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Alzheimer’s disease (AD) is a progressive, neurodegenerative disease and the most 

common form of dementia. It is characterized by a decline of memory, language, 

problem-solving and other cognitive skills that affect individual ability to perform 

everyday activities. 

The two main neuropathological hallmarks of AD are extracellular deposits of amyloid-

beta (Aβ) in diffuse plaques and plaques containing elements of degenerating neurons 

(neuritic plaques), and neurofibrillary tangles (NTFs) consisting of hyperphosphorylated 

tau protein accumulation inside neurons. Activation of microglia, astrocytes, loss of 

neurons and synapses are also widespread in AD brains.  

Several genes, environmental factors and interactions among genes and these 

components may be involved in AD occurrence and progression. 

AD is a complex multi-factorial, heterogeneous disease and among environmental 

factors likely associated with it, persistent virus infections, the progressive decline of 

immune competence with advancing age and chronic psychological stress exposures  

might play a pivotal role. 

Infective agents, both bacteria and viruses, have been suggested to play a role in the 

clinical progression of AD. Impaired immune responses are associated with ageing and 

decreased defensive immunity against peripheral persistent bacterial infections and/or 

latent and reactivating viruses might expose the brain to an increased risk of 

microorganism invasion and chronic infections. These alterations may contribute to 

impair brain inflammatory responses leading to neurodegenerative processes and 

dementia. However, the role of brain innate immunity in the pathogenesis and clinical 

history of AD remains to be clarified. 

The present study focused on genes involved in antimicrobial defences, especially 

against virus infections, such as interferon regulatory factor (IRF) 7, mediator complex 
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(MED) 23, interferon (IFN)-λ3, or IL28B (interleukin 28B), and IFN-α genes. We 

attempted to evaluate the potential association of their expression in hippocampus and 

in temporal cortex AD brain samples. Since our recent findings showed that diverse 

genetic backgrounds in genes regulating antiviral responses were associated with an 

increased risk of AD, the focus of this thesis was set on single nucleotide 

polymorphisms (SNPs) located upstream of the IRF7, MED23 and IL28B genes and on 

SNPs of APOE gene, and their potential effect on the brain gene expression profiles.  

Most AD patients showed an impaired brain expression of these major antiviral 

response genes. Carriers of the APOE ε4 allele showed a significant decrease of 

MED23, IL28B and IFN-α gene expression in hippocampus area. Moreover, the 

presence of GA and AA genotype in the upstream IRF7 variant (rs6598008) was 

associated with further decreased hippocampal expression of IRF7, MED23, IL28B and 

IFN-α, which are all involved in the innate immune control of HSV-1 infection.  

The present findings suggest that brains from AD patients have defective antimicrobial 

immune defences and individual genetic makeup, such as positivity for the APOE ε4 

and IRF7 A alleles, further decreases brain immune efficiency. A decreased brain 

immune efficiency may increase the susceptibility to chronic infections during ageing, 

which in turn may activate a vicious neuroinflammatory circle leading to neuronal 

death, neurodegeneration and clinical dementia. Maintenance of efficient immune 

responses in the elderly might slowdown neurodegenerative mechanisms associated 

with the age-related cognitive decline and influence both prevalence and incidence of 

AD. 

While most cases of AD occur at late onset and older ages, increasing evidences 

support the notion that the neurodegenerative alterations precede AD clinical 

manifestation by many decades. In addition to genetics and environmental factor, 

several epidemiological reports have indicated that chronic stress and stress-related 

disorders can influence the progression of AD-related symptoms and pathologies. 
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Different studies have shown that chronic stress has a strong impact on different 

cognitive processes ranging from attention to memory and social cognition. Moreover, 

chronic stress at different stages of life, including intrauterine life, has a negative 

impact on AD pathology. The early-life environment is one of the most important factors 

affecting life-long health and prenatal stress (PNS) is an important programming factor 

in brain development and function. 

The second part of this thesis shows that in mouse model, environmental factors, such 

as PNS exposure, can be controlled and AD-related behaviour can be monitored 

throughout the disease progression. It has been investigated the long-term cognitive 

consequences of PNS in AD mice and the PNS-early neurobiological effects in wild 

type (WT) animals. As these, mice are a useful model to suggest that PNS affects the 

onset of cognitive deficit in AD mice in a sex-dependent manner. Furthermore, our 

findings highlight that the impairment of fetal neurodevelopment might influence adult 

mental health and brain ageing. Based on these results, AD is probably best 

considered in a life-course framework, with important influences beginning also at 

early-life moments.   
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An Introductory Overview of Alzheimer’s Disease 

Epidemiology 

According to the World Alzheimer Report 2015 it has been estimated that the number 

of people living with dementia will almost double every 20 years, reaching 74.7 million 

in 2030 and 131.5 million in 2050 (https://www.alz.co.uk/research/world-report-2015).  

The regional estimates of dementia prevalence in people aged 60 years and over 

range from 4.6% in Central Europe to 8.7% in North Africa and the Middle East, though 

all other regional estimates fall between 5.6% and 7.6%. The regional distribution of 

new dementia cases is 4.9 million (49% of the total) in Asia, 2.5 million (25%) in 

Europe, 1.7 million (18%) in the Americas and 0.8 million (8%) in Africa. The incidence 

of dementia increases exponentially with increasing age, from 3.9 per 1000 person-

years at age 60-64, to 104.8 per 1000 person-years at age 90 and over.  

Today 47 million people live with dementia worldwide. There is a clear and urgent need 

to improve the coverage of healthcare around the world, for people living with dementia 

now and those who will be in the future. Through cost modelling, the World Alzheimer 

Report 2016 shows that these improvements are affordable and achievable, but 

governments and societies need to effect transformative change to deliver them 

(https://www.alz.co.uk/research/world-report-2016). 

Alzheimer’s disease (AD) 

AD was first identified more than 100 years ago, but 70 years passed before it was 

recognized as the most common cause of dementia1. Researchers believe that early 

detection will be key of preventing, slowing and stopping Alzheimer’s disease. 

Nowadays, there are no definitive diagnostic tests or validated biological markers for 

this disease2. Revised criteria and guidelines for diagnosing Alzheimer’s were 
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proposed and published in 20113-6. Because scientific evaluation of the proposed 

criteria is ongoing, we refers to AD as defined by the earlier criteria7.  

AD symptoms 

The AD common symptoms are:  

memory loss that disrupts daily life; challenges in planning or solving problems; 

difficulty completing familiar tasks at home, at work or at leisure; confusion with time or 

place; trouble understanding visual images and spatial relationships; new problems 

with words in speaking or writing; misplacing things and losing the ability to retrace 

steps; decreased or poor judgment; withdrawal from work or social activities; changes 

in mood and personality, including apathy and depression. 

Brain changes AD-related  

The two primary neuropathological hallmarks of AD are amyloid-beta (Aβ) plaques and 

neurofibrillary tangles (NTFs): the first ones consist of extracellular deposits of Aβ, 

which is derived from the β-amyloid precursor protein (APP), in diffuse plaques and 

plaques containing elements of degenerating neurons (neuritic plaques)2, while the 

second ones are primary composed of hyperphosphorylated tau protein accumulation 

inside neuronal cells8. Activation of microglia, astrocytes and loss of neurons and 

synapses is also widespread9. The fundamental pathogenic mechanisms underlying 

these changes are still under debate, but it is clear that environmental and genetic 

components play a pivotal role2.  

In AD, information transfer at synapses begins to fail, the number of synapses declines, 

and neurons eventually die. The accumulation of Aβ is believed to interfere with the 

neuron-to-neuron communication at synapses and to contribute to cell death. NTFs 

block the transport of nutrients and other essential molecules inside neurons and are 

also believed to contribute to cell death. The brains of people with advanced AD show 

dramatic shrinkage from cell loss and widespread debris generated by dead and dying 

neurons10. 
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AD and genetic mutations 

A small percentage of AD cases (an estimated 3% or less)11 develops as a result of 

mutations to any of three specific genes. These mutations involve the amyloid 

precursor protein (APP) gene, presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes. 

People inheriting a mutation to the APP or PSEN1 genes are guaranteed to develop 

Alzheimer’s. Those inheriting a mutation in the PSEN2 gene have a 95% chance of 

developing the disease12. Individuals with mutations in any of these three genes tend to 

develop AD symptoms before age 65, sometimes as early as age 30. On the other 

hand, the majority of individuals with sporadic AD shows a late-onset disease, 

occurring at age 65 or later. 

Known AD risk factors  

With the exception of the rare cases of Alzheimer’s caused by genetic mutations, 

experts believe that AD develops as a result of multiple factors rather than a single 

cause like other common chronic degenerative diseases. Researchers have outlined 

several factors that affect risk of developing dementia. 

 Age 

Age is the major risk factor for AD. Most patients develop AD after 65 years or at older 

ages. AD is not a normal part of ageing and age alone is not sufficient to cause the 

disease10. 

 ApolipoproteinE (APOE) ε4 allele 

ApolipoproteinE (ApoE) protein is the major cholesterol carrier in the brain. ApoE is 

involved in neuronal maintenance and repair. This protein binds several receptors on 

the cell surface, which are involved in lipid delivery and transport, glucose metabolism, 

neuronal signaling and mitochondrial function. Normally, ApoE also binds Aβ peptide 

and plays a role in its clearance13. 

There are three main polymorphisms of APOE gene, called APOE ε2, ε3 and ε4 

alleles.   
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The ε3 is the most common; the ε4 is carried by an estimated 20-30% of individuals, 

while the ε2 form is carried by an estimated 10-20% of the population12,14. Allele ε4 

positivity increases AD risk, while having the ε2 allele may decrease the disease’s risk. 

Those who inherit one copy of the ε4 allele have a 3-fold higher risk of developing AD 

than those without it, while individuals who inherit two copies of the ε4 form have an 8- 

to 12-fold increased disease’s risk15,16. In addition, subjects with the ε4 allele are more 

likely to develop AD at a younger age than those with the ε2 or ε3 alleles17. Unlike 

inheriting a genetic mutation that causes Alzheimer’s, inheriting the ε4 form of the 

APOE gene does not guarantee that an individual will develop AD.   

 Family History 

Subjects in which multiple members of the family are affected by AD are at increased 

risk for dementia, but the distribution of secondary cases is not consistent with 

Mendelian inheritance. AD is more frequent among monozygotic than dizygotic twins 

and first-degree relatives of patients with AD have approximately twice the expected 

lifetime risk of developing the disease18-21. Individuals who have a parent, brother or 

sister with AD are more likely to develop the disease than those who do not have a 

first-degree relative with Alzheimer’s16,22. However, when a disease runs in families, 

heredity along with shared environmental and lifestyle factors, play a role10.  

 Cardiovascular Disease Risk Factors 

Growing evidence suggests that the brain health is linked to the heart and blood vessel 

health. Many risk factors of cardiovascular disease are also associated with an 

increased risk of dementia. These factors include smoking23-25, obesity in midlife26,27 

and diabetes24,28-31. Growing evidence also implicates midlife hypertension27,32 and 

midlife high cholesterol33,34 as risk factors. Conversely, factors that protect the heart 

(e.g. physical activity, a diet low in saturated fats and rich in vegetables and fruits29,35-37) 

are also protective for the brain and reduce the risk of developing AD and other 

dementias.  

 



14 
 

 Social and Cognitive Engagement 

Additional studies suggest that social and mental activity throughout life may reduce 

the risk of AD and other dementias38-44. Remaining socially and mentally active may 

help build cognitive reserve; however, underlying mechanisms are still unknown10.  

 Traumatic Brain Injury (TBI) 

TBI is a mechanical insult to the brain caused by external forces and associated with 

inflammation and oxidative stress45. Moderate TBI increases twice the risk of 

developing AD and other dementias, and severe TBI increases 4.5 times the AD 

risk46,47. Individuals who have experienced repeated head injuries, such as boxers, 

football players and combat veterans, are at increased risk of developing dementia, 

cognitive impairment and neurodegenerative diseases48-54. Some of these 

neurodegenerative diseases, such as chronic traumatic encephalopathy, can only be 

distinguished from AD upon post-mortem brain autopsy.  
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AD and Genetics  

Early Onset Alzheimer’s Disease (EOAD) 

AD is a complex and heterogeneous neurodegenerative disease. Several genes, 

environmental factors and interactions among genes and these components may be 

involved in AD occurrence and progression55. Studies have been performed on mono- 

and di- zygotic twins to estimate the role of genetics in AD, the environmental 

influences and the disease heritability. Variation in the age of onset, neuropathological 

patterns and the disease duration may be ascribed to genetic–environmental interac-

tions56-58.  

AD can be categorized into early (age at onset <65 years) and late onset; among early 

onset families, patterns of AD inheritance have been consistent with Mendelian 

autosomal dominant inheritance. Studies from late onset familial cases suggested a 

multifactorial inheritance, involving both genetic and non-genetic factors59-61. 

Three mutations are considered main risk factors for EOAD: these mutations are on 

amyloid precursor protein (APP)62, presenilin 1 (PSEN1) and 2 (PSEN2)63-65 genes. 

Mutations in APP gene appear to cause shifts in its proteolytic cleavage toward 

amyloidogenic pathways, leading to accumulation of the Aβ42 isoform which is less 

soluble and more neurotoxic66 than the common Aβ4067 isoform. 

PSEN1 and PSEN2 share 67% homology; both genes contain twelve exons with ten 

coding exons (exons 3–12), for a ∼450 amino acids protein. PSEN1 and PSEN2 are 

transmembrane (TM) proteins with, at least, seven TM domains68. Most AD mutations 

have been detected in PSEN1 gene (approximately 30%–70% of familial EOAD), 

located on chromosome 1469. Patients with PSEN1 mutations might develop AD 

symptoms in their 40s or early 50s, with a few cases occurring in individuals in their 

late 30s and early 60s70. PSEN2, on chromosome 1, is another EOAD gene, among a 
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very small European population. The most well-known AD group with the PSEN2 

mutations is from families with the Volga German ancestry. AD patients with PSEN2 

mutations may show disease onset between 40 and 75 years71,72. 

PSEN mutations contribute to a partial loss of function in the γ-secretase complex, 

which affects APP processing and increases the brain vulnerability to Aβ toxicity73. 

However, the roles of presenilin mutations continue to be investigated74. 

Late Onset Alzheimer’s Disease (LOAD) 

LOAD comprises the majority (90–95% or more) of AD cases and there is considerable 

evidence to support a genetic component in its etiology59. Identifying genetic 

contributors to LOAD has posed great challenges; while EOAD is characterized by 

highly penetrant mutations in a few risk genes, LOAD is likely caused by multiple low 

penetrance genetic variants74. 

The first confirmed LOAD susceptibility gene was the APOE gene, located on 

chromosome 19 and coding for ApoE protein, which is involved in the transport, 

storage and metabolism of lipids74.  

To identify other genomic contributors to AD risk, a variety of approaches have been 

used: regional and genome-wide linkage studies (GWLS) in multiplex pedigrees, 

candidate gene association studies, meta-analyses of linkage and association studies, 

genome-wide association (GWA) studies and, most recently, whole genome 

sequencing (WGS) and whole exome sequencing (WES) studies74. 

The first two sets of large-scale GWA studies identified CLU (clusterin), PICALM 

(phosphatidylinositol-binding clathrin assembly protein), CR1 (complement receptor 1), 

BIN1 (bridging integrator 1), MS4A4A (membrane spanning 4-domains A4A), ABCA7 

(ATP-binding cassette sub-family A member 7), CD2AP (CD2 associated protein), 

CD33 and EPHA1 (Ephrin type-A receptor 1 precursor) as AD susceptibility loci75-78. 



17 
 

The largest GWA study to date was performed by the International Genomics of 

Alzheimer’s Project (IGAP)2. This consisted of a large, two-stage meta-analysis of the 

major GWA studies (GWAS) of individuals of European ancestry that included a total of 

74,046 subjects. In the first stage, 7,055,881 single nucleotide polymorphisms (SNPs), 

genotyped or imputed in at least 40% of AD cases and 40% of control (ctrl) samples, 

were used to perform a fixed-effects inverse variance-weighted meta-analysis on four 

previously published GWAS data sets, consisting a total of 17,008 AD cases and 

37,154 ctrl. In total, 11,632 SNPs associated with AD risk, exhibiting a p-value of <1 × 

10−3, were genotyped and tested for association in the second stage, in an independent 

set of 8,572 AD cases and 11,312 ctrl2. Additionally to the APOE locus, nineteen loci 

reached genome-wide significance, defined as p < 5 × 10−8, in the combined stage 1 

and 2 analysis [CR1, BIN1, CD2AP, EPHA1, CLU, MS4A6A (membrane spanning 4-

domains A6A), PICALM, ABCA7, HLA-DRB5/HLA-DRB1(major histocompatibility 

complex, Class II, DR beta 5/1), PTK2B (protein tyrosine kinase 2 beta), SORL1 

(sortilin related receptor 1), SLC24A4/RIN3 (Solute Carrier Family 24 - 

Sodium/Potassium/Calcium Exchanger - Member 4/Ras and Rab Interactor 3), INPP5D 

(inositol polyphosphate-5-phosphatase D), MEF2C (myocyte enhancer factor 2C), 

NME8 (NME/NM23 family member 8), ZCWPW1 (zinc finger CW-type and PWWP 

domain containing 1), CELF1 (CUGBP Elav-like family member 1), FERMT2 (fermitin 

family member 2) and CASS4 (Cas scaffolding protein family member 4)]. Out of these, 

eleven (HLA-DRB5/HLA-DRB1, PTK2B, SORL1, SLC24A4/RIN3, INPP5D, MEF2C, 

NME8, ZCWPW1, CELF1, FERMT2  and CASS4) were new association risk factors.    

The odds ratio (OR) ranged from 1.08 to 1.29; examining the genetic effect attributable 

to all the associated loci, the most strongly associated SNPs at each locus, other than 

APOE, had population-attributable fractions or preventive fractions between 1.0 and 

8.0% in the stage 2 sample. The cumulative population attributable fraction was 

89.4%2. In summary, this meta-analysis of major AD GWAS identified eleven new 

susceptibility loci. These new loci underline the significance of specific pathways 
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already shown to be enriched for association signal in AD GWAS, such as immune 

response and inflammation (HLA-DRB5/DRB1, INPP5D, MEF2C), cell migration 

(PTK2B), lipid transport and endocytosis (SORL1), and reinforced the relevance of 

some additional previously suggested pathways including APP (SORL1 and CASS4) 

and tau (CASS4 and FERMT2) pathology, hippocampal synaptic function (MEF2C and 

PTK2B), cytoskeletal function and axonal transport (CELF1, NME8, CASS4), regulation 

of gene expression and post-translational modification of proteins, microglial and 

myeloid cell function (INPPD5)2. 

Exome and genome sequencing approaches have recently yielded novel insights into 

the genetic contributors to AD. Rare loss-of-function mutations R47H and R62H in the 

chromosome 6p21.1 gene TREM2 (triggering receptor expressed on myeloid cells 2) 

have recently been found to lead to an increased AD risk of as much as 400%79-82. 

TREM2 implicates innate immunity pathways83, the regulation of phagocytic pathways 

and it has also been found to inhibit microglia cytokine production and secretion 

reducing inflammatory response84. The identification of this gene has strengthened the 

growing consensus that microglia induced neuroinflammation is a critical component of 

AD pathogenesis74. A whole-genome sequencing study examining genotypes of 1,795 

Icelanders found a coding mutation in the APP gene (A673T) that protects against AD 

and cognitive decline in the elderly without Alzheimer’s85. SORL1, which was first an 

AD candidate gene86 and then observed in the IGAP GWAS, was recently found 

through exome sequencing to carry mutations causing a form of EOAD with autosomal 

dominant inheritance87. Furthermore, exome sequencing of a Turkish family with AD 

identified a mutation (R1231C) in NOTCH3 (notch homolog 3 (Drosophila)) gene 81, 

which has previously been implicated in a subtype of vascular dementia, the CADASIL 

(Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 

Leukoencephalopathy). 
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The next generation of AD rare variant studies is currently in development. The 

upcoming Alzheimer’s Disease Sequencing Project (ADSP; 

https://www.niagads.org/adsp/content/home) is a joint project by the National Institute 

on Aging and National Human Genome Research Institute to identify novel risk and 

protective variants for AD in nearly 600 whole genomes from 110 multiplex pedigrees 

heavily burdened with AD, and approximately 10,500 whole exomes on unrelated AD 

cases and non-demented ctrl. This kind of studies promise to characterize the yet 

unknown heritable component in Alzheimer’s susceptibility, that has been defined as 

the “dark matter” of the AD genetics74.  

In previous works of Licastro’s team88,89, genetic data from four AD GWAS75-77,90 were 

discussed and it was suggested that the above genes75-77,90 might be linked to herpes 

viral infections. In particular, it has been argued that the association of these genes 

with AD is suggestive of a pivotal role of environmental factors in the pathogenesis of 

the disease and, according to a non conventional interpretation of AD etiology, virus 

infection88,89 is one AD etiologic component. In other words, the genetic signature 

revealed by GWA studies discloses a network of genes that might influence the ability 

of the central nervous system (CNS) to cope with and fight against the invasion by 

virus of the herpes family88,89.  

In spite of the great number of AD patients and ctrl subjects from GWA studies, each 

SNP alone showed a low OR for the disease. Potential interactions between several 

SNPs in different genes could be more illuminating to understand the etiopathogenesis 

of this multi-factorial neurodegenerative disease, since the aforementioned genes are 

involved in different aspects of AD pathogenesis and clinical history. On the other 

hand, environmental AD risk factors, as microbial infections, might trigger several of 

these genes, depending on the presence and/or the absence of the above interacting 

SNPs, and influence individual immune responses. Therefore, it has been suggested 
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that virus belonging to the herpes family might be one of the missing link between 

these genetic variants and the individual AD clinical history.    
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AD and Inflammation 

The modulation of the neurodegenerative disease course by specific immune 

molecules in preclinical experimental approaches and the up-regulation of inflammatory 

genes in arrays on tissues derived from patients with neurodegenerative diseases are 

indicative of a relationship between inflammation and these diseases and implicate 

early immune actions in their pathogenesis91-95. 

Classically AD has been viewed as a neurodegenerative disease of the elderly, 

characterized by the extracellular deposition of misfolded Aβ peptide and by 

intraneuronal accumulation of NTFs. Thereafter, neuroinflammation has emerged as an 

important component of AD pathology8,93. Experimental, genetic and epidemiological 

data indicate a crucial role for activation of the innate immune system as a disease-

promoting factor93. The inflammatory reaction observed in AD is primarily driven by 

CNS-resident immune cells, included microglia, perivascular myeloid cells and other 

elements such as astrocytes, and reflects the tissue reaction to pathological events that 

occur during the disease8. 

Microglia cells are the CNS macrophages that continuously scrutinize their 

environment for damage. Microglia colonize the cephalic mesenchyme during 

embryogenesis and actively shape the developing neuronal network by immune-

mediated mechanisms. During CNS maturation, microglia drastically change 

phenotype and function. Adult microglia contribute to brain homeostasis, but also the 

establishment and resolution of inflammatory conditions96. Under pathological 

conditions, CNS environment changes and microglia respond by activation and 

potential redirection of their phagocytic activity from synaptic pruning to clearing 

dangerous factors96-98. Long-lasting chronic inflammation has been proposed to drive 

microglial physiological functions off balance96. Microglia are equipped to sense the so-

called danger signals (Damage Associated Molecular Pattern, DAMP) and changes in 
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neuronal health by adopting a set of different morphological and functional attributes99. 

Microglia cells are the most intimately associated with tissue changes that are 

observed in AD8. In both in vitro and in vivo experiments, microglia exhibit receptor-

dependent interactions100-103 with various forms of Aβ (monomers, oligomers, 

protofibrils, fibrils and plaques) as well as non-receptor mediated interactions, 

particularly with Aβ oligomers104. Aβ species can stimulate changes in microglial 

functions through signalling receptors105, that induce production of inflammatory 

mediators by other cells, such as astrocytes106. Aβ peptides also affect post-phagocytic 

processes within microglia, including lysosomal injury, which acidifies the cytosol and 

contributes to activating the NLRP3 (NACHT, LRR and PYD domains-containing 

protein 3) inflammasome107. Receptor-mediated interactions between microglia and Aβ 

monomers induce a “primed state”, characterized by heightened responses to 

subsequent DAMP or cytokine stimuli8. Some microglia function, such as motility and 

phagocytic activity, are impaired in APP/PS1 AD mouse model108, by oligomeric Aβ109. 

This functionally compromised state affects the microglial cells during 

neurodegenerative processes and microglia become “dystrophic”; such phenotype 

consists of microglial burn out8. It is more appropriate to view the transformed microglia 

as being indicative of a loss of tissue homeostasis. Because microglia carry out critical 

physiological tasks in the healthy brain110,111, the phenotypically transformed microglia 

may contribute to CNS tissue pathology8. 

According to this view, rare structural variants of genes encoding the immune receptors 

TREM280,82,112,113, CD3377,114 and CR1115, all of which are expressed on microglia, have 

been found associated with AD risk. TREM2 is involved in regulating microglial 

phagocytosis116,117 and has also a relevant impact in vivo in different AD mouse 

models, by promoting the survival of activated microglia and their peripherally derived 

myeloid counterparts118,119 and by recruiting these cells around Aβ plaques118-120 and 

dying neuronal cells118. CD33 variants have also been associated with an increased 
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risk of developing AD77,114. All these findings support the concept of impaired microglial 

function in AD. 

During ageing, number and density of microglia increase significantly and the regularity 

of the microglia distribution also appears to deteriorate121. Aged microglia undergo 

changes in their ramified morphology and decreased dynamic motility121. Multiple lines 

of evidence have indicated that microglia in the aged CNS show increased basal states 

of activation and increased expression levels of inflammatory cytochine121. It has also 

been suggested that the ageing of microglia might be partially driven by a cumulative 

history of environmental influences such as systemic infections over a life-time121. 

Therefore, microglial cells in AD brains might be primed by infectious agents 

challenging the CNS and/or by temporary permeabilization of selected districts of blood 

brain barrier (BBB) induced by the persistence of peripheral subclinical inflammatory 

responses122.  
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AD and Environmental Risk Factors 

Health and disease in the brain are influenced by multiple factors. These factors are 

genetic or environmental. In sporadic AD, different genetic and environmental factors 

might interact.  

Over the past decade, epidemiological surveys have identified several risk factors for 

AD, including ageing, systemic infections, inflammation, midlife obesity, brain trauma, 

chronic periodontitis, toxic chemical exposures, reduced physical activity and chronic 

psychological stress exposures93,123-129. Interestingly, most of these risk factors involve 

the activation of innate immunity. Experimental evidence suggests that systemic 

inflammation exerts detrimental effects on brain functions93. Post-mortem analysis of 

brains from patients who had suffered septicemia has shown a distinct increase in 

microglial activation130. Those data are complemented by findings showing persistent 

cognitive alterations, hippocampal atrophy and electroencephalograph changes in 

patients who survive sepsis131. Brain trauma is also characterized by a strong 

neuroinflammatory reaction45,93. Moreover, trauma-induced activation of microglia has 

been shown to increase the Aβ deposition in an AD mouse model132 and underlying 

mechanisms might include cytokine release and impaired microglial clearance93.  

Infections 

An infection/immune component might play a role in AD etiopathogenesis. There are 

several studies, mainly on humans, implicating specific microbes in the AD etiology, 

notably herpes simplex virus type 1 (HSV-1), Chlamydia pneumonia, Helicobacter 

pylori and several types of spirochetes133-137. The presence of fungal infection in the 

brain of AD patients has also been observed138,139. On the other hand, plasma 

concentrations of TNF and antibodies to periodontal bacteria were found to be higher in 
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AD patients compared to non-demented ctrl subjects and were independently 

associated with AD140,141.  

Virus of Herpes Family and Dementia 

Herpes simplex virus type 1 (HSV-1) and AD 

The first observations of HSV-1 in AD brain were reported in 1991142. The increasing 

number of these studies warrants re-evaluation of the infection and AD concept 143. As 

previously described88,89, Licastro’s group discussed genetic data from four GWAS on 

AD75-77,90. From these investigations a set of SNPs associated with AD emerged and it 

has been hypothesised that the concomitant presence of these SNPs might result in a 

genetic signature predisposing to AD, via complex and diverse mechanisms each 

contributing to an increased individual susceptibility to herpes virus infection88,89.   

An AD viral etiology, especially involving herpes virus, has been already proposed and 

most works have shown an association between HSV-1 and AD144-148.  

HSV-1 is a ubiquitous virus that infects more than 80% of over 65-year-old individuals 

worldwide149. HSV-1 is a neurotropic double-stranded DNA virus that primarily infects 

epithelial cells of oral and nasal mucosa. Here, the virus undergoes lytic replication. 

The newly produced viral particles may enter sensory neurons and, by axonal 

transport, reach the trigeminal ganglion where usually establish a latent infection. The 

virus undergoes periodic reactivation cycles, in which the newly formed viral particles 

are transported back to the site of primary infection through the sensory neurons, 

causing the typical clinical lesions, commonly referred to as cold sores. However, the 

bipolar trigeminal ganglion neurons also project to the trigeminal nuclei located in the 

brainstem. From here, neurons project to the thalamus to finally reach the sensory 

cortex. This represents the path through which the reactivated virus may reach the 

CNS, where it may cause acute neurological disorders like encephalitis (Herpes 

Simplex Encephalitis, HSE), mild and clinically asymptomatic infection or establish life-
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long latent infection150,151. Recent findings showed a significant association of HSV-1 

infection with AD risk150. A reactivation of HSV-1 infection, assessed by increased 

serum levels of specific anti-HSV-1 antibodies, was found associated with an increased 

AD risk in a longitudinal study on 3,432 Swedish elderly150. Another study from Italy 

reported that elevated serum HSV-1 antibody titers correlated with reduced cortical 

grey matter volume as assessed by MRI152.   

Itzhaky and colleagues in their recent editorial143 discussed relevant evidences in 

favour of an HSV-1 infectious component in AD etiopathogenesis. HSE causes 

damage in localized CNS regions related to the limbic system153, the same regions as 

those affected in AD143. In brain of AD patients, the presence of HSV-1 DNA 

specifically colocalize with AD pathology148. In mice and in cell cultures, Aβ and NTFs 

were observed after HSV-1 infection143 and a direct interaction between APP and HSV-

1 has been reported154. Antiviral drugs, including acyclovir, in vitro block HSV-1-

induced Aβ and tau pathology155. Olfactory dysfunction is an early symptom of AD and 

the olfactory nerve, the initial site from where characteristic AD pathology subsequently 

spreads through the brain, is another potential portal of entry of HSV143. Further, 

brainstem areas that harbour latent HSV directly project the brain regions involved in 

AD pathology: brainstem virus reactivation would thus disrupt same tissues as those 

affected in AD143. 

Moreover, others herpes viruses share the ability to become latent in the infected host 

and eventually latently infect neurons149, but investigations focused on herpes viruses 

such as human cytomegalovirus (CMV), Epstein-Barr virus (EBV) or human herpes 

virus 6 (HHV-6) in AD are scarce.  
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Cytomegalovirus (CMV) and AD 

CMV is ubiquitously distributed in human population and the most frequent cause of 

brain infection in immune compromised patients or in infants with congenital virus 

transmission156,157. Postnatal acute peripheral CMV infection is usually asymptomatic, 

however, the virus, once established, remains latent in blood monocytes158,159. Several 

studies described CMV as a potential risk factor for AD122. For instance, an increased 

rate of cognitive decline over a four year period in subjects with elevated CMV antibody 

levels has been reported160. However, results regarding this topic have been 

conflicting122. Lin and colleagues, analysing brain frontal and temporal cortex samples, 

found that both AD patients and elderly healthy subjects were positive for CMV, with no 

statistically significant difference between the two groups161. On the other hand, brain 

positivity for CMV was found in a greater proportion of patients with vascular dementia 

than normal elderly and these findings suggested a virus role in the disease162. CMV 

was also present in cerebrospinal fluid (CSF) of subjects with encephalitis or meningitis 

or other neurological condition163. A recent investigation reported increased CMV 

antibody levels in the elderly who developed clinical AD during a five-year follow-up164. 

Furthermore, findings from a longitudinal follow-up of 849 participants in the USA 

showed that CMV infection doubled the risk of developing AD165, even if some 

criticisms to this type of data have been presented166. 

Epstein-Barr virus (EBV) and AD 

EBV infects more than 95% of human beings within the first years of life. The virus is 

the etiological agent of acute infectious mononucleosis in a minority of immune 

competent subjects, while the majority develops a life-long asymptomatic infection. 

EBV remains latent in B lymphocytes149,167,168. Data describing an association between 

EBV and AD are very limited; only two papers from 1992 described a possible 

correlation between EBV and AD, however, with discordant results169,170. Recently, our 
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findings showed a positive association of peripheral blood positivity for EBV genome 

and AD, and elevated levels of EBV specific antibodies positively associated with an 

increased risk of developing AD164. 

Human herpes virus (HHV)-6 and AD 

HHV-6 is a neurotropic virus, present in two different variants171, with a very high sero-

prevalence, involving almost 100% of population by the age 3172. HHV-6 establishes 

latency in the brain and may reactivate under conditions of immunosuppression171. It 

has been associated with multiple neurological diseases including seizures, 

encephalitis, mesial temporal lobe epilepsy and multiple sclerosis173. HHV-6 has been 

found in a higher proportion of AD than age-matched ctrl brains161. Recently, Agostini 

and colleagues showed no difference in serum HHV-6 IgG antibody titers and the 

avidity index between AD patients, MCI and ctrl individuals174. Another study showed 

an higher value of HHV-6 levels in ctrl brains175. On the other hand, our findings 

showed an elevated positivity for HHV-6 genome in the brains and in peripheral blood 

cells of AD patients and an increased sero-positivity associated with increased risk of 

developing AD164. 

In summary, research in epidemiology, neuropathology, molecular biology and 

genetics, regarding the hypothesis that pathogens interact with susceptibility genes and 

contribute to sporadic AD, is conspicuous but underestimate135. Sporadic AD is a 

complex multi-factorial neurodegenerative disease with evidence indicating coexisting 

multi-pathogen and inflammatory etiologies135. Pathogens like those aforementioned 

are able to evade destruction by the host immune system, leading to persistent 

infection. Viral DNA, but also viral RNA and/or bacterial ligands, increase the 

expression of proinflammatory molecules and activate the innate and adaptive immune 

systems. Chronic brain infections like those caused by HSV-1, Chlamydophila 

pneumonia and spirochetes result in complex processes inducing uncontrolled 
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neuroinflammation and neurodegeneration. Infections such as those caused by CMV, 

Helicobacter pylory and periodontal pathogens induce production of systemic 

proinflammatory cytokines that may cross the BBB to promote neurodegeneration. 

Moreover, pathogen-induced inflammation and CNS accumulation of Aβ damage the 

BBB, which in turn contributes to the pathophysiology of AD135. 

Antiviral Defence and The New Interferon Lambda (IFN-λ) Family  

Interferon lambda (IFN-λ), also called type III IFN or IFNL, represents the most recently 

described family of IFNs and plays pivotal roles in host-pathogen interactions176. 

The IFN-λ family comprises four homologous members: IFNL1 (Interleukin IL29), 

IFNL2 (IL28A), IFNL3 (IL28B) and the more recently described IFNL4176. They belong 

to a cytokine family that shares functional similarities with the family of type I IFNs (IFN-

α/β)177. Genes encoding type I IFNs characteristically lack introns (with the exception of 

IFNK) and are located in a single locus on human chromosome 9 and mouse 

chromosome 4. Genes encoding IFN-λ are located on human chromosome 19 and 

mouse chromosome 7 and share the 5-exon gene structure characteristic of IL-10 

(Interleukin 10) cytokine family members178.  

IFN-λ biology partially differs from IFN- α/β biology. First, the effects of IFN-λ are most 

evident on epithelial cells, suggesting that it contributes to the specialized immune 

mechanisms that protect epithelial surfaces, which are constantly exposed to 

commensal and pathogenic microbes179-181. Second, because of the more focused 

nature of its signalling effects, IFN-λ might share the therapeutic benefits of IFN-α/β 

without side effects that have limited the clinical use of IFN-α/β180,182-184. Third, GWA 

studies have reported several IFN-λ SNPs that are linked to clearance of hepatitis C 

virus (HCV) infection and possibly improved outcomes with other viral infections, 

including hepatitis B virus (HBV), CMV and HSV-1176,185-187. Although the mechanisms 

by which these SNPs affect IFN-λ production and activity remain unclear, these 
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associations reinforce the notion that IFN-λ contributes to the control of chronic viral 

infections in humans177.  

Stimuli inducing expression of IFN-λ encoding genes are similar to those inducing 

expression of IFN-α/β genes. As would be expected from an antiviral cytokine, IFN-λ 

can be induced by a wide range of viruses in different cell types179,188,189. IFN-λ is 

expressed in a variety of primary human cell types of the hematopoietic lineage, that 

also produce type I IFNs in abundance190. Among non hematopoietic cells, epithelial 

cells are potent producers of IFN-λ190. The induction of IFNs is mediated by pattern-

recognition receptors (PRRs) that recognize the invading virus177 and the set of PRRs 

and transcription factors expressed by a cell contributes to its specific capabilities and 

magnitude of the IFN release following infection191. Early studies have shown that IFN-

λ genes have binding sites for the transcription factors NF-κB, IRF3, IRF7 and AP-1 in 

their promoter regions192-194 and can therefore be coexpressed with type I IFNs. 

Additionally, it was suggested that IFN-λ2 and –λ3 are more dependent on IRF7 and 

seem to have delayed expression kinetics190. Human hepatocytes infected with HCV or 

treated with polyinosinic-polycytidylic acid (polyI:C), released IFN-λ2 and –λ3 by 

induction of IRF3 and IRF7, whereas the induction of IFN-λ1 was also dependent on 

NF-κB195. Finally, another group has identified Med23, a subunit of the mediator 

complex, as a direct interaction partner for IRF7, showing how Med23 and IRF7 

synergistically increase IFN-λ transcription and inhibit HSV-1 replication196.    

The proximal signaling events and downstream transcriptional responses are similar 

between IFN-α/β and IFN-λ, even though these cytokines and their receptors are 

structurally and genetically distinct. The IFN-λ structure resembles that of members of 

IL-10 family, although the primary amino acid sequence of IFN-λ is more similar to that 

of IFN-α/β177. Whereas all type I IFNs signal through a shared heterodimeric receptor, 

IFNAR (IFNAR1 and IFNAR2), IFN-λs bind to IFNLR, a unique heterodimeric receptor. 

IFNLR is formed by one subunit shared with other IL-10 family cytokines (IL10Rb) and 
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one subunit specific for IFN-λ (IFNLR1, also called IL28Ra). Although IFNAR and 

IL10Rb are expressed broadly on many cell types and tissues, IFNLR1 is expressed 

mainly on epithelial cells181,197. Consistent with this pattern, the antiviral effects of IFN-λ 

are more evident against pathogens targeting epithelial tissues177. 

Although epithelial cells produce IFN-λ, myeloid-lineage cells are major sources of the 

cytokine in response to double-stranded RNA (polyI:C) or viral infections198. In the 

small intestine, epithelial and immune cells both respond to polyI:C stimulation, 

suggesting that multiple cell types produce IFN-λ cooperatively181. Whereas 

plasmacytoid dendritic cells (DCs) produce nearly all IFNs, including IFN-λ, monocytes 

and myeloid DCs more selectively express IFN-β, IFN-λ1 and IFN-λ2191.  

 A recent study on West Nile virus (WNV) infection demonstrated an antiviral effect of 

IFN-λ in correspondence to the BBB199. Ifnlr1_/_ mice exhibited increased BBB 

permeability after WNV infection and sustained higher viral titers in CNS tissues. 

Although endothelial cells, including those composing the BBB, did not express high 

levels of IFNLR, administration of exogenous IFN-λ tightened the BBB, restricted viral 

neuroinvasion, reduced viral titers in the CNS and protected mice from lethal viral 

infection. These observations are consistent with those of a study demonstrating that 

IFN-α/β can also exert a tightening effect on the BBB200. Ultimately, our recent findings 

showed that SNPs in genes regulating antiviral responses such as IFN-λ, IRF7 and 

MED23 are differently distributed in AD and influence a differential positivity to EBV 

and HHV-6 DNA in the elderly 201. Moreover, risk alleles were increased in elderly 

progressing to AD 201. These findings support the hypothesis that individual genetic 

background may play a role in the progression of cognitive impairment by influencing 

the efficiency of immune responses to persistent viruses. 
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Prenatal Stress (PNS) 

Stress is ubiquitous in our daily lives and has a strong impact on different cognitive 

processes ranging from attention to memory and social cognition202-204.   

Epidemiological data have indicated that environmental factors, such as chronic stress 

exposures and stress-related disorders, can impact on the progression of AD-related 

symptoms and pathologies205-207. Recently, a meta-analysis of 20 studies found that a 

history of depression approximately doubled the risk for the later development of AD206. 

Similarly, recent prospective cohort studies found that the tendency to experience 

psychological distress was associated with a 10-fold increased risk of episodic memory 

decline128 and a 2.7-fold increased risk of developing AD127.  

One key mechanism linking stress with increased AD risk and cognitive decline is the 

hypothalamic pituitary adrenal (HPA) axis, also known as stress-response axis. Stress 

triggers the activation of the HPA axis, culminating in the production of glucocorticoids 

(GCs) by the adrenal gland. Receptors for these steroids are expressed throughout the 

brain and they can act as transcription factors regulating gene expression208. Thus, 

glucocorticoids potentially have long-lasting effects on the functioning of the brain 

regions that regulate their release208 such as the limbic system, hypothalamus and 

cortex209.  

Every day, parents observe the growing behavioural repertoires of their infants and 

young children, and the corresponding changes in cognitive and emotional functions. 

These changes are thought to relate to normal brain development, particularly the 

development of the hippocampus, the amygdala, the frontal lobes and of the complex 

circuitry that connects these brain regions. At the other end of the age spectrum, we 

observe changes in cognition in our grandparents and parents during ageing, which are 

related to both normal and pathological brain processes ageing-associated. Studies in 
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animals and humans have shown that during both perinatal life and old age the brain is 

particularly sensitive to stress, probably because CNS undergoes important changes 

during these life periods208. Furthermore, research now relates exposure to early-life 

stress with increased reactivity to stress and cognitive deficits in adulthood and elderly, 

indicating that the effects of stress at different periods of life interact208. Many studies 

have shown that stressful events during the intrauterine life exert long-lasting effects on 

the brain by affecting the nervous, neuroendocrine and immune systems209-211. 

Moreover, studies in humans and rodents, revealed a clear impact of early-life stress 

on the development of neuropsychiatric disorders such as autism, mood disorders and 

schizophrenia208.   

Investigating early-life stress exposure-related effects on AD progression is 

challenging, particularly for the epidemiological setting, because of the large and 

extremely variable time span between early stress exposures and clinical manifestation 

of AD. In addition, the number, type, and frequency of the exposures cannot be 

controlled, making it difficult understanding the contribution of each individual exposure 

to the disease. Indeed, by using animal models, environmental exposure can be strictly 

controlled and AD-related behaviour and neuropathology can be monitored throughout 

the disease progression212. However, the effects of prenatal stress (PNS) on the 

development of AD have been poorly investigated in animal models, even though it is 

well documented that prenatal maternal stress exposure can strongly contribute to an 

individual’s predisposition for developing adult psychopathology208,213,214. 

Interestingly, two animal studies showed a causal link between disturbances of 

embryonic development by maternal stress and the risk of AD-like 

neuropathology214,215. In the first one, Krstic and colleagues provided the first evidence 

that a maternal immune challenge during the late-gestational time window predisposes 

wild type (WT) mouse offspring to develop AD-like neuropathology during ageing215. 

Animals prenatally stressed by maternal immune challenge displayed chronic elevation 
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of inflammatory cytokines, an increase in the levels of hippocampal APP and its 

proteolytic fragments, altered tau phosphorylation, mis-sorting to somatodendritic 

compartments and significant impairments in working memory in old age. If the 

prenatal maternal infection is followed by a second immune challenge in adulthood, the 

phenotype is further exacerbated and mimics AD-like neuropathologic changes215. 

Furthermore, Sierksma and colleagues explored whether the combination of genetic 

variations and exposure to stress during prenatal life could affect behavioural and 

neuropathological phenotype of APPswe/PS1dE9 (AD mouse model) offspring214. They 

studied the effects of PNS in both male and female APPswe/PS1dE offspring in terms 

of cognition, affect and AD-related neuropathology. They demonstrated that PNS 

exerts a sex-dependent effect: PNS induced spatial memory deficits and a blunted 

HPA axis response in male offspring. PNS improved spatial memory performance, 

increased depressive-like behaviour and decreased hippocampal plaque load in 

females214.  

PNS exposure is likely to alter AD development by modifying the effects of an 

individual’s genetic predisposition216,217 likely through epigenetic regulation of gene 

expression218,219. Interestingly, the prenatal period is characterized by high levels of 

epigenetic programming and imprinting, enabling perturbations to exert long-lasting 

effects. In this light, it was suggested that the origin of most diseases that are 

expressed later in life, such as AD, may find their origin in altered epigenetic regulation 

in response to environmental cues arising during critical periods of development, such 

as the pre- and neonatal period220-222.  
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Human Brain Sampling 

Post-mortem brain tissues of AD patients and age-matched non-demented controls 

(ctrl) were obtained from the Netherlands Brain Bank (NBB; Amsterdam, The 

Netherlands), which abides all rules and regulations laid down in the ethical Code of 

Conduct of BrainNet Europe. Patients or their next of kin gave written informed consent 

to NBB for brain autopsy and use of tissue and clinical information for research 

purposes. This study was approved by NBB scientific committee and all conditions for 

the transfer and the use of the material are laid down in the Material Transfer 

Agreement (MTA). Staging of AD pathology was evaluated according to Braak and 

Braak criteria for neurofibrillary tangles (NFTs)223,224 and Thal criteria for amyloid 

deposition223,224, and based on neuropathological evaluation of formalin-fixed, paraffin-

embedded tissues from eighteen brain areas.  

AD cases were selected based on clinical and neuropathological reports, and 

availability of tissues stored in liquid nitrogen. 20 μm thick frozen tissue slices of the 

hippocampus and temporal cortex were cut at -20°C and stored at -80°C for the 

following molecular analyses. The final selection was based on the availability of DNA 

and RNA samples of good quantity and quality. 

Twenty-nine AD hippocampus brain samples, nineteen AD temporal cortex brain 

samples, and six hippocampus, four temporal cortex samples from ctrl cases were 

included in this study.    
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Table 1. Post-mortem AD brain samples and general data summary 

ID  Age 
(years) 

Gender 
Clinical 

diagnosis 
DD PMI 

(h) 
BW 
(gr) 

Cause of death 
Brain 
Area 

05-082 78 F MID 7 4.35 1043 Pneumonia, cachexia, decubitus Hip; Temp 

04-087 78 F AD 10 4.50 1105 Gastrointestinal bleeding Hip; Temp 

06-037 81 M AD 5 4.50 1253 

Probable CVA and sepsis with 

unknown underlaying disease Hip 

03-020 95 F 

MID likely 

mixed with AD 7 3.40 1032 Aspiration pneumonia Hip 

05-002 86 M MID 6 3.40 1206 
Metabolic disturbances, 
dehydration, metastasized prostate 

carcinoma 

Hip; Temp 

05-008 84 F MID NA 3.40 1109 Dehydration, cachexia Hip; Temp 

06-214 92 F VD 3 3.40 1115 Bleeding gastric ulcer Hip 

07-094 73 F AD 12 3.40 1082 Sepsis, cachexia Hip 

04-062 67 F presenile AD 15 3.40. 945 Cachexia Hip; Temp 

05-039 93 M AD 1 3.40 1210 NA Hip 

05-095 93 M MID 9 3.40 1220 
Cardiac decompensation caused by 
pneumonia Hip 

02-307 69 M NA NA 3.40 1241 Dehydration, cachexia Hip 

04-111 89 F AD 11 3.40 1211 NA Hip 

05-090 84 F AD NA 3.40 1098 Dehydration Hip 

06-248 91 F AD 5 3.40 1101 
Dehydration, cachexia and probable 
CVA Hip; Temp 

05-040 93 F AD 4 2.30 1045 Cachexia Hip; Temp 

04-185 86 F AD 10 5.05 998 

Uncontrolled anti-coagulation in 
combination with general 
deterioration after hip prosthesis Hip 

04-166 94 F VD after CVA 6 5.05 1170 
Cachexia and dehydration, 
decubitus Hip 

03-051 75 F AD 9 6.00 1129 Dehydration Hip 

05-050 89 F VD 19 4.30 1185 Pneumonia Hip; Temp 

09-198 74 M AD 2 5.35 1380 

Anaemia, hepatic dysfunction, 

extensive lymphoadenopathy by M. 
Kimura Hip 

06-132 75 F AD 6 15.0 1230 Cardiac arrest Hip 

09-307 94 F AD 6 8.05 1053 Cachexia Hip 

09-285 90 F AD 6 5.40 1100 
Cerebro vascular accident, 
advanced AD Hip 

09-019 88 F NA 1 6.45 1170 Natural death Hip 

09-271 66 F AD 6 6.30 1190 
Acute heart failure by advanced 
dementia syndrome Hip 

07-036 82 F VD 6 5.55 1225 

Cardiac arrest with dehydration after 

MI Hip 

07-053 99 F AD 5 3.30 1150 Airway infection Hip 

07-116 60 M 

AD likely of 

Lewy Body 
type 3 6.15 1241 

Cachexia and dehydration by 
dementia syndrome Hip; Temp 

09-010 81 F AD 2 6.10 1295 
Cachexia and dehydration by 
dementia syndrome Temp 

08-289 57 M presenile AD 6 3.50 1055 Aspiration pneumonia  Temp 

10-050 69 M VD, CI 3 7.10 1173 Aspiration pneumonia  Temp 

10-036 86 M AD 6 6.15 1331 

Possible cardiac arrest after 

gastroenteritis by AD Temp 

10-002 92 F AD 5 3.25 1105 Probable CVA  Temp 

01-032 88 F AD 12 12.15 935 Cachexia and decubitus Temp 

01-145 85 F MID 5 4.45 1310 Shock due to acute abdomen Temp 
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Table 1. Post-mortem AD brain samples and general data summary 

 

ID  Age 
(years) 

Gender 
Clinical 

diagnosis 
DD PMI 

(h) 
BW 
(gr) Cause of death 

Brain 
Area 

02-314 94 F NA NA 5.00 1410 Double sided pneumonia Temp 

10-030 80 M NA NA 4.00 1328 Unknown Temp 

01-111 85 M 
AD likely 

combined with 

MID 

5 4.25 1458 
Sudden death (suspected heart-
failure 

Temp 

Abbreviations: DD, Disease Duration; PMI, Post-mortem Interval; BW, Brain Weight; F, female; M, male; 

MID, Multi-Infarct Dementia; AD, Alzheimer’s Disease; VD, Vascular Dementia; CI, Cognitive Impairment; 

CVA, Cerebrovascular Accident; MI, Myocardial Infarction; Hip, hippocampus; Temp, temporal cortex; NA, 

Not Applicable. 
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Table 2. Post-mortem AD brain samples and neuropathological details 

ID  
Pathological 
Diagnosis 

Grade 
(Braak, 
NTFs) 

Grade 
(Thal, 
Aβ) 

05-082 AD 5 C 

04-087 AD 5 C 

06-037 AD 4 C 

03-020 AD; meningioma 4 C 

05-002 AD; cerebral contusion  3 A/B 

05-008 AD 5 C 

06-214 AD; infarction 4 C 

07-094 AD 5 C 

04-062 AD 6 C 

05-039 AD 5 C 

05-095 AD; caa; arg 4 C 

02-307 AD 6 C 

04-111 AD 5 C 

05-090 AD; infarction 5 C 

06-248 AD 4 C 

05-040 AD 4 C 

04-185 AD 4 C 

04-166 AD; infarction 4 C 

03-051 AD; caa  5 C 

05-050 AD 6 C 

09-198 AD 6 C 

06-132 AD 5 C 

09-307 AD 4 C 

09-285 AD; infarction 6 C 

09-019 AD 5 C 

09-271 AD 5 C 

07-036 AD 4 C 

07-053 AD 4 C 

07-116 AD 6 C 

09-010 AD 5 C 

08-289 AD 6 C 

10-050 AD; infarction 5 B 

10-036 AD 5 C 

10-002 AD; ischaemia 5 C 

01-032 AD 4 C 

01-145 AD 5 C 

02-314 AD 4 C 

10-030 AD 4 C 

01-111 AD 5 B/C 

    

Abbreviations: caa, congophilic angiopathy; arg, argyriphilic grain disease. 
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Genomic DNA Isolation 

20 μm thick frozen tissue slices of hippocampus and temporal cortex were cut at −20 

°C and collected in RNAse free eppendorf vials. Genomic DNA was obtained from 

frozen samples and purified according to the Phenol:Chloroform:Isoamyl Alcohol 

(25:24:1) extraction’s protocol (Sigma-Aldrich, St. Louis, MO) after overnight incubation 

with proteinase K 10 mg/ml (Roche, Basel, SW) and ATL buffer (Qiagen, Hilde, DE). 

Absorbance measurements were made on NanoDrop 1000 (Thermo Scientific, 

Wilmington, DE) and the ratio of absorbance at 260 nm and 280 nm was used to 

assess the purity of DNA samples, further stored at -80°C. 

RNA Isolation 

20 μm thick frozen tissue slices of hippocampus and temporal cortex were cut at −20 

°C, and collected in RNAse free eppendorf vials, whereafter RNA-Bee (AMSBIO, 

Cambridge, MA) was added. 

Totally RNA extraction from frozen hemi-brain hippocampus or temporal cortex 

samples was performed using RNA-Bee kit (AMSBIO, Cambridge, MA) according to 

manufacturer’s instructions. Total RNA was purified according to phenol-clorophorm 

standard extraction after overnight incubation with proteinase K. Absorbance 

measurements were made on NanoDrop 1000 (Thermo Scientific, Wilmington, DE) and 

the ratio of absorbance at 260 nm and 280 nm was used to assess the purity of RNA 

samples, further stored at -80°C. 
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Quantitative Reverse - Transcription Polymerase Chain 

Reaction  

Total RNA (50 ng) was retro-transcribed using the iScript™ cDNA Synthesis Kit (Bio-

Rad, Hercules, CA) following the manufacturer’s instructions. PrimerPCR™ assay for 

real-time PCR gene expression analysis was performed using SsoAdvanced™ 

Universal SYBR® Green Supermix (Bio-Rad, Hercules, CA) according to the 

manufacturer's instructions. Bio-Rad pre-validated primer pairs for target genes IRF7 

(qHsaCED0007783), MED23 (qHsaCID0007348), IL28B (qHsaCED0038284), IFN-α 

(qHsaCED0037471) and for two reference genes were used. CYC1 

(qHsaCED0047348) and EIF4A2 (qHsaCED0023870) were selected as reference 

genes for normalization as suggested by Penna and colleagues225.   

Quantitative Real-Time pcr assay (qRT-pcr) for gene expression analysis was realized 

in a Bio-Rad CFX96™ instrument and all reactions were run in triplicate in 96-well 

optical plates. 

Data from qRT-pcr experiments were analyzed by relative quantification with Bio-Rad 

CFX Manager software. Using the 2−ΔΔCt method226, the gene expression data are 

presented as the fold change in gene expression normalized to the two reference 

genes (CYC1 and EIF4A2) and relative to the non-demented control (ctrl) samples.   

SNPs detection 

TaqMan® SNP Genotyping Assay (Applied Biosystems, Foster City, CA) was used to 

genotype AD patients according to the manufacturer’s instructions. It included an 

unlabelled PCR primer pair to detect specific target SNP and two different Taqman 

probes that distinguished two alleles of the SNP: one probe labelled with VIC® dye and 

the other one labelled with 6-FAM® dye. Allelic discrimination was based on the 
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generated signal from each probe at the end of the real-time PCR (RT-pcr) using 

CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA). 

APOE genotyping for the ε allele (rs429358 and rs7412) from AD hippocampus and 

temporal cortex DNA samples was assessed by RT-pcr using Taqman® probes 

according to the manufacturer’s instructions (table 3). The upstream variant of IRF7 

(rs6598008 A/G), MED23 (rs3756784 T/G), IL28B (rs12979860 C/T) genes were also 

analyzed by RT-pcr using Taqman® probes according to the same manufacturer’s 

instructions. Thereafter, qRT-pcr data showing relative expression (2-∆Ct values227) to 

the reference genes (CYC1 and EIF4A2) of AD patients were grouped in APOE ε4 

alelle carrier/non carrier and according to SNP genotypes of IRF7 (rs6598008), MED23 

(rs3756784) and IL28B (rs12979860). 

 

Table 3. The APOE genetic variants 

APOE genotyping for ε allele 

APOE genotype rs429358 rs7412 

ε2/ε2 T/T T/T 

ε2/ε3 T/T C/T 

ε2/ε4 C/T C/T 

ε3/ε3 T/T C/C 

ε3/ε4 C/T C/C 

ε4/ε4 C/C C/C 

 

 

Statistical analysis 

Statistical analysis was performed using the Statistical Package for the Social Sciences 

(version 22.0; SPSS Inc, Chicago, IL) and statistical significance level was set at 0.05.  

After a careful exploration of the quality of the normalized data, a generalized linear 

model analysis (ANOVA) followed by Bonferroni post test or unpaired t-test were used 

to analyzed differences in gene expression data between groups. 
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Effects of prenatal stress (PNS) on adult 

cognitive health 
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Investigation of PNS effect on cognitive ability of wild 

type and APPswe/PSEN1dE9 offspring 

Animals 

The experiments were performed with APPswe/PSEN1dE9 (Tg) and wild type (WT) 

offspring mice at 6 and 9 months of age. 

The generation of the mouse line expressing the human mutated forms APPswe and 

PSEN1dE9 has already been described228. Animals were maintained under standard 

animal housing conditions in a twelve-hour dark-light cycle with an average 

temperature of 22 °C, relative humidity of 42% and with food and water provided ad 

libitum. All studies were performed according to protocol approved by the Animal 

Ethical Committee of École polytechnique fédérale de Lausanne (Switzerland) and by 

cantonal authorities (licence number: VD-2875). 

To obtain offspring, virgin C57BL/6 female mice were mated with APPswe/PSEN1dE9 

male mice at 8–12 weeks of age. Presence of a copulation plug was considered 

embryonic day 0.5 (E0.5). Thereafter, females were housed individually and assigned 

to a treatment group (prenatal stress or control). 

 

Prenatal stress paradigm 

Half of pregnant dams underwent prenatal stress (PNS) by chronic restraint stress 

paradigm214 during the last week of pregnancy (embryonic days E12.5 – E18.5). PNS 

consisted of daily restraint stress of the mothers, by placing the pregnant mouse in a 

well-ventilated plastic tube for 45’/day at unpredictable times of the day during the last 

week of pregnancy, a paradigm that has previously been shown to have long-lasting 

effects on adult cognitive health (J.Gräff, unpublished). Simultaneously, control time-

pregnant females were handled in the same way, but not exposed to chronic restraint 
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stress paradigm. After each restraint stress session, the animals were placed back into 

their home cage, while control dams were left undisturbed in their home cage. 

At birth, PNS-exposed pups were cross-fostered with a non-exposed stress dam and 

non-PNS (ctrl) litters were cross-fostered with another non-exposed stress dam, so that 

they spent the entire postnatal period until weaning with a control non-stressed mother. 

This allowed excluding any postnatal influence of dams that have been stressed during 

pregnancy.  

The offspring of the dams exposed to stress during pregnancy will be referred to as 

prenatally stressed (PNS), offspring of the control dams will be referred to as controls 

(ctrl). 

 

Behavioural testing 

Offspring were tested at 6 and 9 months of age. To assess overall locomotor function 

and anxiety-like behaviour, an open-field test (OFT) was performed229-231; to test for 

long-term recognition memory232,233, the novel object recognition test (NOR) was used 

(see scheme 1 for a global time line). 

The following groups of animals were included in these experiments: wild type (WT) 

and APPswe/PSEN1dE9 (Tg) male and female offspring, of both prenatal stress (PNS) 

and control (ctrl) conditions.  

Novel object recognition task (NOR) 

The NOR test was carried out in three sessions divided by an interval of twenty-four 

hours. Mice were placed in the testing room, thirty minutes before each session to 

ensure their acclimation to the room.  

During the first day (habituation session), the mouse was placed in the empty testing 

apparatus and it was allowed to explore the open-field for 10 minutes. The testing 

apparatus was a circular arena, 43 cm in diameter, with black plexiglas walls. During 



47 
 

the second day (familiarization session), the animal was free to explore two identical 

objects and during the last session (retention), one of the objects was replaced by a 

novel, unfamiliar one. This test is a one-trial task, as it does not involve learning of 

rules. In addition, it does not require reinforces and is purely based on the innate 

preference of the rodent to explore the novel object rather than the familiar one. Thus, 

a rodent that remembers the familiar object will spend more time exploring the novel 

object232,233. 

In particular, on the 2nd day of testing (familiarization session), two identical objects 

were placed in the circular arena equidistant from each other and the arena walls. The 

animal was then placed in the arena and allowed to explore the objects for 10 minutes. 

To prevent coercion to explore the objects, mice were released against the center of 

the opposite wall with its back to the objects.  

On the last day of testing (retention session), the animal was introduced in the testing 

apparatus containing one familiar object (identical to those used in the familiarization) 

and one novel object for 10 minutes. Between uses, the experimental apparatus and all 

objects were thoroughly cleansed with 5% ethanol to minimize olfactory cues. The pair 

of objects used during familiarization was randomized between each mouse and each 

group tested as well as the position of the novel object during retention (left or right). 

Locomotor activity and object investigation were video-recorded using a camera 

mounted above the testing apparatus and analyzed using EthoVision pro video tracking 

system and software (Noldus Inc., Leesburg, VA). Object exploration measures for the 

retention session were scored manually (nose-point detection) by the experimenter 

who was blinded to the treatment group.  
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Open-field task (OFT) 

During the first day of the NOR test the general locomotor activity and the exploratory 

behaviour of animals in the open-field, represented by the empty circular arena, was 

assessed229. In particular, mouse was placed in the empty open-field, facing the wall  

that is nearest to the experimenter, and allowed to explore the open-field for 10 

minutes. Between uses, the experimental apparatus was thoroughly cleansed with 5% 

ethanol to minimize olfactory cues. Distance moved and time spent in the center and in 

the periphery of the open-field were recorded using the EthoVision pro video tracking 

system and software (Noldus Inc., Leesburg, VA).   
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Scheme 1. Investigation of PNS effects on cognitive ability of wild type and 

APPswe/PSEN1dE9 offspring. Pregnant dams underwent daily restraint stress for 45’/day at 

embryonic days 12.5 to 18.5. At birth, PNS-exposed and ctrl pups were cross-fostered with a 

non-stressed dam to exclude any postnatal influence of dams that have been stressed during 

pregnancy. At 6 and 9 months of age the same prenatally stressed (PNS) animals have been 

compared to non-stressed (ctrl) animals for their cognitive health. The following behavioural 

tests were employed: to test for anxiety-like behaviour and animal overall locomotor function, an 

open-field test (OFT) was used; to test for memory capacities, novel object recognition test 

(NOR) was performed.   
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Investigation of acute PNS effects in wild type E18.5 

and P1 offspring  

Animals 

The experiments were carried out on wild type (WT) litter at embryonic day 18.5 

(E18.5) and at postnatal day 1 (P1). To obtain offspring, virgin C57BL/6 female mice 

were mated with C57BL/6 male at 8–12 weeks of age. Presence of a copulation plug 

was considered embryonic day 0.5 (E0.5). Thereafter, females were housed 

individually and assigned to a treatment group (prenatal stress or control). Animals 

were maintained under standard animal housing conditions in a twelve-hour dark-light 

cycle with an average temperature of 22 °C, relative humidity of 42% and with food and 

water provided ad libitum. All studies were performed according to protocol approved 

by the Animal Ethical Committee of École polytechnique fédérale de Lausanne 

(Switzerland) and by cantonal authorities (licence number: VD-2875). 

 

Prenatal stress paradigm 

Half of pregnant dams underwent prenatal stress (PNS) by the same chronic restraint 

stress paradigm214, already mentioned, during the last week of pregnancy (embryonic 

days E12.5 – E18.5) (see scheme 2 for a global time line). 

The offspring groups included in the following experiments were: wild type E18.5 

(embryonic day 18.5) embryos and P1 (postnatal day 1) pups, males and females, of 

both prenatal stress (PNS) and control (ctrl) conditions.  
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Tissue collection 

Both dams and litters were sacrificed immediately after the last session of restraint 

stress (E18.5 time point) and one day after birth/delivery (P1 time point) in order to 

investigate the acute PNS effects on HPA axis function and on brain gene expression.  

 

Blood sampling 

Blood samples were collected from dams, E18.5 embryos and P1 pups to determine 

corticosterone concentrations by ELISA assay. Blood samples were drawn from trunk 

at sacrifice using heparinized blood collection tubes (Microvette CB300, Sarstedt, DE), 

kept on ice and subsequently centrifuged at 3000 rpm for 10 minutes at 4°C. 

Subsequently, plasma was isolated, frozen down to -80°C and stored until further 

processing. 

 

Brains 

E18.5 and P1 brains were removed with the skull, immediately frozen on powdered dry 

ice and stored at -80°C.  

E18.5 whole brains were dissected from the decapitated embryos and the cerebellum 

was discarded. Subsequently, E18.5 brains were divided into three regions: a frontal 

portion (dissected by a coronal cut at the level of the first most anterior third of the 

brain), the remaining caudal portion was further cut in the middle along the dorsal-

ventral axis. The dissection was performed using a 16-gauge stainless steel needle 

based on the coordinates for developing mouse brain atlas234. Brains were maintained 

at -20°C during the whole duration of the dissection. 

The prefrontal cortex (PFC), dorsal hippocampus (HPC) and amygdala (AMY) from P1 

brains were isolated from 20 μm thick frozen coronal brain sections using brain 

punches 0.50 – 1 mm (Stoelting CO, Wood Dale, IL) basing on the coordinates for 

developing mouse brain atlas234. 
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RNA Isolation 

Total RNA from P1 brain tissue punches and E18.5 brain frontal region was carried out 

using RNeasy Tissue Mini Kit (Qiagen, Hilden, DE) according to manufacturer’s 

instructions. Absorbance measurements were made on NanoDrop 1000 (Thermo 

Scientific, Wilmington, DE) and the ratio of absorbance at 260 nm and 280 nm was 

used to assess the purity of RNA samples, further stored at -80°C. 

 

Quantitative Reverse - Transcription Polymerase Chain Reaction 

Total RNA was retrotranscribed using the qScript™ cDNA Synthesis Kit (Quantabio, 

Beverly, MA) following the protocol provided by the supplier. Quantitative Real-Time 

pcr assay (qRT-pcr) for gene expression analysis was realized using primer pairs listed 

in table 4 and SYBR Green Master Mix (Thermo Scientific, Wilmington, DE), according 

to the manufacturer's instructions. All qRT-pcr reactions were run in triplicate in 384-

well optical plates and performed in a 7900HT Fast Real-Time PCR System instrument 

(Applied Biosystems, Foster City, CA). TBP (forward: 

5’CTGGAATTGTACCGCAGCTT3’; reverse: 5’CAGTTGTCCGTGGCTCTCTT3’) and 

EEF1a (forward: 5’TCCACTTGGTCGCTTTGCT3’; reverse: 

5’CTTCTTGTCCACAGCTTTGATGA3’) were used as reference genes and fold change 

was determined by qBase relative quantification software235. 

 

Corticosterone ELISA assay 

For the quantitative determination of plasma corticosterone levels the Corticosterone 

ELISA kit (Enzo Life Science, Farmingdale, NY) was used. The assay was performed 

according to the manufacturer’s instructions. 
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Statistical analysis 

Statistical analysis was performed using the Statistical Package for the Social Sciences 

(version 22.0; SPSS Inc, Chicago, IL) and statistical significance level was set at 0.05.  

Behavioural data were analyzed by two-way analysis of variance (ANOVA) with 

genotype and PNS as factors, followed by Bonferroni post test, or by unpaired t-test 

when required. Unpaired t-test was used to analyze differences in gene expression 

data between groups. 
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Table 4. Primer pairs for quantitative real-time pcr (qRT-pcr) assay 

Target Product size 
(bp) 

Forward primer (5'-3') Reverse primer (5'-3') 

HDAC2 92 GGGACAGGCTTGGTTGTTTC GAGCATCAGCAATGGCAAGT 

HDAC1 416 CAAAGGACACGCCAAGTGTG CACAGGCAATGCGTTTGTCA 

DNMT1 91 CAGAGGAGAGAGACCAGGATAA CGTGTTACCTCTTCCAGTTTCT 

GR  90 GGCTTCTGGGTGTCACTATGG CACAGATAGTTGTGTTGTCCTTCCA 

MR 170 AGGCCGCTCAGTGTTTTCTA TACAGCTTCCACACGTCAGC 

BDNF 118 GCGCCCATGAAAGAAGTAAA TCGTCAGACCTCTCGAACCT 

BDNF IV 276 CTCCGCCATGCAATTTCC GCCTTCATGCAACCGAAG 

CX3CR1 65 CAGCATCGACCGGTACCTT GCTGCACTGTCCGGTTGTT 

CX3CL1 71 CCGCGTTCTTCCATTTGTGT GCACATGATTTCGCATTTCG 

TREM2 64 TGGGACCTCTCCACCAGTT GTGGTGTTGAGGGCTTGG 

NeuN 
(Rbfox3) 160 

GGCAAATGTTCGGGCAATTCG TCAATTTTCCGTCCCTCTACGAT 

GFAP 57 GGAGATGCGGGATGGTGAG ACCACGTCCTTGTGCTCCTG 

CNP 147 GAAGAATACGCCCAGCAGGA CAGATCACTGGGCCACAACT 

GAD67 174 CTTCTTCAGGCTCTCCCGTG CAGGAACAGGCTCGGTTCAG 

HDAC2 (histone deacetylase 2); HDAC1 (histone deacetylase 1); DNMT1 (DNA methyltransferase 1); GR 

(glucocorticoid receptor); MR (mineralcorticoid receptor); BDNF (brain derived neurotrophic factor); BDNF 

IV (brain derived neurotrophic factor exon IV); CX3CR1 (C-X3-C motif chemokine receptor 1); CX3CL1 (C-

X3-C motif chemokine ligand 1); TREM2 (triggering receptor expressed on myeloid cells 2); NeuN or 

Rbfox3 (RNA binding protein, fox-1 homolog 3); GFAP (glial fibrillary acidic protein); CNP (2',3'-cyclic 

nucleotide 3' phosphodiesterase), GAD67 (glutamate decarboxylase 67). 
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Scheme 2. Investigation of acute PNS effects in wild type E18.5 and P1 offspring. A 

second cohort of animals underwent daily restraint stress for 45’/day at embryonic days 12.5 to 

18.5. Then dams and litters were scarified immediately after the last session of restraint stress 

(embryonic day E18.5) and one day after birth/delivery (postnatal day P1) in order to investigate 

the acute PNS effects on HPA axis function and on brain gene expression. 
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Antiviral innate immune response in the brain of 

Alzheimer’s disease (AD) patients 
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Impaired antiviral gene expression in AD brains 

To reinforce the notion of an individual defective immune response against 

microorganisms in AD, the expression of genes involved in antimicrobial defences in 

the hippocampus and temporal cortex of patients with clinical and neurological defined 

diagnosis of AD and non-demented controls was investigated.  

We focused on genes involved in antiviral responses: IRF7, MED23, IFN-λ3, also 

known as IL28B, and IFN-α. A differential genetic background in these genes, 

regulating antiviral responses, was previously associated with an increased risk of 

cognitive decline and AD201. 

In particular, mRNA levels of IRF7, MED23, IL28B and IFN-α were analyzed in 29 AD 

hippocampus and 19 AD temporal brain samples.  

Most AD patients showed a down-regulation of these major antiviral immune response 

genes both in the hippocampal (figure 1) and temporal (figure 2) brain areas (table 5). 

Interestingly, mRNA levels of the transcription factor involved in innate immunity IRF7, 

MED23, a key regulator of interferon-expression, and the antiviral cytokines IL28B and 

IFN-α were hypo-expressed, at the same time, in the hippocampus of 55,2% (16/29) 

and in the temporal cortex of 26,3% (5/19) of AD patients. 

AD patients were stratified according to their down- (fold change < 1) or up- (fold 

change > 1) regulation of the analyzed genes compared to the ctrl group. Most of the 

patients showed a significant down-regulation of IRF7 (p=0.04), MED23 (p=0.0001), 

IL28B (p=0.0001) and IFN-α (p=0.0005) in the hippocampus (fig. 1), but also in the 

temporal cortex (fig. 2: IRF7, p=0.0006; MED23, p=0.005; IL28B, p=0.002; IFN-α, 

p=0.0009). A small group of AD patients showed up-regulation of MED23 (p=0.0009), 

IL28B (p=0.004) and IFN-α (p=0.002) genes only in the hippocampus (fig. 1).  
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Hippocampus 

 
Gene N Fold change 

Down-regulation in the mRNA expression IRF7 19 0.62 ± 0.06 

 
MED23  20 0.28 ± 0.04 

 
IL28B 21 0.22 ± 0.05 

 
IFN-α 19 0.22 ± 0.06 

Up-regulation in the mRNA expression IRF7 10 1.52 ± 0.14 

 
MED23 9 1.85 ± 0.15 

 
IL28B  7 2.07 ± 0.22 

 
IFN-α 9 2.39 ± 0.26 

Temporal cortex 

 
Gene N Fold change 

Down-regulation in the mRNA expression IRF7  16 0.40 ± 0.07 

 
MED23 11 0.37 ± 0.09 

 
IL28B  12 0.44 ± 0.10 

 
IFN-α  9 0.40 ± 0.07 

Up-regulation in the mRNA expression IRF7 3 1.94 ± 0.50 

 
MED23 8 1.90 ± 0.26 

 
IL28B  4 1.45 ± 0.19 

 
IFN-α  5 1.90 ± 0.35 

Table 5. Antiviral gene expression profiles in hippocampus and temporal cortex of AD 

patients. Values are given as fold change ± SEM 
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Figure 1. Hippocampal differential expression of antiviral response genes in AD 

patients and healthy individuals. Fold change (qRT-pcr 2
-∆∆Ct

 method) of IRF7 (A), 

MED23 (B), IL28B (C), IFN-α (D), normalized to two reference genes (CYC1 and EIF4A2) and 

relative to non-demented healthy individuals (ctrl), in hippocampus of patients with clinical and 

neurological defined diagnosis of AD. Values are given as fold change ± SEM. *p<0.05; 

**p<0.01; ***p<0.001 (unpaired t-test).    
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Figure 2. Temporal differential expression of antiviral response genes in AD 

patients and healthy individuals. Fold change (qRT-pcr 2
-∆∆Ct

 method) of IRF7 (A), 

MED23 (B), IL28B (C), IFN-α (D), normalized to two reference genes (CYC1 and EIF4A2) and 

relative to non-demented healthy individuals (ctrl), in temporal cortex of patients with clinical and 

neurological defined diagnosis of AD. Values are given as fold change ± SEM. **p<0.01; 

***p<0.001 (unpaired t-test).    
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Single nucleotide polymorphisms (SNPs) of antiviral 

genes and their effects on gene expression profiles in 

AD brains 

DNA from brain tissues (hippocampus and temporal cortex) was extracted and AD 

patients (table 1 and 2) were genotyped for APOE ε allele (rs429358 and rs7412; table 

3) and for SNPs of IRF7 (rs6598008), MED23 (rs3756784), IL28B (rs12979860) genes 

(tables 6 and 7) that have been previously associated with increased risk of cognitive 

decline and AD201. We analyzed these genetic variants in order to investigate a 

potential effect of these SNPs on the brain antiviral gene expression profiles.      

The presence of APOE ε4 allele influenced the hippocampus mRNA levels of MED23, 

IL28B and IFN-α. The relative expression of MED23, the antiviral component of the 

Mediator complex, IL28B and IFN-α, belonging to the group of type III and I IFNs 

respectively, were significantly lower in ε4 allele carrier AD patients when compared to 

ε4 allele non carriers (MED23, p=0.010; IL28B, p=0.010; IFN-α, p=0.0076; figure 3B, C, 

D).  

 

APOE ε4 carrier AD patients showed also significantly lower temporal mRNA levels of 

MED23 gene than that of APOE ε4 non carriers (p=0.04; figure 4B). However, temporal 

mRNA expression levels of IL28B (p=0.88) and IFN-α (p=0.06) of APOE ε4 carriers did 

not significantly differ from that of non carrier AD patients (figure 4C and D). 

mRNA levels of antiviral factors from hippocampus and temporal cortex samples from 

AD patients were also stratified according to IRF7 (rs6598008) (figures 5 and 6), 

MED23 (rs3756784) (figures 7 and 8), IL28B (rs12979860) (figures 9 and 10) 

genotypes (tables 6 and 7). 
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AD A carriers of IRF7 SNP (rs6598008) showed significantly lower mRNA relative 

levels of IRF7 (p=0.027), MED23 (p=0.005), IL28B (p=0.02) and IFN-α (p=0.006) in 

hippocampus than those observed from GG carriers (figure 5). However, these 

differences were not observed in temporal cortex from AD samples (figure 6). 

The effects of MED23 (rs3756784) and IL28B (rs12979860) SNPs on AD brain antiviral 

gene expression were also investigated. However, no statistically significant 

differences in mRNA profiles were found between G carriers and G non carriers of 

MED23 gene variant, and between T carrier and T non carrier patients of IL28B SNP, 

as shown from hippocampus (figure 7 and 9) and temporal cortex samples (figures 8 

and 10). 
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 Hippocampus 
 

APOE genotype 

 
ε2/ε3 ε3/ε3 ε3/ε4 ε4/ε4 ε4 non carrier ε4 carrier 

 

N % N % N % N % N % N % 

 
2 6.9 7 24.1 15 51.7 5 17.2 9 31 20 69 

 

IRF7 rs6598008 genotype  

 

AA GA GG    A carrier G carrier 

 

N % N % N %    N % N % 

 
5 17.2 16 55.2 8 26.6 

 

 
21 72.4 24 82.8 

 

MED23 rs3756784 genotype 

 

GG GT TT    G carrier T carrier 

 

N % N % N %    N % N % 

 
1 3.4 11 37.9 17 58.6 

 

 
12 41.4 28 96.6 

 

IL28B rs12979860 genotype 

 

TT CT CC    T carrier C carrier 

 

N % N % N %    N % N % 

 
3 10.3 14 48.3 12 41.4 

 

 
17 58.6 26 89.7 

Table 6. Genotype and allele distribution of SNPs of APOE, IRF7, MED23 and IL28B genes 

from AD patients whose hippocampus samples have been analyzed. 
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Temporal cortex 
 

APOE genotype    

 

ε2/ε3 ε3/ε3 ε3/ε4 ε4/ε4  ε4 non carrier ε4 carrier 

  N % N % N % N % N % N % 

 
1 5.3 10 52.6 7 36.8 1 5.3 11 57.9 8 42.1 

 

IRF7 rs6598008 genotype 

 

AA GA GG    A carrier G carrier 

 

N % N % N %    N % N % 

 
1 5.3 11 57.9 7 36.8 

 

 
12 63.2 18 94.7 

 

MED23 rs3756784 genotype 

 

GG GT TT    G carrier T carrier 

 

N % N % N %    N % N % 

 
2 10.5 5 26.3 12 63.2 

 

 
7 36.8 17 89.5 

 

IL28B rs12979860 genotype 

 

TT CT CC    T carrier C carrier 

 

N % N % N %    N % N % 

 
2 10.5 9 47.4 8 42.1 

 

 
11 57.9 17 89.5 

Table 7. Genotype and allele distribution of SNPs of APOE, IRF7, MED23 and IL28B genes 

from AD patients whose temporal cortex samples have been analyzed. 
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Figure 3. Effect of APOE ε4 allele on antiviral immune gene expression from AD 

hippocampus samples. qRT-pcr data showing relative expression (2
-∆Ct

 values using CYC1 

and EIF4A2 as reference genes) of IRF7 (A), MED23 (B), IL28B (C), IFN-α (D) from 

hippocampus of AD patients grouped in APOE ε4 non carrier/or APOE ε4 carrier. Data from 

each group are shown as a box and whiskers plot with the ends of the whiskers represent the 

minimum and maximum data values, the horizontal line represents the median and the “+” 

represents the mean relative expression values. *p<0.05; **p<0.01 (unpaired t-test).    
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Figure 4. Effect of APOE ε4 allele on antiviral immune gene expression from AD 

temporal cortex samples. qRT-pcr data showing relative expression (2
-∆Ct

 values using 

CYC1 and EIF4A2 as reference genes) of IRF7 (A), MED23 (B), IL28B (C), IFN-α (D) from 

temporal cortex of AD patients grouped in APOE ε4 non carrier/or APOE ε4 carrier. Data from 

each group are shown as a box and whiskers plot with the ends of the whiskers represent the 

minimum and maximum  data values, the horizontal line represents the median and the “+” 

represents the mean relative expression values. *p<0.05 (unpaired t-test).    
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Figure 5. Effect of IRF7 SNP (rs6598008) on antiviral immune gene expression 

from AD hippocampus samples. qRT-pcr data showing relative expression (2
-∆Ct

 values 

using CYC1 and EIF4A2 as reference genes) of IRF7 (A), MED23 (B), IL28B (C), IFN-α (D) 

from hippocampus of AD patients grouped in AA, GA, GG genotypes on the left panels and in A 

carrier/or A non carrier on the right panels. Data from each group are shown as a box and 
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whiskers plot with the ends of the whiskers represent the minimum and maximum  data values, 

the horizontal line represents the median and the “+” represents the mean relative expression 

values. *p<0.05; **p<0.01 (unpaired t-test; one-way ANOVA followed by Bonferroni post test).  

 

 

 

 

Figure 6. Effect of IRF7 SNP (rs6598008) on antiviral immune gene expression 

from AD temporal cortex samples. qRT-pcr data showing relative expression (2
-∆Ct

 values 

using CYC1 and EIF4A2 as reference genes) of IRF7 (A), MED23 (B), IL28B (C), IFN-α (D) 

from temporal cortex of AD patients grouped in A carrier/or A non carrier. Data from each group 

are shown as a box and whiskers plot with the ends of the whiskers represent the minimum and 

maximum data values, the horizontal line represents the median and the “+” represents the 

mean relative expression values. Unpaired t-test.   
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Figure 7. Effect of MED23 SNP (rs3756784) on antiviral immune gene expression 

from AD hippocampus samples. qRT-pcr data showing relative expression (2
-∆Ct

 values 

using CYC1 and EIF4A2 as reference genes) of IRF7 (A), MED23 (B), IL28B (C), IFN-α (D) 

from hippocampus of AD patients grouped in G carrier/or G non carrier. Data from each group 

are shown as a box and whiskers plot with the ends of the whiskers represent the minimum and 

maximum  data values, the horizontal line represents the median and the “+” represents the 

mean relative expression values. Unpaired t-test.     
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Figure 8. Effect of MED23 SNP (rs3756784) on antiviral immune gene expression 

from AD temporal cortex samples. qRT-pcr data showing relative expression (2
-∆Ct

 values 

using CYC1 and EIF4A2 as reference genes) of IRF7 (A), MED23 (B), IL28B (C), IFN-α (D) 

from temporal cortex of AD patients grouped in GG, GT, TT genotypes on the left panels and in 
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G carrier/or G non carrier on the right panels. Data from each group are shown as a box and 

whiskers plot with the ends of the whiskers represent the minimum and maximum  data values, 

the horizontal line represents the median and the “+” represents the mean relative expression 

values. Unpaired t-test; one-way ANOVA followed by Bonferroni post test.  
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Figure 9. Effect of IL28B SNP (rs12979860) on antiviral immune gene expression 

from AD hippocampus samples. qRT-pcr data showing relative expression (2
-∆Ct

 values 

using CYC1 and EIF4A2 as reference genes) of IRF7 (A), MED23 (B), IL28B (C), IFN-α (D) 

from hippocampus of AD patients grouped in TT, CT, CC genotypes on the left panels and in T 

carrier/or T non carrier on the right panels. Data from each group are shown as a box and 
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whiskers plot with the ends of the whiskers represent the minimum and maximum  data values, 

the horizontal line represents the median and the “+” represents the mean relative expression 

values. Unpaired t-test; one-way ANOVA followed by Bonferroni post test.  

 

 

 

 

Figure 10. Effect of IL28B SNP (rs12979860) on antiviral immune gene expression 

from AD temporal cortex samples. qRT-pcr data showing relative expression (2
-∆Ct

 values 

using CYC1 and EIF4A2 as reference genes) of IRF7 (A), MED23 (B), IL28B (C), IFN-α (D) 

from temporal cortex of AD patients grouped in T carrier/or T non carrier. Data from each group 

are shown as a box and whiskers plot with the ends of the whiskers represent the minimum and 

maximum  data values, the horizontal line represents the median and the “+” represents the 

mean relative expression values. Unpaired t-test.       
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Effects of prenatal stress (PNS) on adult 

cognitive health 
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Long-term effects of prenatal stress (PNS) on cognitive 

ability of WT and APPswe/PSEN1dE9 offspring 

 

Basal locomotion is not altered by prenatal stress (PNS) in wild type and 

APPswe/PSEN1dE9  

The open-field test (OFT) is a common measure of exploratory behaviour and general 

locomotor activity in rodents. The OFT is used to assess locomotor activity level as a 

“control” experiment for behavioural tests that involve activity231,236,237 but it also 

provides an initial screen for mouse anxiety-related behaviour230. Rodents typically 

spend a significantly greater amount of time exploring the periphery of an open-field 

(empty arena), usually in contact with the walls (thigmotaxis), than the unprotected 

center area. The proportion of time spent  avoiding  the center of the arena is therefore 

taken as a measure of  anxiety-like behaviour229. 

At adulthood, at 6 months and 9 months of age, PNS-exposed wild type (WT) and 

APPswe/PSEN1dE9 (Tg) offspring were compared to non-stressed ones (ctrl) for their 

locomotor activity and exploratory behaviour in the open-field context, and total 

distance moved and time spent in the center and the periphery of the open-field arena 

were measured. 

At 6 months, animal locomotor activity was not affected (figure 11, A and B) and time 

spent exploring central and peripheral zone of the open-field arena didn’t reveal 

significant differences between prenatally stressed and control offspring both in WT 

and Tg groups (fig. 11, C and D). Examination of the open-field center time exploration 

as a preliminary screen for anxiety-like behaviour revealed no significant PNS 

differences both in male and female offspring.   
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Likewise, at 9 months of age, the anxiety-like behavioural measures didn’t highlight any 

differences due to PNS. Animal general locomotor activity was not affected (figure 12, 

A and B) and central and/or peripheral zone activity within the open-field arena didn’t 

reveal significant differences between prenatally stressed and control offspring both in 

WT and Tg mice (figure 12, C and D).  
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Figure 11. No effect of PNS on open-field exploration offspring at 6 months of 

age. Data show locomotor activity during OFT of prenatally stress and control male (A) and 

female (B) offspring at 6 months of age. Panels C and D show time spent exploring the center 

and the periphery of the open-field by prenatally stress and control male (C) and female (D) 

offspring at 6 months of age. No significant PNS differences on central and peripheral zone 

activity were found.  

Male offspring: WT ctrl n=8; WT PNS n=8; Tg ctrl n=16; Tg PNS n=11. Female offspring: WT 

ctrl n=11; WT PNS n=13; Tg ctrl n=14; Tg PNS n=8. Data are shown as mean ± SEM. ** p<0.01 

(two-way ANOVA followed by Bonferroni post test).                                                                                                                                                                                                                                                                     
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Figure 12. No effect of PNS on open-field exploration offspring at 9 months of 

age. Data show locomotor activity during OFT of prenatally stress and control male (A) and 

female (B) offspring at 9 months of age. Panels C and D show time spent exploring the center 

and the periphery of the open-field by prenatally stress and control male (C) and female (D) 

offspring at 6 months of age. No significant genotype / PNS differences on central and 

peripheral zone activity were found.  

Male offspring: WT ctrl n=4; WT PNS n=2; Tg ctrl n=6; Tg PNS n=4. Female offspring: WT ctrl 

n=2; WT PNS n=9; Tg ctrl n=6; Tg PNS n=2. Data are shown as mean ± SEM. Two-way 

ANOVA followed by Bonferroni post test.                                                                                                                                                                                                                                                                     
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PNS accelerates long-term memory deficit in APPswe/PSEN1dE9  

The novel object recognition (NOR) test was used to assess the potential effect of PNS 

on long-term recognition memory of wild type (WT) and APPswe/PSEN1dE9 (Tg) 

offspring at 6 and 9 months of age. We performed this behavioural test to characterize 

the potential cognitive impairment caused by PNS in APPswe/PSEN1dE9 mice at early 

stages of amyloid-β (Aβ) deposition238, where recognition memory is normally 

comparable between Tg and WT animals239. NOR test is a typical behavioural test 

used to assess memory function in AD mouse model240. This test is based on the 

spontaneous tendency of rodents to spend more time exploring a novel object than a 

familiar one. The choice to explore the novel object reflects the use of learning and 

recognition memory232,233. 

Familiar object exploration time (Time Familiar, TF) and novel object exploration time 

(Time Novel, TN) was scored manually with the EthoVision software (Noldus Inc., 

Leesburg, VA) by the experimenter blinded to the treatment group. Exploration of an 

object was defined as directing the nose toward the object, while climbing onto the 

object (unless active object sniffing is observed) or chewing the object didn’t qualify as 

exploration. Mice that didn’t satisfy the criterion of 20 s exploration time of both items 

within familiarization and/or retention test sessions were excluded from the following 

analyses.   

We used the Discrimination Index (DI) and Recognition Index (RI) as two estimations of 

recognition process and to measure long-term recognition memory of each animal 

group. The DI [DI = (TN-TF)/(TN+TF)] is a measure of discrimination between the novel 

and familiar objects and it calculates the difference between exploration time for novel 

and familiar objects, dividing it by the total amount of exploration time during retention 

session. The RI [RI = TN/(TN +TF)] is the time spent investigating the novel object 

relative to the total exploration time and it is considered the main index of retention232. 
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In most cases, mice were able to distinguish the novel from the familiar object both at 6 

(figure 13, A and B) and 9 (figure 14, A and B) months, indicating a functionally intact 

memory as shown by DI higher than 0. 

When comparing discrimination performance between groups, at 6 months we 

observed a significant decreased novel object recognition of prenatally stressed Tg 

males, and not of prenatally stressed WT males, when compared to non-stressed 

controls (fig.13 A, F(1,39)=5.845, p<0.05), while the decrease of DI was not statistically 

significant in prenatally stressed female offspring (fig.13 B). Prenatally stressed Tg 

male offspring demonstrated also a significant memory deficit for the familiar object 

(fig.13 C, F(1,39)=5.884, p<0.05; fig.13 E, F(1,39)=8.070, p<0.05). On the other hand, 

female offspring, both WT and Tg, showed intact object recognition memory (fig. 13, D 

and F) at 6 months. Object recognition memory was not significantly influenced by 

genotype, as indicated by the absence of significant differences between WT and Tg 

groups, after two-way ANOVA analysis. It seems that PNS influenced memory 

performance of Tg male offspring by accelerating the onset of the cognitive deficts.  

At 9 months a smaller number of animals per group were tested because some mice 

died before reaching 9 months of age and a fraction of the animal cohort had not 

reached the 9 month age yet. No significant difference of recognition performance 

between prenatally stressed Tg male offspring and control was found. We observed a 

decreased discrimination ability of PNS WT males compared to ctrl WT and of ctrl Tg 

males when compared to the ctrl WT ones (figure 14 A). On the other hand, PNS-

exposed Tg female offspring showed an increasing DI and RI trend (fig. 14, B and D) 

even if significant differences were not found. The improved discrimination ability of 

PNS Tg female offspring compared to the corresponding ctrl, as indicated by their 

significant decreased exploration of familiar object (fig. 14 F, F(1,15)=5.042, p<0.05), 

points to a possible PNS positive impact on Tg female recognition performance.  
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Figure 13. Effect of PNS on long-term recognition memory at 6 months of age. 

Discrimination Index (A, B), Recognition Index (C, D), exploration time of familiar and novel 

objects (E, F) during the retention session of NOR test at 6 months in prenatally stressed and 

control animals. Discrimination Index: (time novel – time familiar)/(time novel + time familiar); 

Recognition Index (time novel)/(time novel + time familiar). Male offspring: WT ctrl n=8; WT PNS 

n=8; Tg ctrl n=16; Tg PNS n=11. Female offspring: WT ctrl n=11; WT PNS n=13; Tg ctrl n=14; 

Tg PNS n=8. Data are shown as mean ± SEM. *p<0.05 (two-way ANOVA followed by 

Bonferroni post test).  
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Figure 14. Effect of PNS on long-term recognition memory at 9 months of age. 

Discrimination Index (A, B), Recognition Index (C, D), exploration time of familiar and novel 

objects (E, F) during the retention session of NOR test at 9 months in prenatally stressed and 

control animals. Discrimination Index: (time novel – time familiar)/(time novel + time familiar); 

Recognition Index (time novel)/(time novel + time familiar). Male offspring: WT ctrl n=4; WT PNS 

n=2; Tg ctrl n=6; Tg PNS n=4. Female offspring: WT ctrl n=2; WT PNS n=9; Tg ctrl n=6; Tg PNS 

n=2. Data are shown as mean ± SEM. *p<0.05 (two-way ANOVA followed by Bonferroni post 

test).  
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Early neurobiological effects of prenatal stress (PNS) in 

embryos at E18.5 and pups at P1 

 

Corticosterone secretion displays sex-dependent alterations in response 

to PNS-exposure 

Pregnant dams underwent prenatal stress (PNS) by the same chronic restraint stress 

paradigm214 mentioned in Materials and Methods chapter during the last week of 

pregnancy (embryonic days E12.5 – E18.5) (see scheme 2). The offspring groups 

included in the following experiments were: wild type E18.5 (embryonic day 18.5) 

embryos and P1 (postnatal day 1) pups, males and females, of both PNS and control 

conditions. Blood samples of these animals were collected immediately after the last 

session of restraint stress (embryonic day 18.5) and one day after delivery (postnatal 

day - P1) in order to measure corticosterone (CORT) plasma levels and to investigate 

the potential acute effects of PNS on HPA axis function.  

First of all, we planned to determine CORT levels in plasma of stressed (PNS) and ctrl 

dams immediately after the last day of restraint stress paradigm (E18.5 time point) and 

one day after delivery (P1 time point) to assess whether the PNS paradigm had 

properly worked. As indicated by the plasma CORT surge of PNS dams at E18.5, 45 

minutes after the beginning of the last stress session, we verified the validity of the 

PNS paradigm (figure 15 A). Moreover, the obtained data showed an increase of 

CORT plasma levels in female embryos measured at this time point (fig. 15 A). 

Embryonic CORT plasma levels upon-PNS (E18.5 time point) were significantly 

influenced by PNS exposure (fig. 15 A, two-way ANOVA: PNS factor, F(1,19)=9.23, 

p<0.05).  
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Furthermore, a sex effect (F(1,18)=26.60, p<0.0001), a PNS-exposure effect 

(F(1,18)=11.10, p<0.01) and also a sex X PNS-exposure effect (F(1,18)=18.06, 

p<0.01) were observed at rest in P1 offspring. In particular, PNS significantly increased 

basal CORT plasma levels only in male P1 pups (fig. 15 B).  . 

 

 

Figure 15. Serum corticosterone concentration after PNS and at rest. A) 

Corticosterone (CORT) plasma levels in stressed and non-stressed (ctrl) mothers and E18.5 

embryos. Blood samples were collected immediately after restraint stress on day E18.5. B) 

Corticosterone (CORT) plasma levels in stressed and ctrl mothers and P1 offspring. Blood 

samples were collected one day after delivery (postnatal day 1). Data are shown as mean ± 

SEM. *p<0.05; ***p<0.001(two-way ANOVA followed by Bonferroni post test). 
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PNS affects hippocampal gene expression profiles in P1 females     

To identify early effects of PNS on brain gene expression and subsequently clarify 

trigger mechanisms of the potential cognitive impairment caused by PNS during 

ageing, we analysed expression levels of a number of genes in PNS E18.5 embryos 

and P1 pups compared to non-PNS controls. 

During the prenatal period, the HPA axis is particularly susceptible to programming by 

glucocorticoids (GCs), that are important for normal maturation in most fetal organs 

including the developing brain208. Moreover, early-life stressful events produce long-

term effects on the developing brain, in part mediated by epigenetic modification241-244, 

increasing subsequent risk of neuropsychiatric disorders throughout life245 which are all 

virtually associated with changes in neuroplasticity and neuroinflammatory 

processes246,247. Based on these notions, we focused on genes implicated in 

epigenetic regulation, stress-response, neuroplasticity and microglia synaptic pruning 

pathways. In addition, we determined relative mRNA expression of genes that are 

specifically expressed in different brain cell subtypes. 

E18.5 brain area of interest was the frontal part, while P1 brain areas analyzed were 

dorsal hippocampus (HPC), prefrontal cortex (PFC) for cognitive functions, and 

amygdala (AMY) for anxiety-like and impulsive behaviours.  

Acute PNS consequences on brain gene expression were different depending on the 

timing and brain region. Moreover, the PNS impact on developing brain gene 

expression was different between male and female offspring, since it significantly 

affected brain gene expression only of P1 females.  

In particular, PNS mostly affected gene expression in the hippocampus (figure 16), 

where down-regulation of genes encoding for the mineralcorticoid receptor (MR) 

(p=0.018), the chemokine C-X3-C motif receptor 1 (CX3CR1) (p=0.048) and the DNA 

methyltransferase 1 (DNMT1) (p=0.012) was observed. On the other hand, histone 
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deacetylase-1 (HDAC1) (p=0.007) gene was up-regulated in hippocampus of P1 

female offspring prenatally exposed to stress (fig. 16 A). The tendency for the up-

regulation of HDAC1 gene (p=0.055) was already present in the frontal brain region of 

PNS female embryos even if, in this case, the relative expression difference between 

PNS and ctrl groups was not statistically significant (figure 17 A). 

P1 PNS female offspring showed a significant decreased mRNA level of glucocorticoid 

receptor (GR) (p=0.004) and BDNF exon IV (BDNF IV) (p=0.02) genes, in the 

prefrontal cortex (figure 18 B) and amygdala (figure 19 B) respectively. An increased 

expression of the glial fibrillary acidic protein (GFAP) gene (p=0.037) (fig. 18 D), an 

astrocytic marker, was also present in the prefrontal cortex of P1 PNS females.  
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Figure 16. Gene expression analyses in dorsal hippocampus (HPC) of prenatally 

stressed P1 wild type offspring. qRT-pcr data show relative expression (2
-∆∆Ct

 method), 

using EEF1 and TBP as reference genes, of (A) epigenetic regulation, (B) stress-response, (C) 

neuroplasticity and microglia synaptic pruning genes and (D) brain cell subtype markers. 

F, female offspring: WT ctrl n=3/4; WT PNS n=5/6. M, male offspring: WT ctrl n=4; WT PNS 

n=4. Data are shown as mean ± SEM.  *p<0.05; ** p<0.01 (unpaired t-test).                                                                                                                                                                                                
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Figure 17. Gene expression analyses in frontal region of prenatally stressed 

E18.5 wild type embryos. qRT-pcr data show relative expression (2
-∆∆Ct

 method), using 

EEF1 and TBP as reference genes, of (A) epigenetic regulation, (B) stress-response, (C) 

neuroplasticity and microglia synaptic pruning genes and (D) brain cell subtype markers. 

F, female embryos: WT ctrl n=4; WT PNS n=6. M, male embryos: WT ctrl n=4/7; WT PNS 

n=3/6. Data are shown as mean ± SEM. Unpaired t-test. 
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Figure 18. Gene expression analyses in prefrontal cortex (PFC) of prenatally 

stressed P1 wild type offspring. qRT-pcr data show relative expression (2
-∆∆Ct

 method), 

using EEF1 and TBP as reference genes, of (A) epigenetic regulation, (B) stress-response, (C) 

neuroplasticity and microglia synaptic pruning genes and (D) brain cell subtype markers. 

F, female offspring: WT ctrl n=2; WT PNS n=3/6. M, male offspring: WT ctrl n=4; WT PNS n=4. 

Data are shown as mean ± SEM. *p<0.05; ** p<0.01 (unpaired t-test).                            
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Figure 19. Gene expression analyses in amygdala (AMY) of prenatally stressed 

P1 wild type offspring. qRT-pcr data show relative expression (2
-∆∆Ct

 method), using EEF1 

and TBP as reference genes, of (A) epigenetic regulation, (B) stress-response, (C) 

neuroplasticity and microglia synaptic pruning genes and (D) brain cell subtype markers. 

F, female offspring: WT ctrl n=2; WT PNS n=4. M, male offspring: WT ctrl n=4; WT PNS n=4. 

Data are shown as mean ± SEM. *p<0.05 (unpaired t-test).                           
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Discussion 
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Antiviral innate immune response in the brain of 

Alzheimer’s disease (AD) patients 
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Alzheimer's disease (AD) is a progressive, degenerative disorder of the CNS and 

represents the most common form of dementia. Neurodegenerative diseases primarily 

occur in the later stages of life, positioning ageing as an essential co-factor in their 

pathogenesis248. Ageing affects all physiological systems, of which one of the most 

important is the immune system249. No all immune responses show the same rate of 

ageing or senescence. Innate immunity is partially affected by human ageing, while 

adaptive immune response progressively decline with age149.  

Over the past years, GWA studies of sporadic AD cases have shown that several 

genes with immune regulatory functions were associated with differential risk of AD75-

77,80,82,90. In this context, it should be mentioned that the well known genetic risk factor 

for AD, the APOE ε4 allele, may be involved in the dysregulation of phagocytosis and 

inflammatory responses in the brain93. However, the role of innate immunity in the 

pathogenesis and in clinical history of AD remains to be clarified.  

AD is a multi-factorial and heterogeneous disease and among environmental factors 

likely associated with it, persistent virus infections and the progressive decline of 

immune competence with advancing age may play a pivotal role122. The ageing of the 

immune system is a dynamic process which partially reflects adaptation of the immune 

response to an evolving pathogen milieu249,250. Several studies suggest that ageing is 

associated with increased memory T cell compartment in part due to continuous 

consumption of existing immunological resources by persistent infections249,251. 

Persistent virus infections continue mainly because the viral source is not completely 

removed by the immune system and usually reside inside certain cell types as immune, 

neuronal and epithelial cells249. Viruses of the herpes family, largely and commonly 

present in old individuals, undergo frequent cycles of reactivation and latency over the 

life-time and lead to the accumulation of memory T cells. However, the immune system 

is not able to completely eradicate these viruses and repeated antigen stimulation 

induced by them activates a peripheral chronic inflammatory response that 
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progressively impairs defensive immune ability and aggravates the senescence of the 

immune system156,249.  

Chronic subclinical infections represent relevant environmental factors for the clinical 

progression of AD122. A declining immune system resulting in a chronic brain 

inflammation might therefore contribute to neurodegeneration122,149.  

The peripheral immune dysfunction induced by persistent subclinical infections may 

impair brain functioning by priming microglia and/or by increasing the leaking of the 

BBB122. An altered resolution of inflammatory state has been recently found in the brain 

of AD patients and such impairment correlated with cognitive performances252. 

Moreover, elevated levels of CNS and CSF inflammatory markers have been reported 

in preclinical stages of AD253. Recent findings reinforced the notion that brain 

inflammation, as assessed by CSF markers, increases in normal ageing and is 

associated with markers of neurodegeneration in the preclinical stages of AD254. 

Neuroinflammation in Alzheimer’s disease may be partially caused by already primed 

microglia that may easily switch to a damaging M1 phenotype255,256. Animal studies 

from aged mice showed an exaggerated brain inflammatory and oxidative stress 

responses to peripheral stimuli257, increased concentrations of interleukin 1β (IL1β) in 

the CNS and neuronal apoptosis in the ME7 prion mouse, after peripheral challenge 

with lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid (polyI:C)258-260. 

AD microglia might also be primed by infectious agents challenging the CNS as viruses 

belonging to the herpes family. There are several studies implicating HSV-1 in the 

etiology of AD133,134,136,261. The first observations of HSV-1 in AD brains were reported 

almost thirty years ago142. HSV-1 is a ubiquitous virus that affects more than 80% of 

people over 65 worldwide. It is a neurotropic double-stranded DNA virus that primarily 

infects epithelial cells of oral and nasal mucosa. Here, HSV-1 undergoes lytic 

replication; the newly produced viral particles thereafter enter sensory neurons and, by 
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axonal transport, reach the trigeminal ganglion where usually establish a latent 

infection. HSV-1 undergoes periodic reactivation cycles in which the newly formed viral 

particles are transported back to the site of primary infection through the sensory 

neurons, causing typical epithelial lesions. However, the bipolar trigeminal ganglion 

neurons also project to the trigeminal nuclei located in the brainstem. From here, 

neurons project to the thalamus to finally reach the sensory cortex. This is the path 

through which the reactivated virus may reach the CNS, where it may cause acute 

neurological disorders like encephalitis or a mild, clinically asymptomatic infection, or 

establish a life-long latent infection149,262. A reactivation of HSV-1 infection, assessed by 

increased serum levels of specific anti-HSV-1 antibodies, was found associated with an 

increased AD risk in a longitudinal study on 3432 elderly151. 

Other pathogens have been implicated in the pathogenesis of AD135,164 and chronic 

infections, in a context of senescent immune system, are emerging risk factors for this 

disease143. A recent review by Harris et al. confirmed that infection agents such as 

CMV, HSV-1, HHV-6, Helicobacter pylori, Chlamydophila pneumonia and several 

periodontal pathogens are able to induce the production of peripheral proinflammatory 

cytokines that, by crossing the BBB, might promote neurodegeneration135. In addition, 

spirochetes have also been proposed to be associated with AD137. Moreover, oral 

infections have been recently suggested as potential causes of BBB disruption and 

brain inflammation. These pathogens may also infect the brain via trigeminal and/or 

olfactory nerves135,263.  

On the other hand, the Aβ peptide has been shown to function as a defensive immune 

factor in the brain264. The physiological function of the APP and the biological role of its 

proteolytic derivatives are still uncertain265. In mice and in cell culture, Aβ deposition 

and tau abnormalities, typical of AD, are observed after infection with HSV-1266-275 or 

bacteria276-279 and a direct interaction between APP and HSV-1 has been reported154. 

Recent investigations confirmed that Aβ is an antimicrobial peptide (AMP) with potent 
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activity against bacteria and yeast264 but also against viruses. Experimental evidences 

showed that Aβ peptides inhibit influenza virus280 and HSV-1281,282 replication. Carrano 

and colleagues suggested that APP and/or its cleaved products are necessary to 

mount a complete and effective innate immune response to inflammatory injury in the 

brain, being involved in microglia activation283. These data reinforced the notion that the 

Aβ peptide might be a component of the innate immunity against brain pathogens, 

using a classic AMP mechanism characterized by reduce microbial adhesion to host 

cells, and agglutination and entrapment of microbes by Aβ fibrils284,285.  

The above findings are compatible with the hypothesis that neurodegenerative 

mechanisms associated with clinical AD might be in part induced or affected by chronic 

infections of the ageing brain. In previous publications, Licastro et al. discussed genetic 

data from four AD GWA studies75-77,90. From these investigations a set of SNPs 

associated with AD emerged and they suggested that the concomitant presence of 

these SNPs might result in a genetic signature predisposing to AD, via complex and 

diverse mechanisms, each contributing to an increased individual susceptibility to 

herpes virus infection88,89. Therefore, neurotropic herpes viruses may directly infect and 

damage selected brain areas in genetically susceptible elderly and induce 

neurodegenerative mechanisms.  

However, it is also relevant how the host responds to these microorganisms. In fact, 

the individual genetic background plays a pivotal role in the maintenance of the chronic 

inflammation both in the brain and in the peripheral tissues149. In this context, as 

already mentioned, GWA studies in AD showed that several immune factors were 

associated with increased risk of the disease, but each single immune gene showed a 

low OR (odds ratio < 1.7) of association with AD. The only exception was the APOE ε4 

allele, which is also a well known susceptibility factor for several virus infections286-288. 

The weak association of immune genes with AD can be simply explained as no 

immune factor is the cause of the disease. Nevertheless, the concomitant presence of 
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several genetic factors in the same individual might show a stronger association and 

individual infection susceptibility may be affected by the concomitant presence of 

alleles resulting in decreased immune efficiency88,89. As infections appear to be 

involved in AD pathogenesis, the link between a given pathogen and the host 

susceptibility to its infectivity might be one missing link in the clinical progression from 

cognitive decline to AD149.  

At the present, little is known about the efficiency of immune factors involved in 

antimicrobial defences in the human brain. 

In the current study, we have attempted to evaluate the role of interferon regulatory 

factor (IRF) 7, mediator complex (MED) 23, interferon (IFN)-λ3, also known as IL28B, 

and IFN-α genes in the brain of AD patients as well as the potential association of their 

expression in hippocampus and temporal cortex. Since our recent findings showed that 

diverse genetic backgrounds in genes regulating antiviral responses were associated 

with an increased risk of AD88,89,164,201, the focus of this thesis was set on SNPs of 

APOE gene and SNPs located upstream of the IRF7, MED23 and IL28B genes, and 

their potential effect on the brain gene expression profiles.  

IFN-α and IL28B are interferons belonging to the type I and III IFN family respectively 

and they induce a strong antiviral state in responsive cells. Whereas almost all 

nucleated cells respond to type I IFNs, responses to type III IFNs are restricted to 

tissues with an increased propensity to viral exposure and infection, such as those at 

mucosal surfaces190. There is mounting evidence for a role of the type III IFNs in the 

regulation of virus infection188, particularly in the case of HCV infection289,290. Moreover, 

individuals with recurrent HSV-1 reactivation have been shown to be deficient in IFN-λ 

expression291 and it has also been found an association between a SNP in the 

promoter of IL28B and ethnically Italian patients suffering recurrent and severe 

reactivations of HSV-1-related oral herpes outbreaks196. Type I IFNs, mainly produced 
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by HSV-infected keratinocytes292 and pDCs (plasmacytoid dendritic cells)293, inhibit the 

spread from neurons to epithelial cells and between epithelial cells294. Type III IFNs are 

also able to directly inhibit HSV-1 infection in primary neurons, astrocytes, 

macrophages and dendritic cells295,296 and are mainly expressed by myeloid dendritic 

cells (mDC) and monocyte-derived macrophage191. Since primary HSV-1 infection and 

reactivation affect skin and mucosa in the majority of cases, IFN-λ may play a role in 

the control of HSV-1 infection and reactivation.  

Using a genome-wide approach to identify host factors that functionally influence HSV-

1 infection in vitro, Griffiths and collegues identified a subunit of the Mediator multi-

protein complex, Med23, as a key regulator of IFN-λ induction and of control of HSV-1 

infection both in vitro and in vivo196. This study identified Med23 as a novel antiviral 

factor which acts as a key regulator of IFN-λ expression by interacting with and 

enhancing the activity of IRF7. Investigations into the mechanism of action revealed 

that Med23 inhibits HSV-1 replication by preferentially inducing a IFN-λ response at the 

mRNA and protein level. This IFN-λ induction was mediated via a direct interaction with 

IRF7, which resulted in a synergistic increase in IFN-λ expression. Interestingly, the 

inhibitory effect of Med23 was specific to HSV-1196. The failure to induce IFN-λ and 

thereby control HSV-1 in the brain may be a potential cofactor for the development of 

dementia of Alzheimer’s type89. 

The study presented here showed that the expression of genes involved in 

antimicrobial defences, especially against virus infections, such as IRF7, MED23, 

IL28B and IFN-α was defective in the majority of AD brains. There was a tendency for 

the down-regulation of these antiviral innate response genes in the brain of AD 

patients, particularly accentuated in the hippocampus area. The defective brain gene 

expression found in most AD patients might compromise the efficiency of immune 

responses and retard or impair the eradication of brain invading microbes. It is 

intriguing reminder that type I IFN has been shown to increase autophagy, an emerging 
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antiviral defense mechanism of neurons297. Moreover, autophagy-lysosome defects 

have been reported to occur early in the AD pathogenesis298. Therefore, decreased 

signaling by IFN molecules in the AD brain might reverberate upon other antimicrobial 

mechanisms and increase neuronal susceptibility to infections and neuroinflammation.  

Possible regulatory mechanisms of the innate immune genes upon Aβ peptide 

expression in normal or AD brains have been poorly explored. However, it cannot be 

excluded that Aβ peptide might be an emergency defensive mechanism compensating 

the declining expression of other specialized defensive immune genes in the ageing 

brain. 

Among the genetic risk factors for AD, the presence of the APOE ε4 allele plays a 

major role and the APOE status might influence different mechanisms involved in 

neurodegeneration. Here, we showed that brain hippocampal expression of MED23, 

IL28B and IFN-α mRNAs in APOE ε4 carrier AD patients was significantly decreased.  

It is known that APOE affects immunity, since increased systemic proinflammatory 

states and altered immune responses have been found in APOE deficient mice299,300. 

Therefore, we speculate that, at least, part of the increasing AD risk effect of the APOE 

ε4 allele might be mediated by a negative influence on the brain immune efficiency in 

selected CNS areas, such as the hippocampus, where replicating neurons301 might be 

more susceptible to virus infections or microbial products/toxins.  

Some studies have suggested that in people carrying the APOE ε4 allele and, 

therefore, predisposed to develop AD, occurrence of HSV-1 infection was increased302-

304. However, this correlation was not always confirmed305. APOE seems to affect the 

outcome of different infections303,306 and, interestingly, APOE ε4 is also a risk factor for 

cold sores307. Animal studies demonstrated that  APOE4/4 mice had an impaired 

microglia immune functionality308 and ApoE4 presence also influenced the viral load in 

the brain309. In a subsequent study, Burgos et al. showed that during acute infection 
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with HSV-1, ApoE4 was more efficient than ApoE3 in promoting viral colonization of the 

brain144. 

To explore the influence of individual genetic background on the observed impaired 

expression of antiviral response genes in AD brains, we have stratified their gene 

expression data with SNPs genotypes of IRF7 (rs6598008), MED23 (rs3756784) and 

IL28B (rs12979860).  

The presence of GA and AA genotype in the upstream IRF7 variant (rs6598008) was 

associated with decreased expression, in the hippocampus, of IRF7, MED23, IL28B 

and IFN-α, which are all involved in the innate immune control of HSV-1 infection196. 

Therefore, we suggest that AD patients with A allele for IRF7 rs6598008 may be more 

prone to deficient innate immune response and predisposed to brain infections with 

severe course leading to neurodegeneration.  

Individual genetic variations as APOE ε4 and IRF7 SNP (rs9568008) might be relevant 

in affecting antiviral gene responsiveness in the presence of specific stimuli as 

microbial infections.  

Susceptibility to complex heterogeneous diseases, like AD, depends on both genetic 

predisposition and exposure to environmental factors, with interactions between the 

two components that likely contribute substantially to the degree of disease risk310,311. 

However, the extent and mechanisms by which common human genetic variants affect 

the host response to environment factors remain inadequately explored and have been 

difficult to detect in clinical studies310,312. 

A minority of hippocampal AD samples included in this study showed up-regulation of 

MED23, IL28B and IFN-α genes. Such increased levels of mRNAs were not correlated 

with the presence of APOE ε4 or IRF7 A alleles (rs6598008). Therefore, AD shows 

heterogeneous alteration of IFN gene expression. Increased or decreased expression 

might be related with different clinical stages of the disease and parallel cycles of 
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reactivation and latency of neurotropic viruses. In this context, we hypothesize the 

existence of other candidate genetic variants potential associated in trans with type I 

and III interferon induction, in response to stimulus such as the persistence of virus 

and/or bacterial infections, and potentially linked to exacerbated brain immune actions. 

Alternatively, oral infections, that were reported as potential causes of BBB 

distruction135, might induce an exacerbated IFN-λ response of chroid plexus epithelial 

cells313 in the presence of neuro-invasive viruses, as those belonging to herpes family.  

In animal models, differences in treatment with various stimuli have revealed the 

existence of reQTLs314-317 (response expression Quantitative Trait Loci), defined as 

QTLs associated with the change in expression after stimulation. The reQTLs identified 

by Lee and colleagues provide genetic explanations for inter-individual variation in 

innate immune responses318. In particular, their study revealed the effects of a trans-

reQTL in the IRF7 locus on target antiviral genes in the context of a particular cell type, 

such as DCs, and in response to specific ligand, such as influenza virus. The changes 

in this immune response were, in turn, likely to affect organism’s phenotypes that are 

driven by the IFN module, including susceptibility to viral infections318. 

This work indirectly supports the notion that a defective brain response to 

microorganisms is a risk factor for developing clinical AD. Microbial infections may play 

a role in AD clinical progression and impaired innate immune responses against 

viruses, bacteria or their products may increase neurodegenerative mechanisms in the 

elderly. However, these preliminary results should be interpreted with caution and they 

should be replicated in a larger population of patients.    
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Effects of prenatal stress (PNS) on adult 

cognitive health 
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AD is probably best considered in a life-course framework, like other chronic diseases,  

with important influences beginning at conception and early-life moments. While most 

cases of AD occur at late onset and older ages, increasing evidences support the 

notion that the neurodegenerative alterations precede AD clinical manifestation by 

many decades319. Both genetic and environmental factors are involved in the onset of 

sporadic AD. Several epidemiological studies have indicated that environmental 

factors, such as chronic stress and stress-related disorders, can influence the 

progression of AD-related symptoms and pathologies205-207.   

AD mouse models at different life stages have demonstrated that stress exposure can 

alter the neuropathological process causing reduction of neurons in memory regions, 

along with increased deposits of Aβ peptide and hyperphosphorylated microtubule 

associated tau protein320-322. Contrary to infancy and adulthood mouse models, only 

few studies investigated the role of stress prenatally experienced on the development 

of AD319. 

There is growing evidence that proper organism development is strongly influenced by 

early-life environment323. It has been observed that infants with low birth weight and 

small head circumference are at higher risk of suffering coronary heart disease, 

hypertension, stroke, insulin resistance, diabetes and other diseases in adulthood324. 

According to this experimental evidences, Barker proposed the fetal origins hypothesis 

in which the intrauterine environment has significant impact on the development of 

chronic diseases325. Lahiri and colleagues suggested that many neurobiological 

disorders, including AD, share a similar mechanistic etiology: the Latent Early-life 

Associated Regulation or LEARn model126,221. Under LEARn, early-life stressors modify 

potential expression levels of disorder-associated genes in a latent manner. Latent 

changes in these genes are maintained by epigenetic mechanisms. This model makes 

the greatest allowance for sporadic appearance of a disorder, especially if it is actually 
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”many” or “n hit”, where “n” can be any number of individual risk factors, each with the 

potential to instil or activate a latent alteration326.  

Many studies have shown that stressful events during the intrauterine life can exert 

long-lasting effects on the brain by affecting the nervous, neuroendocrine and immune 

systems209-211. Moreover, studies in humans and rodents, revealed a clear impact of 

early-life stress on the development of neuropsychiatric disorders such as autism, 

mood disorders and schizophrenia208,327,328. Interestingly, few studies have also linked 

prenatal stress (PNS) to adult cognitive impairment214,215,329. 

Based on these grounds, we planned to get a deeper insight in the molecular 

mechanisms at the basis of potential cognitive impairment caused by prenatal stress in 

mice.   

In this study we investigated the effects of prenatal stress (PNS) on the onset and 

progression of AD-related behavioural deficits, focusing also on potential sex-

dependent differences. To address this problem, we assessed the consequences of 

PNS on adult behaviour in wild type (WT) and APP/PSEN1dE9330,331 (Tg) offspring, 

testing them for anxiety-related behaviour and for learning and recognition memory at 

six and nine months of age. 

PNS during late gestation (embryonic days 12.5 – 18.5) did not elicit anxiety-related 

behaviour during late adulthood. Indeed, the open-field test and the following analyses 

of locomotor, central and/or peripheral activities of WT and Tg offspring (male and 

female) did not reveal any significant differences between PNS and ctrl groups neither 

at six nor at nine months. Similarly, Sierksma et al. showed that anxious behaviour 

remained unchanged in both prenatally stressed male and female Tg offspring. On the 

other hand, other studies showed that PNS induces anxiety-traits in young adulthood in 

WT offspring and the discrepancy with our results might depend on the kind of PNS, its 

timing and on the age of the tested offspring332-335.  
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Furthermore, at six months we found that PNS exposure impaired significantly long-

term recognition memory performance only of Tg male offspring, affecting the onset of 

AD-related recognition memory deficit. The evidences of memory stress-damage in six 

month old mice, for which the AD has not entailed recognition memory deficit yet, was 

not observed in nine month old mice. The nine month mouse memory has been 

already damaged by the AD neurodegeneration, minimising therefore the gap between 

the stress-exposed and non-exposed stress animals. In summary, these data showed 

a decreasing tendency in novel object recognition in Tg males that have been 

prenatally stressed, while prenatal stress seems to exert a protective effect on 

recognition memory of APPswe/PSEN1dE9 females. 

These results are in line with Sierksma and colleagues who found that repetitive 

restraint stress during the first week of gestation exerted a sex-dependent effect on 

behaviour and AD-related neuropathology in APPswe/PS1dE9 mice. Prenatally 

stressed male offspring showed spatial memory deficits and a blunted HPA axis 

response, while female offspring showed increased depressive-like behaviour and 

improved spatial memory performance with a decrease in hippocampal plaque load214.  

According to our results, it has been shown that AD mouse models exposed to stress 

during various stages of life alter AD-related symptoms and pathology320-322,336-338. 

Restraint stress during adulthood resulted also in elevated hippocampal concentrations 

of Aβ40 and Aβ42, higher plaque deposition, and increased tau phosphorylation. In 

addition, these mice displayed augmented neuronal degeneration with concomitant 

cognitive deficits338-342. Furthermore, several animal studies showed that prenatal 

maternal stress correlates with a series of neurological impairments, such as 

cholinergic neuronal damage, cognitive decline, hippocampal neuronal loss, increased 

tau protein phosphorylation and Aβ peptide deposits343-345.  

As a part of this ongoing project, the next step will be neuropathological phenotyping, 

by determing hippocampal plaque load and intracellular Aβ, of the WT and Tg offspring 
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to assess whether impact of PNS on the onset of AD-related cognitive decline 

correlates with amyloid burden.  

Prenatal life is a critical period characterized by increased vulnerability to 

stressors213,346. The process by which perinatal life events can have long-term effects 

on physiological system has been described as perinatal programming. During the 

perinatal period, the HPA axis is particularly susceptible to programming by 

glucocorticoids (GCs) that are important for normal maturation of most fetal organs 

including the developing brain. Thus, GCs are prime candidates for perinatal 

programming347 and exposure of the developing fetus or neonate to these 

glucocorticoid signals in excess or at an incorrect stage of maturation might lead to 

substantial alterations in normal developmental trajectories, resulting in altered 

physiological function throughout life and pathology in some circumstances348,349. In the 

brain, excess exposure to GCs leads to cognitive decline and has been associated with 

hippocampal neuron endangerment, dendritic atrophy and synaptic loss350,351. 

To find out PNS early target genes in the brain and to shed light on neurodevelopment 

trigger mechanisms of the cognitive impairment caused by PNS in APP/PS1 offspring, 

PNS neurobiological effects on WT E18.5 and P1 offspring were investigated. In 

particular, we focused on acute PNS effects on HPA axis function and brain gene 

expression. 

We found a different PNS influence on HPA axis between male and female WT 

offspring. PNS led to enhanced embryonic female HPA axis stress-response and to 

increased P1 male basal HPA activity, and this could result in an impaired 

programming of HPA function. It is important to consider that several confounding 

factors are present in the literature on this field. Within a given species, the stress-

timing, -dose and –source often differ among studies. The stage of development at 

which the outcome is measured and the sex of the offspring are other critical factors211. 
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All of these aspects will lead to differences in the measured outcomes and the 

presence of such confounding factors clearly require further repetition of the same 

experiment in order to improve the validity of our results. 

PNS consequences on brain gene expression of WT E18.5 and P1 offspring were 

different depending on the brain region, timing and sex. PNS significantly affected gene 

expression profiles of hippocampus only in P1 female offspring. The hippocampus is 

crucial for learning and memory processes. The susceptibility of the developing 

hippocampus to increased levels of GCs is linked to the high expression levels of their 

receptors209,211,319. We observed significant down-regulation of mineralcorticoid receptor 

(MR), DNA methyltransferase 1 (DNMT1) and of chemokine C-X3-C motif receptor 1 

(CX3CR1) genes and up-regulation of histone deacetylase-1 (HDAC1) gene in P1 

female offspring prenatally exposed to stress.  

The hippocampal decrease of MR mRNA expression of PNS P1 female WT offspring 

might be involved in feedback control of HPA axis during stress mediating alterations in 

glucocorticoid feedback sensitivity. Historically, because of different affinities for GCs, 

MR was considered important in regulating basal HPA activity, with GRs being 

occupied under conditions of elevated GCs (e.g. after stress); however, more recent 

evidences indicate that both receptor types are involved in HPA axis feedback control 

during stress204,352,353. The mechanisms reducing hippocampal MR mRNA expression 

in PNS mice are not defined; it is likely that increased levels of in utero corticosterone 

might affect MR gene promoter by influencing its expression. Whether PNS leads to 

MR gene methylation, as proposed for early-life programming of the GR gene244, is still 

far to be understood354.  

Different studies have linked PNS to impairments in adult cognitive heath, but little is 

known about the effects of PNS on epigenetic regulation despite prenatal life being a 

critical period for the programming of the epigenome355. DNA methylation players, 

including DNMT1, have a fundamental role in pre- and post-natal neurodevelopment356-
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360. In dividing cells, DNMT1 ensures that the parental DNA methylation pattern is 

maintained in the daughter cells, while in adult CNS neurons it is required for synaptic 

plasticity, learning and memory357. An histone modifying enzyme shown to interact with 

DNMT1 is HDAC1361. Fuks and colleagues identified a transcriptional repression 

domain in DNMT1 that functions, at least partly, by recruiting HDAC1 and they 

suggested that the process of DNA methylation mediated by DNMT1 may depend on 

or generate an altered chromatin state via histone deacetylase activity361. Akhtar et al. 

proposed that HDAC1, which is predominantly expressed in neural progenitor cells and 

glia362, together with HDAC2 forms a developmental switch that controls synapse 

maturation and function acting in a manner dependent on the maturational states of 

neuronal networks363. Our data have shown a PNS-induced altered expression of 

DNMT1 and HDAC1 genes in hippocampus of P1 female WT offspring and we 

hypothesize that PNS could affect or modulate synapse development during perinatal 

life modifying their expression. Evidence is accumulating regarding the opposite effects 

of PNS in males and females208,209,211,364, but the precise molecular mechanism 

underlying this sex-dependent difference is still unknown. The difficulty to unravel this 

mechanism is then increases by the fact that in the few studies found in the literature, 

researchers do not differentiate PNS effects according to the sex of the 

offspring215,335,357,363. 

Microglia were found to be crucial for the elimination of redundant dendritic spines by 

phagocytosis during brain development365. This so-called “synaptic pruning” is 

necessary for the proper formation and maturation of neural circuits and it is thought to 

involve CX3CL1, expressed by neurons during synapse maturation, and its receptor 

CX3CR1 on microglia365. However, the mechanisms that underlie microglial–synapse 

or microglial–axonal interactions remain unsolved96. CX3CR1 gene was found to be 

up-regulated in the hippocampus of PNS P1 female WT offspring. Matcovitch-Natan  et 

al. have identified a stepwise developmental program of microglia in synchrony with the 

developing brain and suggested that genetic or environmental perturbations of these 
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pathways can disrupt stage-specific functions of microglia and lead to loss of brain 

homeostasis, which may be associated with neurodevelopmental disorders366. 

The trend resulting from different animals studies suggest that exposure to prenatal 

stress can lead to significant increases in microglial activity327,367,368.  Of these studies, 

the two by Diz-Chaves et al. found potentiated responses in prenatally stressed 

animals that were subsequently given an immune challenge in adulthood327,367. The 

effects of maternal/early-life stress on microglial activity closely resembled that caused 

by pathogenic immune challenge in rodents369,370. Such studies support the idea that 

stress leads to microglial priming. The initial prenatal stimulation primes microglia 

inducing an exaggerated microglia response to a second inflammatory stimulus371. This 

underlies the “n-hit” hypothesis of the LEARn model326 according to which early-life 

stress sensitises microglial cells so inducing an exaggerated microglial responsiveness 

to stress in late adolescence or adulthood. This abnormal microglial activity may lead to 

brain changes that underlie the development of CNS chronic diseases372. As 

demonstrated by the preclinical studies, many forms of psychosocial stress are able to 

stimulate microglial activity throughout the brain, and in several cases, prenatal stress 

exposure is sufficient to cause lasting changes in microglial response372.  

 

Based on collected data, we suggested that the molecular players of PNS 

consequences in the brain have to seek within microglial synaptic plasticity pathways 

during neurodevelopment. Furthermore, in the attempt to discover the “hot spots” of 

PNS neurodevelopment impairment, it would be appropriate to focus on microglia cells 

and their role in synaptic plasticity both in female and male offspring. Future research 

will focus on the role of the same genes in synaptic remodelling and loss in 

APP/PSEN1dE9 offspring prenatally exposed to stress in order to test their roles in 

PNS-induced cognitive impairment.  
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Conclusion  
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AD is a complex multi-factorial disease in which several pathogenetic, clinical, 

environmental and stochastic factors are involved. 

It is on record that persistent virus infections and the immune competence decline with 

ageing might play a pivotal role in AD122.  In particular, defective immune defences 

against viruses may play a role in triggering chronic inflammatory responses and 

directly or indirectly activate neuroinflammation261. Here, we show that in patients with 

clinical and neurological defined diagnosis of AD, antiviral immune response appears 

to be defective in the majority of AD brain samples. Moreover, gene variants of APOE 

and IRF7 genes strongly affect mRNA levels of IRF7, MED23, IL28B and IFN-α in 

hippocampus area. This brain area shows an extensive and early neurodegeneration 

during AD clinical progression373. Therefore, these findings indirectly support the notion 

that microbial infections may play a role in AD clinical progression and deficient innate 

immune responses against viruses, bacteria or their products may increase 

neurodegenerative mechanisms in the elderly.  

The second part of this thesis shows that experimental animal research has the 

advantage of enabling strict control of environmental factors, such as prenatal stress 

(PNS) exposure, that might have a role in AD-related behaviour and 

neuropathology127,128,205. In particular, we investigated the long-term cognitive 

consequences of PNS in AD mice and the PNS-early neurobiological effects in wild 

type animals. As these, mice are a useful model to suggest that PNS affects the onset 

of cognitive deficit in AD mice in a sex-dependent manner. Our findings highlight that 

preventing the impairment of fetal neurodevelopment might be important for ensuring 

not only the future adult mental health374, but also for ageing well. Based on these 

results, AD is probably best considered in a life-course framework, with important 

influences beginning also at conception and early development.  
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In conclusion, the presented study gives new perspectives for prevention and treatment 

of the ageing-associated cognitive decline and AD. Protecting women from chronic 

stress during pregnancy, on the one side, and maintenance of efficient immune 

responses during ageing, on the other one, might slowdown neurodegenerative 

mechanisms associated with senile dementia and positively influence both prevalence 

and incidence of AD.  
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