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Preamble 

Bivalve molluscs are an important food source for living beings, including humans. Aquaculture 

provides 89.6% of global bivalve mollusc production, which plays an important role in ensuring 

food and employment to the world population (FAO 2013).  

Bivalve molluscs are obligated filter feeders, that feed on microalgae, bacteria and organic particles 

present in the aquatic environment. Accordingly, they could accumulate chemical compounds, 

marine biotoxins, bacteria and viruses, including human and animal pathogens (Molloy et al., 2013; 

Serratore et al., 2014). 

The interaction between microorganisms and bivalve molluscs, both in natural and artificial 

environments, such as integrated multitrofic aquaculture, might influence the epidemiology of 

animal and human infectious diseases (Skår & Mortensen, 2007). 

Some studies, investigating the interaction between bivalve molluscs and fish pathogens, show that 

Infectious salmon anemia virus (ISAV) is inactivated from Atlantic mussels (Mytilus edulis) 

(Molloy et al. 2014), whereas Infectious pancreatic necrosis virus (IPNV) could be transmitted 

from contaminated Atlantic mussels to Atlantic salmon (Salmo salar) (Molloy et al. 2013). 

Previous studies, performed by the virology research group of the DIMEVET, have shown a wide 

presence of betanodaviruses in bivalve molluscs including Manila clam (Ruditapes philippinarum), 

mussels (Mytilus galloprovincialis) and oysters (Crassostrea gigas) (Ciulli et al., 2010). 

Betanodaviruses are small ssRNA viruses of the genus Betanodavirus, family Nodaviridae (Thiéry 

et al., 2012) responsible of viral encephalopathy and retinopathy (VER), otherwise known as viral 

nervous necrosis (VNN), one of the most threatened disease in marine aquaculture worldwide. 

The Ph.D thesis, arranged in three chapters, deals with finfish and human pathogens in bivalve 

molluscs and focus on betanodavirus presence in bivalve molluscs, on their interaction with the 

Redspotted grouper nervous necrosis virus (RGNNV), a viral species of the genus Betanodavirus, 

and the development of a novel method to mitigate bacterial and viral contaminations of bivalve 

molluscs. 

The first chapter reports a research on the molecular detection and phylogenetic analysis of 

betanodaviruses in bivalve molluscs collected from 2008 to 2015, different European countries and 

three species. In this study, detected viruses have been analyzed genetically to find out whether 

bivalve molluscs could be a source of genetically close related betanodaviruses to finfish. In fact, 

the finding of betanodaviruses in bivalve molluscs strictly related to finfish betanodaviruses could 

pose a possible risk of inter-specific transmission. 
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The second chapter focused on the fate of RGNNV in experimentally challenged Manila clam to 

investigate the potential role of clams as an RGNNV reservoir and the potential risks posed by 

RGNNV-contaminated molluscs. 

The third study deals with sea water disinfection to complement and improve the microbial 

depuration of Manila clams. A novel sea water disinfection process was tested on Manila clam by 

employing a potassium peroxymonosulfate (MPS)-based product. The biocidal activity of the 

disinfection process was evaluated against both bacterial and viral contaminants of bivalve 

molluscs. Particularly, bactericidal activity was evaluated against the Vibrio spp. population 

naturally associated with sea water that include several human and finfish pathogens; virucidal 

activity was assessed against VNNV, the most threatening among the viral pathogens of marine 

finfish. 
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CHAPTER 1 

 

Molecular detection and phylogenetic analysis of betanodaviruses in bivalve molluscs 
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2
Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy 

 

1.1 ABSTRACT 

Betanodaviruses are small ssRNA viruses of the family Nodaviridae responsible of viral 

encephalopathy and retinopathy (VER) otherwise known as viral nervous necrosis (VNN) in marine 

fishes worldwide. They can be transmitted both vertically and horizontally and invertebrates, where 

they have been detected sporadically, have been suspected to be a source of the virus. 

This is the first study focusing on betanodavirus in bivalve molluscs. Twenty seven new 

betanodavirus strains were detected in bivalve molluscs of different species, European countries and 

year of collection and genetically characterized. 

Betanodaviruses detected in mollusc bivalve and in finfish are very closely related to 

betanodaviruses previously detected in finfish in Southern Europe from 2000 to 2009. However, 

also a new betanodavirus strain not belonging to any of the already known betanodavirus genotypes 

was detected. 

Such a massive and variegate presence of betanodaviruses in bivalve molluscs greatly  stresses the 

risks of transmission previously feared for other invertebrates. Molluscs bivalve reared in the same 

area of farmed and wild finfish could act as a reservoir of virus. Furthermore, the marketing of alive 

bivalve mollusc and the relaying activity, allowed by the European regulation, can pose also a real 

risk of spreading betanodavirus between different geographical areas. 
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1.2 INTRODUCTION 

Betanodaviruses are small ssRNA viruses of the genus Betanodavirus, family Nodaviridae (Thiéry 

et al., 2012) responsible of viral encephalopathy and retinopathy (VER), otherwise known as viral 

nervous necrosis (VNN), in several fish species worldwide. Betanodavirus genome consist of two 

segments named RNA 1 (3.1 KB) and RNA 2 (1.4 kb) coding respectively for the RNA-dependent 

RNA polymerase and the coat protein. Moreover, during virus replication, a subgenomic transcript 

called RNA3 is originated from the 3’ terminus of RNA1 (Iwamoto et al., 2005; Thiéry et al., 

2012). Based on phylogenetic analysis of the T4 variable region within the RNA 2 segment, 

betanodaviruses have been historically divided into four  genotypes, currently accepted as official 

species of this genus: Striped jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis 

virus (TPNNV), Barfin flounder nervous necrosis virus (BFNNV) and Redspotted grouper nervous 

necrosis virus (RGNNV) (Nishizawa et al. 1997; Thiéry et al., 2012). Demarcation of species is 

mainly based on genetic characterization, however, more genotypes than that recognized as species 

has been described such in the case of Atlantic cod nervous necrosis virus (ACNNV) (Gagné et al., 

2004) and the turbot nodavirus (TNV) (Johansen et al., 2004). Although, genotyping was based on 

RNA 2 phylogenetic analysis (Nishizawa et al. 1997), RNA 1 phylogenetic analysis added further 

information showing the presence of reassortant strains (Olveira et al., 2009; Toffolo et al., 2007). 

As a matter of fact, the presence of reassortant betanodaviruses SJNNV/RGNNV has been 

previously described in sea bass (Dicentrarchus labrax) caught in Italy and Croatia, in the form of a 

genetic variant containing the RNA 1 segment deriving from the SJNNV genotype and the RNA 2 

molecule originating from the RGNNV-type (Toffolo et al., 2007). Later on, a new reassorted 

betanodavirus, in the form of a RGNNV/SJNNV genetic variant, has been detected in sea bream 

(Sparus aurata), common sole (Solea solea) and Senegalese sole (Solea senegalensis) farmed in 

Portugal, Italy and Spain (Olveira et al., 2009; Panzarin et al., 2012). 

Viral encephalopathy and retinopathy is observed mainly in farmed fish, however severe outbreaks 

were observed in wild fish affecting mainly groupers (Gomez et al., 2009; Vendramin et al., 2013). 

Furthermore, asymptomatic betanodavirus infection is often detected in wild fish (Barker et al., 

2002; Gomez et al., 2004; Baeck et al., 2007; Ciulli et al., 2007a; Gomez et al. 2008a; Panzarin et 

al., 2012; Liu et al., 2015). Moreover. sporadic presence of betanodaviruses in invertebrates was 

shown in the Mediterranean Sea, South Korea and Japan (Gomez et al., 2006; Gomez et al., 2008b; 

Gomez et al. 2010; Ciulli et al. 2010; Panzarin et al., 2012; Fichi et al., 2015). Particularly, 

considering bivalve mollusc betanodavirus presence was reported in two mussels (Mytilus 

galloprovincialis) collected in Korea and one clam (Ruditapes philippinarum) in Italy (Gomez et 

al., 2008b; Panzarin et al., 2012). We evidenced betanodaviruses in Italian clams and French oysters 
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since 2010 and some preliminary results were presented to the 14th International Biotechnology 

Symposium and Exhibition (Ciulli et al., 2010). 

Actually, most of the genetically characterized betanodaviruses detected in bivalve 

mollusc/invertebrates were included in RGNNV genotype. However, a reassortant RGNNV/SJNNV 

strain was found in Artemia salina and Opistobranchia (Gomez et al., 2008b; Gomez et al., 2008c; 

Ciulli et al., 2010; Panzarin et al., 2012). Overall, a very limited number of studies have been made 

on this topic. Betanodavirus can be transmitted by both vertical and horizontal transmission. In 

addition, interspecies transmission is possible and genetically related viruses are often detected in 

different species. For these reasons wild fish have been supposed reservoir for the virus (Gomez et 

al., 2006; Gomez et al., 2008a; Doan et al., 2016). Similarly, it was hypothesized that Betanodavirus 

can be transmitted to finfish trhough trash fish composed of both marine vertebrates and 

invertebrates (Gomez et al., 2010). However, several factors can affect real risk of betanodavirus 

transmission from invertebrate to finfish, including the prevalence of the virus in invertebrates 

populations and the similarity of the virus found in invertebrates with those of finfish.  In this study, 

we examined bivalve molluscs reared in different European countries for the presence of 

betanodaviruses; detected viruses have been analyzed genetically to find out whether these animals 

could be a source of genetically close related betanodaviruses to finfish. The finding of 

betanodaviruses in molluscs strictly related to virus found in fish could pose a possible risk of 

spreading the virus into new areas. 

 

1.3 MATERIALS AND METHODS 

1.3.1 Bivalve mollusc and viruses 

Betanodaviruses characterized in this study were obtained through a preliminary survey conducted 

in 2009 to investigate the betanodavirus presence in three bivalve mollusc species (Ciulli et al., 

2010). In the survey, a total of 57 lots (19 for each species) of retail bivalve molluscs were analyzed 

including a species reared on the seabed such as clam (Ruditapes philippinarum) and species 

usually farmed in the water column such as oysters (Crassostrea gigas) and mussels (Mytilus 

galloprovincialis). Each species was equally represented in the sampling. Each sample was 

composed of 30 clams, 10 mussels or 6 oysters. Bivalve mollusc lots were collected directly from 

the market in 2009 and originated from France (oysters), Italy (clams and mussels) and Spain 

(mussels). This survey allowed to collect one betanodavirus strain from mussel, six from oysters 

and eight from clams (Table 1). 
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Further diagnostic activity focused on Italian clam was conducted from September 2012 to May 

2015 consisting in the betanodavirus screening of further 36 lots of clams. This activity allowed to 

collect further 12 betanodavirus strains. A strain detected in mussels collected in Sicily in 2008 at 

the IZS (Istituto Zooprofilattico Sperimentale della Sicilia) was also included in the analysis (Table 

1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Details of betanodavirus strains detected in bivalve molluscs and used for phylogenetic analysis. 

 

 

 

 

 

Sample names Species 
Years of 

sampling 
Origin 

PA3M mussel 2008 Italy (Sicily) 

681M mussel 2009 Not available 

585O, 651O, 

664O, 666O, 

672O, 686O 

oyster 2009 France (Atlantic Ocean) 

628C, 629C, 

651C, 667C, 

671C, 676C, 

680C, 684C 

clams 2009 Italy (Northern Adriatic) 

919C clams 2012 Italy (Northern Adriatic) 

76C, 79C, 133C, 

134C, 135C, 

229C, 271C, 

272C 

clams 2014 Italy (Northern Adriatic) 

38C, 39C, 58C clams 2015 Italy (Northern Adriatic) 
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1.3.2 RNA extraction, RT-PCR and nested PCR 

The mollusc hepatopancreas were homogenized and treated with proteinase K (Sigma, St. Louis, 

USA), then RNA was extracted according to the manufacturer’s instructions with NucleoSpin® 

RNA II (Macherey-Nagel, Düren, Germany). RNA samples were stored at -80 °C until use. 

Betanodavirus presence was investigated by an RT-nested PCR method using primers previously 

described targeting the viral RNA 2 (Ciulli et al., 2007b). Briefly, the first amplification step was 

conducted through a one-step RT-PCR assay with primers S6-S7 (Ciulli et al., 2006) using the 

SuperScript III One-Step RT-PCR System (Invitrogen, Carlsbad, USA). The reaction mixture 

consisted of 15 µl of reaction mix containing 3 µl RNA, 7.5 µl 2X Reaction Mix, 0.8 µM of each 

primer and 0.3 µl Superscript III/Platinum Taq enzyme mix. The optimal thermal cycling conditions 

were 45 °C for 30 min, 95 °C for 2 min, followed by 40 cycles of 94 °C for 60 s, 58 °C for 60 s and 

72 °C for 60 s. A final extension was performed at 72°C for 7 min. Nested PCR was conducted with 

primers F2-R3 (Nishizawa et al., 1994) using the Platinum Taq DNA polymerase (Invitrogen). The 

reaction mixture for the nested PCR had a total volume of 25 µl and contained 2.5 µl of 10X PCR 

buffer, 1.5 mM MgCl2, 0.25 µM of each primer, 1 µl of cDNA diluted 1:100, 1.25 units of Platinum 

Taq DNA polymerase (Invitrogen) and nuclease free water. The thermal cycle for nested PCR 

consisted of 95°C for 5 min and 40 cycles of 94°C for 30 sec, 56°C for 30 sec and 72°C for 30 sec. 

A final extension was performed at 72°C for 7 min. To avoid cross contamination, negative controls 

were run along with all reactions. The results of all RT-PCR and nested PCR analyses were checked 

by agarose gel electrophoresis of PCR products along with a 100 bp DNA molecular marker 

(Invitrogen, Carlsbad, USA). 

Nine betanodaviruses detected between 2012 and 2015 were further analyzed for an RNA 1 

fragment using primers previously described (Toffolo et al., 2007). RT-PCR was performed with 

the SuperScript III One-Step RT-PCR System (Invitrogen, Carlsbad, USA) using primers VNNV 5-

6. Eminested PCR was conducted with primers VNNV 6-7 using the Platinum Taq DNA 

polymerase (Invitrogen). 

 

1.3.3 Sequencing and phylogenetic analysis 

PCR products were purified using the High Pure PCR Product Purification Kit (Roche, Mannheim, 

Germany) and then sequenced through the Bio-Fab Sequencing Service (Rome, Italy). Amino acid 

sequences were predicted by the BioEdit software (http://bioedit.software.informer.com/). 

Sequences were then aligned and compared with betanodavirus sequences previously obtained from 

http://bioedit.software.informer.com/


8 

 

strains isolated from farmed and wild finfish and with betanodavirus reference genotypes strains 

(Thiery et al., 2012) available in GenBank (www.ncbi.nlm.nih.gov) using Clustal W in BioEdit 

software (http://bioedit.software.informer.com/). Particularly, a selection of betanodavirus 

sequences collected in southern Europe and used for a previous extensive and comprehensive 

phylogenetic study was used (Panzarin et al., 2012). Percentage of similarity of pairwise distances 

was calculated with BioEdit software. Phylogenetic analysis was carried out using the MEGA 

version 6 software (www.megasoftware.net) and employing the general time-reversible (GTR) 

model of nucleotide substitution. A phylogenetic tree was constructed using the maximum-

likelihood method. Bootstrap analysis was carried out on 1000 replicates. 

 

1.4 RESULTS 

1.4.1 Virus detection 

All samples collected in the 2009 survey resulted negative to RT-PCR, while 15 lots out of 57 

resulted positive to nested PCR (26.3 %). Only one positive lot was found out of 19 lots of mussels 

(M. galloprovincialis), whereas clams (T. philippinarum) and oysters (C. gigas) resulted highly 

positive to betanodavirus, with 42.1 % (8/19) and 31.6% (6/19) of lots positive to betanodavirus 

respectively. All the positives except one (585/2009) were collected from June to September. 

 

1.4.2 Sequencing and phylogenetic analysis 

The maximum likelihood phylogenetic trees inferred for the RNA 1 and RNA 2 genes of the viruses 

collected from shellfish from 2008 to 2015 revealed that all betanodaviruses detected in this study 

except one (681M/2009) felt within RGNNV genotype (Figs. 1 and 2). The virus 681M/2009 

clustered in a group by itself, outside all RGNNV subgroups (Fig. 2). Unfortunately, for this virus, 

as well as for all viruses detected before 2012 was not possible to carry out RNA 1 sequencing due 

to the failure storing of samples. 

The topology of the RNA 1 and RNA 2 phylogenetic trees confirmed the genetic clustering 

obtained in a previous study that analyze several betanodavirus sequences collected in southern 

Europe (Panzarin et al., 2012) (Figs. 1 and 2) therefore corroborating the validity of the analysis 

based on the partial fragment of RNA 1 (position 678-1097 of SJNNV AB056571) and the T4 

variable region of the RNA 2 (position 635-923 of SJNNV AB056572). 

http://www.ncbi.nlm.nih.gov/
http://bioedit.software.informer.com/
http://www.megasoftware.net/


9 

 

RNA 1 and RNA 2 phylogenetic trees identified 11 and 7 well supported monophyletic genetic 

subgroups inside RGNNV genotype (bootstrap values >70%) (Figs. 1 and 2). For a better 

comparison clusters were designated with names used in the study of Panzarin et al. (2012). 

Analysis of RNA 1 showed that betanodaviruses detected in Italian clams clustered in 3 RGNNV 

subgroups previously identified and named II, IV and X (Panzarin et al., 2012). On the basis of the 

comparison with viruses previously included in these groups, some of the 2014 and 2015 clam 

samples clustered with viruses isolated several years ago (1996-2000) from finfish (cluster X). 

Clam viruses clustered together with both Italian and other European countries viruses, regardless 

of host origin, farmed or wild status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Phylogenetic tree constructed with RNA 1 fragment of betanodaviruses detected in bivalve molluscs 

combined with reference strains and finfish betanodavirus sequences retrieved from Genbank. 
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Analysis of RNA 2 showed that betanodaviruses detected in bivalve molluscs clustered in 2 

subgroups (B, E) out of the seven previously identified (Panzarin et al., 2012). Both subgroups 

included viruses with high variability respect to year of detection and host status (wild/farmed). 

Moreover, subgroup E included viruses isolated in different European countries, including a virus 

detected in a French oyster. Two further subgroups were identified in RNA 2 phylogenetic tree. 

One subgroup (named H) was represented by viruses detected in four French oysters and in one 

Italian mussel (Sicily). They clustered together with a wild Italian Epinephelus spp. virus that did 

not fall in any subgroups in the previous analysis (Panzarin et al., 2012). The other subgroup 

(named I) consists of betanodavirus strains detected in seven Italian clams in 2014 and 2015 and 

European viruses detected in farmed finfish that did not fall in any subgroups in the previous 

analysis (Panzarin et al., 2012). All genetic clusters were well supported by bootstrap analysis 

(bootstrap values >70%). 
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Fig. 3. Phylogenetic tree constructed with RNA 2 fragment of betanodaviruses detected in bivalve molluscs 

combined with reference strains and finfish betanodavirus sequences retrieved from Genbank. 
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Betanodaviruses detected in bivalve mollusc in this study showed nucleotide and amino acid 

identities between each other higher than 88.9% and 86.0% respectively except with strain 

681M/2009 that has a nucleotide and amino acid identity always lower than 75.0% and 81.7% 

respectively. 

The percentage of pairwise nucleotide and aminoacid similarity with the RNA 2 of the four 

betanodavirus genotypes are reported in Table 2. 

All the viruses detected in bivalve molluscs except strain 681M/2009 showed the highest nucleotide 

and amino acid identities with RGNNV genotype ranging between 89.6 and 99.6% and between 

87.0 % and 100.0%  respectively, whereas the nucleotide identities with other genotypes were lower 

than 76.8, 65.8 and 65.5% for BFNNV, SJNNV and TPNNV respectively and the amino acid 

identity was lower than 84.9, 68.4 and 70.5% for BFNNV, SJNNV and TPNNV respectively. Strain 

681M/2009 showed similar nucleotide identities with RGNNV (75.0% nucleotide identity and 

80.6% amino acid identity) and BFNNV (72.2% nucleotide identity and 79.5% amino acid identity) 

genotype, these values were lower than those between RGNNV and BFNNV genotypes (76.1% 

nucleotide identity and 84.9% amino acid identity). 
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Table 2. Comparisons of nucleotide and amino acid sequences of a RNA 2 fragment including the variable 

region of betanodaviruses detected in bivalve molluscs with reference betanodavirus genotypes (RGNNV: 

AY32487; BFNNV: EU826138; SJNNV: AB056572; TPNNV: EU236149; Thiery et al., 2012). Percentage 

of similarity of pairwise distances are shown. 

 

 

 

 

 RGNNV BFNNV SJNNV TPNNV 

 nt aa nt aa nt aa nt aa 

38C/2015 99.6 100 76.5 84.9 65.5 67.3 64.8 69.4 

39C/2015 99.6 100 76.5 84.9 65.5 67.3 64.8 69.4 

58C/2015 99.6 100 76.5 84.9 65.5 67.3 64.8 69.4 

76C/2014 99.6 100 76.5 84.9 65.5 67.3 64.8 69.4 

79C/2014 91.1 89.2 71.8 82.7 64.4 68.4 64.8 70.5 

133C/2014 98.5 100 76.8 84.9 65.5 67.3 64.8 69.4 

134C/2014 98.9 98.9 76.1 83.8 65.1 66.3 64.4 68.4 

135C/2014 90.7 89.2 71.5 82.7 65.1 68.4 64.8 70.5 

229C/2014 99.6 100 76.5 84.9 65.5 67.3 64.8 69.4 

271C/2014 99.6 100 76.5 84.9 65.5 67.3 64.8 69.4 

272C/2014 90.7 89.2 71.5 82.7 65.1 68.4 64.8 70.5 

919C/2012 98.5 100 76.8 84.9 64.8 67.3 64.8 69.4 

585O/2009 93.2 92.4 72.9 81.7 64.4 64.2 60.6 66.3 

628C/2009 89.6 87 71.1 79.5 64.8 68.4 63.7 69.4 

629C/2009 90.7 89.2 71.5 82.7 65.1 68.4 64.8 70.5 

651O/2009 98.9 100 76.5 84.9 65.1 67.3 65.1 69.4 

651C/2009 98.9 100 76.5 84.9 65.1 67.3 65.1 69.4 

664O/2009 92.8 91.3 72.5 80.6 64.1 63.1 60.6 65.2 

666O/2009 92.5 91.3 72.2 81.7 64.4 64.2 60.6 65.2 

667C/2009 98.9 100 76.5 84.9 65.1 67.3 65.1 69.4 

671C/2009 98.5 100 76.1 84.9 65.5 67.3 64.8 69.4 

672O/2009 98.5 100 76.8 84.9 64.8 67.3 65.5 69.4 

676C/2009 90.7 89.2 71.5 82.7 65.1 68.4 64.8 70.5 

680C/2009 98.9 100 76.5 84.9 65.1 67.3 65.1 69.4 

681M/2009 75.0 80.6 72.2 79.5 65.8 68.4 65.1 68.4 

684C/2009 98.9 100 76.5 84.9 65.1 67.3 65.1 69.4 

686O/2009 93.2 92.4 72.9 81.7 64.4 64.2 60.6 66.3 

PA3M/2008 93.5 94.6 73.6 81.7 63.7 65.2 62.0 67.3 
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1.5 DISCUSSION 

This is the first study focusing on betanodavirus in bivalve molluscs. Twenty seven new 

betanodavirus strains were detected in bivalve molluscs of different species, European countries and 

year of collection and genetically characterized. 

The sporadic presence of betanodaviruses in marine invertebrate has been previously detected 

(Gomez et al., 2008b; Ciulli et al., 2010; Gomez et al., 2010; Panzarin et al., 2012).  

In our study, the finding of betanodavirus in bivalve molluscs was evidenced in samples collected 

for a long period from 2008 to 2015, from different Euopean countries and three species showing a 

consistent presence of this virus in these hosts. Particularly, clams collected in the North-eastern 

Italy in a time span of 7 years resulted constantly positive for betanodavirus. Moreover, a different 

prevalence was shown in bivalve mollusc species; particularly, clams seem to be more frequently 

contaminated than others species such as oyster and mussel. The presence of the virus in bivalve 

mollusc might be a natural consequence of their biology. Bivalve molluscs are obligate filter 

feeders and can accumulate particles including viruses from the surrounding water (Serratore et al., 

2014). The fossorial behaviour of clams could favorite the virus-host contact and virus retention, 

compared to suspended farming methods used for oysters and mussels. However, also the 

geographical origin could have influenced the different prevalence evidenced among bivalve 

mollusc species in our study. 

Phylogenetic analysis of both RNA 1 and RNA 2 fragments of betanodaviruses detected in bivalve 

molluscs showed a wide range of strains mainly belonging to RGNNV genotype, the most reported 

genotype in Europe.  

However, the RNA 2 genetic analysis showed the presence of one atypical betanodavirus 

(681M/2009), placing definitively it outside of all genotypes officially recognized of the genus 

Betanodavirus. Particularly, the virus 681M/2009 seems to be more similar to RGNNV and 

BFNNV genotypes than to SJNNV and TPNNV genotypes, but it did not cluster with any of them. 

Pairwise percentage analysis confirms this result, with a nucleotide and amino acid sequence 

identity to each genotype lower than that evidenced between different genotypes.  

Phylogenetic analysis of viruses detected in bivalve mollusc showed no correlation with their host 

species and geographical origin clustering together viruses detected in Italian clams, mussels and 

French oysters. 

The comparison of the viruses detected in bivalve molluscs with several betanodaviruses isolated 

from finfish in Southern Europe (Panzarin et al., 2012) shows the circulation of similar viruses in 

finfish and in bivalve molluscs. In analogy to a previous study, several subgroups were identified in 

RNA 1 and RNA 2 phylogenetic trees inside RGNNV genotype. Most of these clusters include both 
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bivalve molluscs and finfish viruses with different geographic origin, year of isolation and host 

status (wild/farmed). Accordingly, the bivalve mollusc betanodaviruses did not cluster separately 

from finfish viruses, but rather they reflect the epidemiological patterns of betanodavirus circulating 

in finfish in Southern Europe.  

Furthermore, some recent bivalve mollusc viruses clustered with finfish viruses detected several 

years ago (1996-2000) showing the persistent circulation of these viruses.  

Previous study revealed the presence of a betanodavirus closely related to RGNNV in marine 

invertebrate (Japanese common squid Todarodes pacificus) and showed that it has high 

pathogenicity to finfish causing severe mortalities after i.m. challenge (Gomez et al., 2010). 

Similarly, the high genetic identy of viral strains detected in bivalve molluscs to those found in 

finfish highlights the inter-specific exchange of betanodaviruses. 

 

1.6 CONCLUSIONS 

The finding of this study show that betanodaviruses are widespread also in bivalve molluscs, maybe 

more than we could expect. 

Phylogenetic analysis of these viruses shows that strains detected in mollusc bivalve and in finfish 

are very closely related and that betanodaviruses detected in bivalve molluscs in different European 

countries from 2008 to 2015 mimic the epidemiological patterns of betanodaviruses previously 

detected in finfish in Southern Europe from October 2000 to November 2009. 

Moreover, the nucleotide and amino acid sequence analysis of the strain 681M/2009 show the 

existence of a new betanodavirus strain not belonging to any of the already known betanodavirus 

genotypes. 

Such a massive and variegate presence of betanodaviruses in bivalve molluscs greatly  stresses the 

risks of transmission previously feared for other invertebrates. Molluscs bivalve reared in the same 

area of farmed and wild finfish could act as a reservoir of virus. Furthermore, the marketing of alive 

bivalve mollusc and the relaying activity, allowed by the European regulation, can pose also a real 

risk of spreading betanodavirus between different geographical areas. 
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2.1 ABSTRACT 

Redspotted grouper nervous necrosis virus (RGNNV), genus Betanodavirus, family Nodaviridae, is 

the causative agent of Viral encephalopathy and retinopathy (VER), otherwise known as Viral 

nervous necrosis (VNN), and is a virus that could infect more than 70 fish species worldwide. 

Betanodaviruses, including RGNNV, are very resilient in the aquatic environment and their 

presence has already been reported in several wild marine species including invertebrates. In order 

to investigate the interaction between the bivalve mollusc Ruditapes philippinarum and the 

RGNNV a culture-based method was optimised. The bioaccumulation of the pathogenic RGNNV 

by R. philippinarum and the potential shedding of viable RGNNV from RGNNV-exposed clams 

was evaluated through a culture-based method. R. philippinarum clearly accumulate viable 

RGNNV in the hepatopancreas tissue and are able to release viable RGNNV via faecal matter and 

filtered water into the surrounding environment. The role of clams as bioaccumulators and shedders 

of viable RGGNV could put at risk susceptible cohabiting cultured fish. The presence of RGNNV-

contaminated molluscs could behave as RGNNV reservoirs and may modify the virus 

epidemiology. 
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2.2 INTRODUCTION 

Redspotted grouper nervous necrosis virus (RGNNV), a virus of the genus Betanodavirus, family 

Nodaviridae, is responsible for Viral encephalopathy and retinopathy (VER), otherwise know as 

Viral nervous necrosis (VNN), a disease with nervous signs and mortality in more than 70 fish 

species worldwide (Doan et al. 2016). Betanodaviruses are small, icosahedral viruses that contain 

two segments of positive-sense single-stranded RNA. The RNA1 (3.1 kb) and the RNA2 (1.4 kb) 

encode a RNA-dependent RNA polymerase of 100 kDa and a major coat protein of 42 kDa, 

respectively (Mori et al., 1992; Guo et al., 2003). Based on a partial nucleotide sequence of coat 

protein gene, betanodaviruses are divided into four species: Striped jack nervous necrosis virus 

(SJNNV), Tiger puffer nervous necrosis virus (TPNNV), Barfin flounder nervous necrosis virus 

(BFNNV) and Redspotted grouper nervous necrosis virus (RGNNV) (Thiéry et al., 2011). Viral 

nervous necrosis virus (VNNV) is frequently isolated during outbreaks of VER in several farmed 

fish species, including European sea bass (Dichentrarchus labrax) in the Mediterranean Sea 

(Panzarin et al., 2012; Vendramin et al., 2013). Moreover, VNNV has also been detected in 

numerous wild marine fish species and invertebrates in the Mediterranean Sea, South Korea, China 

and Japan (Gomez et al., 2004, 2008a; Ciulli et al., 2007; Liu et al., 2015). 

Betanodavirus infection is transmitted horizontally, either directly through the introduction 

of infected fish, or indirectly by contaminated water and equipment, as well as 

vertically, through reproduction (Munday et al., 2002). 

 Currently, no successful therapies or commercial vaccines, apart from one in Japan (OIE 2013), are 

available to enable adequate control of VER, so disease prevention is based mainly on 

maintaining proper sanitary procedures, screening activities and correct farm management (Costa & 

Thompson, 2016; Doan et al., 2016). 

Recent studies have also demonstrated that a certain population of apparently healthy wild marine 

fish carries betanodaviruses, and suggested that these wild fish can be a persistent potential source 

of virus for cultured fish and the breeding environment (Ciulli et al., 2007; Gomez et al., 2008a; 

Vendramin et al., 2013). 

Moreover, a recent finding suggests that trash fish/molluscs can be a source of betanodaviruses for 

cultured fish and that they pose a serious risk for outbreaks of VER in susceptible cultured fish 

(Gomez et al., 2010). 

It is well known that pathogenic agents may be spread via water masses, wild carriers, or vectors 

and restrictions do not fully ensure the control of disease spread by these routes (Mortensen, 2000; 

Mortensen et al., 2006). Water is both a dilution and a transport medium, and the fate of pathogenic 

agents shed into the water is dependent upon a series of factors, including dilution, inactivation by 
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UV light or other physical and chemical factors, particle bonding and uptake in filter-feeding 

organisms or particle-feeding plankton (Noble & Fuhrman 1997; Sinton et al., 2002; Wilhelm et al., 

2003). Accordingly, aquatic organism interaction, both in the case of natural or artificial 

environments, such as integrated multitrophic aquaculture (IMTA), can greatly affect the 

epidemiology of fish infectious diseases. In fact, there is evidence indicating that, when placed 

closely together, bivalves may act either as bio-filters or as reservoirs for finfish pathogens, as a 

consequence of their ability to bioaccumulate microorganisms (Mortensen et al., 1992; Mortensen, 

1993; Paclibare et al., 1994; Skår & Mortensen, 2007; Molloy et al., 2011; Pietrak et al., 2012; 

Wangen et al., 2012). However, the outcome of the interaction may differ on the basis of the 

morphology and physiology of the pathogen, which influences whether the pathogen remains viable 

in bivalve mollusc tissues and it is shed back into the environment, or is inactivated by the molluscs 

(Skår & Mortesen 2007; Molloy et al., 2013). 

The presence of VNNV in invertebrates and particularly bivalve molluscs has already been reported 

(Ciulli et al., 2007; Gomez et al., 2008a) including the Manila clam (Ruditapes philippinarum) in 

the Mediterranean Sea (Ciulli et al., 2007). 

Some studies have investigated the role of wild aquatic organisms such as bivalve molluscs in the 

interaction with fish pathogens. These studies showed that the infectious salmon anaemia virus 

(ISAV) is inactivated by blue mussels (Mytilus edulis) (Molloy et al., 2014). In contrast, infectious 

pancreatic necrosis virus (IPNV) can be transmitted from IPNV-exposed mussels to Atlantic salmon 

(Salmo salar) (Molloy et al., 2013). 

The aim of this study was to examine the bioaccumulation of a pathogenic RGNNV by Manila clam 

and to investigate the potential shedding of viable RGNNV from RGNNV-exposed clams through a 

culture-based method. The potential role of clams as an RGNNV reservoir and the potential risks 

posed by RGNNV-contaminated molluscs are pointed out in this study. 

 

2.3 MATERIALS AND METHODS 

2.3.1 Clam maintenance and RGNNV screening 

Batches of market-size Manila clam (Ruditapes philippinarum), hereafter referred to as clams, were 

obtained from a commercial clam trader and were reared in an artificial recirculation system (RAS) 

(Adriatic Sea) supplied with natural seawater, collected from the Adriatic Sea and thermostated at 

15°C. Batches of clams were acclimated for 24 h in order to start filtration. Trials were conducted in 

a static system consisting of 5 l plastic tanks supplied with 2 l natural seawater, aeration and 

thermostated at 15°C. 
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Prior to all trials, 30 clams from each batch were screened for presence of VNNV-RNA via an RT-

PCR assay followed by a nested PCR performed according to methods previously described (Ciulli 

et al., 2006; Nishizawa et al., 1994). 

 

2.3.2 Cell culture maintenance and virus propagation 

Striped snakehead fish cells (SSN-1) were maintained in Leibovitz-15 medium (L-15) (Gibco) 

supplemented with 1% L-glutamine (Gibco), 1% antibiotic–antimycotic solution (Gibco) and 7.5% 

foetal bovine serum (FBS) (Gibco) at 25°C. For virus isolation assays, SSN-1 cells were harvested, 

counted and transferred to 96-well culture plates at a density of 7 × 10
4
 cell/cm

2
. Cells were allowed 

to attach and acclimate for 24 h at 25°C in order to achieve 80% confluence. 

The previously characterised (Ciulli et al., 2006) It/351/Sb isolate of RGNNV was propagated in 

SSN-1 cells grown at 25°C in L-15 medium containing 2% FSB. When the cells demonstrated a 

75% cytopathic effect (CPE), the cells and supernatant were centrifuged at 500 g for 10 min and the 

supernatant was stored at -80°C until use. The titre of the stock was determined by 50% tissue 

culture infectious dose (TCID50) end point analysis in SSN-1 cells. The TCID50 was calculated 

according to Spearman-Karber method (Hierholzer & Killington 1996). 

 

2.3.3 Culture analysis of clam hepatopancreas, faecal matter and water samples 

RGNNV presence was detected and quantified by performing TCID50 analysis in SSN-1 cells in 

hepatopancreas tissue, faecal matter and water samples. Water samples were centrifuged at 3000 g 

for 5 min and the supernatant was filtered through 0.20-μm-poresize filters and incubated with 1% 

antibiotic–antimycotic solution (Gibco) at 4°C overnight. Samples were diluted 10-fold in L-15 

with 2% FBS (Gibco). If samples reported negative results, a 2-fold dilution of the supernatants was 

performed and tested. 

Hepatopancreas tissue was weighed, diluted 1:9 (wt/vol) with L-15 containing 2% FBS (Gibco) and 

homogenised before centrifuging at 3000 g for 5 min. The supernatant was diluted 10-fold in L-15 

with 2% FBS (Gibco). 

Faecal matter samples were centrifuged at 3000 g for 5 min, the faecal pellets were weighed, diluted 

1:9 (wt/vol) with L-15 containing 2% FBS (Gibco) and incubated with 1% antibiotic–antimycotic 

solution (Gibco) at 4°C overnight. The supernatant was diluted 10-fold in L-15 with 2% FBS 

(Gibco). 
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For viral titration assays, each dilution was added in 100 μl volumes to five wells of a 96-well plate 

containing 24 hours-old SSN-1 cells. Negative control wells consisting of L-15 with 2% FBS 

(Gibco) were included for each plate. The inoculum from wells receiving samples were removed 

after 1 h viral adsorption period at 25°C to prevent cell cytotoxicity before the addition of 100 μl of 

L-15 fresh medium containing 2% FBS. The plates were incubated at 25°C and observed daily for 

visible CPE for 7 days. The titre referred to water samples was expressed as TCID50 ml
-1

. For 

hepatopancreas tissue and faecal matter samples, culture analysis TCID50 values were normalised to 

(g of hepatopancreas tissue or faecal matter)
-1

 and hereafter referred to as TCID50 g
-1

. 

 

2.3.4 Detection limit of TCID50 endpoint dilution assay in RGNNV-inoculated clam 

hepatopancreas homogenates 

Hepatopancreas from seven VNNV-RNA-negative clams were weighed, diluted 1:9 (wt/vol) with 

L-15 containing 2% FBS (Gibco) and homogenised before centrifuging at 3000 g for 5 min. Serial 

10-fold dilutions of stock RGNNV, ranging in titre from 7.5 to 2.5 log TCID50 ml
-1

, were prepared 

in L-15 cell culture medium. Each virus dilution was added in 100 μl volumes to six of the seven 

hepatopancreas  homogenates and thoroughly mixed to achieve predicted titres ranging from 6.7 to 

1.7 log TCID50 ml
-1

. L-15 containing 2% FBS was added to the seventh homogenised sample, 

which served as a negative control for the TCID50 assays. RGNNV-inoculated hepatopancreas 

homogenates were processed for TCID50 analysis in SSN-1 as described above. 

 

2.3.5 RGNNV clam exposure trial 

In order to measure RGNNV uptake in clams, three independent exposure trials were performed. In 

each trial, 60 mussels were placed in 5 l plastic tanks containing 2 l of seawater thermostated at 

15°C. An air-lift pump circulated the water and provided aeration. RGNNV suspension in L-15 cell 

culture medium was then added up to the final virus concentration in the tanks was 5 log TCID50 

ml
–1

. The clams were left for 24 h to bioaccumulate the virus and then removed. Ten ml of water 

and random triplicate clam samples were collected at 3, 6 and 24 h post-exposure (hpe). Culture 

analysis of clam hepatopancreas and water samples was carried out in SSN-1 cells as described 

above. 
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Hepatopancreas results were expressed as the mean ± standard deviation (SD) of positive samples 

obtained from the three trials. The samples of faecal matter and water were analysed in two repeats 

and the results were shown as the mean of the positive repeats ± SD. 

 

2.3.6 Clam RGNNV shedding trials 

The clam’s ability to shed viable RGNNV in water through faecal matter was evaluated with two 

subsequent trials. 

Trial 1. The shedding trial 1 was carried out in the same manner as the exposure trial with the 

following modifications. After 24 hpe, the shell of each clam was surface disinfected with a 1% 

Virkon®S (DuPont) solution, followed by running tap water and transferred to a clean static system 

supplied with fresh seawater. During the depuration, triplicate clam samples were collected at 1, 2, 

5, 6 and 7 days post-depuration (dpd) for culture assays. Furthermore, after 7 dpd, 10 ml of water 

and a sample of faecal matter were collected for culture assays. 

Trial 2. The shedding trial 2 was carried out in the same manner as the trial 1 with the following 

modifications. After the transfer, the clams were moved daily to a clean static system supplied with 

100% fresh seawater until 7 dpd. Prior to the daily placements, the shell of each clam was surface 

disinfected with 1% Virkon®S (Dupont, Suffolk, UK) solution, followed by running tap water. Ten 

ml of water, faecal matter and triplicate clam samples were harvested for culture assays prior to 

each daily movement. 

Hepatopancreas results of shedding trials were reported as the mean of positive samples ± SD. The 

samples of faecal matter and water were analysed in two repeats and the results were shown as the 

mean of the positive repeats ± SD. 

 

2.3.7 Statistics 

Data obtained from the detection limit assay were analysed by a simple linear regression analysis 

(Prism version 6.0 software, GraphPad Software), considering predicted values as a predictor and 

measured values as dependent variables. The level for accepted statistical significance was p < 0.05. 

Positive data of culture assays, after testing for normality, were analysed by one-way ANOVA 

followed by Tukey’s tests to determine statistically the differences among virus titres detected in 

samples (Prism version 6.0 software, GraphPad Software). The level for accepted statistical 

significance was p < 0.05. 
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2.4 RESULTS 

2.4.1 Clam maintenance and VNNV screening 

The VNNV screening showed that all the batches involved in the trials were negative for VNNV-

RNA presence. During all trials, no mortality was recorded in batches of clams used. 

 

2.4.2 Detection limit of TCID50 endpoint dilution assay in RGNNV-inoculated clam 

hepatopancreas homogenates 

The detection limit for viable RGNNV isolation by culture analysis was 1.7 log TCID50 ml
-1

. Viable 

RGNNV was detected by culture analyses in hepatopancreas homogenates with predicted titres of 

log 6.7 to 2.7 TCID50 ml
-1

 (Fig. 1). Titres measured in SSN-1 cells decreased in a linear trend as 

predicted titres decreased. Linear regression analysis showed a significant association between 

measured and predicted values (p = 0.001). In particular, a decrease of predicted value was 

associated with a decrease of the measured value (R
2
 = 0.96, F(1.4) = 91.64, y = 1.206x – 1.562). 

However, the determined titres were lower than the predicted titres by a mean of 0.5 ± 0.2 log 

TCID50 ml
-1

. The most dilute sample in which virus was detected had a predicted titre of 2.7 log 

TCID50 ml
-1

 although the measured titre was 1.7 log TCID50 ml
-1

. For samples at predicted titre of 

1.7 log TCID50 ml
-1

 and lower, no virus was detected by culture assays. 

 

 

 

 

 

 

 

 

Fig. 1. Measured (•) and predicted (–) log TCID50 ml
-1

 of RGNNV-inoculated clam hepatopancreas 

homogenates determined in SSN-1 cells. 
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2.4.3 RGNNV clam exposure trial 

Uptake of clams of viable RGNNV in the hepatopancreas tissues was shown as early as 3 hpe (Fig. 

2). No statistically significant difference was observed among mean viable virus titres detected in 

clam hepatopancreas collected at the same time points during the three clam exposure trials (data 

not shown). Accordingly, results are expressed as the mean ±  SD of all positive samples obtained 

from the three trials. 

Eight of the nine replicate clams were positive by virus isolation at 3 hpe, with a mean titre of 

4.0 ± 0.2 log TCID50 g
-1

 (n = 8). At 6 hpe six of the nine replicate clams were positive by virus 

isolation with a mean titre of 4.3 ± 0.4 log TCID50 g
-1

 (n = 6). After 24 hpe, all sampled clams were 

positive at virus isolation with a mean titre of 4.4 ± 0.5 log TCID50 g
-1

 (n = 9). During the exposure 

trials the amount of viable RGNNV increased from 4.0 ± 0.2 to 4.4 ± 0.5 log TCID50 g
-1

 with no 

statistical significance (Fig. 2). 

Moreover, the RGNNV loads measured at different time points in water samples showed no 

statistical significance; nevertheless virus titres decreased from 3.5 ± 0.3 to 2.8 ± 0.2 logTCID50 ml
-1

 

(Fig. 2). 

 

Fig. 2 Graph represents the log TCID50 ml
-1

 or g
-1

 of RGNNV in clam hepatopancreas and water samples 

over time. 
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2.4.4 Clam RGNNV shedding trial 

Trial 1. Viable RGNNV was isolated from all the clams sampled (Fig. 3). The RGNNV mean titre 

was 5.0 ± 0.2 log TCID50 g
-1

; no statistical significances were shown between viable RGNNV 

amounts at different time points in hepatopancreas samples. After 7 dpd, RGNNV-exposed clams 

released viable RGNNV into water and through faecal matter (Fig. 3). The titres of viable RGNNV 

detected in faecal matter and water were 3.5 log TCID50 g
-1 

and 1.5 log TCID50 ml
-1

, respectively; 

these values were statistically lower (p < 0.05) than viable RGNNV found in hepatopancreas tissues 

(5 ± 0.2 log TCID50 g
-1

). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Graph represents the log TCID50 ml
-1

 or g
-1

 of RGNNV in clam hepatopancreas , water and faecal 

matter samples over time. The asterisks indicate statistically significant different values from Manila clam 

values. 
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Trial 2. Viable RGNNV was isolated from all the hepatopancreas tissues analysed with a mean titre 

of 5.1 ± 0.2 log TCID50 g
-1

. RGNNV titre in hepatopancreas at 1 dpd was statistically higher than 

the titres at 2, 4, 5 and 6 dpd (p < 0.05) (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Graph represents the log TCID50 g
-1

 of RGNNV in clam hepatopancreas samples. The asterisk 

indicates a statistically significant different value from 2, 4, 5, 6 dpd samples. 

 

 

Viable RGNNV was also isolated from water samples at 1, 2, 3 and 4 dpd with a mean titre of 

1.3 ± 0.3 log TCID50 ml
-1

. At 2 dpd only one repeat of the water sample reported viable RGNNV. 

No statistically significant differences were revealed among virus titres detected at different time 

points (Fig. 5). In faecal matter, viable RGNNV was isolated from both repeats of all the samples 

with a mean titre of 3.9 ± 0.5 log TCID50 g
-1

 except from one repeat of the 7 dpd sample. The titre 

values in faecal matter samples showed variable amounts of viable RGNNV during the trial; in 

particular RGNNV titration at 1 dpd was statistically higher than the titres at 2 and 6 dpd (p < 0.05). 

No statistical differences were shown among other time points (Fig. 6). 

In water samples, the titrations showed statistically lower values than in the hepatopancreas tissues 

and then in the faecal matter samples at all tested time points (p < 0.05). 
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Fig. 5. Graph represents the log TCID50 ml
-1

 of RGNNV in water samples over time. 

Fig. 6. Graph represents the log TCID50 g
-1

 of RGNNV in faecal matter samples. The asterisks indicate 

statistically significant different values from 1 dpd sample. 
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2.5 DISCUSSION 

Bivalve molluscs are well known bioaccumulators and may serve as reservoirs or as natural barriers 

for important finfish pathogens (Molloy et al., 2013, 2014). 

In order to understand the fate of RGNNV in virus-exposed clams, a culture assay method using the 

SSN-1 fish cell line for quantification of viable virus in clam hepatopancreas tissue, faecal matter 

and water samples was optimised. Through this culture assay, we were able to determine whether or 

not clams bioaccumulate viable RGNNV after experimental exposure to the virus, and to determine 

their proficiency to shed viable RGNNV particles into the surrounding environment. 

Previous studies aimed at investigating virus persistence in bivalve molluscs used both cell culture 

and molecular methods to evaluate the viral load in bivalve tissue (Skår & Mortensen 2007; Molloy 

et al., 2013, 2014). However, due to the presence of PCR inhibitors in bivalve tissues and the 

inability of molecular methods to distinguish viable from nonviable virus, the most sensitive 

techniques to evaluate the viral load in bivalve tissues is virus isolation on cell culture (Molloy et 

al., 2013). 

The physiology and morphology of pathogen microorganisms influence the ability of the bivalve 

molluscs to inactivate or to accumulate and then shed viable microorganisms (Molloy et al., 2013, 

2014). As a matter of fact, mussels (Mytilus edulis) are capable of bioaccumulating finfish viral 

pathogens, such as infectious salmon anaemia virus (ISAV) and infectious pancreatic necrosis virus 

(IPNV). In particular, ISAV is inactivated by M. edulis; therefore viable viral particles are not shed 

into the water. Conversely, viable IPNV shed by IPNV-exposed mussels may infect cohabitating 

Atlantic salmon (Salmo salar) (Molloy et al., 2013, 2014). 

In this study, Manila clam had clearly accumulated viable RGNNV in the hepatopancreas tissue. 

During the 24 h exposure trials, time did not show a statistically significant effect on the RGNNV 

load in clam tissues. However, the viral load and the number of positive clams at virus isolation 

increased progressively during the exposure trials. Significantly, the decrease of viable virus in 

water during the exposure trials suggests the bioaccumulator role of clams and their ability to 

remove viable RGNNV from the water column. However, the RGNNV loads in clam tissues was 

not significantly higher than RGNNV levels in the water, indicating that clams do not concentrate 

RGNNV in their tissues.  

A previous study, observing IPNV uptake by mussel during a 120 h trial, showed that mussels 

significantly accumulate viable IPNV in their digestive gland tissues over time (Molloy et al., 

2013). However, this study also showed that IPNV particles were not efficiently removed from the 

water column. Authors hypothesised that the small particle size of IPNV (60 nm) may contribute to 

the inefficiency of particle uptake by the mussel (Molloy et al. 2013). However, bivalve molluscs 
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can concentrate virus as small as RGNNV (25 nm), such as Hepatitis A (27 nm) (Wolf 1988; 

Enriquez et al., 1992). Viral uptake and concentration ability of bivalve molluscs can vary from one 

virus to another, indicating the presence of different factors contributing to virus uptake (Molloy et 

al., 2013; Bosch et al., 1995). 

RGNNV-exposed clams were able to release viable RGNNV via faecal matter and filtered water. 

RGNNV was detected in faecal matter and water up to 7 and 4 days post-depuration, respectively. 

Moreover, Trial 2 showed the amount of viable virus shed daily into the surrounding environment 

by RGNNV-exposed clams, and the persistence in the clam tissue. The shedding by clams of viable 

RGNNV after daily 100% water changes stresses the persistence of viable virus in hepatopancreas 

tissues. 

This work, together with previous studies of Molloy (2013, 2014) and Skår & Mortensen (2007) 

seems to demonstrate that the inactivation of viruses is influenced by their morphology. In 

particular, nonenveloped viruses such as IPNV and RGNNV can be bioaccumulated by bivalve 

molluscs and be released alive into the water column (Molloy et al., 2013). In contrast, mussels act 

as a barrier for enveloped viruses such as ISAV (Molloy et al., 2014). Accordingly, our study, 

showing the persistence and shedding of viable RGNNV by clams, supports this hypothesis. 

Actually, the fate of a microbe in bivalve tissue will be determined by a balance between uptake 

rate, digestion and depuration (Skår & Mortensen, 2007). 

The finding of viable RGNNV shed through faecal matter and filtered water after 1 dpd suggests the 

potential of some filtered RGNNV particles to bypass the digestive system and be released back 

into the environment as viable particles entrapped in pseudofaecal pellets, as already hypothesised 

for other viral particles (Molloy et al., 2013). 

The role of clams as bioaccumulators and shedders of viable RGNNV could put at risk susceptible 

cohabitating fish in an analogous way to that demonstrated by Molloy et al. (2013) for IPNV and 

Atlantic salmon. However, while virus shed into the water column in a fish farm during an outbreak 

is diluted by the water current, laboratory challenges are normally performed with high doses of 

pathogens in static or semi-static systems (Skår & Mortesen, 2007). Hence, it is difficult to predict 

whether wild or cultured clams near to farms of susceptible species might act as the cause of new 

outbreaks. 

Betanodaviruses, including RGNNV, are very resilient in the aquatic environment and their 

presence has already been reported in wild marine invertebrates, especially molluscs and other 

invertebrates used as live fish food, including Artemia sp. nauplii, copepods (Tigriopus japonicas) 

and shrimps (Acetesinte medius) (Gomez et al., 2008b, 2008c; Chi et al. 2003; Costa & Thompson 

2016). Furthermore, a recent study has shown that trash fish can be a source of betanodaviruses for 
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cultured marine fish (Gomez et al., 2010). Similarly, the presence of natural RGNNV-contaminated 

invertebrates, including Manila clam, close to susceptible cultured fish species, both in a natural 

marine environment and in artificial systems (live feed), could behave as RGNNV-reservoirs and be 

a source of viruses, posing a serious risk of outbreaks of VNN in susceptible cultured fish. 

 

2.6 CONCLUSIONS 

Finally, the cell culture method set up in this study has allowed an understanding of the fate of 

RGNNV in experimentally challenged Manila clam Ruditapes philippinarum. Clams are able to 

take up and then shed viable RGNNV into the surrounding environment through faeces and filtered 

water.  

The persistence of viable RGNNV in clam tissues and the shedding of virus into the surrounding 

environment presents a serious risk for susceptible cohabitant fish species.  

Further studies could establish whether the viral transmission from RGNNV-contaminated molluscs 

to finfish may be a result of viral release into the water or even a result of direct consumption of 

molluscs by fish. According to the results of this study, there is little doubt that the placing of 

contaminated molluscs into a fish farm, without proper control, could represent a serious risk for 

farmed fish. 
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CHAPTER 3 

 

Sea water disinfection by a peroxy-acid compound as a novel practice to complement and 

improve the microbial depuration of clams (Ruditapes philippinarum) 
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3.1 ABSTRACT 

A novel sea water disinfection process to complement and improve the microbial depuration of 

clams (Ruditapes philippinarum) was tested by employing a potassium peroxymonosulfate (MPS)-

based product. A broad and multidisciplinary approach was used to achieve a quite complete pattern 

of the potential suitability of this innovative MPS-based disinfectant treatment to improve the 

microbiological quality of cultured Manila clam. The biocidal activity was evaluated against the 

Vibrio spp. population naturally associated with sea water and against viral nervous necrosis virus 

(VNNV), genus Betanodavirus, the most threatening among the viral pathogens of marine finfish. 

The novel depuration process by sea water potassium MPS-based disinfection set up and tested in 

the present study (1000 ppm disinfectant concentration for three hours) clearly improves the 

microbiological quality of harvested clams with respect to their Vibrio spp. load. Furthermore, the 

proposed treatment greatly reduces the tested bacteria and viruses in the sea water column, being 

able to counteract possible microorganisms released from shellfish during the depuration process. 

The potential use of this treatment is strengthened by the absence of effects on clam health and 

welfare as well as of undesired side-effects and surfactant residues in the edible flesh. The whole of 

data suggests that the proposed treatment may efficiently reduce the risks related to the shellfish 

placing on the market, movement, depuration, relaying or consumption by humans.  In practice, it 
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may potentially represent an innovative strategy to face, in a quite easy and feasible way, some still 

unresolved matter of concern in clam commercialization. 

 

3.2 INTRODUCTION 

Bivalve shellfish, hereafter referred to as shellfish, are important food sources for other organisms 

including humans. Most of the worldwide shellfish production (89.6%) comes from aquaculture, 

which plays a relevant role in ensuring food and good occupational opportunities to humans (FAO, 

2013). 

Shellfish are obligate filter feeders, gaining nourishment from microalgae, bacteria and organic 

particles in the surrounding water. In this way, they can also accumulate chemicals, marine 

biotoxins, bacteria and viruses that are pathogenic for humans and animals (Molloy et al., 2013; 

Serratore et al., 2014). 

As stressed by the World Health Organization (WHO), the most effective and reliable approach to 

control the microbiological contamination of shellfish is to harvest them from areas with good water 

quality. Accordingly, the reduction of contamination through post-harvest processing procedures is 

known to be poorly effective, even if accepted as a practical option for production and trade of live 

shellfish on a large worldwide scale (Lees et al., 2010). Despite depuration is extensively practiced 

throughout the world, including Europe, North America, Asia and Australia, it is generally accepted 

that the results of this treatment are only adequate for shellfish with moderate levels of faecal 

contaminants, as it has very limited effectiveness on viruses and marine bacteria, such as Vibrio 

spp. (Lees et al., 2010; Serratore et al., 2014; Polo et al., 2014). 

As an alternative to depuration, relaying has been proposed. This procedure consists of transferring 

contaminated shellfish to cleaner areas, so as to allow self-purification in the natural environment 

for long periods.  However, this process, besides having effectiveness limitations (Oliveira et al., 

2011), poses an additional risk of dissemination of autochthonous marine pathogens released by the 

shellfish after being accumulated by filtration in other geographical areas. This is the case of some 

fish pathogens such as bacteria of the genus Vibrio and naked RNA viruses, which were naturally 

found in shellfish (Mortensen et al., 1990; Ciulli et al., 2010; Pietrak et al., 2011). A potential risk 

of viral transmission to other aquatic animals by virus releases by shellfish was reported for the 

infectious pancreatic necrosis virus (IPNV) (Molloy et al., 2013). 

The recirculating aquaculture systems (RAS) are increasing employed facilities allowing the re-

utilization of the waste-water, outflowing from the tanks containing the animals, by a continuous 

flux of collection, filtration, disinfection and redistribution. These systems only require the 
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replacement of the water lost by evaporation, shellfish transfer and plant cleaning (Serratore et al., 

2014).  

The results strongly depend on the plant efficiency to ensure a good water quality and to maintain 

the optimal physicochemical conditions to promote filtration by shellfish. Ultraviolet (UV) 

irradiation and/or ozonation can be used to treat and disinfect water before it returns to the tanks 

(Summerfelt et al., 2009) to avoid the gathering of pathogens and contamination among different 

batches.  

In addition to the traditional disinfectant methods, peroxy acids with strong oxidizing effects are 

arising a great interest for disinfection in aquaculture, not only for their effectiveness, but also for 

the low environmental impact due to the poor toxicity of the by-products and minimal residues 

(Azanza 2004). However, high variability in pathogen susceptibilities to peroxy-based products was 

reported (Martin et al., 2013; Morin et al., 2015). Additionally, even if preliminary studies showed a 

potential in vivo application of the peroxy-based disinfectants, further studies are required to check 

their potential toxicity (Volpe et al., 2011; Straus et al., 2015). Low concentrations of peracetic acid 

were a tolerable stressor to carp, as shown by the cortisol measurement (Liu et al., 2015). 

In the present work a novel sea water disinfection process was tested on Manila clam (Ruditapes 

philippinarum) by employing a potassium peroxymonosulfate (MPS)-based product. The objective 

was to obtain, through a broad and multidisciplinary approach, a quite complete pattern of the 

potential suitability of this innovative MPS-based disinfectant treatment to improve the 

microbiological quality of cultured Manila clam, in view of their safe commercialization. An 

increased microbiological quality of Manila clam puts on the market is of key importance since this 

allochthonous shellfish is now the first species in Italian aquaculture and its economic impact is 

great, being Italy the first producer in Europe (Sicuro et al., 2016) 

First of all, it was deemed essential to assess the disinfectant ability to reduce the viral and bacterial 

load in sea water. The biocidal activity was evaluated against the Vibrio spp. population naturally 

associated with sea water and against viral nervous necrosis virus (VNNV), genus Betanodavirus, 

the most threatening among the viral pathogens of marine finfish (Doan et al., 2016). 

On these bases, the ability of the disinfectant to reduce viral and bacterial load inside the Manila 

clam, in one word, its depuration efficiency, was investigated. At the same time, it was equally 

important to check the potential effects of the treatment on clam health and welfare as well as the 

absence of undesired side-effects and disinfectant residues in the edible flesh. Among the potential 

detrimental effects on seafood, the production of peroxidation products and the deterioration of 

organoleptic features were especially feared issues. Targeted parameters were tracked in parallel in 
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treated and untreated Manila clam to monitor health and welfare and verify the preservation of 

seafood quality and safety. 

Some preliminary results were presented as posters to National Conferences (Ciulli et al., 2013; 

Passalacqua et al., 2014; Pagliarani et al., 2015).  

 

3.3 MATERIALS AND METHODS 

3.3.1 Disinfectant and experimental design 

To implement the Manila clam microbial depuration, a new sea water disinfection system was set 

up and tested. The process included the use of a commercial disinfectant that, on the basis of the 

safety data sheet, contains pentapotassium bis(peroxymonosulphate) bis(sulphate) (40-55 %); 

sodium C10-13-alkylbenzenesulfonate (10-12 %); sodium dodecylbenzenesulfonate (7-10 %); 

sulphamidic acid (4-6 %); sodium toluenesulphonate (1-5 %); dipotassium peroxodisulphate  (< 3 

%); dipentene  (< 0.25 % ). The disinfectant efficacy in sea water was preliminarily tested against 

Vibrio spp. populations naturally associated to sea water and against a representative viral agent, 

VNNV, genus Betanodavirus, family Nodaviridae. This virus is widely distributed in the marine 

fauna (Doan et al., 2016), naturally bioaccumulated by Manila clam, highly resistant to chemical 

compounds and easily in vitro cultivated (Arimoto et al., 1996; Ciulli et al., 2010). Then, the 

biocidal activity was tested in an experimental depuration system, taking into consideration the 

effect of the disinfectant on Manila clam, other than on their microbial content, on some 

biochemical parameters, on cortisol level and on the histological pattern of selected clam tissues. 

Due to the strong oxidation power of the disinfectant, which once dissolved in water generates 

H2O2, the biochemical analyses were focused on the oxidative damage to edible tissues of clams, 

which was a feared likelihood. Accordingly, the species is especially susceptive to lipid 

peroxidation promoted by environmental contaminants (Velez et al., 2015). The combination of 

methodologies applied was designed to identify both the occurrence of end-products formed by 

lipid peroxidation (Ayala et al., 2014) and changes in the volatile markers of the natural flavour of 

seafood, which can be used to signal possible alterations due to the treatment with the disinfectant 

before commercialization (Fratini et al., 2012). 

Cortisol levels were investigated as a typical stress indicator. Accordingly, cortisol- like molecules 

and cortisol were described in haemocytes of several molluscan species (Ottaviani et al., 1998; 

Porte et al., 2006) including bivalve shellfish such as Mytilus galloprovincialis. Cortisol 

involvement in shellfish stress was recently investigated (Lagos et al., 2015). 
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Furthermore, treatment effects on clam tissues were assessed by histopathological investigations 

focusing on gills and digestive gland. Digestive cell lysosomes of shellfish, besides their role in 

intracellular digestion of food materials, constitute the main sites of toxic metal and organic 

pollutant sequestration and detoxification. In addition, neutral lipid alterations in the digestive gland 

of mussels are usually considered as environmental pollution biomarkers. Finally, lipofuscin 

deposition is also regarded as indicative of contaminant exposure, revealing a general response to 

pollution (Koukouzika et al., 2009). 

For an accurate quantitation of potential residues of disinfectant in the clams the sodium 

dodecylbenzenesulfonate (LAS12) was chosen to overcome the problem of the high instability of 

the disinfectant main compound (pentapotassium bis(peroxymonosulphate) bis(sulphate)). Besides 

LAS12 was considered as representative molecule of all alkilbenzensulfonates of the product. 

 

3.3.2 Bactericidal activity assay 

The bactericidal activity was tested against the Vibrio spp. population naturally associated with sea 

water. For this assay, six 50L sea water tanks were set up to realize adequate mesocosms. Water 

was thermostatically controlled at 15±0.3°C, and each tank was equipped with a pump for internal 

recirculation and an aerator for oxygenation. Four concentrations of the disinfectant (1000, 100, 10, 

1 ppm) were tested. All the assays were carried out in duplicate, devoting two tanks for each 

treatment (two treatments at a time); two tanks were used for the controls which were submitted to 

the same procedure except for the disinfectant addition. Water was sampled at 0, 1, 3 and 24 hours 

post-treatment (W-T0, W-T1, W-T3, W-T24). At each sampling time chemical-physical parameters 

(pH, dissolved oxygen, temperature, salinity) were measured. Bacteriological assays to detect and 

quantify Vibrio spp. load were conducted on selective medium TCBS  (thiosulfate-citrate-bile salts-

sucrose) Agar, Oxoid, NaCl 3%, providing with biochemical and functional tests to the genus 

confirmation (Hara-Kudo et al., 2001; Serratore et al., 2009).  

 

3.3.3 Virucidal activity assay 

The virucidal activity was specifically tested against the viral nervous necrosis virus (VNNV) of the 

genus Betanodavirus. The strain It/351/Sb of the VNNV, used for all the analyses, was previously 

isolated from naturally betanodavirus infected European sea bass (Dicentrarchus labrax) fry during 

an outbreak of Viral Nervous Necrosis (VNN) in the Adriatic Sea, Italy and genetically 

characterized by sequencing as a Red spotted grouper nervous necrosis virus (RGNNV; Genbank 

accession number: AY620367). To evaluate the virucidal activity of the disinfectant, an already 
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available CEN (Comité Européen de Normalisation) quantitative suspension test standard, BS EN 

14675:2006, was modified by using the VNNV, RGNNV genotype, for a contact time of 1, 3 and 

24 hours and a temperature of 15 °C (W-T1, W-T3, W-T24). Interfering substance was used as 

described for low level soiling in the standard (3 g/L bovine albumin solution).Three concentrations 

(1000, 500, 100 ppm) of the disinfectant were tested. Test solutions of the disinfectant were 

prepared in sterilized sea water at 1.25× the test concentrations. Briefly, the virus was propagated 

and titrated in striped snakehead (SSN-1, Channa striatus) cells at 25 °C. The 50% tissue culture 

infectious dose (TCID50) was calculated according to the method of Spearman-Kärber (Hierholzer 

& Killington, 1996). One part of interfering substance, for low-level soiling conditions, was mixed 

with 1 part of a suspension of 10
6.75

 TCID50 mL
−1

 VNNV and equilibrated to 4±1.0 °C in a water 

bath. Eight parts of the disinfectant were added to the mixture and briefly vortexed. The test mixture 

was left for the set contact time of 24 hours. At each sampling times the text mixture was vortexed 

and 20 μL immediately removed and 10-fold diluted in cell culture maintenance medium Leibovitz-

15 medium (Gibco, Life Tech-nologies, Paisley, UK) supplemented with 10% Fetal Bovine Serum 

(FBS; Gibco, Life Technologies), 1% L-glutamine (Gibco, Life Technologies) and 1% antibiotic-

antimycotic solution (Gibco, Life Technologies).  The diluted test mixture was added to 5 wells of a 

96 well microtitre plate containing a monolayer of 80% confluent SSN-1 cells. The titrations were 

incubated at 25 °C for 7 days, after which they were examined for cytopathic effect (CPE) using an 

inverted microscope and the titre expressed as TCID50 mL
-1

 calculated according to the method of 

Spearman-Kärber (Hierholzer & Killington, 1996). The assays were carried out in triplicate.  

 

3.3.4 Depuration assay 

All depuration assays were conducted using cultured Manila clam (R. philippinarum), a species 

which is not included within the scope of the Directive 2010/63/EU on animal used for scientific 

purpose, therefore all the experimental trials did not require the approval of the Ethical Committee. 

The assays were carried out in four, 50L sea water mesocosms. The water was thermostatically 

controlled at 15±0.3°C. Each tank was equipped with a pump for internal recirculation and an 

aerator for oxygenation. Prior to the experimental depuration assays, clams were acclimated at 15°C 

for three days and maintained under natural photoperiod. During acclimation, clams were sampled 

and tested for the presence of the following viral and bacterial natural contaminations: human 

norovirus genogroups GI and GII (NoV GI, GII), hepatitis A virus (HAV), viral nervous necrosis 

virus (VNNV), Vibrio spp., using previously described methods (Le Guyader et al., 1994; Vinjé et 

al., 1996; Green et al., 1998; Hara-Kudo et al., 2001; Boxman et al., 2006; Ciulli et al., 2007; 

Serratore et al., 2009).  
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Three concentrations (1000, 500, 100 ppm) of the disinfectant were tested by diluting the 

commercially available disinfectant solution in sea water up to attain the concentrations to be tested. 

All the assays were conducted in duplicate, devoting two tanks for the treatment (one treatment at a 

time) and two tanks for untreated controls.  

The clams were sampled after 0, 1, 3 and 24 h treatment (MC-T0, MC-T1, MC-T3, MC-T24) to 

detect and quantify Vibrio spp. in flesh and intravalvular liquid. At each sampling time clam 

mortality was checked and the water chemical-physical parameters (pH, dissolved oxygen, 

temperature, salinity) were measured. 

On the basis of the results of these preliminary assays, the most effective concentration of 1000 

ppm disinfectant and the best contact time of 3 hours were selected for the subsequent depuration 

assays. The treatment of 1000 ppm disinfectant for three hours was repeated four times to point out, 

through the evaluation of biochemical, endocrinological, histomorphological and chemical 

parameters, season-dependent responses. So, depuration assays were carried out under the same 

maintenance conditions in July, October, November and December to identify possible differences 

in the response to the disinfectant due to the environmental source and/or the physiological status of 

clams. Accordingly, seasonal variability was reported for several biomarkers and oxidative stress 

responses in Manila clam and other shellfish species (Bocchetti et al., 2008). In each trial, at the 

experiment start (MC-TO) and after 3 h treatment from each of the two tanks containing 1000 ppm 

disinfectant (MC-T3 1000 ppm) or maintained under the same conditions in disinfectant-free 

seawater (MC-T3 CTRL) clams were collected for all the analyses and differently stored according 

to their use. In detail, sampled clams were immediately frozen and maintained at -80° (biochemical 

analyses) or - 20°C (endocrinological and chemical analyses), dissected and fixed in 10% buffered 

formalin and processed for routine histology. In October and December trials, after the treatment 

(1000 ppm for 3 hours) clams, to be collected for histopathological investigations, were maintained 

in untreated sea water by 1 day, to verify possible long-term alterations due to treatment. 

During each trial, clams after 0, 1, 3 and 24 h treatment from each of the two tanks containing 1000 

ppm disinfectant (MC-T0 1000ppm; MC-T3 1000ppm ; MC-T24 1000 ppm) or maintained under 

the same conditions in disinfectant-free seawater (MC-T0 CTRL; MC-T3 CTRL; MC-T24 CTRL) 

were collected and immediately processed for microbiological analyses. 

Furthermore, water samples were randomly collected from each tank at 0, 3 and 24 h treatment (W-

T0, W-T3, W-T24). 

Since no natural viral contaminations (screening for NoV GI, GII, HAV, VNNV) were detected in 

the Manila clam batches employed, the depuration assay was focused on Vibrio spp. Bacteriological 

assays to detect and quantify Vibrio spp. load were conducted on selective medium TCBS Agar 
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NaCl 3% providing with biochemical and functional tests to the genus confirmation (Hara-Kudo et 

al., 2001; Serratore et al., 2009).  

 

3.3.5 Artificial contamination with VNNV, Betanodavirus and specific depuration assay 

A contamination trial was set up, placing the clams in a tank containing 2 L of seawater, previously 

contaminated with 10
5
 TCID50 mL

-1
 of VNNV, strain it/351/Sb. An uncontaminated control was set 

up by immerging clams in a clean sea water tank. The clams were allowed to filter and concentrate 

the seeded virus for 24 hours, then they were removed from the tank, rinsed under running water 

and immersed in a clean sea water tank for 24 hours. These artificially contaminated clams were 

subjected to the previously described depuration assay (Section 2.4). The assay was conducted with 

two repeats, namely contaminated clams were divided in four tanks, devoting two tanks for the 

treatment (1000 ppm) and two tanks for controls in disinfectant-free water. Three clams were 

randomly collected at 0, 1, 3, 24 hours post treatment to detect the virus presence in the digestive 

gland (MC-T0, MC-T1, MC-T3, MC-T24). VNNV was detected and quantified by virus isolation 

on SSN-1 cell culture as previously described (Section 2.3). 

 

3.3.6 Biochemical analyses 

Immediately after thawing, 50 clams from each sampling (MC-TO, MC-T3 CTRL and MC-T3 

1000 ppm) were opened and divided into two pools of 25 clams each, randomly selected. The soft 

tissues were carefully removed from the shell by a scalpel, rinsed in ice-cold medium (0.25M 

sucrose, 5mM tris(hydroxymethyl)-aminomethane, 5mM ethylenediammine tetra-acetic acid, pH 

7.4), gently dried on blotting paper and weighted.  All the subsequent analyses were carried out on 

each pool. The occurrence of oxidation products in edible tissues was checked by two different 

approaches which complement each other. Thiobarbituric acid reactive substances (TBARs), which 

can be formed as by-products of lipid peroxidation, were evaluated by a colorimetric assay (Banni 

et al., 2009) as equivalents of malondialdehyde (MDA).   

The profile of volatile organic compounds (VOC), which provides qualitative information on the 

pattern of compounds in the soft tissue and is related to the organoleptic features of seafood, was 

obtained by solid-phase microextraction (SPME) coupled to capillary-column gas-chromatography 

(Fratini et al., 2012). The experimental conditions, optimized for the VOC extraction from clams, 

were as follows. Briefly, an 85 μm CAR/PDMS fibre was exposed to the head space of 5.0 mL 

saline extract of edible tissue, placed in a 10 mL crimp cap vial and subjected to magnetic stirring 

for 30 min at 50°C. Target analytes on the loaded fibres were thermally desorbed for 10 min at 

https://en.wikipedia.org/wiki/Malondialdehyde
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260°C directly in the GC injector port used in splitless mode. Both absorption and desorption 

phases were controlled by the Varian CP-8200 autosampler. VOC were analysed on a Varian 3380 

gas-liquid chromatograph equipped with a fused silica capillary column Equity Supelco (30mX0.25 

mm i.d. and film thickness 0.25 μm) and flame-ionization detector (FID). The chromatographic 

conditions were: H2 as carrier gas (2.0 mL min
-1

); temperature programme: 35°C held for 5 min, 

8°C min
-1

 to 75°C, 40°C min
-1

 to 200°C and final isotherm at 200°C for 5 min; FID held at 275°C. 

 

3.3.7 Cortisol measurement 

Cortisol was extracted following the method of Lagos et al. (2015), partially modified. Immediately 

after thawing, clams from each sampling (MC-TO, MC-T3 CTRL and MC-T3 1000 ppm) were 

opened, the digestive glands were collected, weighed to a final net weight 4 g for each sample and 

homogenized by means of an Ultra-turrax T25 for 3 min. Homogenates were extracted with diethyl 

ether (15 mL) with continuous gentle agitation on the rotor for 1 h. After centrifugation (2000 x g 

for 30 min), 13 mL of the ether phase was collected, transferred into a glass tube and evaporated to 

dryness under an air-stream suction hood. The dried extracts were dissolved in buffer and analysed 

using a RIA method (Tamanini et al., 1983). To validate RIA method, cortisol parallelism and intra-

assay precision tests were performed. To determine the parallelism between cortisol standard and 

endogenous hormone in tissue, a sample containing high concentration of cortisol was serially 

diluted (1:1-1:8) with RIA buffer. Parallelism was assessed between these serial dilutions and 

cortisol standards (ranging from 7.81 to 1000 pg/100 μl tube vial, prepared in buffer). The intra-

assay coefficient of variation was 9.7%. Cross reactions of various steroids with antiserum raised 

against cortisol were as follows: cortisol 100%, corticosterone 9.5%, cortisone 5.3%, 11a-

deoxycortisol 5%, prednisolone 4.6%, 20a-dihydrocortisone 0.4%, progesterone and testosterone 

<0.001%. The sensitivity of the assay was 2.64 pg/tube and was defined as the dose of hormone at 

90% binding. The results are given as pg/g tissue. 

 

3.3.8 Histological examination 

Soft tissues of clams were removed from the shells, and fixed for 24 hours in 10% neutral buffered 

formalin, routinely processed and embedded in paraffin wax. Sections (4 µm) were stained with 

haematoxylin and eosin (HE). The histological examination on HE focused on the gills and 

digestive gland to detect the presence or absence of cell changes (degenerations with water / lipid 

accumulation, necrosis or apoptosis). When on HE slide a brown pigment was present, sections 
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were stained with Ziehl-Neelsen to confirm the presence of lipofuscin (Gòmez-Mendikute et al., 

2005; Koukouzika et al., 2009). 

 

3.3.9 Sodium dodecylbenzenesulfonate (LAS12) quantification 

For the quantification of sodium dodecylbenzenesulfonate (LAS12) in Manila clam tissues ultra-

performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UPLC-

MS/MS) technology was used. The equipment employed consisted of a Waters Acquity UPLC® 

binary pump, coupled with a Waters Quattro Premier XE™ triple quadrupole mass spectrometer 

equipped with an ESCi™ Multi-Mode Ionization Source (Waters Corporation, Milford MA, USA). 

Mass spectrometer operated in negative electrospray ionization (ESI
-
) mode and analysis were 

performed in MRM (multiple reaction monitoring) mode, following two specific transitions for the 

target analyte: 325.4 > 119.1 and 325.4 > 183.1. The chromatographic separation was achieved on a 

Waters Acquity BEH SHIELD RP18 UPLC® column (Waters Corporation, Milford MA, USA). 

The chromatographic conditions consisted in an isocratic run (Rico-Rico, Drogea, Widmera, & 

Hermensa, 2009) of 5 minutes at a constant flow of 0.4 mL/min; the mobile phase was 10:90 (v:v) 

of A:B, where A is 10 mM ammonium acetate aqueous buffer, and B is methanol. Data were 

acquired and processed using a Waters MassLynx™ 4.1 software (Waters Corporation, Milford MA, 

USA). 

Clam tissue was processed through a simple liquid-liquid extraction procedure: homogenised clam 

tissue was twice extracted with methanol and ultrasonication, then the supernatant, obtained by 

centrifugation, was cleaned by means of two purification-steps with hexane. The extract was 

successively dehydrated with the addition of anhydrous sodium sulphate, concentrated under gentle 

stream of nitrogen, and re-suspended with the chromatographic eluent solution. Finally, the samples 

were filtered directly in polypropylene vials through nylon syringe-driven filters. 

 

3.3.10 Statistical analysis 

All data are expressed as the mean of repeats ± standard deviation (SD) and they were analysed by 

two-way ANOVA followed by Bonferroni or Tukey’s post hoc tests (Prism version 4.0 software, 

GraphPad Software, San Diego, USA; SigmaStat 2.0, Sigma, USA). The level for accepted 

statistical significance was p ≤ 0.05. 
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3.4 RESULTS 

3.4.1 Bactericidal activity  

The monitoring of chemical-physical parameters in the mesocosms set up for the disinfection 

treatment, showed that dissolved oxygen, temperature and salinity were not affected (Fig. 1A, B, 

C), unlike pH, by the different disinfectant concentrations. In detail, pH greatly decreased at 1000 

ppm (pH=3.40), slightly decreased at 100 ppm (pH=0.65), whereas it remained constant at 10 

and 1 ppm disinfectant (Fig. 1 D). 

 

 

 

Fig. 1. Graphs show the evolution of the chemical-physical parameters in mesocosms set up for the 

bactericidal activity assays after the treatment with the disinfectant at different concentrations 

(           CTRL,         1 ppm,        10 ppm,           100 ppm,         1000 ppm) and time points (W-T0, W-T1, W-

T3, W-T24). A) Dissolved oxygen; B) temperature; C) salinity; D) pH. Data are presented as mean ± SD. 
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Sea water analyses showed a natural Vibrio spp. load of 2.8±0,1 log10 CFU mL
-1

 (W-T0). Vibrio 

spp. load was constant throughout the bactericidal activity assay in control tanks (Fig. 2).  

On the other hand, Vibrio spp. associated to sea water after all treatment (1, 10, 100 and 1000 ppm) 

resulted rapidly reduced to statistically lower level than those of untreated controls (W-T1; p<0.05; 

Fig. 2). At 10, 100 and 1000 ppm disinfectant, Vibrio spp. could not be isolated from treated sea 

water samples at all the tested time points (W-T1, W-T3, W-T24). At 1 ppm, Vibrio spp., were 

isolated from sea water samples collected at 1, 3 and 24 hours post treatment, but with statistically 

lower bacterial loads than those of the untreated controls (=2.25 log10 CFU mL
-1

; p<0.05; Fig. 2). 

 

 

 

Fig. 2. Graphs show Vibrio spp. load in sea water samples collected during the bactericidal activity assays 

after the treatment with the disinfectant at different concentrations       CTRL, (A)        1 ppm,         10 ppm, 

(B)            100 ppm,        1000 ppm and time points (W-T0, W-T1, W-T3, W-T24). Data are presented as 

mean ± SD. Asterisks (*) show statistically significant differences (p < 0.05) of Vibrio spp. load between 

treated and untreated samples collected at the same time point. 

 

 

3.4.2 Virucidal activity 

The treatment at 1000 ppm disinfectant reduced rapidly VNNV load to level statistically lower than 

those of untreated controls (W-T1 CTRL vs WT-1 1000 ppm, p<0.05). Accordingly, one hour after 

the treatment the viral load was about 3 log10 TCID50 mL
-1

 lower than control (Fig. 3 A). Viral load 

in treated water was consistent with values statistically lower than those of controls up to 24 hours 

at each tested time points (W-T1, W-T3, W-T24; p<0.05; Fig. 3 A). After the 500 ppm treatment, 

the viral load decreased up to attain statistically lower values than that of the control after three 

hours (W-T3, p<0.05; Fig. 3 B). The 100 ppm disinfectant treatment did not cause a significant 

reduction of the viral load at any tested time points (Fig. 3 C). 
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Fig. 3. Graphs show viral loads detected in sea water samples collected during the virucidal assays after the 

treatment with the disinfectant at different concentrations       CTRL, (A)        100 ppm, (B)       ____500 

ppm, (C)          1000 ppm and time points (W-T0, W-T1, W-T3, W-T24). Data are presented as mean ± SD. 

Asterisks (*) show statistically significant differences (p < 0.05) of VNNV load between treated and 

untreated samples collected at the same time point. 
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3.4.3 Depuration assay 

The monitoring of chemical-physical parameters (pH, dissolved oxygen, temperature, salinity) in 

mesocosms during the depuration assay showed results similar to those obtained during the 

bactericidal activity assay (data not shown). 

Clams analysed at the origin (MC-T0) showed Vibrio spp. loads ranging from 3.48 log10 CFU g
-1

 to 

5.75 log10 CFU g
-1

 (Fig. 4 A, B, C) reflecting the normal Vibrio spp. loads naturally associated to 

flesh and intravalvular liquid (Serratore et al., 1999; Milandri et al., 2000; Serratore et al., 2009; 

Passalacqua et al., 2016). Both the 100 and 500 ppm disinfectant treatments did not result into any 

reduction of Vibrio spp. load associated to flesh and intravalvular liquid (Fig. 4 A, B). On the other 

hand, the 1000 ppm disinfectant treatment (five repeats) showed a different effect at the different 

sampling times. The Vibrio spp. load showed a statistically significant reduction after three hours of 

treatment (p<0.05; Fig. 4 C), whereas Vibrio spp. loads were overlapping for treated and untreated 

groups after 24 hours.  

Furthermore, the monitoring of Vibrio spp. associated to sea water during the depuration assay 

showed performances overlapping those reached in the bactericidal activity assay. A reduction of 

about 3 log10 CFU mL
-1

 of the bacterial load with respect to the control was obtained in the water of 

the treated group three hours post treatment (p<0.05; Fig. 4 D). Particularly, Vibrio spp. was not 

isolated from sea water collected neither three nor 24 hours post 1000 ppm disinfectant treatment. 

During the depuration assay no statistically significant differences in mortality arose among all 

treated and untreated clams. 

 



51 

 

 

 

Fig. 4. Graphs show Vibrio spp. load in clams (MC) and water (W) collected during the depuration assays 

after the treatment with the disinfectant at different concentrations      CTRL,  (A)           100 ppm, (B)      500 

ppm, (C, D)          1000 ppm and time points (T0, T1, T3, T24). Data are presented as mean ± SD. Asterisks 

(*) show statistically significant differences (p < 0.05) of Vibrio spp. load between treated and untreated 

samples collected at the same time point. 

 

 

3.4.4 Artificial contamination with VNNV, Betanodavirus and specific depuration assay 

The clams were successfully contaminated with VNNV by the immersion trial. VNNV was isolated 

from contaminated clams after 24hours immersion in contaminated water and subsequent 24 hour in 

clean water showing their ability to retain the virus. No mortality was observed neither in 

contaminated clams nor in the uncontaminated control. Contaminated clams showed a VNNV titre 

4.6±1.6 log10 TCID50 g
-1

 (MC-T0) at the starting time. No statistically significant VNNV titre 

reduction was observed after 1000 ppm disinfectant treatment at any of the tested time points (Fig. 

5). 
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Fig. 5. Graph shows VNNV load in clams collected and time points (MC-T0, MC-T1, MC-T3, MC-T24) 

during the depuration assay after the treatment with the disinfectant (      CTRL,        1000 ppm). Data are 

presented as mean ± SD. 

 

 

3.4.5 Biochemical analyses 

The selected disinfectant treatment (1000 ppm for 3 hours) apparently did not affect the 

biochemical parameters considered. Irrespective of the season, in all the 1000 ppm exposure trials, 

the level of TBARs, evaluated as MDA equivalents, was not significantly different in disinfectant-

treated (MC-T3 1000 ppm) and untreated (MC-T3 CTRL) clams (Fig. 6).  

On the other hand, a clear effect of the sampling was pointed out. In the trials of October, 

November and December the MDA levels were significantly higher than in the trial of July, 

irrespective of the exposure to the disinfectant.  

Moreover, as shown in Fig. 7, which illustrates a representative pattern of VOC in MC-TO, MC-T3 

CTRL and MC-T3 1000 ppm clams, very similar and overlapping VOC spectra within each trial 

were obtained. The substantially overlapping  VOC pattern in MC-TO, MC-T3 and MC-T3 1000 

ppm  was observed in all the trials (July, October, November and December) (data not shown). 
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 Fig. 6.  MDA levels in edible tissues of MCT-O (∎), MC-T3 CTRL (∎) and MC-T3 1000 ppm (      ) clams. 

 

 

 

Fig. 7. Representative VOC patterns in  MC-TO (A), MC-T3 CTRL (B) and MC-T3 1000 ppm (C) clams. 
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3.4.6 Cortisol analyses 

The disinfectant treatment (MC-T3 1000 ppm) did not alter the cortisol levels compared to MC-T3 

CTRL control and MC-T0 time. No significant changes in the cortisol concentrations were recorded 

within treatments over time (Fig. 8). 

 

 

 

 

 

 

 

 

 

Fig. 8.  Digestive gland cortisol levels of Manila clams collected during the depuration assays before (∎ 

MC-T0) and after the disinfectant treatment (∎ MC-T3 CTRL;      MC-T3 1000 ppm). Data are presented as 

mean ± SD. 

 

 

3.4.7 Histopathological analyses 

In the trials carried out in July, the histological examinations revealed a fully developed gonadal 

tissue with a slight predominance of females over males. The 1/3 of untreated clams showed a mild 

to moderate haemocytic infiltration in gills and interstitium, associated in half of cases the presence 

of Perkinsus sp. In the treated clams (1000 ppm for 3 hours) the situation was similar, except for a 

case in which there was chronic inflammation with the presence of granulocytomas and a subject in 

autolysis. In the trials carried out in October, the reproductive system observations showed a clear 

predominance of males over females by a 2/1 ratio. In this trial, the treatment (1000 ppm for 3 

hours) was followed by 1 day of maintenance in the untreated sea water, to verify the possible 

presence of long-term alterations. However, no noteworthy lesions were observed. Both in treated 

and untreated in half cases the gills were normal, and the detected branchytis in half cases were 

associated to Perkinsus sp. presence. In 40% of cases, chronic inflammation with the presence of 

granulocytomas in periglandular connective tissue was detected irrespective of Perkinsus presence 

(Fig. 9). In the trial of November, all genitalia were in involution, anyway 5 females were 

recognized. Almost all clams had a branchytis with variable severity and in half the cases the 
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branchytis were associated with the presence of Perkinsus sp., with multifocal granulocytomas in 

the parenchyma. Also in this case there was no difference between the treated (1000 ppm for 3 

hours) and untreated subjects. In the December trial, the gonadal tissue was not visible. The clams 

had mild inflammation in the parenchyma with a mild presence of Perkinsus sp., and there was no 

difference between the treated (1000 ppm for 3 hours plus 1 day maintenance in untreated sea 

water) and untreated subjects. The presence of lipofuscin was confirmed with Ziehl-Neelsen stain, 

rare cells showed, in both treated and untreated clams, lipofuscin pigment. Degenerated cells with 

water or lipid accumulations were rarely observed and no necrosis or apoptosis were present. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Clams. Digestive system connective tissue. Cluster of mature trophozoites (encapsulated in well-

circumscribed walls forming a cyst-like structure) of Perkinsus sp. surrounded by haemocytes forming 

granulocytomas. EE, 20x. 

 

 

3.4.8 Sodium dodecylbenzenesulfonate (LAS12) quantification 

A first consideration about LAS12 is that it could be commonly present in laboratory solvents and 

cleaning agents (Rico-Rico et al, 2009); therefore some appropriated precautions were adopted in 

order to avoid sample contamination (distillation of solvents and heat treatment of glassware at 

450°C for 3 hours, successively washed with distilled solvents and the contact with any detergents 

in the laboratory was strictly avoided. 

The analysis of control samples (MC-T0) reported the presence of traces of LAS12, likely due to 

the contamination of clams before the microbial decontamination process. Clam samples from large 

retailers were analysed and showed similar contamination levels to MC-T0. 



56 

 

From the analysis of samples, MC-T3 CTRL, MC-T3 1000 ppm and samples from large retailers, 

showed similar levels of LAS12, all in the range from 200 to 500 ppb. 

 

3.5 DISCUSSION 

Depuration and relaying represent essential tools to manage contaminated harvested shellfish, 

before their access to market (Lees et al., 2010). However, they represent a resource, but also a 

constraint due to poor effectiveness, limitations and potential risks intrinsic to the processes. The 

efficacy of depuration strongly depends on the efficiency of the recirculating aquaculture systems 

(RAS) plant to ensure a good quality of the water (Serratore et al., 2014). Shellfish contribute with 

their own microflora to microbiologically enrich the water of the system, thus increasing the risk of 

gathering of pathogens, spreading contamination among different batches and then requiring an 

effective system to remove or inactivate the microflora released in the water including viruses and 

Vibrio spp., At present depuration treatment is considered satisfactory when these goals are 

achieved: the reduction of faecal bacteria, in order to comply with the legislative standards, and the 

control of microbial enrichment in the system  (Serratore et al., 2014). The release of 

microorganisms by shellfish has a negative impact also on the relaying process, as it is carried out 

in the natural environment. The impact of the release of fish pathogens represents a real risk of 

transmission of infectious diseases to aquatic animals (Molloy et al., 2013). 

For these reasons, a sea water potassium peroxymonosulfate-disinfection process is proposed in the 

present study to complement and improve the depuration of cultured clams and to improve their 

microbiological quality in view of their safe placing on the market, movement, depuration, relaying 

or consumption by humans. 

Different reduction values were reported in the literature for bacteria and viruses after MPS-based 

treatment. Even if the wide variability of treatment conditions applied makes it uneasy to compare 

the results, it seems clear that successful inactivation performances were obtained against several 

microorganisms. On these bases MPS-based compounds were ranked as high disinfectant products 

useful in many different applications (Eleraky et al., 2002; Su & D’Souza, 2012; Martin et al., 

2013; Morin et al., 2015). 

The MPS-based product tested in the present study shows good bactericidal and virucidal activities 

in sea water. After having compared several doses and time contacts, the best treatment of 

contaminated water resulted the use of the 1000 ppm disinfectant concentration for three hours, 

which reduced about 3 log10 CFU mL
-1

 of Vibrio spp. and 3 log10 TCID50 mL
-1

 of VNNV in sea 

water. On the other hand, lower concentrations of disinfectant showed different effects on tested 

bacterial and viral targets reflecting a different susceptibility of microorganisms to peroxy acids.  
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Previous studies showed a high resistance of betanodaviruses to a broad range of chemical-physical 

parameters (Arimoto et al., 1996; Frerichs et al., 2000). Moreover, other viruses, with a similar 

structure of the viral particles, showed high resistance to peroxy-based compounds, including a 

MPS-based product (Martin et al., 2013).  

Despite the biocidal activity of the proposed treatment (1000 ppm disinfectant treatment - three 

hours) was equally efficient for the tested bacteria and the virus in sea water, when tested on 

shellfish a different effect against Vibrio spp. and the VNNV was observed. 

Accordingly, the significant reduction of the Vibrio spp. load in clams produced by the selected 

treatment (1000 ppm disinfectant for 3 hours), even if less pronounced  than that obtained in sea 

water, as well as the ineffectiveness on VNNV titre in clams, can be explained on the basis of a 

different  susceptibility of these microorganisms to peroxy acids. Additionally, it seems likely that 

the shellfish itself could protect the micro-organisms against the disinfectant, and/or constitute a 

physical barrier between the microorganism and the chemicals, thus limiting the amount of 

disinfectant acting on the micro-organisms and reducing its effectiveness. Accordingly, viruses are 

not passively accumulated by shellfish and their removal is reduced by a stable link between the 

virus and the shellfish itself (Maalouf et al., 2010). However, these studies focused their attention 

on human viruses and up to now no data are available for betanodaviruses. Since recent studies 

showed that VNNV can be bioaccumulated, restrained, but also released into the water by 

contaminated clams (Ciulli et al., 2015; Volpe & Ciulli, unpublished data), the proposed treatment 

can inactivate released virus, thus contributing to reduce the potential risk due to the relaying 

activity. 

As part of the development of the enhanced purification system, it was important to verify the 

potential effects of the treatment on clam health and welfare as well as the absence of undesired 

side-effects in the edible flesh. Accordingly, the maintenance of food quality and organoleptic 

features is an essential requisite for the feasibility of any treatment before commercialization. 

The absence of production of peroxidation products and the maintenance of organoleptic features in 

shellfish subjected to the selected disinfectant treatment, shown by TBARs and VOC pattern 

analyses, corroborates the suitability of the treatment to improve seafood safety. 

By the way, the TBARs analysis showed a clear effect of the sampling, with MDA levels 

significantly lower in one sampling (July) compared to the others. The higher MDA level at 

different sampling times may reflect a different dietary input and consequently, a different 

unsaturation of tissue lipids, in turn affected by phytoplankton features of the environment where 

the clams were cultivated (Beninger & Stephan, 1985).  As a matter of fact, in poikilotherms the 

molecular strategy leading to homeoviscous adaptation is mainly based on fatty acid unsaturation 
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which increases as temperature decreases. In turn the unsaturation increase is expected to reflect the 

dietary input, especially in organisms such as bivalves, which are unable to de novo synthesize 

long-chain polyunsaturated fatty acids (Ventrella et al., 2016). Unsaturated fatty acids are known to 

be per se more prone to oxidative damage than saturated ones (Ayala et al., 2014).  

Furthermore, the substantially overlapping VOC pattern in MC-TO, MC-T3 and MC-T3 1000 ppm, 

irrespective of the exposure to the disinfectant, in the trials of July, October, November and 

December, clearly points out that, under the conditions tested,  the disinfectant treatment could be 

applied irrespective of the season. To sum up, the results from the two biochemical approaches 

applied, fully consistent in showing that, under the conditions tested, the selected treatment 

apparently did not cause any oxidative damage to edible tissues, could reassure consumers about the 

absence of undesired effects on clam flesh quality.  

The presence of cortisol and cortisol-like molecules has been reported in some invertebrates; 

Ottaviani et al. 1998 found immunoreactive cortisol in molluscan immunocytes, but their direct 

relationship with stress response is still unclear. The negative correlation between cortisol and 

population density found by Lagos et al. (2015) and the lack of differences in the hormone levels 

between controls and treated animals observed in present study make it possible to consider a 

different pattern of this marker to stress in molluscs, dissimilar to what we usually expected in 

vertebrates. It is thus necessary to deepen studies to evaluate if cortisol or cortisol-like molecules 

correlate with the stress level in Manila clam. Anyway, if this is the case, data from the present 

study are not indicative of stress induction by the disinfection protocol. 

Finally, even if some haemocytic infiltrations and chronic inflammation in clam tissues with the 

presence of granulocytomas, branchytis and Perkinsus sp. were detected by histopathological 

investigations in several clams, such alterations were irrespective of the disinfectant treatment, since 

they equally occurred in disinfectant-treated and control clams. Therefore, from the shellfish health 

and welfare point of view, both cortisol and histopathological investigations argue in favour of an 

unaltered physiological state of the shellfish. 

The LAS12 quantification showed a widespread contamination of clams by this product, unrelated 

to clam origin. The unavoidable presence of LAS in coastal marine ecosystems is a fact, related to 

detergent discharge via urban sewer systems in the marine medium; in particular, LAS12 settles in 

costal sediments and accumulates in bivalve shellfish, as clams, that live in close to the seabed and 

bio-concentrate chemical compounds present in water (Sàez et al., 2000).  

Furthermore, analyses of clams, before and after the tested treatment, showed comparable levels of 

LAS12, always below the concentrations of the few available data (Sàez et al., 2000; Alvarez-
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Munoz et al., 2004). These results underline that the contribution of the treatment with the 

disinfectant to the contamination of the clams should be considered as negligible. 

 

3.6 CONCLUSIONS 

The novel Manila clam sea water potassium MPS-based disinfection process set up and tested in the 

present study clearly improves the microbiological quality of harvested clams with respect to their 

Vibrio spp. load. Furthermore, the proposed treatment greatly reduces the tested bacteria and viruses 

in the sea water column, being able to counteract possible microorganisms released from shellfish 

during the depuration process. The proposed treatment reduces the risks related to the shellfish 

placing on the market, movement, depuration, relaying or consumption by humans. This 

disinfectant treatment is strengthened by the absence of effects on clam health and welfare and of 

undesired side-effects or LAS 12 residues in in the edible flesh. Therefore, the proposed treatment 

may really represent an innovative strategy to face, in a quite easy and feasible way, some still 

unresolved matter of concern in clam depuration and commercialization. 
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Final considerations 

Bivalve molluscs are well-known bio-accumulators of microorganisms, including finfish and 

human pathogens. This topic has been long investigated for human pathogens. On the other hand, 

poor studies were available for finfish pathogens. 

The three studies conducted during the Ph.D contribute to expand knowledge on finfish and human 

pathogens in bivalve molluscs and particularly on betanodavirus presence in bivalve molluscs, on 

their interaction with the Redspotted grouper nervous necrosis virus (RGNNV) and propose a novel 

method to mitigate bacterial and viral contaminations of bivalve molluscs. 

The first study, focusing on the betanodavirus presence in bivalve molluscs, points out that 

betanodaviruses are widespread in these invertebrates, maybe more than we could expect. 

Phylogenetic analysis of these viruses shows that strains detected in bivalve molluscs and in finfish 

are very closely related. Accordingly, betanodaviruses detected in bivalve molluscs in different 

European countries from 2008 to 2015 mimic the epidemiological patterns of betanodaviruses 

previously detected in finfish in Southern Europe from October 2000 to November 2009. Moreover, 

the nucleotide and amino acid sequence analysis of one strain show the existence of a new 

betanodavirus strain not belonging to any of the already known betanodavirus genotypes. Such a 

massive and variegate presence of betanodaviruses in bivalve molluscs greatly stresses the risks of 

transmission to finfish previously feared for other invertebrates. Bivalve molluscs reared in the 

same area of farmed and wild finfish could accumulate betanodaviruses acting as a reservoir of 

these viruses. Furthermore, the marketing of alive bivalve molluscs and the relaying activity, 

allowed by the European regulation, can pose also a real risk of spreading betanodaviruses between 

different geographical areas. 

These data are very relevant considering that these viruses can survive in bivalve molluscs and be 

released as demonstrated in the second study. Clams, in fact, were demonstrated able to take up and 

then shed viable RGNNV into the surrounding environment through faeces and filtered water. The 

persistence of viable RGNNV in clam tissues and the shedding of virus into the surrounding 

environment pose a serious risk for susceptible cohabitant fish species.  

The third study proposed a novel method to mitigate the impact of bacterial and viral 

contaminations in bivalve molluscs. A wider range of microorganisms has been considered for this 

study, including, not only the VNNV as the most important finfish pathogen, but also the Vibrio 

spp. population naturally associated with sea water that includes several human and finfish 

pathogens. The novel Manila clam sea water potassium MPS-based disinfection process set up and 

tested in the present study greatly reduces the tested bacteria and virus loads in the sea water 

column, being able to counteract the possible microorganisms release from shellfish during the 
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depuration process. The proposed treatment reduces the risks related to the shellfish placing on the 

market, movement, depuration, relaying or consumption by humans. This disinfectant treatment is 

strengthened by the absence of effects on clam health and welfare and of undesired side-effects or 

LAS 12 residues in the edible flesh. Therefore, the proposed treatment may really represent an 

innovative strategy to face, in a quite easy and feasible way, some still unresolved matter of concern 

in clam depuration and commercialization. 

The obtained results point out the possible role of bivalve molluscs in the transmission of pathogens 

to finfish and highlight the needing of surveillance and control activities where a close inter-specific 

contact is present. The proposed novel disinfection method provides good experimental results and 

could find wide application in fisheries sector after adequate field tests. 
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