	percentage	

of	N	base	calls	at	each	position.	

The	 ‘Sequence	 Length	 Distribution’	 identifies	 reads	 of	 varying	 lengths,	 rather	 than	 uniform,	 and	

shows	the	distribution	of	fragment	sizes	in	the	file	considered.	

The	 ‘Duplicate	Sequence	Levels’	section	counts	the	degree	of	duplication	for	every	sequence	 in	a	

library	and	creates	a	plot	showing	the	proportion	of	the	library	which	is	composed	of	duplicates.	In	

the	plot,	a	blue	line	represents	the	full	sequence	set,	whereas	the	red	line	represents	the	duplicated	

sequences.	 In	 general,	 the	 level	 of	 coverage	 of	 the	 target	 sequence	 is	 high	when	 a	 low	 level	 of	

duplication	occurred.	On	the	contrary,	high	level	of	duplication	indicates	enrichment	bias	(e.g.	PCR	

over	amplification).	In	a	properly	diverse	library	most	sequences	should	fall	 into	the	far	left	of	the	

plot	 in	both	the	red	and	blue	 lines.	More	specific	enrichments	of	subsets,	or	the	presence	of	 low	

complexity	contaminants,	will	tend	to	produce	spikes	towards	the	right	of	the	plot.	When	the	amount	

of	overrepresented	sequence	is	high	the	red	line	is	flattened,	as	a	symptom	of	over-sequencing.	
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In	the	‘Overrepresented	Sequences’	module	highly	repeated	base	sequences	(more	than	0.1%	of	the	

total)	are	listed.	Those	sequences	can	either	be	highly	biologically	significant,	or	a	symptom	of	library	

contamination.	

The	‘Adapter	Content’	is	tightly	linked	to	the	overrepresented	sequences	as	well	and	usually	includes	

the	presence	of	read-through	adapter	sequences	at	the	end	of	the	sequence.		

This	module	is	also	correlated	to	the	last	one,	the	‘Kmer	Content’,	showing	an	enrichment	in	k-mers	

(e.g.	substring	of	length	k)	in	any	exactly	duplicated	sequences.	This	can	happen	when	working	with	

very	long	sequences	with	poor	quality,	which	brings	to	random	sequencing	errors	causing	a	dramatic	

reduction	 in	 the	 counts	 of	 exactly	 duplicated	 sequences,	 or	when	 a	 partial	 sequence	 appears	 at	

different	places	within	your	sequence	and	won't	be	seen	either	by	the	‘Per	Base	Content’	plot	or	the	

‘Duplicate	Sequence	Levels’	modules.	

The	FastQC	reports	analysis	were	the	meter	of	evaluation	prior	to	the	next	step.	The	trimming	of	

adapters	and	poor	quality	reads	was	performed	using	Trimmomatic	v.0.36	(Bolger	2014).	

	

3.3.	 Results	

	

Three	skin	samples	differing	in	pigmentation	patterns	(presence	and	absence	of	spot,	dorsal	uniform	

matrix	and	un-pigmented	ventral	skin)	were	collected	from	92	specimens	belonging	to	eight	species:	

Raja	 asterias,	 R.	 clavata,	 R.	miraletus,	 R.	 ocellifera,	 R.	 straeleni,	 R.	 polystigma,	 R.	 brachyura	 and	

Leucoraja	melitensis.	Of	these,	only	R.	asterias,	R.	clavata,	R.	miraletus,	R.	ocellifera,	and	R.	straeleni	

were	 included	 in	 the	experimental	 design	 (Figure	6)	 after	 evaluating	both	biological/evolutionary	

questions	and	experimental	efforts.	

Although	the	encouraging	increase	in	the	quantity	of	RNA	extracted	owed	to	the	key-role	of	bead-

beating,	Santos’s	protocol	(2014)	provided	suboptimal	absorbance	ratios	(max	260/280=1.78;	max	

260/230=1.60)	and	unsatisfying	purity	curves,	independently	from	the	kind	of	tissue	(Table	S10).	

Only	after	the	optimisation	of	a	combined	protocol	coupling	Santos’	(2014)	with	the	Direct-zol™	kit,	

a	 total	 of	 132	 RNA	 samples,	 equally	 distributed	 among	 dorsal	 pigmented	 ornament	 (eyespot	 or	

pseudo-eyespot),	dorsal	pigmented	uniform	matrix	and	un-pigmented	ventral	skin,	were	successfully	

extracted	from	44	individuals	(see	Table	S10	in	Appendix).	A	total	of	75	differently	pigmented	samples	

considered	optimal	across	five	individuals	per	species	were	chosen	for	further	experimental	steps.	

After	the	successful	preparation	of	Illumina	libraries	and	their	sequencing,	75	FastQ	files	and	their	

FastQC	reports	were	obtained.	
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From	a	quantitative	point	of	view,	the	Illumina	sequencing	of	skin	tissues	was	satisfying,	since	the	

expected	output	(250M	read	per	lane)	was	abundantly	reached.	A	total	of	251,334,280	reads	were	

produced	in	lane	1,	324,868,379	in	lane	2	and	327,659,344	reads	were	generated	in	lane	3.	

Sequencing	was	also	highly	performing	 from	a	qualitative	point	of	 view	as	well.	According	 to	 the	

FastQC	reports,	no	flagged	sequences	were	 identified	as	poor	 in	quality	across	samples	and	main	

errors	or	warnings	concerned	the	‘per	base	sequence	content’,	the	‘adapter	content’	and	the	‘k-mer	

content’	analyses.	The	amount	of	overrepresented	sequence	(and	adapters	among	them)	seems	to	

be	the	common	denominator	at	the	basis	of	warnings	across	these	analysis	modules.	Indeed,	if	any	

evidence	of	overrepresented	sequences,	 including	 rRNA	or	adapter	dimers	 in	a	sample,	as	 in	 this	

case,	then	a	bias	could	weigh	on	the	overall	base	composition	and	be	the	cause	of	an	anomalous	k-

mer	 enrichment.	 After	 trimming	 and	 cleaning	 sequences	 from	 adapters,	 low	 quality	 reads	 and	

overrepresented	sequences,	between	0.28%	(sample	R14W)	and	54.41%	(sample	R55S)	of	the	reads	

per	sample	were	discarded	(see	Table	S12	in	Appendix	II	and	compare	Figures	S3	and	S4	where	the	

‘Per	base	sequence	quality’	plots	 for	R55S	before	and	after	trimming	are	reported).	The	surviving	

reads	recovered	per	each	tissue	were	considered	of	high	quality,	therefore	ideal	for	their	mapping	

against	the	reference	trancriptome	and	perform	the	DGE	analysis	(Chapter	5).	

	

3.4.	 Discussion	

	

Deep	RNA	sequencing	has	opened	a	new	horizon	for	understanding	gene	expression	in	all	kinds	of	

tissues	 belonging	 to	 model	 and	 non-model	 species.	 The	 study	 of	 elasmobranch	 skin	 is	 still	

underestimated	despite	its	multifunctional	relevance	for	the	individual	and	despite	the	unrevealed	

evolutionary	meaning	that	some	traits	could	carry	(i.e.	pigmentation,	dermal	denticle	development	

and	 so	on).	 Thus,	 applying	 the	 Illumina	 technology,	we	obtained	good	quality	 sequences	 from	of	

differently	pigmented	and	un-pigmented	skate	skin.	

Considering	the	results	obtained	so	far	within	this	work,	the	path	leading	to	high-quality	sequences	

should	be	discussed.	Alike	the	totality	of	NGS-based	research,	the	key	of	success	measured	in	high	

quality	reads	and	the	absence	of	contaminants,	is	mainly	represented	by	the	quality	of	input	sample.	

Here,	the	difficulty	in	obtaining	optimal	RNA	principally	lied	in	two	main	factors:	the	homogenation	

methodology	and	the	pigment	content.	The	first	condition	highly	depended	on	the	roughness	of	skin,	

enhanced	by	the	presence	of	dermal	denticles	and	the	high	abundance	of	collagen	fibres.	In	second	

instance	the	quality	of	dorsal	pigmented	tissues	was	slightly	lower	than	the	ventral,	non-pigmented	
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ones.	The	hypothesis	is	that	melanin	or	other	co-extracted	contaminants	may	have	prevented	the	

correct	estimation	of	RNA	purity,	and	therefore	quality,	interfering	with	both	ND	spectrophotometer	

and	BioAnalyzer	Instrument.	Previous	studies	focussing	on	the	efficiency	of	PCR	and	Real-Time	PCR	

in	presence	of	different	concentration	of	co-extracted	inhibitors	identified	collagen,	and	most	of	all	

melanin,	as	affecting	the	primer	elongation	(Alaeddini	2012)	and	reverse	transcription	(Eckhart	et	al.	

2000).	In	the	case	presented	here,	no	effects	were	observed	on	library	preparation,	rather	than	on	

the	extraction	step.	Furthermore,	melanin	has	been	deeply	 investigated	using	spectrophotometry	

(Kalleberg	et	al.	2015;	Treesirichod	et	al.	2014),	suggesting	that	some	other	contaminant	could	have	

affected	 quality	 and	 quantity	 measurements.	 Overall,	 the	 combined	 protocol	 designed	 for	 RNA	

isolation	have	revealed	to	be	effective	in	recovering	enough	good-quality	RNA,	as	demonstrated	by	

the	purity	and	quality	values	(i.e.	absorbance	ratios	and	RINs)	recorded	(Table	S10	in	Appendix).	

The	success	of	Illumina	sequencing	applied	on	skate	skin	was	demonstrated	by	both	FastQC	reports	

and	the	quantity	of	reads	obtained	per	lane	(more	than	250M).	For	what	concerned	the	high	amount	

of	overrepresented	sequences,	Trimming	was	determinant	and	in	few	cases,	severe	(e.g.	R55S,	tissue	

carrying	an	eyespot	in	Raja	clavata	has	been	trimmed	for	more	than	54%),	although	the	quality	of	

input	RNA	was	high	(i.e.	for	R55S	absorbance	rations	were	260/280=1.94,	260/230=2.11,	RIN	7.10	

and	 conc.	 169ng/ul).	 Their	 clipping	 contributed	 to	 avoid	 the	 inclusion	 of	 misleading	 and	 biased	

information	in	downstream	analysis		

Overall,	 the	 Illumina	sequencing	has	 revealed	 to	be	highly	performing	on	skate’s	 skin	 tissues	and	

sequences	were	favourably	used	for	DE	analysis.	
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Chapter	4.	Retrieving	a	reference	transcriptome	for	Raja	miraletus	by	Ion	Torrent	sequencing	

	

4.1.	 Introduction	

	

In	 recent	 times,	 the	 progressive	 expansion	 and	 availability	 of	 genomic	 resources	 seem	 to	 have	

reached	 epic	 proportions,	 although	 this	 did	 not	 always	 coincide	 with	 a	 significant	 decrease	 in	

sequencing	costs	or,	most	of	all,	 in	 time	consumed	 for	computational	data	analysis	 (e.g.	genome	

annotation).	 The	 early	 and	 less	 onerous	 microarray	 technology,	 for	 instance,	 is	 based	 on	 the	

heterologous	hybridisation	of	 specific	probes	and	 transcript	 sequences	between	different	 species	

(Beneš	 &	 Muckenthaler	 2003)	 and	 have	 been	 alternatively	 used	 in	 measuring	 gene	 expression.	

Despite	 its	 adaptability	 to	 a	 wide	 range	 of	 molecules	 (e.g.	 DNA,	 RNA,	 protein,	 lipids	 and	

carbohydrates),	limitations	of	microarrays	are	represented	by	the	divergence	between	the	sequences	

used	 (Machado	et	al.	2009),	 the	small	number	of	detected	genes	and	data	 interpretation	 (Bier	&	

Kleinjung	2001).	

With	 the	 increasing	 popularity	 of	 RNA-sequencing	 as	 an	 effective	 tool	 for	 exploring	 alternative	

splicing,	 alternative	 Transcription	 Start	 Site	 Selection	 (TSS),	 comparative	 transcriptomics	 and	

alternative	polyadenylation,	both	model	and	non-model	species	started	to	be	deeply	analysed	with	

equivalent	data	processing	effort	(Wang	et	al.	2009a).	The	turning	point	of	RNA-seq	is	its	power	of	

providing	 genome-wide	 deep	 sequencing	 of	 RNA	 transcripts	 within	 a	 sample	 to	 single	 base	

resolution,	even	with	low	amounts	of	input	RNA,	and	identifying	gene	sequences	and	polymorphisms	

without	 needing	 a	 priori	 information.	 Using	 RNA-seq,	 dynamic	 gene	 expression	 profiles	 can	 be	

described,	small	portion	of	genome	activity	analysed	and	transcriptome	composition	and	complexity	

can	be	untangled	(Wang	et	al.	2009).	

At	 the	 same	 time,	 the	 analysis	 of	 RNA-seq	 data	 for	 non-sequenced	 species	 has	 been	 gradually	

improved	 using	 alternative,	 although	 effective,	 approaches	 that	 enable	 the	 reconstruction	 of	 a	

reference	transcriptome	by	assembling	raw	transcripts	which	are	annotated	by	homology	searching	

among	the	available	genomic	options.	Reference	transcriptomes	can	be	assembled	using	a	genome	

or	a	 transcriptome	 from	a	closely-related	species	 (no	more	 than	100Mya	according	 to	Hornett	&	

Wheat	 2012)	 as	 a	 guide	 (‘genome-guided’),	 or	 performing	 a	 reference	 sequence-independent	

assembly	 (‘de	novo’;	Garber	et	 al.	 2011).	 In	both	 cases,	 the	amount	of	homology	 found	 in	 those	

transcripts	has	been	demonstrated	to	be	inversely	proportional	to	the	divergence	among	sequences	

(Colgan	et	al.	2011;	Kawahara-Miki	et	al.	2011).	
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Previous	 studies	 have	 demonstrated	 that	 the	 quality	 of	 an	 assembly	 can	 be	 highly	 variable,	

independently	 from	 the	 platform	 chosen	 for	 RNA-sequencing	 (Lu	 et	 al.	 2013;	 Vijay	 et	 al.	 2013;	

Hornett	&	Wheat	2012)	and	that	direct	mapping-based	methods	can	be	highly	effective	in	identifying	

genes	involved	in	a	trait	of	interest	in	non-model	species.	

The	 assembly	 of	 a	 transcriptome	 can	 be	 definitively	 useful	 to	 discover	 novel	 transcripts	 and	

previously	unknown	genes	or	 explore	 gene	expression	 level,	 but	 all	 these	opportunities	naturally	

come	along	with	some	issues.	Thus,	given	the	importance	of	comparative	analyses	in	exploring	the	

molecular	basis	and	evolution	of	biological	traits,	maximising	gene	detection	rates	and	minimising	

false	 positives	 before	 analysing	 and	 interpreting	 expression	 profiles	 is	 recommended,	 or	 better,	

mandatory.	

Among	 the	 main	 issues,	 the	 non-uniformity	 of	 sequence	 coverage	 should	 be	 considered.	 Lowly	

expressed	genes	may	be	partially	covered	by	a	few	reads	and	be	hardly	represented	in	full	length,	

leading	to	a	high	number	of	gaps.	In	second	instance,	the	handling	of	alternative	spliced	isoforms	is	

complex,	since	one	gene	may	have	several	 isoforms	and,	 in	general,	short	reads	do	not	allow	the	

exact	 assignment	 of	 isoforms	 to	 their	 origin.	 Furthermore,	 alternative	 splice	 variants	 often	 share	

exons	and	distinct	transcripts	can	be	difficult	to	resolve	(Pyrkosz	et	al.	2013).	Thirdly,	homologous	

and	repeated	sequences	can	be	a	source	of	ambiguity	in	the	assembly	and	lastly,	the	discrimination	

of	exons	and	introns	originated	from	incompletely	spliced	RNA	precursors	is	hard	to	accomplish.	The	

comparison	 between	 the	 currently	 available	 assemblers	 carried	 out	 on	 both	 simulated	 and	 real	

sequencing	data	(Lu	et	al.	2013),	revealed	that	the	most	flexible	and	efficient	tool	in	overcoming	most	

of	 these	 issues,	discovering	more	 loci	 and	 identifying	 full-length	 transcripts	 is	 Trinity	 (Haas	et	 al.,	

2013;	Grabherr	et	al.	2011).	

Trinity	was	specifically	created	for	transcriptome	reconstruction	starting	from	short	reads	and	it	is	

composed	 of	 three	 main	 modules:	 Inchworm,	 Chrysalis	 and	 Butterfly.	 The	 Inchworm	 module	

assembles	reads	in	full-length	contigs	(i.e.	contiguous	sequences)	for	one	major	isoform	and	reports	

only	 unique	 portions	 of	 minor	 spliced	 variants.	 Chrysalis	 create	 clusters	 of	 Inchworm	 contigs	

according	 to	 a	defined	and	 sufficient	 k-mer	overlap	and	builds	de	Bruijn	 graphs	 for	 each	 cluster,	

where	reads	are	modelled	as	overlapping	sub-sequences	(k-mers)	and	graph	nodes	can	be	traversed	

to	generate	transcripts.	Butterfly	simplifies	the	graphs,	treating	each	of	them	separately,	then	groups	

them	with	original	reads,	counting	full-length	alternatively	splice	isoforms	and	separates	transcripts	

from	paralogous	genes.	The	final	assembly	that	will	be	used	for	further	analysis	is	in	.’fasta’	format.	
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Here,	Trinity	tool	v.2.3.2.	was	employed	to	assemble	a	reference	transcriptome	for	the	brown	skate,	

R.	miraletus	L.,	representing	one	the	target	species	of	the	initial	experimental	phase	and	one	of	the	

most	striking	cases	of	cryptic	evolution	among	Rajidae.	Taking	advantage	of	the	available	genome	of	

the	little	skate	(Leucoraja	erinacea)	a	genome-guided	assembly	was	performed	to	likely	strengthen	

the	power	of	mapping	and	the	resolution	of	DE	analysis.	

	

4.2.	 Materials	and	methods	

	

4.2.1.	Sampling	

	

Tissues	used	in	this	phase	were	collected	from	the	Adriatic	Sea	during	the	SoleMon	scientific	research	

program	carried	out	during	November	2015.	No	specific	approval	of	this	vertebrate	work	is	required	

since	the	individuals	sampled	in	this	study	were	obtained	for	scientific	purposes.	

After	the	preparation	and	cleaning	of	the	materials	needed	(2	ml	Nuclease-free	tubes	with	cap	and	

O-ring	 labelled	with	Sample	 ID	and	 filled	with	1.2	ml	of	RNAlater®,	 scissors,	 tweezers	and	scalpel	

blades)	and	the	sterilization	of	the	working	bench,	specimens	were	delicately	washed	and	quickly	

scrubbed	with	clean	paper	towel	to	get	rid	of	eventual	organic	and	inorganic	residuals.	Then,	they	

were	accommodated	on	an	aluminium	layer	sprayed	with	RNAse	Zap®	and	placed	on	ice.	Principle	

biometric	measures	were	taken	(total	length	and	weight)	and	sex	was	determined.	The	main	organs	

(skin	from	different	body	portions,	heart,	liver,	brain,	gonad,	muscle,	eye,	dorsal	fin,	jaw	bone	and	

gill)	were	isolated,	collected	in	replicate	and	transferred	to	the	corresponding	tube.	Tubes	were	first	

stored	at	4°C	overnight,	then	at	−20°C	until	further	processing	to	maximize	RNA	fixation.	Samples	

were	transported	in	dry	ice	during	their	transfer	to	the	laboratory.	

Based	on	the	number	of	specimens	collected	during	the	sampling	phase,	an	experimental	design	was	

ideated	to	perform	the	Ion	Torrent	sequencing	of	all	tissues	and	organs,	with	the	aim	of	building	a	

reference	transcriptome	for	one	of	the	species	of	interest.	

	

4.2.2.	RNA	isolation	

	

RNA	isolation	was	performed	using	the	combined	protocol	developed	for	the	Illumina	sequencing.	

RNA	concentration	was	verified	on	NanoDrop	ND-1000	spectrophotometer,	whereas	its	integrity	was	

checked	on	a	Bioanalyzer	2100	with	the	Agilent	RNA	6000	Nano	Kit.	
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4.2.3.	Ion	Torrent	library	preparation	and	sequencing	

	

After	the	dilution	to	an	equimolar	concentration	of	2000ng/50 μl,	samples	were	poly-A	enriched	with	

the	Dynabeads	mRNA	DIRECT	Micro	Purification	kit	(ThermoFisher	Scientific).	The	amount	of	selected	

mRNA	was	checked	on	a	Bioanalyzer	2100	with	the	Agilent	RNA	6000	Pico	Kit.		

Genomic	 libraries	 for	 strand	 specific	 reads	 were	 prepared	 with	 the	 Ion	 Total	 RNA-Seq	 Kit	 v2	

(ThermoFisher	Scientific).	The	choice	of	the	kit	was	driven	by	the	read	length	promisingly	produced	

after	sequencing	(400bp)	that	should	 improve	the	quality	of	the	assembled	reference	and	reduce	

errors	related	to	the	mapping	step	(Pyrkosz	et	al.	2013).	This	issue	will	be	discussed	in	chapter	5.	

Library	preparation	started	with	an	optimized	enzymatic	fragmentation	step	performed	at	37°C	for	5	

sec.	Incubations	were	carried	out	in	a	Veriti®384-Well	Thermal	Cycler	(Applied	Biosystems).	Samples	

were	vacuum-concentrated	at	30°C	for	about	9	min	in	a	Concentrator	Plus	instrument	(Eppendorf).	

Hybridisation	between	 fragmented	mRNA	and	adapters	was	performed	 incubating	 the	cocktail	at	

65°C	for	10	min,	then	at	30°C	for	5	min.	The	following	ligation	step	was	performed	at	30°C	for	2	hours	

with	the	lid	temperature	turned	off.	Retro-transcription	was	carried	out	at	70°C	for	10	min	and	after	

adding	a	10X	Superscript	III	enzyme	an	incubation	at	42°C	for	30	min	followed.	After	a	further	cDNA	

purification	step,	two	Ion	Xpress	RNA	3’	barcodes	were	added	to	male’s	samples,	while	a	different	

barcode	was	assigned	to	the	female’s	ovary.	

The	 successive	 cDNA	 amplification	 was	 run	 as	 indicated	 by	 the	 manufacturer	 instructions	

(https://tools.thermofisher.com/content/sfs/manuals/MAN0010655_IonTotalRNASeqKit_v2_Whole

Transcriptom_Libr_QR.pdf).	 Barcoded	 libraries	 were	 first	 purified	 and	 then	 quantified	 on	 a	

Bioanalyzer	 2100	 with	 the	 Agilent	 High	 Sensitivity	 DNA	 Kit.	 After	 dilution	 at	 an	 equimolar	

concentration,	libraries	were	pooled	and	used	for	the	Template	preparation.	

This	 intermediate	 step	 was	 carried	 out	 using	 the	 Ion	 PGM	 Template	 OT2	 400	 kit	

(https://tools.thermofisher.com/content/sfs/manuals/MAN0007219_Ion_PGM_Template_OT2_40

0_Kit_QR.pdf).		

Template	was	then	sequenced	on	the	Ion	Torrent	Ion	PGM™	Sequencer	using	the	Ion	PGM	HI-Q	View	

Sequencing	kit.	The	chip	used	for	sample	loading	was	an	Ion	318	Chip	Kit	v2	(ThermoFisher	Scientific).	

A	 total	 of	 three	 runs	were	 performed	 at	 different	 library	 concentrations	 ([125pM],	 [200pM]	 and	

[100pM]).	Reads	were	automatically	partitioned	by	the	Ion	Torrent	software	(Torrent	suite	v.4.4)	into	

BAM	and	FASTQ	files	based	on	tags	(reads	without	tags	were	discarded).	The	output	BAM	and	FastQ	
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files	were	downloaded	from	the	Ion	Torrent	server	and	the	raw	reads	contained	in	the	FastQ	files	

were	used	as	input	for	FastQC	tool	for	quality	check.	

Clipping	of	adapters	and	low	quality	reads	were	performed	using	Trimmomatic	v.0.36	(Bolger	2014).	

	

4.2.4.	The	assembly	

	

The	genome	belonging	to	the	little	skate	(Leucoraja	erinacea)	and	available	at	http://skatebase.org,	

resulted	 a	 useful	 resource	while	 assembling	 a	 reference	 transcriptome	 for	 the	 brown	 skate.	 The	

assembly	was	performed	using	the	‘genome	guided’	function	included	in	Trinity	tool	(Grabherr	et	al.	

2011)	as	follows.	

The	 little	skate’	genome	was	 first	 indexed	using	 the	bowtie2-build	command	 included	 in	Bowtie2	

v.2.2.9.	(Langmead	&	Salzberg	2012).	Male’s	clipped	reads	were	first	aligned	to	L.	erinacea	genome	

using	STAR	v.2.5.	(Dobin	et	al.	2012)	without	GFF3	or	GTF	annotations	or	annotated	junctions	and	

allowing	one	multiple	alignment	per	read.	The	final	alignment	resulting	in	a	‘.bam’	file	was	then	used	

in	 Trinity,	 as	 a	 frame,	 for	 grouping	 the	 overlapping	 reads	 into	 clusters.	 Differently	 from	 other	

approaches	(e.g.	Cufflinks),	transcripts	were	build	according	to	the	actual	read	sequences	rather	than	

the	 exact	matching	with	 genome	 sequences.	 This	 resulted	 particularly	 helpful,	 since	R.	miraletus	

divergence	from	genus	Leucoraja	has	been	estimated	at	approximately	35Mya	(according	to	mDNA;	

Tinti	et	al.	in	prep).	

The	assembly	was	then	performed	with	default	k-mer=25	and	maximum	intron	length	of	10kb.	The	

quality	of	the	assembly	was	evaluated	blasting	it	to	the	UniProt	knowledgebase	(Universal	Protein	

Resource	http://www.uniprot.org).	To	this	end	the	BLASTx	software	was	used	(Altschul	et	al.	1990)	

and	the	--evalue	option	was	set	as	stringent	(E:	1e-20).	

To	estimate	the	transcript	abundance,	the	alignment-based	RSEM	tool	v.1.2.31.	was	applied	to	each	

sample	individually	(RNA-Seq	by	Expectation	Maximization;	Li	&	Dewey	2011).	This	method	performs	

transcript-level	estimates	of	the	count	of	RNA-Seq	fragments	that	were	derived	from	each	transcript,	

considering	the	transcript	length,	the	total	number	of	reads	mapping	to	any	transcripts	and	reporting	

the	 normalized	 expression	 metrics	 as	 'fragments	 per	 kb	 transcript	 length	 per	 million	 fragments	

mapped'	(FPKM)	or	'transcripts	per	million	transcripts'	(TPM).	Low	expressed	genes	and	transcripts	

were	 filtered	 out	 using	 the	 filter_low_expr_transcripts.pl	 setting	 the	 minimum	

expression	 level	 required	across	any	 sample	at	1	and	 the	minimum	percent	of	dominant	 isoform	

expression	at	1.	
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Before	moving	towards	results,	it	should	be	specified	that	from	this	point	of	the	dissertation,	results	

will	 be	described	 and	discussed	using	 the	 ‘gene’	 and	 ‘transcript’	 terminology.	With	 ‘gene’	 Trinity	

identifies	 the	most	dominant	 resolved	pathway	of	 a	 given	de-Bruijn	 graph	produced	by	Chrysalis	

module.	 Therefore,	 its	 acceptation	 is	 quite	 far	 from	 the	molecular	 definition	 of	 hereditary	 unit.	

Differently,	with	the	‘transcript’	term	all	the	isoforms	for	that	‘gene’	were	defined.	

	

4.2.5.	Functional	annotation	of	transcripts	

	

A	first	attempt	of	functional	annotation	of	transcripts	was	carried	out	using	the	Trinotate	protocol	

available	 at	 http://trinotate.github.io.	 After	 the	 initialization	 of	 the	 ‘Trinotate.sqlite’	 database,	

consisting	with	the	loading	of	the	brown	skate	reference	transcriptome	in	‘.fasta’	format,	the	loading	

of	gene/transcript	relationship	and	the	loading	Trasndecoder-predicted	candidate	coding	regions	and	

ORFs	 (http://transdecoder.github.io).	 The	 ‘population’	 of	 the	 Trinotate.sqlite	 inventory	 was	 then	

performed	 loading	protein	 information	derived	 from	a	 less	 stringent	BLASTx	 search	on	 Swissprot	

database	 (--evalue=1e-5)	 and	 protein	 domains	 identified	 by	 HMMER	 tool	 v.3.1.	

(http://hmmer.org)	across	the	PFAM	protein	families	(http://pfam.xfam.org).	

Then,	 the	 annotation	 report	 of	 genes	 and	 functions	 likely	matching	 to	 the	 brand-new	 gene	 and	

isoform	 sequences	 was	 produced	 and	 used	 as	 an	 input	 for	 the	 implementation	 of	 Go-seq	 v3.4.	

Bioconductor	 package	 (http://www.bioconductor.org/packages/release/bioc/html/goseq.html)	 for	

the	Gene	Ontology	(GO)	assignment	and	mapping	as	implemented	by	Trinity	tool.	

	

4.3.	 Results	

	

Two	mature	individuals,	one	male	and	one	female,	of	brown	skate	were	sampled	during	the	scientific	

survey	and	used	for	the	experimental	phase	(see	Table	S13	in	Appendix	III	for	sampling	details).	

A	 total	 of	 24	 RNA	 extractions	 were	 performed	 (Table	 S14).	 Those	 belonging	 to	 the	 male	 were	

considered	the	best	ones	in	term	of	quantity	and	quality.	Of	these,	eleven	were	chosen	for	Ion	Torrent	

library	 preparation.	 The	 RNA	 extracted	 from	 the	 female’s	 ovary	 was	 also	 included	 in	 the	 library	

preparation	and	individually	indexed	(sample	29T).	

Library	preparation	and	sequencing	involved	a	total	of	twelve	organs	and	tissues.	After	the	template	

preparation	 and	 sequencing,	 Ion	 Torrent	 run	 reports	 were	 produced.	 The	 run	 performed	 with	

template	 with	 concentration	 125pM	 showed	 68%	 of	 enriched	 Ion	 Sphere	 Particles	 (hence	 ISP)	
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Loading	and	produced	4,011,859	raw	reads.	The	enrichment	(the	positive	cohesion	between	ISP	and	

template)	was	100%	and	polyclonal	value	(the	percentage	of	beads	estimated	to	have	more	than	one	

template	 for	 ISP)	was	median	 low	 (36%),	 as	well	 as	 the	 low-quality	 reads	and	 the	adapter	dimer	

percentage	 (6.4%	 and	 4.7%,	 respectively).	 Both	 fragment	 tests	were	 high	 (TF_C	 and	 TF_1>90%),	

indicating	a	technically	well	performing	run.	

The	run	performed	with	template	[200pM]	showed	67%	of	ISP	Density	and	produced	3,765,129	raw	

reads.	The	enrichment	was	100%	and	polyclonal	percentage	was	slightly	higher	(41%).	Low-quality	

reads	and	the	adapter	dimer	percentage	were	5%	and	4.2%,	respectively).	Both	fragment	tests	were	

high	(97%	TF_C	and	TF_1	93%	respectively),	indicating	a	satisfying	run.	

The	last	run	with	template	[100pM]	showed	64%	of	ISP	Density	and	produced	3,071,821	raw	reads.	

The	enrichment	was	100%	as	well	and	polyclonal	value	was	high	(43%).	The	amount	of	low	quality	

reads	was	higher	(9.8%)	and	the	adapter	dimer	percentage	low	4.2%.	Both	fragment	tests	were	high	

(97%	 TF_C	 and	 TF_1	 91%	 respectively),	 indicating	 well	 performing	 runs.	 Overall,	 Ion	 Torrent	

sequencing	 can	 be	 considered	 sub-optimal	 in	 terms	 of	 ISP	 density	 and	 number	 of	 usable	 reads,	

ranging	from	53%	to	43%.	

Overall,	the	desired	read	length	of	400bp	was	reached,	but	the	median	read	length	obtained	was	

much	shorter.	The	maximum	read	count	was	observed	between	100bp	and	200bp.	Also,	the	mean	

read	length	produced	for	the	ovary	tissue	was	shorter	than	the	pooled	male’s	tissues	and	the	number	

of	total	bases	synthetized	was	much	lower	(refer	to	Ion	Torrent	run	reports	in	Appendix	III).	

After	raw	reads	quality	check,	FastQC	tool	did	not	reveal	any	adapter	contamination.	The	amount	of	

overrepresented	sequences	was	low,	but	many	low-quality	bases	affected	the	terminal	part	of	the	

read.	As	a	result,	sequence	quality	slightly	decreased	as	moving	from	the	5’	towards	the	3’	position.	

After	the	removal	of	about	15%	of	low	quality	reads,	the	ovary	sample	resulted	too	poor	for	further	

analyses.	 A	 total	 of	 165,919	 sequences	 were	 recovered	 from	 the	 first	 run	 [125pM],	 145,324	

sequences	were	recovered	from	the	second	[200pM]	and	128,821	sequences	were	retained	from	

the	third	one	[100pm].	On	the	contrary,	the	pooled	male’s	sequences	produced	at	each	run	were	

considered	satisfying	in	relation	to	the	number	of	reads	retained	after	trimming	(approximately	2%),	

the	low	number	of	overrepresented	sequences	and	the	mitigation	of	the	slight	decreasing	trend	in	

sequence	quality	 after	 trimming.	 For	 these	 reasons,	 suitable	 in	both	quantity	 and	quality	 for	 the	

reference	transcriptome	reconstruction,	thus	employed	for	the	assembly.	

The	 assembly	 produced	 118,429	 putative	 transcripts	 and	 116,136	 putative	 ‘genes’	 with	 median	

contig	length	of	longest	isoform	per	gene	counting	379	nucleotides.	The	first	line	of	the	reference	
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transcriptome	 is	 reported	 here	 as	 an	 example	 of	 a	 Trinity	 output.	 The	 accession	 ID	

‘TRINITY_GG_1_c0_g1_i1’	 indicates	 the	 method	 chosen	 to	 perform	 the	 assembly	 (GG,	 genome-

guided),	the	read	cluster	‘_c0’,	the	gene	‘_g1’	and	the	relative	isoform	‘_i1’.	Furthermore,	the	length	

of	the	transcript	in	bases	and	the	path	employed	for	resolving	the	de	Brujin	graph	are	reported.	The	

nucleotide	sequence	follows.	Trinity	generates	thousands	of	these	clusters	differing	in	‘_g’	or	‘_i’.	

	

>TRINITY_GG_1_c0_g1_i1	len=252	path=[1:0-251]	[-1,	1,	-2]	

GAGGATAACTACACCTGTAACGCTGGCAACACGGCAGCTTCACCTCCATGACATTCACCCACACACCGGTGT

CCAAACACAGCGCGAGAGTGAGTGAGTGAGTGAGGCTCACACGTTAACGTGGACTTGCCCAGGGCAGCAG

CTGCTGGAGACTCACAACTTCCACACGACTCCAGCCGCCAACCAGCTTCCTCCACAGCATCCTGTCTGTGTCT

GATCCCACCTCTGTATCTC	

	

A	 total	 of	 300	 proteins	matched	 a	 transcript	 by	 >80%	 and	 <=	 90%	 of	 their	 protein	 lengths,	 728	

proteins	 were	 represented	 by	 nearly	 full-length	 transcripts	 (>80%	 alignment	 coverage)	 and	 428	

proteins	were	covered	by	more	than	90%	of	their	protein	lengths,	as	inferred	from	BLASTx	quality	

assessment.	The	length	of	the	N50	contiguity	index,	usually	employed	as	an	indicator	of	transcript	

fragmentation,	was	460	meaning	that	at	least	half	of	the	assembled	bases	are	in	contigs	of	at	least	

460	nucleotides	in	length.	

After	the	creation	of	a	gene-list	based	on	the	known	features	involved	in	pigmentation	at	any	level	

(from	 the	 pigment	 synthesis,	 the	melanosome	 construction	 to	 systemic	 effects)	 the	 presence	 of	

candidate	genes	was	assessed	performing	a	raw	count	of	BLASTx	and	PFAM	matchings.	This	approach	

highlighted	the	presence	 in	the	assembly	of	150	transcripts	ascribable	to	51	different	pigmentary	

proteins	and	genes	(Figure	7;	Table	S15	in	Appendix	III).	Among	the	most	represented	gene-complex	

the	XDH	(Xanthine	dehydrogenase/oxidase)	and	the	transmembrane	receptor	EDNRB	were	found.	

The	former	is	an	enzyme	involved	in	yellow	pteridine	pigment	synthesis,	while	the	latter	is	involved	

in	the	melanocyte	differentiation	and	many	other	molecular	and	biological	 functions	(i.e.	nervous	

system	development,	positive	regulation	of	cellular	proliferation,	neural	crest	cell	migration).	

The	Mediator	of	RNA	polymerase	Transcription	(MED12)	gene	was	also	observed,	and	it	is	known	for	

its	role	in	the	regulated	transcription	of	all	RNA	polymerase	II-dependent	genes.	In	Danio	rerio	for	

instance,	MED12	is	required	for	the	development	of	the	body	axis,	brain,	ear,	kidney,	forelimb,	neural	

crest	and	for	pigmentation.	Among	its	multiple	functions,	it	appears	the	responsible	of	iridophores	
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differentiation.	 It	also	acts	as	a	coactivator	 for	SOX9A	and/or	SOX9B	promoting	the	expression	of	

several	neuronal	determination	genes,	also	reported	by	BLASTx	results.	

Two	more	 genes,	 tightly	 related	 to	 each	 other,	 were	 identified	 as	 contributors	 to	 pigmentation	

regulation:	 TYRP1	 and	 TYRP2.	 The	 tyrosinase-related	 protein	 1	 catalyses	 the	 oxidation	 of	 5,6-

dihydroxyindole-2-carboxylic	acid	(DHICA)	into	indole-5,6-quinone-2-carboxylic	acid.	It	also	regulates	

or,	at	least	seems	to	influence,	the	type	of	melanin	synthesized.	Also	to	a	lower	extent,	it	is	capable	

of	 hydroxylating	 tyrosine	 and	 producing	 melanin.	 According	 to	 the	 GO	 database,	 its	 biological	

meaning	 is	 related	 to	 both	 melanocyte	 differentiation	 and	 melanosome	 organization.	 Similarly,	

TYRP2	tautomerase,	enhance	the	conversion	of	L-dopachrome	into	DHICA	and	it	is	involved	in	the	

regulation	 of	 both	 eumelanin	 and	 phaeomelanin	 levels.	 Also,	 it	 plays	 a	 positive	 regulation	 of	

neuroblast	proliferation	and	division.	

The	Melanocyte	protein	(PMEL)	plays	a	central	role	in	the	biogenesis	of	melanosomes	in	H.	sapiens.	

As	a	matter	of	fact,	it	is	involved	in	the	maturation	of	melanosomes	from	stage	I	to	II.	It	can	also	be	

involved	in	immunity	response	and	its	homologues	have	been	found	from	other	mammals,	to	birds	

(i.e.	chicken)	and	reptiles.	

The	 Microphthalmia-associated	 transcription	 factor	 (MITF),	 besides	 being	 a	 promoter	 of	 cell	

differentiation	 and	 survival,	 it	 is	 a	 regulator	 of	 TYRP1,	 thus	 it	 is	 fundamental	 for	 pigmentation,	

differentiation	of	 neural	 crest-derived	melanocytes,	mast	 cells,	 osteoclasts	 and	optic	 cup-derived	

retinal	pigment	epithelium.	

Lastly,	 the	Mast/stem	 cell	 growth	 factor	 receptor	 Kit	 (or	 simply	 KIT)	 is	 certainly	 one	of	 the	most	

powerful	feature	influencing	biological	and	molecular	functions	in	human	as	in	amphibians.	Although	

this	power	it	was	scarcely	represented	within	the	assembly.	
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Figure	7	 Putative	 pigmentary	 genes	 populating	 the	 assembly	 according	 to	BLASTx	 best	matchings	 against	UniProt	 and	PFAM	
knowledgebase.	Refer	to	Tab	S15	in	Appendix	III	for	gene	acronyms	and	functions.	
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For	what	concerns	the	RSEM	evaluation	of	transcripts	quality,	the	number	of	expressed	genes	by	at	

least	one	TPM	 in	any	of	 the	considered	samples	amounted	 to	about	18k	 (Figure	8).	This	number	

describes	the	number	of	genes	that	are	best	supported	by	the	expression	data.	After	filtering,	90.79%	

of	 total	 transcripts	 (117,349/129,254)	was	used	 for	 the	mapping	of	 Illumina	 reads	obtained	 from	

differently	pigmented	skin	tissues.	

	

	

	

 
 	

Figure	 8	 Graphic	 representation	 of	 the	 number	 of	 expressed	 ‘genes’	 recovered	 with	 the	
transcriptome	assembly	as	a	 function	of	minimum	TPM	threshold.	A	linear	regression	 in	red	
indicates	the	approximate	number	of	expressed	features	
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4.4.	 Discussion	

	

The	Ion	Torrent	platform	is	known	for	its	effectiveness	in	generating	longer	reads	than	Illumina	(up	

to	500bp	with	 the	 IA	500	Kit,	 Thermofisher	 Scientific)	 in	 relatively	 short	 time,	 even	 if	with	 lower	

output	per	run	in	terms	of	raw	reads	produced	(Liu	et	al.	2012).	Therefore,	the	expected	read	length	

was	determining	 in	 the	choice	of	 the	platform.	 In	general,	 the	 longer	 reads	are	generated	within	

sequencing,	the	less	fragmented	and	incomplete	should	be	the	resulting	assembly	(Vijai	et	al.	2013).	

The	unbalanced	read	output	produced	by	the	mentioned	techniques	was	also	observed	within	this	

work,	where	the	 Illumina	experimental	data	exceed	the	250	Million	reads	per	 lane,	while	 the	 Ion	

Torrent	sequencing	produced	about	4	Million	reads	per	run.	

The	experiment	described	here	resulted	extremely	laborious	in	terms	of	protocol	optimisation	for	

Library	and	Template	preparations.	Considering	the	low	IPS	loading	success,	likely	depending	on	the	

Template	preparation	(i.e.	emulsion	PCR)	and	the	read	length	reached,	Total	RNA-seq	was	slightly	

underperforming.	

Nevertheless,	the	quality	check	of	raw	reads	assessed	with	FastQC	revealed	a	sufficient	quality	of	

sequences	 in	 the	 pooled	male’s	 samples	which	were	 thus	 used	 for	 the	 assembly	 of	 a	 reference	

transcriptome	for	Raja	miraletus.	

In	general,	the	assembly	showed	a	high	number	of	putative	genes	and	transcripts,	but	a	short	median	

contig	length	(379	nucleotides).	This	condition	could	depend	on	two	main	factors.	One	is	related	to	

the	sequencing	quality,	in	terms	of	both	raw	reads	and	sequencing	depth.	A	high	coverage	is	always	

desirable	to	better	capture	reads	representing	the	moderately	to	lowly	expressed	transcripts.	When	

the	latter	are	abundant,	further	sequencing	would	likely	help	the	building	of	complex	transcriptomes.	

For	this	reason,	the	assembly	was	performed	with	the	awareness	that	the	coverage	reached	within	

the	Ion	Torrent	sequencing	was	suboptimal.	

The	second	factor	could	be	related	to	the	construction	of	contigs	itself.	This	condition	highly	depends	

on	the	assembler	employed.	Trinity	tool	was	chosen	for	its	effectiveness	in	assembling	short	reads	

compared	 to	 other	 assemblers	 (Celaj	 et	 al.	 2014;	 Clarke	 et	 al.	 2013;	 Grabherr	 et	 al.	 2011).	

Furthermore,	this	tool	has	demonstrated	its	power	in	previous	studies	where	Ion	Torrent	sequence	

data	were	employed	(Amin	et	al.	2014).	The	amount	of	the	N50	contiguity	index	obtained	here	was	

consistent	with	the	median	contig	length.	Different	results	were	obtained	by	Amin	et	al.	(2014),	who	

assembled	the	transcriptome	of	the	gastropod	Nerita	melanotragus	(E.	A.	Smith,	1884)	recovering	

N50=258	and	293	nucleotides	of	contig	length	from	1,000,000	Ion	Torrent	reads	(133bp	of	average	
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length).	 However,	 N50	measures	 are	widely	 considered	misleading	 for	 transcriptome	 assemblies	

since	transcript	length	can	be	highly	heterogeneous	and	the	transcriptome	highly	complex	(Vijai	et	

al.	2013).	

Results	 obtained	 blasting	 the	 brand-new	 reference	 transcriptome	 of	 the	 brown	 skate	 were	

encouraging,	since	more	than	50%	of	the	transcripts	was	assigned	to	a	putative	function.	In	addition,	

150	 transcripts	 were	 matching	 with	 51	 genes	 related	 to	 pigmentary	 regulation,	 melanocyte	

development	and	differentiation	 in	different	model	organisms,	although	with	a	certain	amount	of	

redundancy.	This	could	be	related	to	the	high	number	of	genes	generated	within	the	assembly,	paired	

with	the	genome	size	of	the	analysed	species	and	its	complexity.	For	R.	miraletus	the	genome	size	

has	been	estimated	with	C-value=	3.80	pg	(Stingo	et	al.	1989),	corresponding	to	about	3716	Mb.	

The	UniProt	knowledgebase	was	chosen	for	the	preliminary	investigation	of	the	putative	pigmentary	

genes	populating	the	assembly	since	it	represents	one	of	the	most	comprehensive,	verified	and	up-

to	date	sequence	database	containing	information	about	genes	and	their	functions	across	the	whole	

living	model	 and	non-model	organisms.	Considered	 the	 scarce	or	 fragmented	genomic	 resources	

available	for	chondrichthyans,	this	approach	was	specifically	chosen	to	obtain	an	overview	on	the	

whole	characterization	of	the	assembly.	Performing	a	BLASTx	analysis	on	more	closely-related	and	

almost	 entirely	 annotate	 model	 species	 (e.g.	Danio	 rerio)	 or	 species	 showing	 high	 rate	 of	 gene	

homology	and	similar	skin	structures	(e.g.	Xenopus	tropicalis	or	Salmo	salar)	could	likely	improve	the	

percentage	of	identity,	alignment	and	E-values	between	the	newly	obtained	transcripts	and	putative	

pigmentary	 genes	 already	 known	 for	 their	 involvement	 in	 phenotypic	 traits	 as	 eyes-spots,	 egg-

dummies	and	blotches	(e.g.	Astatotilapia	burtoni	or	Haplochromis	elegans	Treewavas,	1933).	Lastly,	

the	 use	 of	 the	Non-Redundant	NCBI	 database	 (i.e.	 REFseq	https://www.ncbi.nlm.nih.gov/refseq/)	

could	also	improve	the	functional	annotation	of	unassigned	transcripts.	
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Chapter	5.	Differentially	expressed	genes	in	skate	skin	

	

5.1.	 Introduction	

	

With	the	term	of	gene	expression	is	defined	the	process	by	which	the	nucleotide	sequence	of	a	gene	

encodes	 for	 a	 product.	 Identifying	 the	 different	 patterns	 of	 gene	 expression	 according	 to	 the	

experimental	condition	or	phenotype	is	one	of	the	increasing	interests	among	evolutionary	biologists.	

These	aims	could	be	also	considered	delicate;	many	factors	should	be	considered	while	analysing	

differentially	 expressed	 genes	 (DEGs).	 The	 most	 crucial	 among	 them	 are	 the	 normalization	 of	

expression	values	and	the	accuracy	employed	while	detecting	differential	expression,	especially	 in	

dynamic	systems	like	RNA-sequencing.	

Within	these	systems,	DEGs	are	identified	and	extracted	based	on	a	combination	of	expression	level	

threshold	and	expression	score	cut-off,	generated	by	statistical	models	and	the	expression	level	of	

each	replicate	or	sample	is	measured	by	the	number	of	sequenced	fragments	hitting	the	transcript,	

which	are	expected	to	correlate	directly	with	its	abundance	level	(Rapaport	et	al.	2013).	

In	 addition,	 two	 more	 factors	 should	 be	 considered	 as	 risky.	 On	 one	 hand,	 the	 overall	 library	

preparation	methodology	 and	 quality	 could	 be	 an	 important	 factor	 of	 bias	 (Roberts	 et	 al.	 2011;	

Hansen	et	al.	2010;	Li	et	al.	2010).	On	the	other	hand,	including	too	few	replicates	into	the	RNA-seq	

experimental	design	to	reduce	sequencing	costs	could	also	affect	the	resolution	of	the	whole	analysis.	

The	advent	of	RNA-seq	led	to	a	renewal	of	data	analysis	methods	aiming	to	statistically	quantify	gene	

expression,	compare	it	between	samples	and	wiggle	out	of	the	limitations	of	other	platforms	(e.g.	

microarrays;	Wilhelm	&	Landry	2009;	Wang	et	al.	2009).	Traditionally,	statistical	methods	applied	to	

NGS	rely	on	the	use	of	biological	or	technical	replicates	to	estimate	variability	in	the	data.	Popular	

methods	for	analysing	RNA-Seq	data	with	replicates	include	edgeR	(Robinson	et	al.	2010),	DESeq2	

(Love	et	al.	2014),	Cuffdiff	(Trapnell	et	al.	2012)	and	the	recent	NPEBSeq	(Bi	&	Davuluri	2013).	

One	of	the	most	delicate	steps	following	the	reference	assembly	and	prior	to	DE	measurement,	is	

mapping	short	reads	(35-125bp).	Therefore,	when	transcripts	are	similar	in	length,	it	is	not	always	

possible	to	uniquely	assign	them	to	a	specific	gene	and	the	handling	of	those	reads	mapping	equally	

well	to	multiple	locations	in	the	transcriptome	(from	10%	to	50%;	Li	et	al.	2011;	Turro	et	al.	2011)	

becomes	 the	 critical	 point	 (Oshlak	 et	 al.	 2010;	Hashimoto	 et	 al.	 2009).	 Indeed,	 consistent	 errors	

generally	come	along	with	the	mapping	phase,	mostly	when	the	reference	is	incomplete	(Pyrkosz	et	

al.	2013).	This	condition	 leads	 to	unprecise	 transcript	expression	 levels.	Furthermore,	 it	has	been	
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described	 that	 alternative	 splice	 variants	 tend	 to	 increase	 the	 false	 positive	 rate	 of	 mapping	

(Mortazavi	et	al.	2008).	

Many	aligners	have	been	developed	based	on	fast	indexing	algorithms,	while	keeping	an	eye	on	these	

issues	 (e.g.	 STAR,	 TopHat,	 Bowtie),	 although	 no	 consensus	 about	 the	 best	 performing	 has	 been	

reached	yet	and	still,	some	studies	have	indicated	that	the	accurate	allocation	of	all	multimapping	

reads	 cannot	be	performed	because	 some	 splice	 variants	 are	 linear	 combinations	of	other	 splice	

variants	(Xia	et	al.	2011;	Lacroix	2008).	

The	 most	 used	 approach	 in	 NGS	 for	 hits	 counting	 usually	 considers	 the	 total	 number	 of	 reads	

overlapping	 the	 exons	 of	 a	 gene.	 Nevertheless,	 a	 partition	 of	 reads	will	 always	map	 outside	 the	

boundaries	of	 the	known	exons	 (Pickrell	et	al.	2010).	A	 reliable	alternative	strategy	considers	 the	

whole	length	of	a	gene,	treating	also	those	reads	derived	from	introns.	Besides,	if	correctly	treated	

in	 the	mapping	 step,	 spliced	 reads	 can	be	useful	 to	estimate	 the	abundance	of	different	 splicing	

isoforms	of	a	gene	(Gatto	et	al.	2014),	especially	in	RNA	experiments	where	repetitive	regions	are	

part	of	the	biological	variability.	

Once	having	acknowledged	all	the	limitations,	a	satisfactory	subset	of	aligned	reads	can	be	identified	

and	grouped	considering	all	sub-sequences	of	a	certain	length	k	(k-mers)	and	used	them	to	compute	

counts	and	to	obtain	an	estimate	of	expression	levels.		

	

Recalling	the	very	final	aim	of	this	research,	the	DGE	of	differently	pigmented	tissues	(i.e.	eyespot	or	

pseudo-eyespot	dorsal	ornament,	the	dorsal	pigmented	skin	not	carrying	the	ornament	and	white	

ventral	portion)	across	species	could	help	to	evaluate	whether	the	same	or	alternative	traits	have	

been	 used	 in	 parallel	 adaptations	 to	 similar	 environments.	 The	 hypothesis	 here	 is	 that	 the	well-

defined	and	similar	eyespots	characterizing	the	siblings	Raja	miraletus	and	R.	ocellifera	are	controlled	

by	the	same	genetic	components	and	might	display	analogous	expression	profiles.	Secondly,	these	

genetic	traits	are	expected	to	be	different	in	R.	asterias,	and	the	sibling	R.	clavata	and	R.	straeleni,	

displaying	different	dorsal	ornaments,	in	form	of	pseudo-eyespots.	

Within	this	last	chapter,	the	methods	chosen	for	the	performance	of	the	Differential	Gene	Expression	

analysis	of	differently	pigmented	tissues	according	to	these	rationales	and	the	functional	meaning	of	

the	DEGs	identified	have	been	described	and	discussed.	
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5.2.	 Materials	and	methods		

	

5.2.1.		 Differential	gene	expression	analysis	

	

Bowtie2	 v.2.3.0	 aligner	 (Love	 et	 al.	 2014)	 was	 chosen	 for	 the	mapping	 phase,	 since	 it	 has	 been	

optimized	for	aligning	long	reads	(more	than	100bp)	with	relatively	fast	computational	processing	

(Love	et	al.	2014).	

The	single	library	of	reads	corresponding	to	differently	pigmented	and	non-pigmented	tissues	were	

mapped	to	R.	miraletus	reference	transcriptome	with	default	-k=1.	The	option	to	report	up	to	one	

valid	 alignment	 per	 read	was	 also	 set.	 The	--best	 option	was	 chosen	 to	 report	 best	 singleton	

alignments	 per	 stratum	 (i.e.	 number	 of	 mismatches),	 and	 –m	 option	 was	 set	 at	 200,	 aiming	 to	

suppress	those	alignments	for	a	read	exceeding	the	value.	

The	abundance	of	the	aligned	transcripts	within	each	one	of	the	75	libraries	of	trimmed	reads	was	

recovered	 using	 RSEM	 (Relative	 Estimated	 RNA-seq	 fragment)	 v.1.2.31,	 launching	 the	

align_and_estimate.pl script	included	in	Trinity.	The	gene	and	isoform	outputs	created	

for	each	individual	at	the	three-level	skin	tissue	(D	dorsal	matrix,	S	spot	and	W	ventral	white	skin)	

were	then	used	to	calculate	the	‘gene.count.matrix’	and	‘trans.count.matrix’	respectively,	using	the	

abundance_estimates_to_matrix.pl	 plugin	 also	 included	 in	 Trinity.	 Matrices’	 function	

consisted	 in	 counting	 the	 raw	and	normalized	 read	expected	 for	 each	 sample.	 The	 ‘gene	matrix’	

counts	were	used	 for	 the	DE	analysis,	 since	 the	 ‘trans	matrix’	was	expected	 to	contain	 too	many	

isoforms	that	might	contribute	to	noisy	estimations.	No	further	filtering	of	low	expressed	transcripts	

was	applied	prior	to	DE	analysis,	to	avoid	the	loss	of	biologically	relevant	transcripts.	

For	 DE	 analysis	 DESeq2	 v.3.4.	 Bioconductor	 package	 was	 chosen,	 as	 the	 more	 accurate	 and	

conservative	between	other	tools	(e.g.	edgeR;	Rapaport	et	al.	2013)	which	can	identify	differentially	

expressed	 transcripts	and	cluster	 them	together	based	on	expression	profiles.	This	 tool	has	been	

designed	with	a	higher	filtering	power	of	low	count	genes,	flagging	those	with	large	outlier	counts	

and	preventing	the	overestimation	of	variance	among	groups	through	the	dispersion	measurement	

in	 relation	 to	normalized	data	 (Love	et	al.	2014).	Furthermore,	DESeq2	has	been	programmed	to	

recognize	the	noise	derived	from	counting,	sampling	noise	or	Poisson	dispersion,	which	are	intrinsic	

of	variable	data	counting	and	are	introduced	by	both	technical	and	biological	variance.	

The	pairwise	DE	analysis	among	samples	was	carried	out	using	DESeq2	as	implemented	in	Trinity	tool.		
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The	 input	 ‘count.matrix’	 of	 read	 counts	 within	 S	 (spot),	 D	 (dorsal	 matrix)	 and	W	 (white	 ventral	

portion)	across	five	species	were	separately	used	as	input,	thus	the	DE	analysis	run	in	parallel	for	the	

three	conditions	considered.	

The	TMM	normalized	expression	matrix	obtained	as	a	further	RSEM	output	for	each	condition	(S,	D	

and	W),	was	then	employed	along	with	the	DE	analysis.	These	matrices	represented	a	crucial	tool	in	

the	identification	of	differentially	expressed	genes,	because	they	were	based	on	the	Trimmed	Mean	

of	M-Values	normalization	method	(TMM),	which	assumes	that	most	genes,	are	common	among	the	

compared	 samples,	 but	 not	 differentially	 expressed.	 Thence,	 on	 the	 basis	 of	 ‘TMM.EXPR.matrix’	

transcripts	 mostly	 differentially	 expressed	 across	 the	 samples	 were	 extracted	 and	 clustered	

according	to	the	most	significant	p-value	cut-off	for	FDR	(i.e.	the	ratio	between	the	number	of	false	

positives	 and	 the	 total	number	of	 regulated	gene)	 and	 fold-changes	 (i.e.	 the	 ratio	between	gene	

expression	 values).	Genes	having	P-values	 at	most	1e-3	 and	being	 at	 least	 four-fold	differentially	

expressed	were	extracted	and	divided	in	subsets	of	up-regulated	and	down-regulated	traits	for	each	

couple	of	comparisons.	While	the	MA	(with	M	representing	the	log	ratio	and	A	the	mean	average)	

and	Volcano	scatter	plots	showing	the	differences	in	DE	between	species	were	recovered	by	the	first	

step	of	the	analysis,	the	amount	of	up	and	down-regulated	genes	and	their	correlation	across	species	

were	generated	within	the	extraction	of	most	differently	expressed	genes.	

The	 software	GFOLD	v.1.1.4.	 (Feng	et	 al.	 2012)	was	used	 for	 a	 further	DE	analysis	based	on	 fold	

change	 instead	 of	 P-value.	 The	 cut-off	 limit	 chosen	 for	 the	 analysis	 was	 0.01.	 This	 enabled	 the	

pairwise	comparison	of	each	tissue	(spot,	dorsal	matrix	and	white	ventral	portion)	within	the	same	

individual.	 Then,	 transcripts	 occurring	 at	 the	 species	 level	 for	 each	 tissue	 were	 used	 for	 GO	

annotation	 in	 order	 to	 identify	 enzymes,	 domains	 and	 protein	 regions	 matching	 with	 the	 DEGs	

observed.	

	

5.3.	 Results	
	

The	percentage	of	alignment	obtained	when	mapping	the	filtered	Illumina	reads	against	the	brown	

skate	transcriptome	ranged	from	68%	to	76%.	Of	those,	about	38%	mapped	more	than	one	time.	

The	DE	analysis	carried	out	on	separate	skin	tissues	(spot,	dorsal	uniform	matrix	and	ventral	portion)	

across	species	highlighted	a	total	of	7,548	genes	differentially	expressed	in	spot	samples	(S)	across	

all	species,	7,415	in	pigmented	but	uniform	dorsal	portion	(D)	and	8,354	genes	were	differentially	

expressed	in	the	ventral	portion	(W).	The	distribution	of	DE	genes	per	tissues	and	couple	of	species	
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is	reported	in	Table	S16	in	Appendix	IV.	

The	MA	 plot	 generated	within	 the	 DE	 analysis	 (as	 the	 one	 reported	 as	 an	 example	 in	 Figure	 9)	

provided	a	useful	overview	for	the	pairwise	comparisons	among	individuals.	Within	these	plots	each	

gene	 was	 represented	 by	 a	 dot.	 The	 x-axis	 reported	 the	 average	 expression	 over	 the	 mean	 of	

normalized	counts	(A-values),	while	the	y-axis	was	the	fold	change	between	treatments	(M-values).	

Similarly,	 the	 ‘Volcano’	 plot	 summarized	 both	 fold-change	 and	 FDR	 significance	 (an	 example	 of	

Volcano	plot	is	also	reported	in	Figure	9).	In	particular,	these	scatter	plots	were	built	on	the	negative	

log10-trasformed	e-values	for	FDR	(y-axis)	against	the	log2	fold-change	(x-axis).	The	log2	of	the	fold-

change	was	applied	in	two	directions	(i.e.	up	and	down).	Data	points	located	at	the	top	and	far	from	

either	 the	 left	or	 the	right	side	represented	values	with	 large	magnitude	 fold	changes	and	high	a	

statistical	significance	(low	FDR).	

	

	

	

	

	 	

Figure	9	MA	and	Volcano	plots	obtained	from	the	DE	analysis.	The	example	refers	to	R.	miraletus	
and	R.	 ocellifera	comparison	at	 the	eyespot	 level.	 In	MA	plot,	 red	data	point	 indicated	 that	 the	
adjusted	p-value	was	less	than	0.05.	In	the	volcano	plot,	the	red	points	indicate	genes	of	interest	
that	displayed	both	large-magnitude	fold-changes	as	well	as	high	statistical	significance	(FDR<0.05).	
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To	 visually	 explore	 the	 degree	 of	 similarity	 across	 groups	 of	 closely	 related	 genes,	 heatmap	

representations	 were	 employed.	 As	 a	 two-dimensional	 plot,	 heatmaps	 quantitatively	 and	

qualitatively	reflected	the	original	experimental	observations.	The	rows	and	columns	of	the	gene-

matrix	 for	 each	 species	were	 hierarchically	 and	 independently	 rearranged	 into	 clusters	 based	on	

Euclidean	 distances.	 Genes	 with	 similar	 expression	 patterns	 resulted	 adjacent.	 Furthermore,	 the	

computed	dendrogram	resulting	from	the	clustering	was	automatically	added	as	a	summary	of	the	

relationships	 among	 genes	 (see	 Figures	 10-12).	 The	up	 (in	 yellow)	 and	down-regulated	 genes	 (in	

purple)	observed	per	replicate	are	reported	in	the	species-heatmaps	below.	The	expression	values	

are	plotted	in	log2	space	and	the	mean	expression	value	for	each	gene	was	subtracted	from	each	of	

its	expression	values	in	that	row	(i.e.	mean-centred).	

Results	presented	 in	Figure	10	highlighted	a	clear	DE	profile	between	spot	 samples	 (S)	 clustering	

within	species.	In	particular,	R.	asterias,	R.	clavata	and	R.	straeleni,	which	carry	a	pseudo-eyespot	on	

the	 dorsal	 surface	 of	 the	 body,	 grouped	 together	 following	 the	 expected	 trend	 reported	 by	 the	

dendrogram	at	the	top	of	the	heatmap.	The	siblings	R.	miraletus	and	R.	ocellifera,	characterized	by	a	

bright	blue	eyespot	at	the	base	of	each	pectoral	fin,	displayed	similar	levels	of	expression,	although	

some	slight	differences	can	be	detected	in	the	top-right	portion	of	the	heatmap.	

The	heatmap	reported	in	Figure	11,	was	much	more	informative	than	expected.	As	a	matter	of	fact,	

lower	 levels	 of	 DE	 were	 supposed	 to	 characterize	 the	 dorsal	 uniform	 matrix	 across	 species.	 R.	

asterias,	which	appeared	to	have	up-regulated	genes	in	middle-left	part	of	the	heatmap,	to	a	greyish-

marbled	skin	in	R.	clavata	and	R.	straeleni.	Surprisingly,	the	comparison	between	R.	miraletus	and	R.	

ocellifera	highlighted	a	stronger	DE	signal,	despite	their	almost	overlapping	patterning.	

Results	obtained	analysing	the	DE	within	ventral	skin	samples	across	species	were	interesting	as	well.	

Samples	 appeared	 to	 cluster	 into	 species	 as	 in	 previous	 comparisons,	 highlighting	 a	 stronger	

difference	in	expression	levels	between	the	siblings	R.	miraletus	and	R.	ocellifera	(Figure	12).	
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Figure	10	Heatmap	representing	the	up-regulated	(in	yellow)	and	down-regulated	genes	(in	purple)	
for	dorsal	 skin	 tissues	carrying	 an	eyespot	or	a	 pseudo-eyespot	 across	species.	 Their	correlation	 is	
described	at	both	individual	level	(clusters	on	the	top	of	the	map)	and	at	the	gene	level	(clusters	on	
the	left	of	the	graph).	RAST	Raja	aterias,	RCLA	R.	clavata,	RSTRA	R.	straeleni,	RMIR	R.	miraletus,	ROCE	
R.	ocellifera.	
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Figure	11	Heatmap	representing	the	up-regulated	(in	yellow)	and	down-regulated	genes	(in	purple)	
for	 dorsal	 skin	 tissues	 without	 ornaments	 across	 species.	 Their	 correlation	 is	 described	 at	 both	
individual	level	(clusters	on	the	top	of	the	map)	and	at	the	gene	level	(clusters	on	the	left	of	the	graph).	
RAST	Raja	aterias,	RCLA	R.	clavata,	RSTRA	R.	straeleni,	RMIR	R.	miraletus,	ROCE	R.	ocellifera.	
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Figure	12	Heatmap	representing	the	up-regulated	(in	yellow)	and	down-regulated	genes	(in	purple)	
for	vwntral	white	 skin	 tissues	 across	 species.	Their	correlation	 is	 described	at	both	 individual	 level	
(clusters	on	the	top	of	the	map)	and	at	the	gene	level	(clusters	on	the	left	of	the	graph).	RAST	Raja	
aterias,	RCLA	R.	clavata,	RSTRA	R.	straeleni,	RMIR	R.	miraletus,	ROCE	R.	ocellifera.	
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In	order	to	compare	DEGs	between	differently	pigmented	tissues	within	the	same	individual	a	DE	

analysis	without	biological	replicates	was	performed	as	implemented	in	GFOLD.	The	number	of	DE	

transcripts	recovered	is	summarised	in	Tab	S17	in	Appendix.	Among	them,	many	of	the	candidate	

genes	were	related	to	pigmentation	as	reported	in	Tables	1	and	2.	
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Under-expressed	 Over-expressed	

	 PFAM	domain	 PFAM	domain	
Common	to	
all	species	

Fasciclin	domain	 T-box	
Zinc	finger,	C2H2	type	 Homeobox	domain	

R.	asterias	
R.	clavata	
R.	straeleni	

Intermediate	filament	protein	 	

Cystine-knot	domain	 	

R.	asterias		
R.	clavata	

von	Willebrand	factor	type	D	domain	 		
Mucin-2	protein	WxxW	repeating	region	 	
C8	domain	 		

R.	asterias		
R.	straeleni	

7	transmembrane	receptor	(rhodopsin	
family)	 	

		 	
R.	clavata		
R.	straeleni	

EF-hand	domain	 		

R.	miraletus		
R.	ocellifera	

Kazal-type	serine	protease	inhibitor	
domain	 Thioredoxin-like	
Tissue	inhibitor	of	metalloproteinase	 Peptidase	family	M3	
Calcium-binding	EGF	domain	 	
Leucine	rich	repeat	 	

R.	asterias	

Sodium	neurotransmitter	symporter	
family	 C2	domain	

Lectin	C-type	domain	
Pre-pro-megakaryocyte	potentiating	factor	precursor	
(Mesothelin)	

R.	clavata	

Inosine-uridine	preferring	nucleoside	
hydrolase	 Cadherin	prodomain	like	
Trypsin	Inhibitor	like	cysteine	rich	domain	 Galactosyltransferase	

		 Cadherin	domain	

Raja	
miraletus	

Fibronectin	type	II	domain	 Utp14	protein	
Extracellular	link	domain	 Pou	domain	-	N-terminal	to	homeobox	domain	
AMP-binding	enzyme	 Phosphorylase	superfamily	
Hemopexin	 DZF	domain	
Scramblase	 SNF2	family	N-terminal	domain	
WIF	domain	 RNA	polymerase	II	elongation	factor	ELL	
Protein	tyrosine	kinase	 Pentaxin	family	
	 Olfactomedin-like	domain	
	 THRAP3/BCLAF1	family	
	 Tetratricopeptide	repeat	
	 Matrixin	
	 RIO1	family	
	 Helicase	conserved	C-terminal	domain	
	 Molybdopterin	oxidoreductase	
	 Glutathione	S-transferase,	C-terminal	domain	
	 GDP-mannose	4,6	dehydratase	

Raja	
ocellifera		

von	Willebrand	factor	type	C	domain	 Plectin	repeat	
Fz	domain	 	
Complement	Clr-like	EGF-like	 	
von	Willebrand	factor	type	A	domain	 	
Nucleoside	diphosphate	kinase	 	
TB	domain	 	
Follistatin/Osteonectin-like	EGF	domain	 	

Table	1	List	of	domains	characterizing	the	DEGs	between	the	dorsal	uniform	matrix	(without	ornament)	and	the	white	ventral	body	portion	
identified	with	GO.	The	groupings	reported	here	were	chosen	according	to	the	species	clustering	(dendrograms)	displayed	in	Figure	9,	10	
an	11.	Functions	in	bold	correspond	to	putative	proteins	and	domains	known	for	their	involvement	in	pigmentary	mechanism.	
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Laminin	G	domain	 	
Human	growth	factor-like	EGF	 	
Leucine	rich	repeat	N-terminal	domain	 	
Caldesmon	 	
Sushi	repeat	(SCR	repeat)	 	
Laminin	EGF	domain	 	
Fibrillar	collagen	C-terminal	domain	 	
Subtilase	family	 	

Raja	
straeleni		

'Paired	box'	domain	 		
Hyaluronidase	 	
Plectin	repeat	 		
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Under-expressed	 Over-expressed	
	 PFAM	domain	 PFAM	domain	

Common	to	all	
species	

Zinc	finger,	C2H2	type		 von	Willebrand	factor	type	D	domain	
	 Mucin-2	protein	WxxW	repeating	region	
		 C8	domain	

R.	asterias		
R.	clavata	 	 Armadillo/beta-catenin-like	repeat	
R.	asterias		
R.	straeleni	 		 Cystine-knot	domain	

R.	miraletus		
R.	ocellifera	

Dapper	 Agouti	protein	
Fz	domain	 Peptidase	family	M3	
Collagen	triple	helix	repeat	(20	copies)	 	
Olfactomedin-like	domain	 	
Fibrinogen	beta	and	gamma	chains,	C-

terminal	b	 	
Hemopexin	 	
Endothelin	family	 	
WIF	domain	 	
Leucine	rich	repeat	 	
Leucine	rich	repeats	(6	copies)	 	
ADP-ribosylation	factor	family	 	
von	Willebrand	factor	type	C	domain	 	
Zinc	carboxypeptidase	 	
PAP2	superfamily	 	
CUB	domain	 	
Kazal-type	serine	protease	inhibitor	

domain	 	
Animal	haem	peroxidase	 	
von	Willebrand	factor	type	A	domain	 	
SOUL	heme-binding	protein	 	
Tissue	inhibitor	of	metalloproteinase	 	
Leucine	rich	repeat	N-terminal	domain	 	

R.	ocellifera		
R.	straeleni	

7	transmembrane	receptor	(rhodopsin	
family)	 		

R.	asterias	
Sodium:neurotransmitter	symporter	

family	
Pre-pro-megakaryocyte	potentiating	factor		
precursor	(Mesothelin)	

R.	clavata	

Inosine-uridine		 Tetratricopeptide	repeat	
Tropomyosin	 Lipoxygenase	
Immunoglobulin	I-set	domain	 Cadherin	cytoplasmic	region	
Calsequestrin	 Cadherin	domain	
Intermediate	filament	protein	 	
Immunoglobulin	domain	 	
IQ	calmodulin-binding	motif	 	
Troponin	 	
EF-hand	domain	 	
Nucleoside	diphosphate	kinase	 	
ATP	guanido-phosphotransferase,	C-

terminal	catalytic	domain	 	
Protein	kinase	domain	 	
Ependymin	 	
ATP	guanido-phosphotransferase,	N-

terminal	domain	 	

Table	2	List	of	domains	characterizing	the	DE	genes	between	the	dorsal	ornament	(eyespot	and	pseudo-eyespot)	and	the	white	ventral	
body	portion.	The	groupings	reported	here	were	chosen	upon	the	species	clustering	(dendrograms)	displayed	in	Figure	9,	10	an	11.	
Functions	in	bold	correspond	to	putative	proteins	known	for	their	involvement	in	pigmentary	mechanism.	



	 60 

Myosin	head	(motor	domain)	 	
EF-hand	domain	pair	 		
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R.	
miraletus	

Secreted	phosphoprotein	24	(Spp-24)	cystatin-like	domain	 Utp14	protein	
EGF-like	domain	 Putative	peptidoglycan	binding	domain	
2OG-Fe(II)	oxygenase	superfamily	 Phosphorylase	superfamily	
Helix-loop-helix	DNA-binding	domain	 DZF	domain	
lactate/malate	dehydrogenase,	NAD	binding	domain	 SNF2	family	N-terminal	domain	
lactate/malate	dehydrogenase,	alpha/beta	C-terminal	
domain	 RNA	polymerase	II	elongation	factor	ELL	
Scramblase	 Pentaxin	family	
Myosin	N-terminal	SH3-like	domain	 THRAP3/BCLAF1	family	
Protein	phosphatase	2C	 Matrixin	
zinc-finger	of	a	C2HC-type	 RIO1	family	
Homeobox	domain	 Molybdopterin	oxidoreductase	
Adenosine/AMP	deaminase	 Helicase	conserved	C-terminal	domain	
Calcium-activated	chloride	channel	 	
VWA	domain	containing	CoxE-like	protein	 	
Histidine	kinase-,	DNA	gyrase	B-,	and	HSP90-like	ATPase	 		

R.	
ocellifera	

Fibronectin	type	II	domain	 Microtubule	binding	
Putative	peptidoglycan	binding	domain	 DAN	domain	

Extracellular	link	domain	
A-macroglobulin	complement	
component	

UNC-6/NTR/C345C	module	 	
Connexin	 	
Complement	Clr-like	EGF-like	 	
F5/8	type	C	domain	 	
Hairy	Orange	 	
DAN	domain	 	
PDGF/VEGF	domain	 	
short	chain	dehydrogenase	 	
Low-density	lipoprotein	receptor	repeat	class	B	 	
Thrombospondin	type	3	repeat	 	
Glutathione	S-transferase,	N-terminal	domain	 	
Laminin	G	domain	 	
Microfibril-associated	glycoprotein	(MAGP)	 	
Human	growth	factor-like	EGF	 	
Fibrillar	collagen	C-terminal	domain	 	
Reeler	domain	 	
Glutathione	S-transferase,	C-terminal	domain	 	
BTB/POZ	domain	 	
Cadherin	domain	 	
Kunitz/Bovine	pancreatic	trypsin	inhibitor	domain	 	
TB	domain	 	
Follistatin/Osteonectin-like	EGF	domain	 	
Myelin	proteolipid	protein	(PLP	or	lipophilin)	 	
Nucleotidyltransferase	 	
C1q	domain	 	
Serpin	(serine	protease	inhibitor)	 	
Matrixin	 	
Amidohydrolase	family	 	
Sushi	repeat	(SCR	repeat)	 	
EF	hand	 	
Scavenger	receptor	cysteine-rich	domain	 	
Ras	family	 		

R.	
straeleni	

'Paired	box'	domain	 DAN	domain	

Plectin	repeat	
A-macroglobulin	complement	
component	
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The	 comparison	 of	 functions	 and	 domains	 between	 the	 spotted	 and	 non-spotted	 skin	 tissues	

revealed	 that	many	of	 them	were	more	abundant	among	downstream	genes	expressed	between	

spot	 and	 ventral	 portion	 (Figure	 13).	 These	 entries	were	mostly	 related	 to	 Immunoglobulin	 I-set	

domain,	 Connexin,	 Collagen	 triple	 helix	 repeat,	 Olfactomedin-like	 domain,	 Fibrinogen	 beta	 and	

gamma	 chains,	 Endothelin	 family,	 Myosin	 N-terminal	 SH3-like	 domain,	 Microfibril-associated	

glycoprotein	(MAGP),	zinc-finger	of	a	C2HC-type,	Homeobox	domain,	Protein	kinase	domain,	Myelin	

proteolipid	protein	(PLP	or	lipophilin)	and	Ras	family.	

Peculiar	of	the	comparison	between	dorsal	matrix	and	white	surface	were	instead	the	AMP-binding	

enzyme,	Hyaluronidase,	Laminin	EGF	domain,	Mucin-2	protein,	Calcium-binding	EGF	domain	and	the	

Protein	tyrosine	kinase.	

	

	

 

	 	

Figure	13	Venn	diagram	comparing	domains	and	functions	controlled	by	down-regulated	genes	in	both	dorsal	matrix	(D)	and	eyespots	
(S)	across	species.	
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Some	of	the	functions	regulated	by	upstream	genes	were	the	Armadillo/beta-catenin-like	repeat	and	

the	Agouti	protein	for	what	concerned	the	spot-ventral	portion,	while	T-Box	and	Homeobox	were	

expressed	only	in	the	comparison	dorsal	matrix-ventral	portion.	

	

	

 
 

 	

Figure	14	Venn	diagram	comparing	functions	controlled	by	up-regulated	genes	in	both	dorsal	matrix	(D)	and	eyespots	(S)	across	
species.	
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5.4.	 Discussion	and	conclusion	

	

Understanding	the	molecular	basis	of	phenotypic	variation	in	relation	to	evolutionary	questions	is	

one	of	the	most	interesting	challenge	in	evolutionary	biology.	

Taking	advantage	of	the	RNA-seq	technology	we	could	investigate	for	the	first	time	the	molecular	

basis	 underpinning	 peculiar	 pigmentation	 traits	 found	 in	 the	dorsal	 surface	of	 five	 skate	 species:	

eyespots	 and	pseudo-eyespots.	With	 the	 final	 aim	of	 identifying	 the	 candidate	 genes	 involved	 in	

skates’	skin	pigmentation,	the	differences	in	gene	expression	between	differently	pigmented	areas	

of	both	dorsal	and	ventral	portions	were	estimated.	The	rationale	at	the	basis	of	this	research,	was	

that	similar	pattering	should	share	the	same	genetic	basis	and	similar	levels	of	expression.	

Eyespots	have	been	rarely	studied,	except	for	taxonomical	purpose,	nevertheless,	they	could	play	an	

interesting	role	in	aposematism	and	camouflage	strategies,	which	have	been	deeply	studied	in	other	

organisms	 in	relation	to	survival	and	 increasing	of	fitness	(Kavanagh	et	al.	2016;	Nokelainen	et	al.	

2016).	

The	differentially	expressed	 (DE)	genes	and	 transcripts	 recovered	when	comparing	 the	same	skin	

tissue	across	all	the	species	considered	here	demonstrated	that	the	experiment	was	successful.	Also,	

a	conspicuous	number	of	genes	were	DE	between	spot	and	non-spot	skin	tissues.	

Overall,	the	GO	analysis	highlighted	many	molecular	pathways	that	differed	significantly	between	the	

replicates,	 some	 of	which	were	 already	 known	 for	 their	 role	 in	melanogenesis	 and	melanosome	

differentiation	 (i.d.	 Endothelin	 family	 and	 Agouti	 signalling	 protein).	 The	 families	 and	 domains	

identified	are	known	to	include	processes	of	development	of	pigmentation	patterns	(i.e.	Homeobox	

domain,	 Laminine	 G	 domain	 and	 RAS	 family).	 Eyespot	 or	 pseudo-	 eyespot	 development	 at	 the	

embryotic	 or	 adult	 stage,	 are	 supposed	 to	 rely	 on	 pigment	 production,	 activated	 via	membrane	

receptor	activity	(Santos.,	2016).	These	features	were	also	retrieved	from	the	PFAM	and	GO-analysis	

of	the	reference	transcriptome.	

The	findings	described	here	appeared	close	to	results	obtained	by	similar	experiments	conducted	on	

teleost	(Santos	et	al.,	2016;	Baldo	et	al.	2011),	where	the	surplus	value	consisted	in	the	identification	

of	 uncharacterized	 genes	 under	 positive	 selection.	 Here,	 the	 high	 redundancy	 of	 the	 transcripts	

identified	did	not	allow	the	punctual	assessment	of	genes	potentially	lineage-specific.	Nevertheless,	

the	 first	 inspection	 of	 those	 DE	 genes	 between	 spot	 and	 non-spot	 tissues	 in	 comparison	 to	 the	

unpigmented	 ventral	 surface	 suggested	 that	 the	 strategy	 underlying	 the	 experiment	 could	 be	

considered	 a	 valid	 approach	 to	 identify	 those	 candidate	 genes	 likely	 involved	 in	 evolutionary	
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scenarios.	For	instance,	further	investigations	could	focus	on	the	calculation	of	evolutionary	rates	of	

those	 DE	 genes	 between	 eyespot	 and	 pseudo-eyespots	 and	 determine	 if	 they	 are	 evolving	with	

different	rates.	Considered	the	phenotypic	stasis	of	the	species	considered,	the	stabilizing	selection	

could	likely	be	the	driving	force	that	contributed	to	conserve	a	well-adapted	phenotype	across	the	

wide-ranging	distribution	of	the	clade	(Williamson	1987).	
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Appendix	I	Chapter	2	

	

	

Sampling	area	 Area	 Year	
Sample	

Code	
N	 COI	 SSRs	

Source	(Trawl	survey	

program)	

McEachran	et	

al.	1989	

Atlantic	-	Indian	(A)	
	 	 	 	 	 	 	 	

South	Africa	-	South	Coast	 Western	Indian	Ocean	 2006	
ASAF/07	

8	 5	 8	 ST	(Africana)	 5	

South	Africa	-	South	Coast	 Western	Indian	Ocean	 2007	 0	 5	 0	 GB	 5	

South	Africa	-	South	Coast	 Western	Indian	Ocean	 2011	 ASAF/11	 32	 30	 31	 ST	(Africana)	 5	

Angola	 South	Eastern	Atlantic	 2006	 AANG	 28	 27	 26	 ST	(Nansen)	 4	

Senegal	 Central	Eastern	Atlantic	 2007	 ASEN	 5	 5	 5	 CF	 2	

Portugal	 North	Eastern	Atlantic	 2007	
APOR	

3	 0	 3	 ST	(IPIMAR)	 n.a.	

Portugal	 North	Eastern	Atlantic	 2005,	2007	 0	 10	 0	 GB	 n.a.	

	 	 	 	 	 	 	 	 	Mediterranean	(M)	
	 	 	 	 	 	 	 	

Algeria	 Western	Mediterranean	 2002,	2003	 MALG/03	 8	 8	 5	 FM	(Algiers)	 1	

Algeria	 Western	Mediterranean	 2009,	2010	 MALG/10	 9	 8	 8	 FM	(Algiers)	 1	

Balearic	Islands	 Western	Mediterranean	 2006	 MBAL	 19	 19	 16	 ST	(MedITS)	 1	

Sardinia	 Western	Mediterranean	 2002,	2005	 MSAR	 11	 11	 8	 ST	(MedITS;	GruND)	 1	

Tuscany	 Western	Mediterranean	 2005,	2006	 MTUS/06	 26	 22	 21	 ST	(MedITS;	GruND)	 1	

Table	S1	Sampling	data	and	locations.	The	last	row	refers	to	geographical	samples	previously	compared	from	McEachran	et	al.	1989.	1-Mediterranean	group.	2	-	Mauritania	and	Senegal	group.	3	
-	Gulf	 of	Guinea-equatorial	 African	 group.	 4	 -	 Angolan	 sample.	 5	 –	 South	African	 sample.	 n.a.:	 not	 available.	 ST:	 Scientific	 Trawl	 survey.	 CF:	 Contracted	 Fishermen.	 FM:	 Fishery	Market.	 GB:	
GenBank	Database.	BOLD:	Barcoding	of	Life	Database. 



Tuscany	 Western	Mediterranean	 2008,	2010	 MTUS/10	 16	 6	 13	 ST	(MedITS;	GruND)	 1	

Sicilian	Channel	-	Adventura	Bank	 Western	Mediterranean	 2014	 MADV	 22	 22	 22	 ST	(MedITS)	 1	

Sicilian	Channel	-	Maltese	Bank	 Western	Mediterranean	 2000,	2002	 MMAL/02	 16	 12	 8	 ST	(MedITS;	GruND)	 1	

Sicilian	Channel	-	Maltese	Bank	 Western	Mediterranean	 2007	 MMAL/07	 0	 6	 0	 ST	(MedITS;	GruND)	 1	

Ionian	Sea	 Eastern	Mediterranean	 2004	 MION	 4	 3	 4	 ST	(MedITS;	GruND)	 1	

Northern	Adriatic	Sea	-	Italian	coast	 Eastern	Mediterranean	 2006,	2007	 MNAD1	 39	 31	 20	 ST	(MedITS;	GruND)	 1	

Northern	Adriatic	Sea	-	Croatian	coast	 Eastern	Mediterranean	 2002,	2004	 MNAD2	 24	 24	 8	 ST	(MedITS;	GruND)	 1	

Southern	Adriatic	Sea	-	Italian	coast	 Eastern	Mediterranean	 2004	 MSAD1	 19	 16	 19	 ST	(MedITS;	GruND)	 1	

Southern	Adriatic	Sea	-	Albanian	coast	 Eastern	Mediterranean	 2004	 MSAD2	 19	 13	 17	 ST	(MedITS;	GruND)	 1	

Greece	-	Aegean	coast	 Eastern	Mediterranean	 2014	 MGRE	 0	 2	 0	 GB	 1	

Israel	 Eastern	Mediterranean	 2009	 MISR/09	 8	 7	 7	 CF	 1	

Israel	 Eastern	Mediterranean	 2012	
MISR/14	

0	 3	 0	 BOLD	 1	

Israel	 Eastern	Mediterranean	 2014	 0	 4	 0	 GB	 1	

Levantine	Sea	 Eastern	Mediterranean	 2009	 MLEV	 7	 7	 7	 CF	 1	



	

	

Sample	Code	 n	 H	 S	 Hd	±	SD	 π	±	SD	 k	

ASAF/07	 10	 4	 4	 0.644	±	0.152	 0.00181	±	0.00063	 0.956	

ASAF/11	 30	 8	 6	 0.733	±	0.066	 0.00206	±	0.00034	 1.087	

AANG	 27	 10	 40	 0.858	±	0.041	 0.02543	±	0.00380	 13.453	

ASEN	 5	 3	 1	 0.700	±	0.218	 0.00132	±	0.00041	 0.700	

APOR	 10	 1	 0	 0.000	 0.000	 0.000	

MALG/03	 8	 1	 0	 0.000	 0.000	 0.000	

MALG/10	 8	 4	 4	 0.750	±	0.139	 0.00250	±	0.00075	 1.321	

MBAL	 19	 1	 0	 0.000	 0.000	 0.000	

MSAR	 11	 1	 0	 0.000	 0.000	 0.000	

MTUS/06	 22	 2	 1	 0.091	±	0.081	 0.00017	±	0.00015	 0.091	

MTUS/10	 6	 1	 0	 0.000	 0.000	 0.000	

MADV	 22	 3	 3	 0.654	±	0.061	 0.00277	±	0.00022	 1.463	

MMAL/02	 12	 3	 3	 0.667	±	0.091	 0.00241	±	0.00043	 1.273	

MMAL/14	 6	 5	 5	 0.933	±	0.122	 0.00391	±	0.00076	 2.067	

MION	 3	 1	 0	 0.000	 0.000	 0.000	

MNAD1	 31	 2	 1	 0.396	±	0.078	 0.00075	±	0.00015	 0.420	

MNAD2	 24	 5	 4	 0.630	±	0.065	 0.00143	±	0.00025	 0.757	

MSAD1	 16	 3	 2	 0.242	±	0.135	 0.00068	±	0.00040	 0.358	

MSAD2	 13	 2	 1	 0.385	±	0.132	 0.00073	±	0.00025	 0.385	

MGRE	 2	 1	 0	 0.000	 0.000	 0.000	

MISR/09	 7	 2	 1	 0.286	±	0.196	 0.00054	±	0.00037	 0.286	

MISR/14	 7	 2	 1	 0.476	±	0.171	 0.00090	±	0.00032	 0.527	

MLEV	 7	 1	 0	 0.000	 0.000	 0.000	

	

	

Table	S2	Mitochondrial	gene	polymorphism.	Nh	number	of	haplotypes,	S	number	of	polymorphic	sites,	Hd	haplotype	diversity,	π	
nucleotide	diversity,	k	average	number	of	nucleotide	differences	and	SD	standard	deviation.	Sample	code	as	given	in	Table	S1. 



	
AMOVA–Groupings	 COI	 EST-SSRs	 COI	 EST-SSRs	

	
Total	variation	

(%)	
ϕ	statistics	 P	

Total	variation	
(%)	

F	statistics	 P	
%SC	over	

%CT	
%SC	over	

%CT	

AMOVA1-	two	groups:	Central-Southern	African	vs	NE	Atlantic-Mediterranean	Sea	
	  

Among	groups	 89.81	 ϕ	CT	 0.8981	 0.0002±0.0001	 26.07	 F	CT	 0.2607	 0.0006±0.0002	
0.056	 0.918	

Among	populations	within	groups	 4.99	 ϕ	SC	 0.4901	 0.0000±0.0000	 23.93	 F	SC	 0.3237	 0.0000±0.0000	

Within	population	 5.20	 ϕ	ST	 0.9480	 0.0000±0.0000	 17.72	 F	IS	 0.3544	 0.0000±0.0000	
	  

Within	individuals	
	    32.28	 F	IT	 0.6772	 0.0000±0.0000	 	  

AMOVA2-	four	groups:	South	Africa	+	Angola	vs	Senegal	vs	Portugal	+	Western	Mediterranean	vs	Eastern	Mediterranean 

Among	groups	 85.69	 ϕ	CT	 0.8569	 0.0000±0.0000	 40.20	 F	CT	 0.4020	 0.0000±0.0000	
0.066	 0.192	

Among	populations	within	groups	 5.64	 ϕ	SC	 0.3946	 0.0000±0.0000	 7.71	 F	SC	 0.1289	 0.0000±0.0000	

Within	population	 8.67	 ϕ	ST	 0.9133	 0.0000±0.0000	 18.46	 F	IS	 0.3544	 0.0000±0.0000	
	  

Within	individuals	
	    33.63	 F	IT	 0.6637	 0.0000±0.0000	 	  

AMOVA3-	five	groups:	South	Africa	vs	Angola	vs	Senegal	vs	Portugal	+Western	Mediterranean	vs	Eastern	Mediterranean 

Among	groups	 88.62	 ϕ	CT	 0.8862	 0.0001±0.0001	 40.32	 F	CT	 0.4021	 0.0000±0.0000	
0.029	 0.169	

Among	populations	within	groups	 2.56	 ϕ	SC	 0.2249	 0.0000±0.0000	 6.82	 F	SC	 0.1285	 0.0000±0.0000	

Within	population	 8.82	 ϕ	ST	 0.9118	 0.0000±0.0000	 18.73	 F	IS	 0.3544	 0.0000±0.0000	
	  

Within	individuals	
	    34.13	 F	IT	 0.6587	 0.0000±0.0000	 	  

AMOVA4-	six	groups:	South	Africa	vs	Angola	vs	Senegal	vs	Portugal	+	Western	Mediterranean	vs	Eastern	Mediterranean	vs	Israel 
Among	groups	 89.46	 ϕ	CT	 0.8946	 0.0001±0.0001	 39.82	 F	CT	 0.3982	 0.0000±0.0000	

0.016	 0.172	
Among	populations	within	groups	 1.43	 ϕ	SC	 0.1357	 0.0000±0.0000	 6.84	 F	SC	 0.1137	 0.0000±0.0000	

Within	population	 9.11	 ϕ	ST	 0.9089	 0.0000±0.0000	 18.90	 F	IS	 0.3544	 0.0000±0.0000	
	  

Within	individuals	
	    34.43	 F	IT	 0.6557	 0.0000±0.0000	 	  

Table	S3	Hierarchical	AMOVAs	performed	on	the	COI	dataset	and	on	the	EST-SSRs	datasets. 



AMOVA5-	seven	groups:	South	Africa	vs	Angola	vs	Senegal	vs	Portugal	+	West	Mediterranean	vs	Sicily	Channel	vs	East	Mediterranean	vs	Israel 
Among	groups	 89.16	 ϕ	CT	 0.8916	 0.0000±0.0000	 36.12	 F	CT	 0.3613	 0.0000±0.0000	

0.010	 0.227	
Among	populations	within	groups	 0.93	 ϕ	SC	 0.0856	 0.0000±0.0000	 8.19	 F	SC	 0.1282	 0.0000±0.0000	

Within	population	 9.91	 ϕ	ST	 0.9001	 0.0000±0.0000	 19.73	 F	IS	 0.3544	 0.0000±0.0000	
	  

Within	individuals	 	 	 	 	 35.95	 F	IT	 0.6405	 0.0000±0.0000	 	 	
	

	 	



	
		 Raja				

asterias	
Raja	
brachyura	

Raja					
clavata	

Raja	
microocellata	

Raja	
montagui	

Raja	
polystigma	

Raja						
radula	

Raja	
straeleni	

Raja	
undulata	

Raja	
miraletus	
C-S	Africa	

Raja	
miraletus	
NE	Atl-Med	

Raja	asterias	
0.0025	±	
0.0012	 0,013	 0,011	 0,014	 0,013	 0,012	 0,010	 0,011	 0,013	 0,015	 0,015	

Raja	brachyura	 0,086	
0.0030	±	
0.0015	 0,010	 0,009	 0,011	 0,010	 0,012	 0,011	 0,012	 0,013	 0,015	

Raja	clavata	 0,059	 0,051	
0.0000	±	
0.0000	 0,011	 0,010	 0,010	 0,007	 0,005	 0,012	 0,012	 0,015	

Raja	
microocellata	 0,088	 0,046	 0,060	

0.0000	±	
0.0000	 0,012	 0,011	 0,011	 0,011	 0,013	 0,013	 0,015	

Raja	montagui	 0,083	 0,061	 0,051	 0,064	
0.0000	±	
0.0000	 0,007	 0,012	 0,011	 0,012	 0,012	 0,014	

Raja	
polystigma	 0,075	 0,053	 0,051	 0,060	 0,023	

0.0000	±	
0.0000	 0,010	 0,011	 0,012	 0,011	 0,013	

Raja	radula	 0,049	 0,068	 0,028	 0,065	 0,064	 0,056	
0.0010	±	
0.0010	 0,007	 0,012	 0,013	 0,015	

Raja	straeleni	 0,059	 0,059	 0,015	 0,060	 0,059	 0,056	 0,028	 0.0019	±	
0.0010	

0,012	 0,013	 0,015	

Raja	undulata	 0,077	 0,074	 0,072	 0,079	 0,078	 0,071	 0,074	 0,073	 0.0018±	
0.0011	

0,012	 0,014	

Raja	miraletus	
C-S	Africa	

0,105	 0,086	 0,086	 0,095	 0,083	 0,078	 0,090	 0,091	 0,076	 0.0188	±	
0.0032	

0,012	

Raja	miraletus	
NE	Atl-Med	

0,107	 0,101	 0,098	 0,100	 0,091	 0,088	 0,096	 0,102	 0,096	 0,073	 0.0025	±	
0.0011	

	
	 	

Table	S4	Tamura-Nei	genetic	distances	observed	within	and	between	Raja	species	and	Raja	miraletus	geographical	samples. 



	
	 ASAF/07	 ASAF/11	 AANG	 ASEN	 APOR	 MALG/03	 MALG/10	 MBAL	 MSAR	 MTUS/06	 MTUS/10	 MADV	 MMAL/02	 MMAL/07	 MION	 MNAD1	 MNAD2	 MSAD1	 MSAD2	 MGRE	 MISR/09	 MISR/14	 MLEV	

		 N=10	 N=30	 N=27	 N=5	 N=10	 N=8	 N=8	 N=19	 N=11	 N=22	 N=6	 N=22	 N=12	 N=6	 N=3	 N=31	 N=24	 N=16	 N=13	 N=2	 N=7	 N=7	 N=7	

Hap_1	 0.2000	 0.2000	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_2	 0.6000	 0.4670	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_3	 0.1000	 0.1670	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_4	 0.1000	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_5	 	 0.0333	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_6	 	 0.0333	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_7	 	 0.0333	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_8	 	 0.0333	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_9	 	 0.0333	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_10	 	 	 0.2590	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_11	 	 	 0.0370	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_12	 	 	 0.1480	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_13	 	 	 0.0741	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_14	 	 	 0.0741	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_15	 	 	 0.0370	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_16	 	 	 0.2590	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_17	 	 	 0.0370	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_18	 	 	 0.0370	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_19	 	 	 0.0370	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_20	 	 	 	 0.6000	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_21	 	 	 	 0.2000	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_22	 	 	 	 0.2000	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_23	 	 	 	 	 1.0000	 1.0000	 0.5000	 	 	 	 	 0.2730	 	 0.3330	 	 	 	 	 	 	 	 	 	

Hap_24	 	 	 	 	 	 	 0.2500	 1.0000	 1.0000	 0.9550	 1.0000	 0.2270	 0.3330	 0.1670	 	 0.2580	 0.3750	 0.0625	 0.2310	 	 	 	 	

Hap_25	 	 	 	 	 	 	 0.1250	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Table	S5	Distribution	of	the	COI	haplotypes	in	the	Raja	miraletus	samples.	Samples	code	given	as	in	Table	S1. 



Hap_26	 	 	 	 	 	 	 0.1250	 	 	 	 	 0.5000	 0.5000	 0.1670	 1.0000	 	 	 	 	 	 	 	 	

Hap_27	 	 	 	 	 	 	 	 	 	 0.0455	 	 	 	 	 	 	 	 	 	 	 	 	 	

Hap_28	 	 	 	 	 	 	 	 	 	 	 	 	 0.1670	 	 	 	 	 	 	 	 	 	 	

Hap_29	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.1670	 	 	 	 	 	 	 	 	 	

Hap_30	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.1670	 	 	 	 	 	 	 	 	 	

Hap_31	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.7420	 0.5000	 0.8750	 0.7690	 1.0000	 	 	 	

Hap_32	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.0417	 	 	 	 	 	 	

Hap_33	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.0417	 	 	 	 	 	 	

Hap_34	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.0417	 	 	 	 	 	 	

Hap_35	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.0625	 	 	 	 	 	

Hap_36	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.8570	 0.2860	 	

Hap_37	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.1430	 0.7140	 	

Hap_38	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 1.0000	

	
	 	



	
Locus	

ASAF/0
7	

ASAF/1
1	

AANG	 ASEN	 APOR	
MALG/0

3	
MALG/10	 MBAL	 MSAR	 MTUS/06	 MTUS/10	 MADV	 MMAL/02	 MION	 MNAD1	 MNAD2	 MSAD1	 MSAD2	 MISR/14	 MLEV	

	 n	=8	 n	=31	 n	=26	 n	=5	 n	=3	 n	=5	 n	=8	 n	=16	 n	=8	 n	=21	 n	=13	 n	=22	 n	=8	 n	=4	 n	=8	 n	=20	 n	=20	 n	=20	 n	=7	 n	=7	
LERI	
27	 NA=15	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
N	 8	 27	 25	 4	 3	 5	 6	 16	 8	 20	 11	 22	 7	 4	 8	 18	 19	 18	 7	 7	
A	 5	 5	 13	 7	 2	 2	 3	 3	 4	 5	 4	 6	 3	 2	 4	 2	 4	 5	 2	 2	

Ar	 1.7330	 1.4860	 1.9240	 1.9640	
1.533
0	 1.2000	 1.6820	 1.2800	 1.6920	 1.5440	 1.5710	 1.5690	 1.4730	 1.4290	 1.6500	 1.3860	 1.3660	 1.5160	 1.2640	 1.2640	

HO	 0.2500	 0.4074	 0.6800	 1.0000	 0.000
0	

0.2000	 0.5000	 0.3125	 0.2500	 0.3500	 0.7273	 0.6364	 0.4286	 0.5000	 0.7500	 0.3889	 0.2632	 0.4444	 0.0000	 0.0000	

HE	 0.6875	 0.4767	 0.9056	 0.8438	
0.444
4	 0.1800	 0.6250	 0.2715	 0.6484	 0.5300	 0.5455	 0.5558	 0.4388	 0.3750	 0.6094	 0.3750	 0.3560	 0.5015	 0.2449	 0.2449	

FIS	 0.6740	 0.1640	 0.2680	 -
0.0430	

1.000
0	 0.0000	 0.2860	 -0.1190	 0.6540	 0.3620	 -0.2900	 -0.1220	 0.1000	 -0.2000	 -0.1670	 -0.0080	 0.2860	 0.1420	 1.0000	 1.0000	

NA	 0.2765	 0.0591	 0.1229	 0.0000	 0.315
0	

0.0000	 0.0759	 0.0000	 0.2454	 0.1392	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0929	 0.0005	 0.2364	 0.2364	

HWE	 0.0064*	 0.3678	
0.0000

*	 1.0000	
0.198
4	 -	 0.3226	 1.0000	 0.0162*	 0.0435*	 0.4259	 0.0088*	 0.4408	 1.0000	 1.0000	 1.0000	 0.0163*	 0.1301	 0.0781	 0.0750	

LERI	
26	

NA=12	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
N	 7	 29	 24	 5	 3	 5	 8	 16	 7	 20	 13	 21	 8	 4	 8	 20	 20	 20	 7	 7	
A	 5	 6	 9	 4	 1	 1	 2	 2	 2	 3	 3	 1	 1	 2	 5	 3	 2	 5	 3	 2	

Ar	 1.8020	 1.7230	 1.7070	 1.7780	 1.000
0	 1.0000	 1.2330	 1.2260	 1.2640	 1.1880	 1.1510	 1.0000	 1.0000	 1.4290	 1.8080	 1.1880	 1.2240	 1.5580	 1.4730	 1.2640	

HO	 0.1429	 0.1724	 0.4583	 0.6000	 0.000
0	

0.0000	 0.0000	 0.2500	 0.0000	 0.2000	 0.1538	 0.0000	 0.0000	 0.5000	 0.1250	 0.2000	 0.1500	 0.4500	 0.4286	 0.0000	

HE	 0.7449	 0.7105	 0.6918	 0.7000	
0.000
0	 0.0000	 0.2188	 0.2188	 0.2449	 0.1838	 0.1450	 0.0000	 0.0000	 0.3750	 0.7578	 0.1838	 0.2188	 0.5438	 0.4388	 0.2449	

FIS	 0.8330	 0.7650	 0.3560	 0.2500	 NA	 NA	 1.0000	 -0.1110	 1.0000	 -0.0630	 -0.0210	 NA	 NA	 -0.2000	 0.8540	 -0.0630	 0.3370	 0.1970	 0.1000	 1.0000	

NA	 0.3599	 0.3146	 0.1462	 0.0379	 0.001
0	 0.0010	 0.2238	 0.0000	 0.2364	 0.0000	 0.0000	 0.0010	 0.0010	 0.0000	 0.3644	 0.0000	 0.0846	 0.0423	 0.0000	 0.2364	

HWE	 0.0001*	 0.0000*	
0.0000

*	
0.6966	 -	 -	 0.0654	 1.0000	 0.0782	 1.0000	 1.0000	 -	 -	 1.0000	 0.0002*	 1.0000	 0.2447	 0.0709	 0.4335	 0.0769	

LERI	
24	 NA=12	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
N	 7	 31	 25	 5	 3	 4	 6	 15	 8	 19	 12	 22	 8	 4	 8	 19	 18	 19	 7	 7	
A	 3	 3	 8	 4	 3	 3	 2	 4	 3	 3	 4	 2	 2	 3	 2	 4	 4	 5	 3	 2	

Ar	 1.6150	 1.4660	 1.7800	 1.7780	
1.800
0	 1.4640	 1.4850	 1.6250	 1.5670	 1.5680	 1.5870	 1.4850	 1.4000	 1.7500	 1.5250	 1.5850	 1.5840	 1.5900	 1.5380	 1.5270	

HO	 0.2857	 0.5484	 0.5200	 0.8000	 0.000
0	 0.5000	 0.3333	 0.5333	 0.0000	 0.0526	 0.1667	 0.4091	 0.5000	 0.2500	 0.8750	 0.3158	 0.3889	 0.1053	 0.1429	 0.5714	

HE	 0.5714	 0.4584	 0.7648	 0.7000	 0.666 0.4063	 0.4444	 0.6044	 0.5313	 0.5526	 0.5625	 0.4742	 0.3750	 0.6563	 0.4922	 0.5693	 0.5679	 0.5748	 0.5000	 0.4898	

Table	S6	Summary	statistics	of	 the	SSR	polymorphism	per	geographical	sample	and	over	all	 the	 loci	considered.	N	number	of	 individuals.	A	number	of	alleles.	Ar	allelic	 richness.	Ho	observed	
heterozygosity.	HE	expected	 heterozygosity.	 FIS	 value.	HWE	 deviation	 from	Hardy-Weinberg	 equilibrium.	 Significant	 P-values	 are	 highlighted	 in	 bold	 (P<0.05),	 *P	 significant	 after	 sequential	
Bonferroni.	Samples	code	given	as	in	Table	S1. 



7	

FIS	 0.5560	 -0.1810	 0.3380	 -
0.0320	

1.000
0	

-0.0910	 0.3330	 0.1520	 1.0000	 0.9100	 0.7250	 0.1600	 -0.2730	 0.7000	 -0.7500	 0.4670	 0.3410	 0.8260	 0.7500	 -0.0910	

NA	 0.2032	 0.0000	 0.1581	 0.0000	
0.400
0	 0.0000	 0.0815	 0.0734	 0.3553	 0.3246	 0.2446	 0.0455	 0.0000	 0.2538	 0.0000	 0.1725	 0.1353	 0.3060	 0.2458	 0.0000	

HWE	 0.1051	 0.6248	
0.0051

*	 0.6936	 0.065
8	 1.0000	 1.0000	 0.2372	 0.0007*	 0.0000*	 0.0014*	 0.6504	 1.0000	 0.1498	 0.1388	 0.0115*	 0.0632	 0.0000*	 0.0227*	 1.0000	

LERI	
34	 NA=8	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
N	 8	 30	 26	 5	 1	 5	 6	 15	 8	 20	 12	 22	 8	 4	 8	 19	 18	 18	 7	 7	
A	 3	 4	 5	 3	 1	 2	 2	 2	 3	 3	 1	 2	 4	 2	 1	 2	 3	 3	 2	 2	

Ar	 1.5080	 1.5660	 1.6700	 1.6220	 1.000
0	

1.3560	 1.5450	 1.5150	 1.4330	 1.2680	 1.0000	 1.4060	 1.3500	 1.5360	 1.0000	 1.1930	 1.4890	 1.4460	 1.5270	 1.4400	

HO	 0.3750	 0.4333	 0.6154	 0.4000	
0.000
0	 0.4000	 0.3333	 0.4000	 0.0000	 0.1000	 0.0000	 0.2727	 0.2500	 0.7500	 0.0000	 0.1053	 0.2222	 0.3333	 0.2857	 0.0000	

HE	 0.4766	 0.5567	 0.6568	 0.5600	 0.000
0	 0.3200	 0.5000	 0.4978	 0.4063	 0.2612	 0.0000	 0.3967	 0.3281	 0.4688	 0.0000	 0.1884	 0.4753	 0.4336	 0.4898	 0.4082	

FIS	 0.2760	 0.2380	 0.0830	 0.3850	 NA	 -0.1430	 0.4120	 0.2290	 1.0000	 0.6330	 NA	 0.3330	 0.3000	 -0.5000	 NA	 0.4630	 0.5530	 0.2580	 0.4780	 1.0000	

NA	 0.1866	 0.0637	 0.0674	 0.1333	 0.001
0	

0.0000	 0.1111	 0.0654	 0.3116	 0.1646	 0.0010	 0.0988	 0.0000	 0.0000	 0.0010	 0.1072	 0.1923	 0.0833	 0.1381	 0.3024	

HWE	 0.1246	 0.2842	
0.0457

*	 0.2408	 -	 1.0000	 0.4748	 0.6048	 0.0051*	 0.0102*	 -	 0.2708	 0.2078	 1.0000	 -	 0.1606	 0.0042*	 0.2001	 0.4404	 0.0203*	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

LERI	
63	 NA=14	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
N	 7	 31	 26	 5	 3	 4	 6	 16	 7	 14	 13	 22	 7	 3	 8	 17	 19	 19	 4	 7	
A	 4	 2	 8	 6	 1	 1	 2	 2	 2	 3	 3	 3	 2	 2	 2	 4	 5	 8	 3	 4	

Ar	 1.7140	 1.4550	 1.8220	 1.8440	 1.000
0	 1.0000	 1.4090	 1.4980	 1.2640	 1.3730	 1.2180	 1.5610	 1.4400	 1.6000	 1.5250	 1.7110	 1.7580	 1.7980	 1.4640	 1.7800	

HO	 0.4286	 0.5484	 0.7692	 0.6000	 0.000
0	

0.0000	 0.1667	 0.1875	 0.0000	 0.1429	 0.0769	 0.4091	 0.5714	 0.3333	 0.8750	 0.5294	 0.5263	 0.3158	 0.5000	 0.5714	

HE	 0.6633	 0.4480	 0.8062	 0.7600	
0.000
0	 0.0000	 0.3750	 0.4824	 0.2449	 0.3597	 0.2101	 0.5486	 0.4082	 0.5000	 0.4922	 0.6903	 0.7382	 0.7770	 0.4063	 0.7245	

FIS	 0.4190	 -0.2090	 0.0650	 0.3140	 NA	 NA	 0.6150	 0.6310	 1.0000	 0.6260	 0.6570	 0.2760	 -0.3330	 0.5000	 -0.7500	 0.2620	 0.3120	 0.6110	 -0.0910	 0.2840	

NA	 0.1803	 0.0404	 0.0304	 0.0006	
0.001
0	 0.0010	 0.1677	 0.2012	 0.2364	 0.1912	 0.1582	 0.1099	 0.0000	 0.1111	 0.0000	 0.1012	 0.1109	 0.2661	 0.0000	 0.0666	

HWE	 0.0348*	 0.4180	 0.2287	 0.0516	 -	 -	 0.2720	 0.0313*	 0.0791	 0.0408*	 0.0426*	 0.0543	 1.0000	 1.0000	 0.1360	 0.1586	 0.0101*	 0.0000	 1.0000	 0.1370	
LERI	
50	 NA=8	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
N	 8	 30	 26	 4	 3	 5	 7	 14	 6	 18	 13	 22	 8	 4	 8	 16	 14	 15	 5	 7	
A	 3	 2	 3	 3	 3	 3	 3	 3	 2	 4	 3	 1	 1	 1	 1	 3	 3	 5	 4	 2	

Ar	 1.4330	 1.0330	 1.1120	 1.6070	
1.600
0	 1.6220	 1.6150	 1.5820	 1.1670	 1.6160	 1.6770	 1.0000	 1.0000	 1.0000	 1.0000	 1.4920	 1.5610	 1.5400	 1.7330	 1.4950	

HO	 0.2500	 0.0333	 0.1154	 0.7500	 0.333
3	 0.0000	 0.0000	 0.0000	 0.1667	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.1333	 0.2000	 0.1429	

HE	 0.4063	 0.0328	 0.1102	 0.5313	
0.500
0	 0.5600	 0.5714	 0.5612	 0.1528	 0.5988	 0.6509	 0.0000	 0.0000	 0.0000	 0.0000	 0.4766	 0.5408	 0.5222	 0.6600	 0.4592	



FIS	 0.4400	 0.0000	 -0.0270	
-

0.2860	
0.500
0	 1.0000	 1.0000	 1.0000	 0.0000	 1.0000	 1.0000	 NA	 NA	 NA	 NA	 1.0000	 1.0000	 0.7600	 0.7500	 0.7270	

NA	 0.1465	 0.0001	 0.0000	 0.0000	 0.000
8	 0.3659	 0.3687	 0.3615	 0.0000	 0.3766	 0.3948	 0.0010	 0.0010	 0.0010	 0.0010	 0.3371	 0.3552	 0.2580	 0.2863	 0.2222	

HWE	 0.1449	 -	 1.0000	 1.0000	 0.193
0	

0.0173*	 0.0035*	 0.0000*	 -	 0.0000*	 0.0000*	 -	 -	 -	 -	 0.0000*	 0.0000*	 0.0000*	 0.016*	 0.1051	

LERI	
40	 NA=6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
N	 7	 31	 26	 5	 3	 4	 8	 15	 6	 19	 13	 22	 7	 4	 8	 18	 19	 17	 4	 7	
A	 2	 2	 2	 2	 1	 1	 2	 2	 2	 2	 2	 1	 2	 1	 1	 2	 3	 4	 3	 2	

Ar	 1.4950	 1.0320	 1.2080	 1.5330	
1.000
0	 1.0000	 1.3250	 1.1290	 1.1670	 1.2730	 1.2710	 1.0000	 1.2640	 1.0000	 1.0000	 1.2030	 1.4210	 1.4800	 1.6070	 1.1430	

HO	 0.1429	 0.0323	 0.0769	 0.8000	 0.000
0	 0.0000	 0.1250	 0.0000	 0.1667	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.1176	 0.5000	 0.1429	

HE	 0.4592	 0.0317	 0.2041	 0.4800	 0.000
0	

0.0000	 0.3047	 0.1244	 0.1528	 0.2659	 0.2604	 0.0000	 0.2449	 0.0000	 0.0000	 0.1975	 0.4100	 0.4654	 0.5313	 0.1327	

FIS	 0.7270	 0.0000	 0.6350	
-

0.6000	 NA	 NA	 0.6320	 1.0000	 0.0000	 1.0000	 1.0000	 NA	 1.0000	 NA	 NA	 1.0000	 1.0000	 0.7600	 0.2000	 0.0000	

NA	 0.1677	 0.0001	 0.1469	 0.0000	 0.001
0	

0.0010	 0.1641	 0.1703	 0.0000	 0.2460	 0.2435	 0.0010	 0.2364	 0.0010	 0.0010	 0.2131	 0.3100	 0.2392	 0.0000	 0.0000	

HWE	 0.1068	 -	 0.017*	 0.4300	 -	 -	 0.1988	 0.0341*	 -	 0.0004*	 0.005*	 -	 0.0750	 -	 -	 0.0026*	 0.0000*	 0.0000*	 0.4246	 -	
LERI	
44	

NA=14	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
N	 4	 16	 12	 2	 1	 3	 7	 16	 6	 21	 12	 21	 8	 4	 8	 16	 17	 16	 5	 5	
A	 3	 2	 1	 2	 1	 3	 4	 1	 1	 1	 1	 7	 6	 2	 3	 3	 4	 8	 4	 1	

Ar	 1.4640	 1.0630	 1.0000	 1.6670	 1.000
0	

1.7330	 1.7580	 1.0000	 1.0000	 1.0000	 1.0000	 1.5150	 1.7170	 1.4290	 1.4920	 1.4860	 1.6080	 1.6980	 1.6440	 1.0000	

HO	 0.2500	 0.0625	 0.0000	 0.0000	
0.000
0	 0.6667	 0.4286	 0.0000	 0.0000	 0.0000	 0.0000	 0.4286	 0.7500	 0.0000	 0.6250	 0.4375	 0.4118	 0.3750	 0.8000	 0.0000	

HE	 0.4063	 0.0605	 0.0000	 0.5000	 0.000
0	 0.6111	 0.7041	 0.0000	 0.0000	 0.0000	 0.0000	 0.5023	 0.6719	 0.3750	 0.4609	 0.4707	 0.5900	 0.6758	 0.5800	 0.0000	

FIS	 0.5000	 0.0000	 NA	 1.0000	 NA	 0.1110	 0.4550	 NA	 NA	 NA	 NA	 0.1710	 -0.0500	 1.0000	 -0.2960	 0.1030	 0.3290	 0.4710	 -0.2800	 NA	

NA	 0.0009	 0.0000	 0.0010	 0.3333	 0.001
0	 0.0000	 0.1616	 0.0010	 0.0010	 0.0010	 0.0010	 0.0000	 0.0000	 0.2903	 0.0000	 0.0207	 0.1165	 0.1652	 0.0000	 0.0010	

HWE	 0.1445	 -	 -	 0.3320	 -	 1.0000	 0.1619	 -	 -	 -	 -	 0.0344*	 0.0229*	 0.1429	 1.0000	 1.0000	 0.1040	 0.0000*	 1.0000	 -	
All	loci	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
A	mean	 3.5000	 3.2500	 6.1250	 3.8750	 1.625

0	 2.0000	 2.5000	 2.3750	 2.3750	 3.0000	 2.6250	 2.8750	 2.6250	 1.8750	 2.3750	 2.8750	 3.5000	 5.3750	 3.0000	 2.1250	

Ar	mean	 1.5955	 1.3530	 1.5279	 1.7241	 1.241
6	

1.2969	 1.5065	 1.3569	 1.3193	 1.3538	 1.3094	 1.3170	 1.3305	 1.3966	 1.3750	 1.4055	 1.5014	 1.5783	 1.5313	 1.3641	

HO	mean	 0.2656	 0.2798	 0.4044	 0.6188	
0.041
7	 0.2208	 0.2359	 0.2104	 0.0729	 0.1057	 0.1406	 0.2695	 0.3125	 0.2917	 0.4063	 0.2471	 0.2453	 0.2844	 0.3571	 0.1786	

HE	mean	 0.5519	 0.3469	 0.5175	 0.6344	 0.201
4	 0.2597	 0.4679	 0.3451	 0.2977	 0.3440	 0.2968	 0.3097	 0.3084	 0.3438	 0.3516	 0.3939	 0.4871	 0.5618	 0.4814	 0.3380	

FIS	mean	 0.5740	 0.2100	 0.2380	 0.1940	 0.857
0	

0.2810	 0.5550	 0.4190	 0.7840	 0.7070	 0.5560	 0.1530	 0.0580	 0.3000	 -0.0900	 0.3980	 0.5180	 0.5160	 0.3490	 0.5290	

HWE	 0.0000*	 0.0000*	
0.0000

*	 1.5895	
0.062
7	 0.4225	 0.0180*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0045*	 0.1312	 0.8090	 0.0046*	 0.0000*	 0.0000*	 0.0000*	 0.0545	 0.0089*	



	
	 	



	
	 	 W	Indian	 SE	Atlantic	 CE	Atlantic	 NE	Atlantic	 Western	Mediterranean	 Eastern	Mediterranean	

	 	 ASAF/07	 ASAF/11	 AANG	 ASEN	 APOR	 MALG/03	 MALG/10	 MBAL	 MSAR	 MTUS/06	 MTUS/10	 MADV	 MMAL/02	 MMAL/14	 MION	 MNAD1	 MNAD2	 MSAD1	 MSAD2	 MGRE	 MISR/09	 MISR/14	 MLEV	

W	Ind	
ASAF/07	 *	 0,7061	 0.0000*	 0.0001*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0,0049	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0,0098	 0.0000*	 0.0000*	 0.0000*	

ASAF/11	 -0,0252	 *	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	

SE	Atl	 AANG	 0.3142*	 0.4187*	 *	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0001*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0029*	 0.0000*	 0.0000*	 0.0000*	

CE	Atl	 ASEN	 0.9428*	 0.93301*	 0.5001*	 *	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0020*	 0.0000*	 0.0000*	 0,0039	 0,0166	 0.0000*	 0.0000*	 0.0000*	 0.0001*	 0,0352	 0.0000*	 0.0000*	 0.0020*	

NE	Atl	 APOR	 0.9865*	 0.9767*	 0.7262*	 0.9944*	 *	 0,9990	 0,0244	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0,0068	 0.0049*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0,0293	 0.0000*	 0.0000*	 0.0000*	

W	Med	

MALG/03	 0.9848*	 0.9754*	 0.7123*	 0.9934*	 0,0000	 *	 0,0615	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0020*	 0.0000*	 0,0195	 0.0029*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0,0264	 0.0000*	 0.0000*	 0.0000*	

MALG/10	 0.9690*	 0.9686*	 0.7088*	 0.9723*	 0,2862	 0,2449	 *	 0.0000*	 0.0029*	 0.0000*	 0,0938	 0,0596	 0.0029*	 0,6523	 0,0283	 0.0000*	 0,0029	 0.0000*	 0.0001*	 0,1006	 0.0000*	 0.0000*	 0.0001*	

MBAL	 0.9912*	 0.9816*	 0.7778*	 0.9968*	 1.0000*	 1.0000*	 0.4164*	 *	 0,9990	 0,9990	 0,9990	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0020*	 0.0000*	 0.0000*	 0.0000*	

MSAR	 0.9875*	 0.9779*	 0.7394*	 0.9950*	 1.0000*	 1.0000*	 0.3044*	 0,0000	 *	 0,9990	 0,9990	 0.0039*	 0.0000*	 0.0012*	 0.0049*	 0.0000*	 0.0020*	 0.0000*	 0.0000*	 0,0039	 0.0000*	 0.0000*	 0.0000*	

MTUS/06	 0.9903*	 0.9816*	 0.7879*	 0.9952*	 0.9400*	 0.9360*	 0.3994*	 -0,0069	 -0,0359	 *	 0,9990	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0078*	 0.0000*	 0.0000*	 0.0000*	

MTUS/10	 0.9831*	 0.9747*	 0.7056*	 0.9922*	 1.0000*	 1.0000*	 0,1931	 0,0000	 0,0000	 -0,0845	 *	 0,0234	 0,0059	 0,2148	 0.0068*	 0,0010	 0,0176	 0.0000*	 0.0029*	 0,0322	 0.0000*	 0.0000*	 0.0001*	

MADV	 0.9642*	 0.9659*	 0.7718*	 0.9667*	 0.4824*	 0.4602*	 0,1371	 0.4048*	 0.3383*	 0.4105*	 0,2753	 *	 0,1660	 0,2744	 0,2373	 0.0000*	 0.0016*	 0.0000*	 0.0049*	 0,3740	 0.0000*	 0.0000*	 0.0000*	

MMAL/02	 0.9696*	 0.9693*	 0.7387*	 0.9723*	 0.7258*	 0.7024*	 0.3660*	 0.6468*	 0.5629*	 0.6408*	 0,4799	 0,0462	 *	 0,0508	 0,5498	 0.0000*	 0.0001*	 0.0001*	 0.0009*	 0,0596	 0.0000*	 0.0000*	 0.0000*	

MMAL/14	 0.9620*	 0.9662*	 0.6951*	 0.9637*	 0,4227	 0,3735	 -0,0611	 0.3632*	 0.2394*	 0.3537*	 0,1143	 0,0190	 0,1937	 *	 0,0840	 0.0088*	 0,0537	 0.0020*	 0,0098	 0,4932	 0.0000*	 0.0000*	 0.0001*	

E	Med	

MION	 0,9791	 0.9723*	 0.6827*	 0,9886	 1.0000*	 1.0000*	 0,6030	 1.0000*	 1.0000*	 0.9599*	 1,0000	 0,1939	 0,0233	 0,3882	 *	 0.0000*	 0.0000*	 0.0000*	 0.0059*	 0,1162	 0.0068*	 0,0098	 0.0098*	

MNAD1	 0.9858*	 0.9802*	 0.8154*	 0.9893*	 0.8341*	 0.8262*	 0.5194*	 0.6859*	 0.6420*	 0.6673*	 0.6037*	 0.2956*	 0.4116*	 0.3198*	 0.7292*	 *	 0,1719	 0,3066	 0,9990	 0,9990	 0.0000*	 0.0000*	 0.0000*	

MNAD2	 0,9780	 0.9746*	 0.7890*	 0.9815*	 0.70600*	 0.6908*	 0.3222*	 0.4338*	 0.3704*	 0.4278*	 0,3109	 0.2089*	 0.3159*	 0,1382	 0.6007*	 0,0177	 *	 0,0576	 0,3731	 0,6231	 0.0000*	 0.0000*	 0.0000*	

MSAD1	 0.9843*	 0.9775*	 0.7664*	 0.9894*	 0.8866*	 0,8773	 0.5416*	 0.8235*	 0.7779*	 0.7899*	 0.7333*	 0.2926*	 0.3843*	 0.3384*	 0.7517*	 0,0089	 0,0950	 *	 0,6201	 0,9990	 0.0000*	 0.0000*	 0.0000*	

MSAD2	 0.9830*	 0.9763*	 0.7518*	 0.9886*	 0.8774*	 0.8658*	 0.4604*	 0.7909*	 0.7324*	 0.7463*	 0.6730*	 0.2363*	 0.3405*	 0,2398	 0.7494*	 -0,0556	 0,0039	 -0,0298	 *	 0,9990	 0.0000*	 0.0000*	 0.0000*	

MGRE	 0,9771	 0.9720*	 0.6650*	 0,9863	 1,0000	 1,0000	 0,3722	 1.0000*	 1,0000	 0.9185*	 1,0000	 0,1217	 0,1724	 0,0363	 1,0000	 -0,1016	 -0,0250	 -0,2872	 -0,1607	 *	 0,0205	 0,0205	 0,0205	

MISR/09	 0.9826*	 0.9761*	 0.7328*	 0.9895*	 0.9723*	 0.9681*	 0.7779*	 0.9769*	 0.9656*	 0.9573*	 0.9506*	 0.6738*	 0.7300*	 0.6945*	 0.9327*	 0.8448*	 0.7642*	 0.8559*	 0.8527*	 0,8880	 *	 0,0977	 0.0000*	

MISR/14	 0.9809*	 0.9756*	 0.7329*	 0.9868*	 0.9593*	 0.9532*	 0.7866*	 0.9671*	 0.9513*	 0.9519*	 0.9304*	 0.7046*	 0.7504*	 0.7119*	 0,9056	 0.8613*	 0.7897*	 0.8640*	 0.8585*	 0,8536	 0,4167	 *	 0.0001*	

MLEV	 0.9851*	 0.9767*	 0.7277*	 0.9933*	 1.0000*	 1.0000*	 0.7328*	 1.0000*	 1.0000*	 0.9658*	 1.0000*	 0.5632*	 0.6441*	 0.6139*	 1.0000*	 0.7589*	 0.6516*	 0.7951*	 0.7999*	 1,0000	 0.9546*	 0.9359*	 *	

	 	

Table	S7	Pair-wise	Фst	values	(below	the	diagonal)	and	associated	significance	(above	the	diagonal).	Significant	P-values	are	highlighted	in	bold	(P<0.05),	*P	significant	after	sequential	Bonferroni.	
Samples	code	given	as	in	Table	S1. 



	

	 	
W	Indian	 SE	Atlantic	 CE	Atlantic	 NE	Atlantic	 Western	Mediterranean	 Eastern	Mediterranean	

	 	 ASAF/07	 ASAF/11	 AANG	 ASEN	 APOR	 MALG/03	 MALG/10	 MBAL	 MSAR	 MTUS/06	 MTUS/10	 MADV	 MMAL/02	 MION	 MNAD1	 MNAD2	 MSAD1	 MSAD2	 MISR/14	 MLEV	

W	Ind	
ASAF/07	 *	 0.1524	 0.2038	 0.0178*	 0.0048*	 0.0006*	 0.0005*	 0.0000*	 0.0035*	 0.0000*	 0.0000*	 0.0000*	 0.0002*	 0.0082*	 0.0160*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0005*	

ASAF/11	 0.0802	 *	 0.0000*	 0.0117*	 0.0003*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.00099*	 0.0067*	 0.0000*	 0.0000*	 0.0000*	 0.0001*	 0.0000*	

SE	Atl	 AANG	 0.0457	 0.1965*	 *	 0.0019*	 0.0001*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0001*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	

CE	Atl	 ASEN	 0.1926*	 0.2246*	 0.2559*	 *	 0.0198*	 0.0062*	 0.0146*	 0.0004*	 0.0137*	 0.0001*	 0.0003*	 0.0000	 0.0004*	 0.0071*	 0.1738	 0.0015*	 0.0032*	 0.0660	 0.0687	 0.0445*	

NE	Atl	 APOR	 0.5409*	 0.4944*	 0.5134*	 0.4339*	 *	 0.9999	 0.9999	 0.5704	 0.7785	 0.6497	 0.9999	 0.9999	 0.9999	 0.0290*	 0.1260	 0.0005*	 0.0021*	 0.0012*	 0.0077*	 0.0090*	

W	Med	

MALG/03	 0.5952*	 0.5183*	 0.5392*	 0.5139*	 0.0000	 *	 0.9999	 0.5322	 0.4875	 0.4220	 0.9999	 0.9999	 0.9999	 0.0085*	 0.0207*	 0.0000*	 0.0001*	 0.0001*	 0.0042*	 0.0011*	

MALG/10	 0.5190*	 0.4684*	 0.4903*	 0.3903*	 -0.0260	 0.0252	 *	 0.9999	 0.9999	 0.8716	 0.7511	 0.2631	 0.9999	 0.0052*	 0.0299*	 0.0000*	 0.0000*	 0.0000*	 0.0012*	 0.0003*	

MBAL	 0.5697*	 0.5012*	 0.5249*	 0.4554*	 -0.0190	 0.0231	 -0.0492	 *	 0.3129	 0.7832	 0.4702	 0.0822	 0.2547	 0.0001*	 0.0004*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	

MSAR	 0.4496*	 0.4115*	 0.3988*	 0.3725*	 0.0857	 0.1444	 0.0095	 0.0244	 *	 0.2488	 0.2827	 0.1175	 0.4694	 0.0076*	 0.0859	 0.0000*	 0.0000*	 0.0002*	 0.00198*	 0.0007*	

MTUS/06	 0.6103*	 0.5199*	 0.5455*	 0.5186*	 -0.0173	 0.0226	 -0.0408	 -0.0243	 0.0309	 *	 0.7082	 0.0767	 0.2894	 0.0002*	 0.0002*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	

MTUS/10	 0.6074*	 0.5212*	 0.5444*	 0.5289*	 -0.0721	 -0.0301	 -0.0198	 -0.0056	 0.0447	 -0.0212	 *	 0.5359	 0.4976	 0.0014*	 0.0012*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	

MADV	 0.7755*	 0.6080*	 0.6399*	 0.7507*	 0.0000	 0.0000	 0.1089	 0.0725	 0.3112	 0.0634	 -0.0138	 *	 0.9999	 0.0002*	 0.0001*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	 0.0000*	

MMAL/02	 0.6524*	 0.5438*	 0.5675*	 0.5937*	 0.0000	 0.0000	 0.0667	 0.0529	 0.2000	 0.0495	 -0.0034	 0.0000	 *	 0.0020*	 0.0069*	 0.0000*	 0.0000*	 0.0000*	 0.0004*	 0.0002*	

E	Med	

MION	 0.3553*	 0.3770*	 0.3895*	 0.3538*	 0.6778*	 0.7428*	 0.6072*	 0.6380*	 0.5826*	 0.6756*	 0.6864*	 0.8973*	 0.8012*	 *	 0.3910	 0.0001*	 0.0001*	 0.0000*	 0.0118*	 0.0149*	

MNAD1	 0.1644*	 0.1945*	 0.2326*	 0.1177	 0.2829	 0.3462*	 0.2831*	 0.3448*	 0.2130	 0.3695*	 0.3646*	 0.5622*	 0.4121*	 0.0761	 *	 0.0000*	 0.0002*	 0.0014*	 0.0294*	 0.0084*	

MNAD2	 0.6137*	 0.5327*	 0.5295*	 0.4598*	 0.8303*	 0.8432*	 0.7828*	 0.7801*	 0.7652*	 0.7979*	 0.8141*	 0.8979*	 0.8587*	 0.7527*	 0.5093*	 *	 0.7516	 0.0201*	 0.1930	 0.4823	

MSAD1	 0.5847*	 0.5166*	 0.5117*	 0.4148*	 0.7896*	 0.8053*	 0.7448*	 0.7473*	 0.7232*	 0.7669*	 0.7807*	 0.8714*	 0.8239*	 0.7187*	 0.4726*	 -0.0162	 *	 0.0411*	 0.3014	 0.4781	

MSAD2	 0.3241*	 0.3525*	 0.3168*	 0.1122	 0.5402*	 0.5696*	 0.5143*	 0.5510*	 0.4691*	 0.5788*	 0.5779*	 0.6865*	 0.6025*	 0.4690*	 0.2445*	 0.0817*	 0.0662*	 *	 0.4846	 0.1973	

MISR/14	 0.3766*	 0.3840*	 0.3709*	 0.1699	 0.6063*	 0.6601*	 0.5722*	 0.6106*	 0.5374*	 0.6503*	 0.6541*	 0.8273*	 0.7154*	 0.4910*	 0.2157*	 0.0625	 0.0193	 -0.0053	 *	 0.5846	

MLEV	 0.4886*	 0.4545*	 0.4449*	 0.3265*	 0.8178*	 0.8472*	 0.7523*	 0.7613*	 0.7370*	 0.7917*	 0.8064*	 0.9312*	 0.8765*	 0.6317*	 0.3579*	 0.0201	 0.0286	 0.0495	 0.0250	 *	

	
	

Table	S8	Pair-wise	Fst	values	(below	the	diagonal)	and	associated	significance	(above	the	diagonal).	Significant	P-values	are	highlighted	in	bold	(P<0.05),	*P	
significant	after	sequential	Bonferroni.	Samples	code	given	as	in	Table	S1. 



	
	



Appendix	II.	Chapter	3	
	
	

	
Figure	S1	On	board	sampling	procedure	(sampling	Raja	miraletus	during	SoleMon	2014).	

	
	
	
	
	
	
	
	

	
	

Figure	S2	Sampling	locations.	AS	Adriatic	Sea,	SC	Sicilian	Channel,	TS	Tyrrhenian	Sea,	SA	South	Africa.	



Table	S9	Sampling	details	for	each	individual.	Na	not	available	information.	
	

Sample_ID	 Site	 Date	 Haul	 Lat_D_S	 Lon_D_S	
Depth	
(m)	

Species	
Weight	
(g)	

Length	
(cm)	

Disc	lenght	
(cm)	

Disc	width	
(cm)	

Sex	

RAJ01	 Chioggia	 03/03/2014	 land	 land	 land	 Na	 Raja	asterias	 Na	 60	 Na	 Na	 M	
RAJ02	 Viareggio	 25/07/2014	 3	 Na	 Na	 Na	 Raja	asterias	 Na	 50.5	 Na	 Na	 M	

RAJ03	 Viareggio	 25/07/2015	 4	 43°48'42''N	 10°02'819''E	 32	 Raja	asterias	 Na	 53	 Na	 Na	 M	

RAJ04	 Viareggio	 25/07/2016	 5	 43°48'85''N	 10°01'63''E	 35	 Raja	asterias	 Na	 52	 Na	 Na	 M	

RAJ05	 Viareggio	 25/07/2017	 6	 43°48'80''N	 10°01'00''E	 37	 Raja	asterias	 Na	 50.5	 Na	 Na	 M	
RAJ06	 Viareggio	 25/07/2018	 6	 43°48'80''N	 10°01'00''E	 37	 Raja	asterias	 Na	 53	 Na	 Na	 F	

RAJ07	 Viareggio	 25/07/2019	 7	 43°48'756''N	 10°02'44''E	 32	 Raja	asterias	 Na	 54.5	 Na	 Na	 F	

RAJ08	 GSA17	 16/10/2014	 120b	 Na	 Na	 Na	 Raja	asterias	 Na	 32	 Na	 Na	 F	

RAJ09	 GSA17	 16/10/2014	 120b	 Na	 Na	 Na	 Raja	asterias	 Na	 31	 Na	 Na	 M	
RAJ10	 GSA17	 16/10/2014	 122	 Na	 Na	 Na	 Raja	asterias	 Na	 27	 Na	 Na	 M	

RAJ11	 GSA17	 16/10/2014	 123	 Na	 Na	 Na	 Raja	asterias	 Na	 29	 Na	 Na	 M	

RAJ12	 GSA17	 16/10/2014	 123	 Na	 Na	 Na	 Raja	asterias	 Na	 31.5	 Na	 Na	 F	

RAJ13	 GSA17	 18/10/2014	 131	 Na	 Na	 Na	 Raja	clavata	 Na	 21	 Na	 Na	 M	
RAJ14	 GSA17	 11/10/2014	 34	 43°24'627"N	 13°52'078"E	 18	 Raja	asterias	 Na	 49	 Na	 Na	 F	

RAJ15	 Viareggio	 25/07/2014	 1	 43°48'56''N	 10°04'415''E	 26	 Raja	asterias	 Na	 58	 Na	 Na	 F	

RAJ16	 GSA17	 11/10/2014	 33	 43°20'317"N	 13°44'222"E	 8	 Raja	asterias	 Na	 27.7	 Na	 Na	 M	

RAJ17	 GSA17	 11/10/2014	 33	 43°20'317"N	 13°44'222"E	 8	 Raja	asterias	 Na	 29	 Na	 Na	 F	
RAJ18	 GSA17	 11/10/2014	 31	 43°34'263"N	 13°37'565"E	 10	 Raja	asterias	 Na	 31.5	 Na	 Na	 M	

RAJ19	 GSA17	 11/10/2014	 31	 43°34'263"N	 13°37'565"E	 10	 Raja	asterias	 Na	 34	 Na	 Na	 F	

RAJ20	 GSA17	 13/11/2014	 50	 43°04'619"N	 14°01'448"E	 24	 Raja	asterias	 Na	 33.5	 Na	 Na	 M	

RAJ21	 GSA17	 20/11/2014	 53	 44°34'697"N	 13°32'562"E	 40	 Raja	clavata	 2702	 73.1	 37.5	 54	 F2	
RAJ22	 GSA17	 20/11/2014	 53	 44°34'697"N	 13°32'562"E	 40	 Raja	clavata	 1124	 58.3	 27.8	 39.2	 F1	

RAJ23	 GSA17	 20/11/2014	 22	 44°25'110"N	 13°38'506"E	 52	 Raja	clavata	 2322	 72.5	 35.3	 46.4	 M3	

RAJ24	 GSA17	 21/11/2014	 36	 43°40'475"N	 14°50'656"E	 85	 Raja	miraletus	 143	 33.2	 15.3	 19.7	 F1	

RAJ25	 GSA17	 21/11/2014	 36	 43°40'475"N	 14°50'656"E	 85	 Raja	miraletus	 40	 23.7	 6.5	 14.5	 F1	



RAJ26	 GSA17	 21/11/2014	 36	 43°40'475"N	 14°50'656"E	 85	 Raja	miraletus	 285	 39.2	 20.5	 24	 F2	
RAJ27	 GSA17	 21/11/2014	 32	 44°00'685"N	 14°30'762"E	 72.5	 Raja	miraletus	 214	 35.4	 17.5	 22.2	 M2	

RAJ28	 GSA17	 21/11/2014	 32	 44°00'685"N	 14°30'762"E	 72.5	 Raja	miraletus	 265	 48.2	 20.2	 24	 F	

RAJ29	 GSA17	 15/11/2014	 38	 43°22'266"N	 14°08'540"E	 68	 Raja	asterias	 Na	 52.5	 Na	 Na	 F	

RAJ30	 GSA17	 15/11/2014	 35	 43°25'494"N	 14°13'055"E	 75	 Raja	asterias	 Na	 48	 Na	 Na	 M	
RAJ31	 GSA17	 21/11/2014	 32	 44°00'685"N	 14°30'762"E	 72.5	 Raja	miraletus	 37	 21.9	 10.2	 13.3	 M1	

RAJ32	 GSA17	 21/11/2014	 32	 44°00'685"N	 14°30'762"E	 72.5	 Raja	miraletus	 57	 24.7	 11.2	 15.6	 M1	

RAJ34	 GSA17	 27/11/2015	 14	 44°45'768"N	 13°05'320"E	 40.6	 Raja	clavata	 504	 46	 22	 29.9	 M1	

RAJ35	 GSA17	 27/11/2015	 14	 44°45'768"N	 13°05'320"E	 40.6	 Raja	clavata	 68	 26.1	 11.7	 15.6	 F	
RAJ36	 GSA17	 27/11/2015	 14	 44°45'768"N	 13°05'320"E	 40.6	 Raja	clavata	 61	 21.1	 11.2	 15	 F	

RAJ37	 GSA17	 27/11/2015	 13	 44°36'022"N	 12°41'893"E	 33.2	 Raja	clavata	 60	 22.5	 10.7	 14.1	 M1	

RAJ39	 GSA16	 02/12/2014	 34	 37°42'28"N	 12°21'38"E	 146	
Leucoraja	
melitensis	

Na	 39.5	 Na	 Na	 M	

RAJ40	 GSA16	 02/12/2014	 34	 37°42'28"N	 12°21'38"E	 146	 Raja	miraletus	 Na	 44	 Na	 Na	 M	

RAJ41	 GSA16	 02/12/2014	 34	 37°42'28"N	 12°21'38"E	 146	
Leucoraja	
melitensis	

Na	 41	 Na	 Na	 F	

RAJ42	 GSA16	 02/12/2014	 35	 37°42'07"N	 12°10'54"E	 200	
Leucoraja	
melitensis	

Na	 38	 Na	 Na	 F	

RAJ43	 GSA16	 02/12/2014	 35	 37°42'07"N	 12°10'54"E	 200	
Leucoraja	
melitensis	

Na	 34.5	 Na	 Na	 F	

RAJ44	 GSA16	 02/12/2014	 36	 37°39'97"N	 11°54'76"E	 98	 Raja	miraletus	 Na	 33	 Na	 Na	 F	
RAJ45	 GSA16	 02/12/2014	 36	 37°39'97"N	 11°54'76"E	 98	 Raja	miraletus	 Na	 34	 Na	 Na	 M	

RAJ46	 GSA16	 03/12/2014	 40	 37°19'04"N	 11°46'15"E	 124	 Raja	clavata	 Na	 64	 Na	 Na	 F	

RAJ47	 GSA16	 03/12/2014	 42	 37°13'79"N	 12°03'26"E	 82	 Raja	miraletus	 Na	 36	 Na	 Na	 M	

RAJ48	 GSA16	 03/12/2014	 42	 37°13'79"N	 12°03'26"E	 82	 Raja	miraletus	 Na	 39	 Na	 Na	 F	
RAJ49	 GSA16	 03/12/2014	 42	 37°13'79"N	 12°03'26"E	 82	 Raja	miraletus	 Na	 37	 Na	 Na	 F	

RAJ50	 GSA16	 03/12/2014	 42	 37°13'79"N	 12°03'26"E	 82	 Raja	miraletus	 Na	 36	 Na	 Na	 F	

RAJ51	 GSA16	 03/12/2014	 42	 37°13'79"N	 12°03'26"E	 82	 Raja	clavata	 Na	 38	 Na	 Na	 F	

RAJ52	 GSA16	 03/12/2014	 43	 37°13'35"N	 12°06'77"E	 81	 Raja	polystigma	 Na	 32	 Na	 Na	 M	



RAJ53	 GSA16	 03/12/2014	 43	 37°13'35"N	 12°06'77"E	 81	
Leucoraja	
melitensis	

Na	 34.5	 Na	 Na	 F	

RAJ54	 GSA16	 04/12/2014	 45	 36°55'96"N	 12°18'54"E	 120	
Leucoraja	
melitensis	

Na	 39	 Na	 Na	 F	

RAJ55	 GSA16	 04/12/2014	 46	 36°57'66"N	 12°28'82"E	 118	 Raja	clavata	 Na	 49	 Na	 Na	 F	
RAJ56	 GSA16	 04/12/2014	 46	 36°57'66"N	 12°28'82"E	 118	 Raja	miraletus	 Na	 26	 Na	 Na	 F	

RAJ57	 GSA16	 05/12/2014	 53	 37°00'34"N	 13°00'84"E	 269	 Raja	clavata	 Na	 32	 Na	 Na	 F	

RAJ58	 GSA16	 07/12/2014	 58	 37°21'60"N	 12°18'94"E	 74	 Raja	brachyura	 Na	 35	 Na	 Na	 M	

RAJ59	 GSA16	 07/12/2014	 60	 37°34'33"N	 12°17'92"E	 66	 Raja	clavata	 Na	 37	 Na	 Na	 F	
RAJ60	 GSA16	 07/12/2014	 60	 37°34'33"N	 12°17'92"E	 67	 Raja	clavata	 Na	 36	 Na	 Na	 F	

RAJ61	 SC	 16/04/2015	 D00504	 34°	41.06'S	 021°	18.97'E	 68	 R.	ocellifera	 370	 39	 27	 27	 F	

RAJ62	 SC	 16/04/2015	 D00505	 34°	30.65'S	 021°	23.94'E	 64	 R.	ocellifera	 260	 34	 23	 23	 F	

RAJ63	 SC	 16/04/2015	 D00505	 34°	30.65'S	 021°	23.94'E	 64	 R.	ocellifera	 720	 46	 32	 32	 F	
RAJ64	 SC	 16/04/2015	 D00505	 34°	30.65'S	 021°	23.94'E	 64	 R.	ocellifera	 1025	 52	 35	 35	 F	

RAJ65	 SC	 16/04/2015	 D00505	 34°	30.65'S	 021°	23.94'E	 64	 R.	ocellifera	 270	 35	 25	 25	 M	

RAJ66	 SC	 16/04/2015	 D00505	 34°	30.65'S	 021°	23.94'E	 64	 R.	ocellifera	 265	 36	 23	 23	 M	

RAJ67	 SC	 16/04/2015	 D00505	 34°	30.65'S	 021°	23.94'E	 64	 R.	ocellifera	 355	 40	 37	 37	 M	
RAJ68	 SC	 16/04/2015	 D00505	 34°	30.65'S	 021°	23.94'E	 64	 R.	ocellifera	 230	 33	 23	 23	 M	

RAJ69	 SC	 30/04/2015	 D00559	 33°	44.94'S	 026°	04.88'E	 33	 R.	ocellifera	 357	 36	 26	 26	 F	

RAJ70	 SC	 30/04/2015	 D00559	 33°	44.94'S	 026°	04.88'E	 33	 R.	ocellifera	 175	 30	 21	 21	 M	

RAJ71	 SC	 30/04/2015	 D00559	 33°	44.94'S	 026°	04.88'E	 33	 R.	ocellifera	 101	 26	 18	 18	 M	
RAJ72	 SC	 30/04/2015	 D00559	 33°	44.94'S	 026°	04.88'E	 33	 R.	ocellifera	 75	 24	 16	 16	 M	

RAJ73	 SC	 04/12/2015	 D00488	 35°	19.62'S	 020°	12.87'E	 136	 Raja	straeleni	 955	 51.5	 37	 37	 M	

RAJ74	 SC	 04/12/2015	 D00488	 35°	19.62'S	 020°	12.87'E	 136	 Raja	straeleni	 1575	 60	 43	 43	 M	

RAJ75	 SC	 04/12/2015	 D00488	 35°	19.62'S	 020°	12.87'E	 136	 Raja	straeleni	 1450	 52	 39	 39	 F	
RAJ76	 SC	 04/12/2015	 D00488	 35°	19.62'S	 020°	12.87'E	 136	 Raja	straeleni	 2970	 69	 53	 53	 F	

RAJ77	 SC	 15/4/2015	 D00499	 35°	11.55'S	 020°	24.61'E	 115	 Raja	straeleni	 2401	 69	 48	 48	 M	

RAJ78	 SC	 15/4/2015	 D00499	 35°	11.55'S	 020°	24.61'E	 115	 Raja	straeleni	 2305	 67	 47	 47	 M	

RAJ79	 SC	 15/4/2015	 D00499	 35°	11.55'S	 020°	24.61'E	 115	 Raja	straeleni	 1935	 60	 46	 46	 F	



RAJ80	 SC	 15/4/2015	 D00499	 35°	11.55'S	 020°	24.61'E	 115	 Raja	straeleni	 2035	 66	 45	 45	 M	
RAJ81	 SC	 15/4/2015	 D00499	 35°	11.55'S	 020°	24.61'E	 115	 Raja	straeleni	 2580	 69	 47	 47	 M	

RAJ82	 SC	 22/04/2015	 D00520	 35°	56.90'S	 021°	48.66'E	 178	 Raja	straeleni	 2690	 67	 50	 50	 F	

RAJ83	 SC	 22/04/2015	 D00520	 35°	56.90'S	 021°	48.66'E	 178	 Raja	straeleni	 1426	 58	 41	 41	 M	

RAJ84	 SC	 22/04/2015	 D00520	 35°	56.90'S	 021°	48.66'E	 178	 Raja	straeleni	 1992	 62	 47	 47	 F	
RAJ85	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 80	 27	 Na	 Na	 M1	

RAJ86	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 160	 33.5	 Na	 Na	 M1	

RAJ87	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 140	 31	 Na	 Na	 F1	

RAJ88	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 180	 37	 Na	 Na	 M1	
RAJ89	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 160	 31	 Na	 Na	 F1	

RAJ90	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 180	 34.5	 Na	 Na	 F1	

RAJ91	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 120	 30	 Na	 Na	 F1	

RAJ92	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 60	 24.5	 Na	 Na	 M1	
RAJ93	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 60	 25.5	 Na	 Na	 F1	

RAJ94	 GSA9	 13/07/2015	 104	 43°11'661''N	 09°51'28"E	 188	 Raja	polystigma	 80	 26.5	 Na	 Na	 M1	
	



Tab	S10	List	of	RNA	extractions	and	details	about	homogenation	method,	protocol	used	and	measures	of	purity	and	RIN	(when	performed,	i.e.	na	not	available	because	not	measured,	N/A	not	detected	
by	the	Instrument).	

	

Sample	ID	 Tissue	
Extraction	
tube	ID	

Homogenization	
beating	
m/s	x	
time	

Prurification	
Initial	

centrifuge	
DNAse	 Washes	 Other	 Elution	 ng/ul	 260/280	 260/230	 RIN	

RAJ01	
Raja	

asterias	

pseudo	
eyespot	

R01_Sa	
UTurrax+750ul	

trizol	
		

Standard	
Trizol	

yes	 yes	
Standard	
Trizol	

		 25ul	 49.00	 na	 na	 na	

matrix	 R01_Da	
UTurrax+750ul	

trizol	
		

Standard	
Trizol	

yes	 yes	
Standard	
Trizol	

		 25ul	 62.00	 na	 na	 na	

ventral	 R01_Wa	
UTurrax+750ul	

trizol	
		

Standard	
Trizol	

yes	 yes	
Standard	
Trizol	

		 25ul	 40.00	 na	 na	 na	

RAJ01	
Raja	

asterias	

pseudo	
eyespot	

R01_Sb	
UTurrax+750ul	

trizol	
		 Zymo	 yes	 yes	 kit	 		 25ul	 350.00	 na	 na	 na	

matrix	 R01_Db	
UTurrax+750ul	

trizol	
		 Zymo	 yes	 yes	 kit	 		 25ul	 323.00	 na	 na	 na	

ventral	 R01_Wb	
UTurrax+750ul	

trizol	
		 Zymo	 yes	 yes	 kit	 		 25ul	 400.00	 na	 na	 na	

RAJ39	
Leucoraja	
melitensis	

eyespot	 R39_Sa	
UTurrax+750ul	

trizol	
		

Standard	
Trizol	

yes	 yes	
Standard	
Trizol	

		 25ul	 25.00	 na	 na	 na	

matrix	 R39_Da	
UTurrax+750ul	

trizol	
		

Standard	
Trizol	

yes	 yes	
Standard	
Trizol	

		 25ul	 48.00	 na	 na	 na	

ventral	 R39_Wa	
UTurrax+750ul	

trizol	
		

Standard	
Trizol	

yes	 yes	
Standard	
Trizol	

		 25ul	 53.00	 na	 na	 na	

RAJ39	
Leucoraja	
melitensis	

eyespot	 R39_Sb	
UTurrax+750ul	

trizol	
		 Zymo	 yes	 yes	 kit	 		 25ul	 291.00	 na	 na	 na	

matrix	 R39_Db	
UTurrax+750ul	

trizol	
		 Zymo	 yes	 yes	 kit	 		 25ul	 77.00	 na	 na	 na	

ventral	 R39_Wb	
UTurrax+750ul	

trizol	
		 Zymo	 yes	 yes	 kit	 		 25ul	 140.00	 na	 na	 na	

RAJ39	
Leucoraja	
melitensis	

eyespot	 R39_Sc	 Scissors,	pestle	 		 Maxwell16	 		 		 		 		 60ul	 40.00	 na	 na	 na	
matrix	 R39_Dc	 Scissors,	pestle	 		 Maxwell16	 		 		 		 		 60ul	 56.00	 na	 na	 na	
ventral	 R39_Wc	 Scissors,	pestle	 		 Maxwell16	 		 		 		 		 60ul	 4.00	 na	 na	 na	

eyespot	 1	
beads+750ul	
trizol	O/N	

6	m/s	
60''	

beads	
normal	

no	 no	
1ml	etoh	
75%	once		

		 50ul	 344.10	 1.75	 1.60	 na	



RAJ41	
Leucoraja	
melitensis	

matrix	 2	
beads+750ul	
trizol	O/N	

6	m/s	
60''	

beads	
normal	

no	 no	
1ml	etoh	
75%	once		

		 50ul	 249.90	 1.78	 1.28	 na	

ventral	 3	
beads+750ul	
trizol	O/N	

6	m/s	
60''	

beads	
normal	

no	 no	
1ml	etoh	
75%	once		

		 50ul	 299.80	 1.73	 1.58	 na	

RAJ42	
Leucoraja	
melitensis	

eyespot	 4a	
beads+750ul	
trizol	O/N	

6	m/s	
60''	

Zymo	 no	 yes	 kit	 		 30ul	 8.20	 1.81	 0.43	 na	

eyespot	 4b	
beads+750ul	
trizol	O/N	

6	m/s	
60''	

Zymo	 no	 yes	 kit	 		 30ul	 3.60	 1.81	 1.20	 na	

matrix	 5a	
beads+750ul	
trizol	O/N	

6	m/s	
60''	

Zymo	 no	 yes	 kit	 		 30ul	 3.60	 1.51	 1.04	 na	

matrix	 5a	
beads+750ul	
trizol	O/N	

6	m/s	
60''	

Zymo	 no	 yes	 kit	 		 30ul	 4.30	 1.29	 1.18	 na	

ventral	 6a	
beads+750ul	
trizol	O/N	

6	m/s	
60''	

Zymo	 no	 yes	 kit	 		 30ul	 21.80	 2.03	 2.04	 na	

ventral	 6b	
beads+750ul	
trizol	O/N	

6	m/s	
60''	

Zymo	 no	 yes	 kit	 		 30ul	 25.60	 1.77	 1.86	 na	

RAJ43	
Leucoraja	
melitensis	

eyespot	 7	
beads+1ml	
trizol	O/N	

6	m/s	
60''	

beads	 yes	 no	
double,	

1ml+500ul	
etoh	75%	

		 50ul	 444.65	 1.71	 1.40	 na	

matrix	 8	
beads+1ml	
trizol	O/N	

6	m/s	
60''	

beads	 yes	 no	
double,	

1ml+500ul	
etoh	75%	

		 50ul	 182.41	 1.71	 1.49	 na	

ventral	 9	
beads+1ml	
trizol	O/N	

6	m/s	
60''	

beads	 yes	 no	
double,	

1ml+500ul	
etoh	75%	

		 50ul	 60.50	 1.86	 1.86	 na	

RAJ53	
Leucoraja	
melitensis	

eyespot	 10a	
beads+1ml	
trizol	O/N	

6	m/s	
60''	

Zymo	 yes	 yes	 kit	
350	

trizol+350	
abs	EtOH	

30ul	 89.73	 1.90	 1.86	 na	

eyespot	 10b	
beads+1ml	
trizol	O/N	

6	m/s	
60''	

Zymo	 yes	 yes	 kit	

650ul	
trizol+200ul	
chlorf+400ul		
abs	EtOH	

30ul	 345.40	 1.86	 1.59	 na	

matrix	 11a	
beads+1ml	
trizol	O/N	

6	m/s	
60''	

Zymo	 yes	 yes	 kit	
350ul		

trizol+350ul		
abs	EtOH	

30ul	 36.09	 1.96	 2.05	 na	



matrix	 11b	
beads+1ml	
trizol	O/N	

6	m/s	
60''	

Zymo	 yes	 yes	 kit	

650ul		
trizol+200ul	
chlorf+400ul		
abs	EtOH	

30ul	 198.71	 1.96	 1.96	 na	

ventral	 12a	
beads+1ml	
trizol	O/N	

6	m/s	
60''	

Zymo	 yes	 yes	 kit	
350ul		

trizol+350ul	
abs	EtOH	

30ul	 112.91	 2.00	 2.20	 na	

ventral	 12b	
beads+1ml	
trizol	O/N	

6	m/s	
60''	

Zymo	 yes	 yes	 kit	

650ul		
trizol+200ul	
chlorf+400ul		
abs	EtOH	

30ul	 213.50	 2.02	 2.23	 na	

RAJ54	
Leucoraja	
melitensis	

eyespot	 13	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 298.30	 1.90	 1.57	 na	

matrix	 14	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 319.60	 1.94	 1.91	 na	

ventral	 15	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 368.20	 2.03	 2.25	 na	

RAJ02	
Raja	

asterias	

pseudo	
eyespot	

16	
beads+750ul	

trizol	
4	m/s	
50''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 120.50	 1.64	 1.15	 5.50	

matrix	 17	
beads+750ul	

trizol	
4	m/s	
50''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 95.50	 1.71	 1.35	 3.40	

ventral	 18	
beads+750ul	

trizol	
4	m/s	
50''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 296.90	 2.02	 2.25	
	

N/A	

RAJ03	
Raja	

asterias	

pseudo	
eyespot	

19	
beads+750ul	

trizol	
4	m/s	
50''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 84.70	 1.79	 1.54	 na	

matrix	 20	
beads+750ul	

trizol	
4	m/s	
50''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 99.20	 1.80	 1.52	 na	



ventral	 21	
beads+750ul	

trizol	
4	m/s	
50''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 147.00	 2.04	 2.27	 na	

RAJ04	
Raja	

asterias	

pseudo	
eyespot	

22	
beads+750ul	

trizol	
4	m/s	
50''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 77.20	 1.80	 1.56	 6.20	

matrix	 23	
beads+750ul	

trizol	
4	m/s	
50''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 232.90	 1.72	 1.40	 	na	

ventral	 24	
beads+750ul	

trizol	
4	m/s	
50''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 271.20	 2.03	 2.24	 	na	

RAJ05	
Raja	

asterias	

pseudo	
eyespot	

25	
beads+750ul	

trizol	

4	m/s	
50''x2	
20''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 178.00	 1.77	 1.47	 	na	

matrix	 26	
beads+750ul	

trizol	

4	m/s	
50''x2	
20''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 263.10	 1.71	 1.40	 	na	

ventral	 27	
beads+750ul	

trizol	

4	m/s	
50''x2	
20''	

Zymo	 yes	 yes	 kit	
200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 264.20	 2.00	 2.24	 	na	

RAJ10	
Raja	

asterias	

pseudo	
eyespot	

28	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 210.50	 1.88	 1.74	 N/A	

matrix	 29	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 311.30	 1.91	 1.80	 7.20	

ventral	 30	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 100.70	 1.98	 2.02	 	na	

pseudo	
eyespot	

31	
beads+750ul	

trizol	
6	m/s	
60''x2	

Zymo	 yes	 yes	
kit	+	400ul	
WB	(4	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 465.00	 2.05	 2.08	 7.30	



RAJ21	
Raja	

clavata	

washes	
tot)	

matrix	 32	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 244.20	 2.00	 2.13	 N/A	

ventral	 33	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 267.70	 2.05	 2.25	 7.10	

RAJ22	
Raja	

clavata	

pseudo	
eyespot	

34	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 302.90	 1.94	 1.98	 N/A	

matrix	 35	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 287.70	 2.00	 2.08	 6.90	

ventral	 36	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 485.40	 2.03	 2.25	 8.00	

RAJ23	
Raja	

clavata	

pseudo	
eyespot	

37	
beads+750ul	

trizol	
6	m/s	
60''x2	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 293.60	 1.98	 1.97	 N/A	

matrix	 38	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 119.70	 1.98	 1.84	 N/A	

ventral	 39	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	400ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 118.20	 2.06	 2.24	 N/A	



RAJ34	
Raja	

clavata	

pseudo	
eyespot	

40	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 459.10	 1.98	 1.98	 2.70	

matrix	 41	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 572.40	 1.99	 1.94	 N/A	

ventral	 42	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 241.90	 2.06	 2.26	 N/A	

RAJ35	
Raja	

clavata	

pseudo	
eyespot	

43	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 357.80	 1.96	 1.74	 na	

matrix	 44	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 459.10	 1.93	 1.79	 na	

ventral	 45	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 434.40	 2.03	 2.17	 na	

RAJ24	
Raja	

miraletus	

eyespot	 46	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 216.60	 1.89	 1.59	 na	

matrix	 47	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 343.70	 1.85	 1.50	 na	

ventral	 48	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	
kit	+	500ul	
WB	(4	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 361.20	 2.04	 2.23	 na	



washes	
tot)	

RAJ26	
Raja	

miraletus	

eyespot	 49	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 138.00	 1.81	 1.41	 na	

matrix	 50	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 201.60	 1.66	 1.10	 na	

ventral	 51	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+	500ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 178.70	 2.05	 2.14	 na	

RAJ24	
Raja	

miraletus	

eyespot	 52	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 42.80	 2.04	 2.06	 N/A	

matrix	 53	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 136.30	 2.02	 1.98	 N/A	

ventral	 54	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 123.10	 2.09	 2.21	 2.40	

RAJ26	
Raja	

miraletus	

eyespot	 55	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 23.70	 1.80	 1.48	 na	

matrix	 56	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 46.40	 1.69	 1.13	 na	

ventral	 57	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 63.30	 2.00	 1.92	 na	

RAJ27	
Raja	

miraletus	
eyespot	 58	

beads+1000ul	
trizol	

4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 49.30	 1.77	 1.44	 na	



matrix	 59	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 23.50	 1.69	 1.40	 na	

ventral	 60	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 72.50	 1.98	 2.18	 na	

RAJ28	
Raja	

miraletus	

eyespot	 61	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 31.10	 1.73	 1.32	 na	

matrix	 62	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 26.99	 1.69	 1.38	 na	

ventral	 63	
beads+1000ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
3	

prewash+2	
wash	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 174.10	 2.05	 2.25	 na	

RAJ40	
Raja	

miraletus	

eyespot	 64	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 38.70	 1.82	 1.50	 6.80	

matrix	 65	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 130.50	 1.80	 1.39	 N/A	

ventral	 66	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 140.70	 2.03	 2.16	 9.30	

RAJ44	
Raja	

miraletus	

eyespot	 67	 beads+750ul	
trizol	

4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 100.50	 1.86	 1.48	 7.70	

matrix	 68	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 110.50	 1.86	 1.44	 8.80	



ventral	 69	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 168.80	 2.04	 2.19	 9.10	

RAJ45	
Raja	

miraletus	

eyespot	 70	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 197.00	 1.83	 1.36	 8.50	

matrix	 71	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 137.80	 1.75	 1.22	 7.50	

ventral	 72	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 230.70	 2.05	 2.19	 N/A	

RAJ47	
Raja	

miraletus	

eyespot	 73	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 95.50	 1.89	 1.52	 N/A	

matrix	 74	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 106.40	 1.87	 1.47	 7.80	

ventral	 75	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 204.10	 2.05	 2.20	 9.30	

RAJ61	
Raja	

ocellifera	

eyespot	 76	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 78.30	 1.99	 2.06	 	na	

matrix	 77	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	
kit	+700ul	
WB	(4	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 100.70	 2.00	 2.01	 	na	



washes	
tot)	

ventral	 78	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 268.90	 2.01	 2.28	 	na	

RAJ62	
Raja	

ocellifera	

eyespot	 79	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 127.40	 2.00	 2.10	 	na	

matrix	 80	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 62.20	 1.96	 2.10	 	na	

ventral	 81	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 260.80	 2.05	 2.27	 	na	

RAJ63	
Raja	

ocellifera	

eyespot	 82	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 41.90	 1.97	 1.63	 	na	

matrix	 83	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 29.10	 1.86	 1.61	 	na	

ventral	 84	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 167.30	 2.06	 2.25	 	na	

RAJ64	
Raja	

ocellifera	
eyespot	 85	

beads+750ul	
trizol	

4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 16.90	 1.96	 1.36	 	na	



matrix	 86	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 8.30	 2.44	 1.13	 	na	

ventral	 87	
beads+750ul	

trizol	
4	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 78.40	 2.11	 2.24	 	na	

RAJ73	
Raja	

straeleni	

eyespot	 88	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 322.70	 1.97	 1.91	 7.30	

matrix	 89	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 210.10	 1.95	 1.88	 6.60	

ventral	 90	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 215.10	 2.05	 2.21	 7.70	

RAJ74	
Raja	

straeleni	

eyespot	 91	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 228.70	 1.92	 1.79	 8.10	

matrix	 92	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 187.60	 1.95	 1.76	 6.80	

ventral	 93	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 371.69	 2.03	 2.29	 6.70	

eyespot	 94	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	
kit	+700ul	
WB	(4	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 295.30	 1.95	 1.95	 8.30	



RAJ75	
Raja	

straeleni	

washes	
tot)	

matrix	 95	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 350.70	 1.88	 1.58	 8.60	

ventral	 96	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 340.90	 2.03	 2.26	 6.40	

RAJ76	
Raja	

straeleni	

eyespot	 97	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 203.30	 1.97	 2.04	 7.50	

matrix	 98	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 377.60	 1.96	 1.99	 8.00	

ventral	 99	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 456.50	 2.04	 2.26	 8.50	

RAJ65	
Raja	

ocellifera	

eyespot	 100	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 186.10	 1.91	 1.76	 6.40	

matrix	 101	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 212.00	 1.85	 1.53	 6.50	

ventral	 102	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 175.30	 2.04	 2.24	 8.10	



RAJ77	
Raja	

straeleni	

eyespot	 103	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 178.20	 1.97	 1.92	 6.60	

matrix	 104	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 371.30	 1.91	 1.64	 8.00	

ventral	 105	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 285.10	 1.99	 2.00	 6.80	

RAJ19	
Raja	

asterias	

pseudo	
eyespot	

106	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 454.60	 1.95	 1.89	 7.10	

matrix	 107	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 500.80	 1.98	 1.87	 6.50	

ventral	 108	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 382.30	 2.06	 2.30	 6.10	

RAJ20	
Raja	

asterias	

pseudo	
eyespot	

109	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 636.00	 1.94	 1.80	 7.80	

matrix	 110	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 554.40	 1.91	 1.72	 8.10	

ventral	 111	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	
kit	+700ul	
WB	(4	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 291.50	 1.99	 1.91	 7.20	



washes	
tot)	

RAJ66	
Raja	

ocellifera	

eyespot	 112	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 199.40	 1.99	 2.07	 7.20	

matrix	 113	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 244.00	 1.94	 1.84	 7.80	

ventral	 114	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 230.30	 2.04	 2.26	 6.80	

RAJ67	
Raja	

ocellifera	

eyespot	 115	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 167.60	 1.86	 1.62	 6.20	

matrix	 116	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 169.70	 1.84	 1.47	 6.20	

ventral	 117	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 265.80	 2.05	 2.32	 7.40	

RAJ68	
Raja	

ocellifera	

eyespot	 118	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 208.70	 1.85	 1.45	 6.60	

matrix	 119	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 220.90	 1.82	 1.36	 5.40	



ventral	 120	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 166.60	 1.99	 2.26	 6.20	

RAJ69	
Raja	

ocellifera	

eyespot	 121	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 184.60	 1.86	 1.57	 6.80	

matrix	 122	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 376.50	 1.88	 1.65	 7.10	

ventral	 123	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 226.80	 1.95	 1.74	 6.90	

RAJ11	
Raja	

asterias	

pseudo	
eyespot	

124	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 305.60	 1.91	 1.73	 6.30	

matrix	 125	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 286.20	 1.77	 1.81	 5.90	

ventral	 126	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 277.10	 2.05	 2.23	 6.00	

RAJ14	
Raja	

asterias	

pseudo	
eyespot	

127	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 481.50	 1.94	 1.67	 7.90	

matrix	 128	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	
kit	+700ul	
WB	(4	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 434.70	 1.89	 1.67	 6.80	



washes	
tot)	

ventral	 129	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 404.40	 2.03	 2.17	 8.50	

RAJ17	
Raja	

asterias	

pseudo	
eyespot	

130	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 482.00	 1.99	 1.86	 6.80	

matrix	 131	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 483.60	 1.97	 1.81	 6.40	

ventral	 132	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 380.20	 2.04	 2.26	 6.90	

RAJ46	
Raja	

clavata	

pseudo	
eyespot	

133	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 198.10	 2.01	 2.08	 8.90	

matrix	 134	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 363.00	 2.00	 2.06	 8.80	

ventral	 135	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 339.50	 2.06	 2.28	 8.80	

RAJ55	
Raja	

clavata	

pseudo	
eyespot	

136	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 169.00	 1.94	 2.11	 7.10	



matrix	 137	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 236.40	 1.93	 2.05	 7.10	

ventral	 138	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 144.20	 1.98	 2.18	 7.80	

RAJ57	
Raja	

clavata	

pseudo	
eyespot	

139	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 178.80	 1.94	 2.15	 N/A	

matrix	 140	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 332.00	 1.92	 1.97	 6.80	

ventral	 141	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 201.70	 2.00	 2.20	 7.70	

RAJ56	
Raja	

miraletus	

eyespot	 142	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 382.20	 1.85	 1.64	 N/A	

matrix	 143	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 332.10	 1.86	 1.75	 6.60	

ventral	 144	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 312.50	 1.92	 2.19	 5.40	

pseudo	
eyespot	

145	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	
kit	+700ul	
WB	(4	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 370.70	 1.90	 1.92	 N/A	



RAJ18	
Raja	

asterias	

washes	
tot)	

matrix	 146	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 384.00	 1.88	 1.76	 6.90	

ventral	 147	
beads+750ul	

trizol	
6	m/s	
60''	

Zymo	 yes	 yes	

kit	+700ul	
WB	(4	
washes	
tot)	

200ul	chlorf+	
400ul	abs	
EtOH	

30ul	 189.00	 2.03	 2.21	 6.90	

	



Table	S11	Code	conversions	and	well	position	of	samples	in	the	Illumina	sequencing	plate	

	

	
	
	 	



Table	S12	Total	number	of	survived	and	dropped	sequences	per	sample	after	clipping	adapters	with	Trimmomatic	v.0.36.	

	
	

		 SAMPLE	
ID	

INPUT	 SURVIVING	 DROPPED	 %	

Raja	
asterias	

R11D	 13838380	 13766724	 71656	 -0.52%	
R11S	 12820964	 12692278	 128686	 -1.00%	
R11W	 12938667	 12884993	 53674	 -0.41%	
R14D	 12308968	 12247765	 61203	 -0.50%	
R14S	 13273379	 13212389	 60990	 -0.46%	
R14W	 14221010	 14181371	 39639	 -0.28%	
R17D	 12650280	 12595214	 55066	 -0.44%	
R17S	 14036178	 13965105	 71073	 -0.51%	
R17W	 12521340	 12452130	 69210	 -0.55%	
R19D	 13685146	 13626808	 58338	 -0.43%	
R19S	 15457286	 15409839	 47447	 -0.31%	
R19W	 10825389	 10717434	 107955	 -1.00%	
R20D	 11675374	 11636017	 39357	 -0.34%	
R20S	 15022304	 14965929	 56375	 -0.38%	
R20W	 10884592	 10826177	 58415	 -0.54%	

Raja	
clavata	

R21D	 11559056	 11491959	 67097	 -0.58%	
R21S	 10663782	 10621709	 42073	 -0.39%	
R21W	 12788412	 12661664	 126748	 -0.99%	
R22D	 12423020	 12368580	 54440	 -0.44%	
R22S	 12637239	 12555814	 81425	 -0.64%	
R22W	 11287016	 11233390	 53626	 -0.48%	
R46D	 11524795	 11452729	 72066	 -0.63%	
R46S	 13567118	 12895465	 671653	 -4.95%	
R46W		 17605423	 17492773	 112650	 -0.64%	
R55D	 10773215	 10707136	 66079	 -0.61%	
R55S	 12175734	 5551256	 6624478	 -54.4%	
R55W	 11823530	 11733759	 89771	 -0.76%	
R57D	 12702711	 12653209	 49502	 -0.39%	
R57S	 12162639	 12119674	 42965	 -0.35%	
R57W	 10269441	 10220217	 49224	 -0.48%	

Raja	
straeleni	

R73D	 12671021	 12586713	 84308	 -0.67%	
R73S	 13953473	 13911868	 41605	 -0.30%	
R73W	 14302922	 14216173	 86749	 -0.61%	
R74D	 10177884	 10078912	 98972	 -0.97%	
R74S	 13285957	 13237445	 48512	 -0.37%	
R74W	 14348183	 14297047	 51136	 -0.36%	
R75D	 13199501	 13151270	 48231	 -0.37%	
R75S	 14730531	 14674842	 55689	 -0.38%	
R75W	 12438760	 12377423	 61337	 -0.49%	
R76D	 12522187	 12481762	 40425	 -0.32%	
R76S	 13161702	 13113927	 47775	 -0.36%	
R76W	 13810068	 13769954	 40114	 -0.29%	



R77D	 10611149	 10538983	 72166	 -0.68%	
R77S	 13193103	 13089781	 103322	 -0.78%	
R77W	 9349305	 9279918	 69387	 -0.74%	

Raja	
miraletus	

R40D	 11712421	 11617861	 94560	 -0.81%	
R40S		 10321698	 10249532	 72166	 -0.70%	
R40W	 13110491	 13042902	 67589	 -0.52%	
R44D	 10682845	 10612763	 70082	 -0.66%	
R44S	 12030188	 11953121	 77067	 -0.64%	
R44W	 12935873	 12884286	 51587	 -0.40%	
R45D	 10506216	 10439014	 67202	 -0.64%	
R45S	 11202695	 11157757	 44938	 -0.40%	
R45W	 13389969	 13342995	 46974	 -0.35%	
R47D	 13023376	 12974573	 48803	 -0.37%	
R47S	 13336447	 10441862	 2894585	 -21.7%	
R47W	 14244306	 14186086	 58220	 -0.41%	
R56D	 12416633	 12355800	 60833	 -0.49%	
R56S	 14400342	 14340160	 60182	 -0.42%	
R56W	 9285364	 9186428	 98936	 -1.07%	

Raja	
ocellifera	

R65D	 11660428	 11261008	 399420	 -3.43%	
R65S	 10674548	 10614074	 60474	 -0.57%	
R65W	 14072998	 14020251	 52747	 -0.37%	
R66D	 14142710	 14054206	 88504	 -0.63%	
R66S	 12386643	 12338122	 48521	 -0.39%	
R66W	 11899227	 11733109	 166118	 -1.40%	
R67D	 11647995	 11555265	 92730	 -0.80%	
R67S	 12664324	 12624869	 39455	 -0.31%	
R67W	 10693108	 9241174	 1451934	 -13.6%	
R68D	 9325192	 9241174	 84018	 -0.90%	
R68S	 10596473	 10504819	 91654	 -0.86%	
R68W	 12372117	 12309709	 62408	 -0.50%	
R69D	 13609891	 13533207	 76684	 -0.56%	
R69S	 9263906	 9188707	 75199	 -0.81%	
R69W	 14823518	 14656260	 167258	 -1.13%	

	
	 	



	

	
Figure	S3	Plot	illustrating	the	‘Per	base	sequence	quality’	of	raw	sequences	generated	from	sample	R55S,	corresponding	to	the	
pseudo-eyespot	ornament	of	Raja	clavata.	

	
	
	
	

	
Figure	S4	Plot	illustrating	the	‘Per	base	sequence	quality’	of	trimmed	and	clean	sequences	characterising	sample	R55S,	
corresponding	to	the	pseudo-eyespot	ornament	of	Raja	clavata.	

	



Appendix	III.	Chapter	4	
	
Table	S13	Sampling	details	for	each	individual,	including	the	tissues	collected.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

Sample_ID	 Site	 Date	 Haul	 Lat_D_S	 Lon_D_S	 Depth	 Species	 Weight	
Length	
(cm)	

Disc	length	
(cm)	

Disc	Width	
(cm)	

Sex	 Tissue	

RAJG133SD	

GSA17	 18/11/15	 32	 44°00'73"N	 14°32'35"E	 72.5	 Raja	miraletus	 250	 39	 N.a.	 N.a.	 M/adult	

SKIN1	
RAJG133SS	 SKIN2	
RAJC133SW	 SKIN3	
RAJC133M	 MUSCLE	
RAJF133T	 GONAD	
RAJF133L	 LIVER	
RAJG133H	 HEART	
RAJG133B	 BRAIN	
RAJC133D	 DORSAL	FIN	
RAJC133E	 EYE	
RAJF133J	 JAW	BONE	
RAJF133G	 GILL	
RAJG134SD	

GSA17	 18/11/15	 32	 44°00'73"N	 14°32'35"E	 72.5	 Raja	miraletus	 245	 38	 N.a.	 N.a.	 F/adult	

SKIN1	
RAJG134SS	 SKIN2	
RAJC134SW	 SKIN3	
RAJC134M	 MUSCLE	
RAJF134T	 GONAD	
RAJF134L	 LIVER	
RAJG134H	 HEART	
RAJG134B	 BRAIN	
RAJC134D	 DORSAL	FIN	
RAJC134E	 EYE	
RAJF134J	 JAW	BONE	
RAJF134G	 GILL	

	 	 	 	 	 	 	 	 	 	 	 	 	 	



	
	

	
	
	
	
	

	 Raja	miraletus	 NANODROP	 BIOANALYZER	

	 TUBE	CODE	 Sample	ID	 Tissue	 ng/ul	 260/280	 260/230	 ng/ul	 RIN	

Male	

RAJG133SD	 18T	 SKIN1	D	 110.60	 1.71	 1.43	 93.00	 N/A	
RAJG133SS	 19T	 SKIN2	S	 78.80	 1.74	 1.34	 66.00	 N/A	
RAJC133SW	 20T	 SKIN3	W	 90.50	 1.95	 1.94	 72.00	 8.40	

RAJC133M	 16T	 MUSCLE	 84.20	 1.73	 1.17	 44.00	 8.40	
RAJF133T	 13T	 TESTICLE	 1021.60	 1.99	 2.32	 1428.00	 8.00	
RAJF133L	 15T	 LIVER	 309.30	 1.89	 1.82	 221.00	 9.00	
RAJG133H	 24T	 HEART	 161.40	 1.90	 2.01	 174.00	 8.80	
RAJG133B	 14T	 BRAIN	 163.30	 1.94	 2.09	 175.00	 9.30	
RAJC133D	 17T	 DORSAL	FIN	 140.00	 1.65	 1.39	 157.00	 7.20	
RAJC133E	 21T	 EYE	 117.60	 1.76	 1.36	 197.00	 6.50	
RAJF133J	 22T	 JAW	BONE	 498.70	 2.01	 2.21	 779.00	 9.00	

RAJF133G	 23T	 GILL	 399.40	 1.80	 1.75	 505.00	 8.70	

Female	

RAJG134SD	 25T	 SKIN1	D	 77.40	 1.75	 1.38	 88.00	 6.70	
RAJG134SS	 26T	 SKIN2	S	 26.70	 1.61	 0.96	 27.00	 6.00	
RAJC134SW	 27T	 SKIN3	W	 82.30	 1.95	 1.91	 103.00	 7.30	
RAJC134M	 28T	 MUSCLE	 239.80	 1.95	 1.74	 201.00	 8.60	
RAJF134T	 29T	 OVARY	 733.50	 1.99	 2.12	 640.00	 5.70	
RAJF134L	 30T	 LIVER	 676.40	 2.06	 2.08	 683.00	 6.80	
RAJG134H	 31T	 HEART	 348.20	 2.01	 2.14	 424.00	 6.50	
RAJG134B	 32T	 BRAIN	 317.80	 2.01	 2.08	 379.00	 8.30	
RAJC134D	 33T	 DORSAL	FIN	 226.90	 1.73	 1.42	 237.00	 5.90	
RAJC134E	 34T	 EYE	 241.40	 2.00	 2.03	 355.00	 5.50	
RAJF134J	 35T	 JAW	BONE	 275.50	 2.02	 2.20	 331.00	 7.40	

Table	S14	List	of	RNA	extractions,	purity	and	integrity.	



	
	
	

Transccript_ID	 UniProt	
accession	ID	

GENE_ORGANISM	 %Identity	 E-value	 PFAM	
accession	ID	

PFAM	domain	 GO	terms	

TRINITY_GG_48136_c0_g1_i1	 O54967	 ACK1_MOUSE	 52.63	 E:6e-42	 PF11555.6	 EGFR	receptor	inhibitor	Mig-6	 		
TRINITY_GG_48136_c0_g2_i1	 O54967	 ACK1_MOUSE	 57.24	 E:6e-39	 PF11555.6	 EGFR	receptor	inhibitor	Mig-6	 		
TRINITY_GG_1530_c0_g1_i1	 P78536	 ADA17_HUMAN	 72.58	 E:2e-58	 PF16698.3	 Membrane-proximal	domain,	

switch,	for	ADAM17	
		

TRINITY_GG_1951_c0_g1_i1	 O42574	 ADRB1_XENLA	 60.67	 E:5e-63	 .	 		 		
TRINITY_GG_12802_c0_g1_i1	 Q9Y4K1	 AIM1_HUMAN	 50.88	 E:2e-26	 PF00030.17	 Beta/Gamma	crystallin	 		
TRINITY_GG_22903_c0_g1_i1	 Q9Y4K1	 AIM1_HUMAN	 49.23	 E:7e-37	 PF00030.17	 Beta/Gamma	crystallin	 		
TRINITY_GG_31829_c0_g1_i1	 Q9Y4K1	 AIM1_HUMAN	 57.14	 E:1e-57	 PF00030.17	 Beta/Gamma	crystallin	 		
TRINITY_GG_6872_c0_g3_i1	 Q9Y4K1	 AIM1_HUMAN	 45.08	 E:3e-42	 .	 		 		
TRINITY_GG_6872_c0_g1_i1	 Q9Y4K1	 AIM1_HUMAN	 52.73	 E:4e-33	 .	 		 		
TRINITY_GG_8356_c0_g1_i1	 Q9Y4K1	 AIM1_HUMAN	 50	 E:1e-21	 .	 		 		
TRINITY_GG_41838_c0_g1_i1	 Q9UJX6	 ANC2_HUMAN	 77.78	 E:7e-45	 PF08672.9	 Anaphase	promoting	complex	

(APC)	subunit	2	
		

TRINITY_GG_29528_c0_g2_i1	 O14617	 AP3D1_HUMAN	 75	 E:8e-59	 PF06375.9	 AP-3	complex	subunit	delta-1	 GO:0015031:	
biological_process:	protein	
transport		
GO:0030123:	
cellular_component:	AP-3	
adaptor	complex	

TRINITY_GG_29528_c0_g1_i1	 O54774	 AP3D1_MOUSE	 76.82	 E:8e-64	 PF06375.9	 AP-3	complex	subunit	delta-1	 GO:0015031:	
biological_process:	protein	
transport		
GO:0030123:	
cellular_component:	AP-3	
adaptor	complex	

TRINITY_GG_29528_c0_g3_i1	 O54774	 AP3D1_MOUSE	 77.48	 E:3e-64	 PF06375.9	 AP-3	complex	subunit	delta-1	 GO:0015031:	
biological_process:	protein	
transport	GO:0030123:	
cellular_component:	AP-3	
adaptor	complex	

Table	S15	List	of	Blastx	matchings	between	the	assembled	transcripts	and	putative	genes	related	to	pigmentation.	Gene	Ontology	(GO)	is	
also	reported.	



TRINITY_GG_64983_c0_g2_i1	 O54774	 AP3D1_MOUSE	 74.58	 E:9e-18	 PF06375.9	 AP-3	complex	subunit	delta-1	 GO:0015031:	
biological_process:	protein	
transport	GO:0030123:	
cellular_component:	AP-3	
adaptor	complex	

TRINITY_GG_7_c1_g1_i1	 P25054	 APC_HUMAN	 66.76	 E:0.00	 PF05956.9	 APC	basic	domain	 GO:0008017:	
molecular_function:	
microtubule	binding	
GO:0016055:	
biological_process:	Wnt	
signalling	pathway	
GO:0008013:	
molecular_function:	beta-
catenin	binding	

TRINITY_GG_7_c1_g2_i1	 P25054	 APC_HUMAN	 66.76	 E:0.00	 PF05956.9	 APC	basic	domain	 GO:0008017:	
molecular_function:	
microtubule	binding	
GO:0016055:	
biological_process:	Wnt	
signalling	pathway	
GO:0008013:	
molecular_function:	beta-
catenin	binding	

TRINITY_GG_7_c3_g1_i1	 P25054	 APC_HUMAN	 66.24	 E:5e-99	 PF16629.3	 Armadillo-associated	region	on	
APC	

GO:0008013:	
molecular_function:	beta-
catenin	binding	
GO:0016055:	
biological_process:	Wnt	
signalling	pathway	

TRINITY_GG_7_c5_g1_i1	 P25054	 APC_HUMAN	 68	 E:2e-19	 PF05923.10	 APC	repeat	 GO:0016055:	
biological_process:	Wnt	
signalling	pathway	
GO:0008013:	
molecular_function:	beta-
catenin	binding	



TRINITY_GG_37150_c0_g1_i1	 Q61315	 APC_MOUSE	 61.9	 E:2e-68	 PF00514.21	 Armadillo/beta-catenin-like	
repeat	

GO:0005515:	
molecular_function:	
protein	binding	

TRINITY_GG_7_c0_g2_i1	 Q61315	 APC_MOUSE	 60	 E:1e-32	 PF16634.3	 Unstructured	region	on	APC	
between	APC_crr	a	SAMP	

GO:0008013:	
molecular_function:	beta-
catenin	binding	
GO:0016055:	
biological_process:	Wnt	
signalling	pathway	

TRINITY_GG_7_c4_g1_i1	 Q61315	 APC_MOUSE	 64.71	 E:9e-09	 PF05972.9	 APC	15	residue	motif	 GO:0008013:	
molecular_function:	beta-
catenin	binding	
GO:0016055:	
biological_process:	Wnt	
signalling	pathway	

TRINITY_GG_7_c0_g1_i1	 P70039	 APC_XENLA	 53.14	 E:7e-85	 PF16634.3	 Unstructured	region	on	APC	
between	APC_crr	a	SAMP	

GO:0008013:	
molecular_function:	beta-
catenin	binding	
GO:0016055:	
biological_process:	Wnt	
signalling	pathway	

TRINITY_GG_63968_c0_g1_i1	 A8CEM5	 ASIP_MACHE	 37.5	 E:6e-12	 PF05039	 Agouti	protein	 GO:0009755:	
biological_process:	
hormone-mediated	
signalling	pathway	
GO:0005576:	
cellular_component:		
extracellular	region	

TRINITY_GG_20560_c0_g1_i1	 A5PJP1	 BL1S3_BOVIN	 41.98	 E:2e-13	 PF15753.3	 Biogenesis	of	lysosome-related	
organelles	complex	1	subunit	3	

		

TRINITY_GG_21185_c0_g1_i1	 Q99MP8	 BRAP_MOUSE	 88.73	 E:3e-91	 PF07576.10	 BRCA1-associated	protein	2	 GO:0005515:	
molecular_function:	
protein	binding	
GO:0008270:	
molecular_function:	zinc	
ion	binding	GO:0046872:	



molecular_function:	metal	
ion	binding	

TRINITY_GG_32340_c0_g1_i1	 Q5F3N9	 CF106_CHICK	 82.67	 E:1e-121	 PF16158.3	 Ig-like	domain	from	next	to	
BRCA1	gene	

		

TRINITY_GG_32340_c0_g1_i2	 Q5F3N9	 CF106_CHICK	 83.57	 E:6e-131	 PF16158.3	 Ig-like	domain	from	next	to	
BRCA1	gene	

		

TRINITY_GG_44132_c0_g1_i1	 P27925	 CREB1_BOVIN	 75	 E:1e-57	 PF00170.19	 bZIP	transcription	factor	 GO:0003700:	
molecular_function:	
transcription	factor	activity,	
sequence-specific	DNA	
binding	GO:0043565:	
molecular_function:	
sequence-specific	DNA	
binding	GO:0006355:	
biological_process:	
regulation	of	transcription,	
DNA-templated	

TRINITY_GG_44132_c0_g2_i1	 P27925	 CREB1_BOVIN	 66.67	 E:8e-44	 PF00170.19	 bZIP	transcription	factor	 GO:0003700:	
molecular_function:	
transcription	factor	activity,	
sequence-specific	DNA	
binding	GO:0043565:	
molecular_function:	
sequence-specific	DNA	
binding	GO:0006355:	
biological_process:	
regulation	of	transcription,	
DNA-templated	

TRINITY_GG_23196_c0_g1_i1	 Q9I8N6	 CSF1R_DANRE	 56.9	 E:6e-44	 PF07714.15	 Protein	tyrosine	kinase	 GO:0004672:	
molecular_function:	
protein	kinase	activity	
GO:0006468:	
biological_process:	protein	
phosphorylation	
GO:0005524:	
molecular_function:		ATP	
binding	



TRINITY_GG_7012_c0_g1_i1	 P11348	 DHPR_RAT	 68.06	 E:1e-30	 .	 		 		
TRINITY_GG_57720_c0_g1_i1	 P97386	 DNLI3_MOUSE	 81.76	 E:3e-29	 PF16759.3	 DNA	ligase	3	BRCT	domain	 		
TRINITY_GG_52960_c0_g1_i1	 Q90YB1	 DNLI4_CHICK	 82.41	E	 PF01068.19	 ATP	dependent	DNA	ligase	

domain	
GO:0003910:	
molecular_function:	DNA	
ligase	(ATP)	activity	
GO:0005524:	
molecular_function:	ATP	
binding	GO:0006281:	
biological_process:	DNA	
repair	GO:0006310:	
biological_process:	DNA	
recombination	

TRINITY_GG_26903_c0_g1_i1	 P56497	 EDNRB_CANLF	 45.11	 E:2e-44	 .	 		 		
TRINITY_GG_34515_c0_g1_i1	 Q90328	 EDNRB_COTJA	 68.95	 E:1e-98	 PF00001.19	 7	transmembrane	receptor	

(rhodopsin	family)	
GO:0004930:	
molecular_function:	G-
protein	coupled	receptor	
activity	GO:0007186:	
biological_process:	G-
protein	coupled	receptor	
signalling	pathway	
GO:0016021:	
cellular_component:	
integral	component	of	
membrane	

TRINITY_GG_9663_c0_g1_i1	 Q90328	 EDNRB_COTJA	 86.81	 E:6e-133	 PF00001.19	 7	transmembrane	receptor	
(rhodopsin	family)	

GO:0004930:	
molecular_function:	G-
protein	coupled	receptor	
activity	GO:0007186:	
biological_process:	G-
protein	coupled	receptor	
signalling	pathway	
GO:0016021:	
cellular_component:	
integral	component	of	
membrane	

TRINITY_GG_50561_c0_g1_i1	 Q90328	 EDNRB_COTJA	 72.93	 E:1e-21	 .	 		 		
TRINITY_GG_50561_c0_g2_i1	 Q90328	 EDNRB_COTJA	 70.15	 E:7e-21	 .	 		 		



TRINITY_GG_52270_c0_g1_i1	 Q90328	 EDNRB_COTJA	 70.15	 E:3e-42	 .	 		 		
TRINITY_GG_56604_c0_g2_i1	 Q90328	 EDNRB_COTJA	 80.25	 E:1e-38	 .	 		 		
TRINITY_GG_26903_c0_g3_i1	 P24530	 EDNRB_HUMAN	 75	 E:1e-58	 PF00001.19	 7	transmembrane	receptor	

(rhodopsin	family)	
GO:0004930:	
molecular_function:	G-
protein	coupled	receptor	
activity	GO:0007186:	
biological_process:	G-
protein	coupled	receptor	
signalling	pathway	
GO:0016021:	
cellular_component:	
integral	component	of	
membrane	

TRINITY_GG_26903_c0_g2_i1	 P24530	 EDNRB_HUMAN	 83.1	 E:3e-43	 .	 		 		
TRINITY_GG_28236_c0_g1_i1	 P24530	 EDNRB_HUMAN	 86.44	 E:2e-29	 .	 		 		
TRINITY_GG_56604_c0_g1_i1	 P24530	 EDNRB_HUMAN	 90.2	 E:1e-30	 .	 		 		
TRINITY_GG_1393_c0_g1_i1	 Q9N0W7	 EDNRB_RABIT	 58.51	 E:5e-53	 PF10320.7	 Serpentine	type	7TM	GPCR	

chemoreceptor	Srsx	
GO:0004930:	
molecular_function:	G-
protein	coupled	receptor	
activity	GO:0007186:	
biological_process:	G-
protein	coupled	receptor	
signalling	pathway	
GO:0016021:	
cellular_component:	
integral	component	of	
membrane	

TRINITY_GG_56502_c0_g1_i1	 Q99JZ7	 ERRFI_MOUSE	 86.15	 E:4e-74	 PF11555.6	 EGFR	receptor	inhibitor	Mig-6	 		
TRINITY_GG_56502_c0_g2_i1	 Q99JZ7	 ERRFI_MOUSE	 62.41	 E:4e-74	 PF11555.6	 EGFR	receptor	inhibitor	Mig-6	 		
TRINITY_GG_38169_c0_g1_i1	 P23610	 F8I2_HUMAN	 86.08	 E:4e-17	 PF14938.4	 Soluble	NSF	attachment	

protein,	SNAP	
GO:0005515:	
molecular_function:	
protein	binding	

TRINITY_GG_18212_c0_g1_i1	 Q01721	 GAS1_MOUSE	 75.14	 E:5e-68	 PF02351.14	 GDNF/GAS1	domain	 		
TRINITY_GG_8121_c0_g1_i1	 Q9I9R0	 HABP4_CHICK	 75.14	 E:1e-38	 PF04774.13	 Hyaluronan	/	mRNA	binding	

family	
		

TRINITY_GG_14437_c0_g1_i1	 Q32PJ8	 HDAC1_BOVIN	 38.36	 E:1e-95	 PF00850.17	 Histone	deacetylase	domain	 		



TRINITY_GG_29429_c0_g2_i1	 Q32PJ8	 HDAC1_BOVIN	 57.84	 E:4e-86	 PF00850.17	 Histone	deacetylase	domain	 		
TRINITY_GG_14828_c0_g1_i1	 Q5RAG0	 HDAC1_PONAB	 61.64	 E:3e-82	 PF00850.17	 Histone	deacetylase	domain	 		
TRINITY_GG_1516_c0_g1_i1	 P56518	 HDAC1_STRPU	 98.33	 E:2e-67	 PF00850.17	 Histone	deacetylase	domain	 		
TRINITY_GG_29429_c0_g1_i1	 P56518	 HDAC1_STRPU	 96.83	 E:7e-66	 .	 		 		
TRINITY_GG_9432_c0_g1_i1	 Q8BLY7	 HPS6_MOUSE	 99.17	 E:5e-11	 PF15702.3	 Hermansky-Pudlak	syndrome	6	

protein	
		

TRINITY_GG_13966_c1_g1_i1	 P09914	 IFIT1_HUMAN	 93.94	 E:2e-27	 PF02071.18	 Aromatic-di-Alanine	(AdAR)	
repeat	

GO:0005515:	
molecular_function:	
protein	binding	

TRINITY_GG_68916_c0_g1_i1	 Q13325	 IFIT5_HUMAN	 96.23	 E:1e-25	 PF02071.18	 Aromatic-di-Alanine	(AdAR)	
repeat	

GO:0005515:	
molecular_function:	
protein	binding	

TRINITY_GG_11160_c0_g1_i1	 Q08156	 KIT_CHICK	 91.25	 E:9e-111	 PF07714.15	 Protein	tyrosine	kinase	 GO:0004672:	
molecular_function:	
protein	kinase	activity	
GO:0006468:	
biological_process:	protein	
phosphorylation	
GO:0005524:	
molecular_function:	ATP		
binding	

TRINITY_GG_1988_c1_g1_i1	 Q5RES4	 MED1_PONAB	 60	 E:7E-21	 		 		 		
TRINITY_GG_1990_c0_g1_i1	 Q5RES4	 MED1_PONAB	 69.06	 E:7E-61	 		 		 		
TRINITY_GG_3059_c0_g1_i1	 Q2QCI8	 MED12_DANRE	 100	 E:3e-115	 PF12145.6	 Eukaryotic	Mediator	12	

subunit	domain	
		

TRINITY_GG_33816_c0_g1_i1	 Q2QCI8	 MED12_DANRE	 36.36	 E:2e-67	 .	 		 		
TRINITY_GG_33816_c0_g2_i1	 Q2QCI8	 MED12_DANRE	 47.47	 E:1e-46	 .	 		 		
TRINITY_GG_53292_c0_g1_i1	 Q2QCI8	 MED12_DANRE	 42.65	 E:7e-41	 PF12144.6	 Eukaryotic	Mediator	12	

catenin-	binding	domain	
GO:0008013:	
molecular_function:	beta-
catenin	binding	
GO:0016592:	
cellular_component:	
mediator	complex	

TRINITY_GG_1522_c0_g1_i1	 Q7YQK8	 MED12_PANTR	 66.81	 E:3e-79	 .	 		 		
TRINITY_GG_58464_c0_g1_i1	 Q7YQK8	 MED12_PANTR	 84.4	 E:5e-62	 PF12144.6	 Eukaryotic	Mediator	12	

catenin-binding	domain	
GO:0008013:	
molecular_function:	beta-



catenin	binding	
GO:0016592:	
cellular_component:	
mediator	complex	

TRINITY_GG_14816_c0_g1_i1	 Q7ZUL9	 MGRN1_DANRE	 98.21	 E:3e-40	 .	 		 		
TRINITY_GG_28473_c0_g1_i1	 Q7ZUL9	 MGRN1_DANRE	 98.77	 E:2e-30	 .	 		 		
TRINITY_GG_43917_c0_g1_i1	 Q7ZUL9	 MGRN1_DANRE	 58.33	 E:3e-46	 .	 		 		
TRINITY_GG_43100_c0_g1_i1	 O60291	 MGRN1_HUMAN	 90.09	 E:2e-63	 PF13920.4	 Zinc	finger,	C3HC4	type	(RING	

finger)	
GO:0005515:	
molecular_function:	
protein	binding	
GO:0008270:	
molecular_function:	zinc	
ion	binding	

TRINITY_GG_31461_c0_g1_i1	 O60291	 MGRN1_HUMAN	 69.39	 E:8e-30	 .	 		 		
TRINITY_GG_24228_c0_g1_i1	 Q5XIQ4	 MGRN1_RAT	 92.65	 E:2e-67	 .	 		 		
TRINITY_GG_65360_c0_g1_i1	 O75030	 MITF_HUMAN	 86.75	 E:1e-44	 PF15951.3	 MITF/TFEB/TFEC/TFE3	N-

terminus	
		

TRINITY_GG_36802_c0_g1_i1	 Q08874	 MITF_MOUSE	 75.86	 E:5e-42	 PF11851.6	 Domain	of	unknown	function	
(DUF3371)	

GO:0006355:	
biological_process:	
regulation	of	transcription,	
DNA-templated	

TRINITY_GG_42845_c0_g1_i1	 P97432	 NBR1_MOUSE	 67.11	 E:2e-38	 PF16158.3	 Ig-like	domain	from	next	to	
BRCA1	gene	

		

TRINITY_GG_27742_c0_g1_i1	 Q8WX92	 NELFB_HUMAN	 78.89	 E:1e-60	 PF06209.11	 Cofactor	of	BRCA1	(COBRA1)	 GO:0045892:	
biological_process:	
negative	regulation	of	
transcription,	DNA-
templated	GO:0005634:	
cellular_component:	
nucleus	

TRINITY_GG_3724_c0_g1_i1	 Q8WX92	 NELFB_HUMAN	 88.33	 E:4e-54	 PF06209.11	 Cofactor	of	BRCA1	(COBRA1)	 GO:0045892:	
biological_process:	
negative	regulation	of	
transcription,	DNA-
templated	GO:0005634:	
cellular_component:	
nucleus	



TRINITY_GG_68879_c0_g1_i1	 Q8WX92	 NELFB_HUMAN	 90.38	 E:1e-76	 PF06209.11	 Cofactor	of	BRCA1	(COBRA1)	 GO:0045892:	
biological_process:	
negative	regulation	of	
transcription,	DNA-
templated	GO:0005634:	
cellular_component:	
nucleus	

TRINITY_GG_32932_c0_g1_i1	 Q8C4Y3	 NELFB_MOUSE	 83.67	 E:4e-51	 PF06209.11	 Cofactor	of	BRCA1	(COBRA1)	 GO:0045892:	
biological_process:	
negative	regulation	of	
transcription,	DNA-
templated	GO:0005634:	
cellular_component:	
nucleus	

TRINITY_GG_32932_c0_g2_i1	 Q8C4Y3	 NELFB_MOUSE	 74.48	 E:3e-82	 PF06209.11	 Cofactor	of	BRCA1	(COBRA1)	 GO:0045892:	
biological_process:	
negative	regulation	of	
transcription,	DNA-
templated	GO:0005634:	
cellular_component:	
nucleus	

TRINITY_GG_68799_c0_g1_i1	 Q8C4Y3	 NELFB_MOUSE	 79.31	 E:2e-71	 PF06209.11	 Cofactor	of	BRCA1	(COBRA1)	 GO:0045892:	
biological_process:	
negative	regulation	of	
transcription,	DNA-
templated	GO:0005634:	
cellular_component:	
nucleus	

TRINITY_GG_45475_c0_g1_i1	 P18708	 NSF_CRIGR	 65.87	 E:2e-90	 PF07724.12	 AAA	domain	(Cdc48	subfamily)	 GO:0005524:	
molecular_function:	ATP	
binding	GO:0016887:	
molecular_function:	
ATPase	activity	

TRINITY_GG_10296_c0_g1_i1	 P46459	 NSF_HUMAN	 79.31	 E:3e-76	 PF00004.27	 ATPase	family	associated	with	
various	cellular	activities	(AAA)	

GO:0005524:	
molecular_function:	ATP	
binding	



TRINITY_GG_18026_c0_g2_i1	 P46459	 NSF_HUMAN	 68.13	 E:4e-75	 PF00004.27	 ATPase	family	associated	with	
various	cellular	activities	(AAA)	

GO:0005524:	
molecular_function:	ATP	
binding	

TRINITY_GG_41293_c0_g1_i1	 P46459	 NSF_HUMAN	 76.42	 E:2e-42	 .	 		 		
TRINITY_GG_33608_c0_g1_i1	 P46460	 NSF_MOUSE	 69.17	 E:4e-72	 PF02359.16	 Cell	division	protein	48	

(CDC48),	N-terminal	domain	
		

TRINITY_GG_33608_c0_g2_i1	 P46460	 NSF_MOUSE	 90.37	 E:9e-62	 PF02359.16	 Cell	division	protein	48	
(CDC48),	N-terminal	domain	

		

TRINITY_GG_2443_c0_g1_i1	 Q5R410	 NSF_PONAB	 77.78	 E:3e-44	 PF00004.27	 ATPase	family	associated	with	
various	cellular	activities	(AAA)	

GO:0005524:	
molecular_function:	ATP	
binding	

TRINITY_GG_32883_c0_g1_i1	 Q5R410	 NSF_PONAB	 89.78	 E:1e-72	 PF00004.27	 ATPase	family	associated	with	
various	cellular	activities	(AAA)	

GO:0005524:	
molecular_function:	ATP	
binding	

TRINITY_GG_33579_c0_g1_i1	 Q5R410	 NSF_PONAB	 92.11	 E:4e-81	 PF00004.27	 ATPase	family	associated	with	
various	cellular	activities	(AAA)	

GO:0005524:	
molecular_function:	ATP	
binding	

TRINITY_GG_66607_c0_g1_i1	 Q9QUL6	 NSF_RAT	 94.29	 1.00E-27	 		 Vesicle-fusing	ATPase	 		
TRINITY_GG_18026_c0_g1_i1	 Q9QUL6	 NSF_RAT	 90.77	 E:4e-23	 .	 		 		
TRINITY_GG_32418_c0_g2_i1	 Q9CY58	 PAIRB_MOUSE	 94.4	 E:3e-53	 PF04774.13	 Hyaluronan	/	mRNA	binding	

family	
		

TRINITY_GG_5848_c0_g1_i1	 Q9CY58	 PAIRB_MOUSE	 94.32	 E:2e-34	 PF04774.13	 Hyaluronan	/	mRNA	binding	
family	

		

TRINITY_GG_5848_c0_g2_i1	 Q9CY58	 PAIRB_MOUSE	 82.31	 E:6e-34	 PF04774.13	 Hyaluronan	/	mRNA	binding	
family	

		

TRINITY_GG_60948_c0_g1_i1	 Q6ZW49	 PAXI1_HUMAN	 81.74	 E:1e-91	 PF12738.5	 twin	BRCT	domain	 		
TRINITY_GG_6251_c0_g1_i1	 Q6ZW49	 PAXI1_HUMAN	 83.78	 E:4e-57	 PF16770.3	 Regulator	of	Ty1	transposition	

protein	107	BRCT	domain	
		

TRINITY_GG_64272_c0_g1_i1	 B5X171	 PESC_SALSA	 84.62	 E:3e-67	 PF16589.3	 BRCT	domain,	a	BRCA1	C-
terminus	domain	

		

TRINITY_GG_26850_c0_g1_i1	 Q98917	 PMEL_CHICK	 90.14	 E:9e-41	 PF00801.18	 PKD	domain	 		
TRINITY_GG_3716_c0_g1_i1	 Q98917	 PMEL_CHICK	 97.83	 E:2e-39	 .	 		 		
TRINITY_GG_47250_c0_g1_i1	 Q98917	 PMEL_CHICK	 71.43	 E:8e-26	 .	 		 		
TRINITY_GG_47250_c0_g2_i1	 Q98917	 PMEL_CHICK	 66.46	 E:2e-32	 .	 		 		
TRINITY_GG_9521_c0_g1_i1	 Q98917	 PMEL_CHICK	 65.22	 E:3e-34	 .	 		 		



TRINITY_GG_9314_c0_g1_i1	 Q96D21	 RHES_HUMAN	 43.44	 E:5e-21	 PF00071.20	 RAS	family	 GO:0005525:	
molecular_function:	GTP	
binding	GO:0007264:	
biological_process:	small	
GTPase	mediated	signal	
transduction	

TRINITY_GG_9314_c0_g2_i1	 Q96D21	 RHES_HUMAN	 43.44	 E:5e-21	 PF00071.20	 RAS	family	 GO:0005525:	
molecular_function:	GTP	
binding	GO:0007264:	
biological_process:	small	
GTPase	mediated	signal	
transduction	

TRINITY_GG_31390_c0_g1_i1	 Q60520	 SIN3A_MOUSE	 66.29	 E:2e-42	 PF02671.19	 Paired	amphipathic	helix	
repeat	

GO:0006355:	
biological_process:	
regulation	of	transcription,	
DNA-templated	

TRINITY_GG_31390_c0_g1_i1	 Q60520	 SIN3A_MOUSE	 66.29	 E:2e-42	 PF02671.19	 Paired	amphipathic	helix	
repeat	

GO:0006355:	
biological_process:	
regulation	of	transcription,	
DNA-templated	

TRINITY_GG_57177_c0_g1_i1	 Q60520	 SIN3A_MOUSE	 79.13	 E:3e-44	 PF02671.19	 Paired	amphipathic	helix	
repeat	

GO:0006355:	
biological_process:	
regulation	of	transcription,	
DNA-templated	

TRINITY_GG_5915_c0_g1_i1	 Q60520	 SIN3A_MOUSE	 64.9	 E:1e-60	 PF02671.19	 Paired	amphipathic	helix	
repeat	

GO:0006355:	
biological_process:	
regulation	of	transcription,	
DNA-templated	

TRINITY_GG_51986_c0_g1_i1	 O75182	 SIN3B_HUMAN	 67.72	 E:1e-27	 PF02671.19	 Paired	amphipathic	helix	
repeat	

GO:0006355:	
biological_process:	
regulation	of	transcription,	
DNA-templated	

TRINITY_GG_22024_c0_g1_i1	 Q62141	 SIN3B_MOUSE	 53.78	 E:1e-82	 PF02671.19	 Paired	amphipathic	helix	
repeat	

GO:0006355:	
biological_process:	
regulation	of	transcription,	
DNA-templated	



TRINITY_GG_67679_c0_g1_i1	 P81125	 SNAA_BOVIN	 52.94	 E:1e-69	 PF14938.4	 Soluble	NSF	attachment	
protein,	SNAP	

		

TRINITY_GG_30401_c0_g1_i1	 Q9DB05	 SNAA_MOUSE	 56.84	 E:1e-97	 PF14938.4	 Soluble	NSF	attachment	
protein,	SNAP	

		

TRINITY_GG_53852_c0_g1_i1	 Q9DB05	 SNAA_MOUSE	 44.44	 E:8e-66	 PF14938.4	 Soluble	NSF	attachment	
protein,	SNAP	

		

TRINITY_GG_31582_c0_g1_i1	 P54921	 SNAA_RAT	 50.6	 E:2e-61	 PF14938.4	 Soluble	NSF	attachment	
protein,	SNAP	

		

TRINITY_GG_43021_c0_g1_i1	 P28663	 SNAB_MOUSE	 51.33	 E:2e-84	 PF14938.4	 Soluble	NSF	attachment	
protein,	SNAP	

		

TRINITY_GG_63608_c0_g1_i1	 P81127	 SNAG_BOVIN	 98	 E:3e-54	 PF14938.4	 Soluble	NSF	attachment	
protein,	SNAP	

		

TRINITY_GG_63608_c0_g4_i1	 P81127	 SNAG_BOVIN	 76.84	 E:5e-56	 PF14938.4	 Soluble	NSF	attachment	
protein,	SNAP	

		

TRINITY_GG_63608_c0_g6_i1	 P81127	 SNAG_BOVIN	 80.65	 E:3e-98	 PF14938.4	 Soluble	NSF	attachment	
protein,	SNAP	

		

TRINITY_GG_27414_c0_g1_i1	 Q8AXX8	 SOX10_XENLA	 73.24	 E:6e-44	 .	 		 		
TRINITY_GG_27321_c0_g1_i1	 P48434	 SOX9_CHICK	 88.19	 E:5e-43	 PF12444.6	 Sox	developmental	protein	N	

terminal	
		

TRINITY_GG_32038_c0_g1_i1	 Q92547	 TOPB1_HUMAN	 93.86	 E:6e-59	 PF00533.24	 BRCA1	C	Terminus	(BRCT)	
domain	

		

TRINITY_GG_16794_c0_g1_i1	 Q98949	 TYRO3_CHICK	 85.19	 E:5e-63	 PF00069.23	 Protein	kinase	domain	 GO:0004672:	
molecular_function:	
protein	kinase	activity	
GO:0005524:	
molecular_function:	ATP	
binding	GO:0006468:	
biological_process:	protein	
phosphorylation	

TRINITY_GG_22756_c0_g1_i1	 Q98949	 TYRO3_CHICK	 83.48	 E:3e-46	 PF07714.15	 Protein	tyrosine	kinase	 GO:0004672:	
molecular_function:	
protein	kinase	activity	
GO:0006468:	
biological_process:	protein	
phosphorylation	
GO:0005524:	



molecular_function:	ATP	
binding	

TRINITY_GG_37430_c0_g1_i1	 Q98949	 TYRO3_CHICK	 90.2	 E:1e-76	 PF07714.15	 Protein	tyrosine	kinase	 GO:0004672:	
molecular_function:	
protein	kinase	activity	
GO:0006468:	
biological_process:	protein	
phosphorylation	
GO:0005524:	
molecular_function:	ATP	
binding	

TRINITY_GG_22756_c0_g2_i1	 Q98949	 TYRO3_CHICK	 93.89	 E:3e-36	 .	 		 		
TRINITY_GG_50835_c0_g1_i1	 A0JM20	 TYRO3_XENTR	 81.13	 E:8e-31	 .	 		 		
TRINITY_GG_22144_c0_g1_i1	 Q8WN57	 TYRP1_BOVIN	 82.24	 E:2e-60	 PF00264.18	 Common	central	domain	of	

tyrosinase	
GO:0016491:	
molecular_function:	
oxidoreductase	activity	
GO:0008152:	
biological_process:	
metabolic	process	

TRINITY_GG_3909_c0_g1_i1	 Q8WN57	 TYRP1_BOVIN	 81.76	 E:7e-35	 .	 		 		
TRINITY_GG_53969_c0_g1_i1	 O57405	 TYRP1_CHICK	 92.19	 E:9e-50	 .	 		 		
TRINITY_GG_57110_c0_g1_i1	 O93505	 TYRP2_CHICK	 96.92	 E:1e-77	 PF00053.22	 Laminin	EGF	domain	 		
TRINITY_GG_15257_c0_g1_i1	 P29812	 TYRP2_MOUSE	 75.83	 E:1e-75	 PF00264.18	 Common	central	domain	of	

tyrosinase	
GO:0016491:	
molecular_function:	
oxidoreductase	activity	
GO:0008152:	
biological_process:	
metabolic	process	

TRINITY_GG_28604_c0_g1_i1	 P29812	 TYRP2_MOUSE	 72.93	 E:2e-61	 PF00264.18	 Common	central	domain	of	
tyrosinase	

GO:0016491:	
molecular_function:	
oxidoreductase	activity	
GO:0008152:	
biological_process:	
metabolic	process	

TRINITY_GG_13519_c0_g1_i1	 P47990	 XDH_CHICK	 53.9	 2.00E-42	 		 Xanthine	
dehydrogenase/oxidase	

		



TRINITY_GG_13519_c0_g2_i1	 P47990	 XDH_CHICK	 84.38	 1.00E-42	 		 Xanthine	
dehydrogenase/oxidase	

		

TRINITY_GG_25378_c0_g1_i1	 P47990	 XDH_CHICK	 78.32	 2.00E-35	 		 Xanthine	
dehydrogenase/oxidase	

		

TRINITY_GG_28224_c0_g1_i1	 P47990	 XDH_CHICK	 73.13	 2.00E-27	 		 Xanthine	
dehydrogenase/oxidase	

		

TRINITY_GG_28224_c0_g2_i1	 P47990	 XDH_CHICK	 80.91	 1.00E-28	 		 Xanthine	
dehydrogenase/oxidase	

		

TRINITY_GG_44636_c0_g1_i1	 P47990	 XDH_CHICK	 80.28	 E:3e-39	 PF01315.20	 Aldehyde	oxidase	a	xanthine	
dehydrogenase,	a/b	
hammerhead	domain	

		

TRINITY_GG_68752_c0_g1_i1	 P47990	 XDH_CHICK	 79.2	 3.00E-23	 		 Xanthine	
dehydrogenase/oxidase	

		

TRINITY_GG_71332_c0_g1_i1	 P47990	 XDH_CHICK	 81.02	 1.00E-38	 		 Xanthine	
dehydrogenase/oxidase	

		

TRINITY_GG_71332_c0_g2_i1	 P47990	 XDH_CHICK	 64.14	 9.00E-49	 		 Xanthine	
dehydrogenase/oxidase	

		

TRINITY_GG_71332_c0_g3_i1	 P47990	 XDH_CHICK	 63.27	 3.00E-49	 		 Xanthine	
dehydrogenase/oxidase	

		

TRINITY_GG_23943_c0_g2_i1	 P22811	 XDH_DROPS	 56.94	 E:5e-23	 PF02738.16	 Molybdopterin-binding	
domain	of	aldehyde	
dehydrogenase	

GO:0016491:	
molecular_function:	
oxidoreductase	activity	
GO:0055114:	
biological_process:	
oxidation-reduction	
process	

TRINITY_GG_4100_c0_g2_i1	 Q9MYW6	 XDH_FELCA	 64.91	 E:6e-46	 PF02738.16	 Molybdopterin-binding	
domain	of	aldehyde	
dehydrogenase	

GO:0016491:	
molecular_function:	
oxidoreductase	activity	
GO:0055114:	
biological_process:	
oxidation-reduction	
process	

TRINITY_GG_44636_c0_g2_i1	 P47990	 XDH_HUMAN	 67.5	 5.00E-25	 		 Xanthine	
dehydrogenase/oxidase	

		



TRINITY_GG_4100_c0_g1_i1	 P22985	 XDH_RAT	 69.23	 2.00E-40	 		 Xanthine	
dehydrogenase/oxidase	

		

TRINITY_GG_23700_c2_g1_i1	 O95409	 ZIC2_HUMAN	 74.16	 E:0.00	 PF00096.24	 Zinc	finger,	C2H2	type	 GO:0046872:	
molecular_function:	metal	
ion	binding	

	



Appendix	IV.	Chapter	5	

	
		 Raja	asterias	 Raja	clavata	 Raja	miraletus	 Raja	ocellifera	 Raja	straeleni	

Dorsal	
matrix	

Raja	asterias	 *	 	 	 	 	
Raja	clavata	 804	 *	 	 	 	
Raja	miraletus	 3762	 3246	 *	 	 	
Raja	ocellifera	 2668	 2288	 1937	 *	 	
Raja	straeleni	 760	 221	 3249	 2068	 *	

	 	 	 	 	 	 	
		 Raja	asterias	 Raja	clavata	 Raja	miraletus	 Raja	ocellifera	 Raja	straeleni	

Spot	

Raja	asterias	 *	 	 	 	 	
Raja	clavata	 591	 *	 	 	 	
Raja	miraletus	 3145	 1931	 *	 	 	
Raja	ocellifera	 3164	 2328	 1807	 *	 	
Raja	straeleni	 927	 261	 3050	 2868	 *	

	 	 	 	 	 	 	
		 Raja	asterias	 Raja	clavata	 Raja	miraletus	 Raja	ocellifera	 Raja	straeleni	

Ventral	
portion	

Raja	asterias	 *	 	 	 	 	
Raja	clavata	 804	 *	 	 	 	
Raja	miraletus	 3762	 3246	 *	 	 	
Raja	ocellifera	 2668	 2288	 1937	 *	 	
Raja	straeleni	 760	 221	 3249	 2068	 *	

 
  

Table	S16	Number	of	differentially	expressed	genes	in	different	tissues	in	pairwise	comparisons.	

	



 
	 Raja	asterias	 Raja	clavata	 Raja	straeleni	 Raja	miraletus	 Raja	ocellifera	
Comparisons	 Down	 Up	 Down	 Up	 Down	 Up	 Down	 Up	 Down	 Up	

DvsW	 90	 70	 97	 125	 64	 69	 41	 203	 128	 32	
SvsD	 0	 0	 0	 0	 0	 0	 61	 0	 0	 0	
SvsW	 70	 91	 213	 38	 44	 76	 207	 95	 358	 50	

 

Table	S17	Number	of	differentially	expressed	genes	between	different	tissues	within	species.	DvsW	dorsal	matrix	compared	to	
white	ventral	portion,	SvsD	spot	compared	to	dorsal	matrix,	SvsW	spot	compared	to	white	ventral	portion.	

	


