
 

 

Alma Mater Studiorum – Università di Bologna 

 
 

DOTTORATO DI RICERCA IN 
 

SCIENZE BIOCHIMICHE E BIOTECNOLOGICHE 
 

Ciclo XXIX 

 
Settore Concorsuale di afferenza: 03D1  

 
Settore Scientifico disciplinare: CHIM/10  

 
 

TITOLO TESI 

 

HIGH ADDED-VALUE PRODUCTS FROM INDUSTRIAL 
CROP BIOMASS: USES IN THE AGRO-FOOD SECTOR 

 
 

 
 

Presentata da: Dr.ssa Luisa Ugolini 

 
 
 
 
Coordinatore Dottorato     Relatore 
 

 
Prof. Santi Mario Spampinato  Prof. Alejandro Hochkoeppler 
 
          

Correlatore 
 
        Dott. Luca Lazzeri 
 

 
 

Esame finale anno 2017 
 



 

 

 



 

PREFACE 

The present PhD project reports the research study carried out mainly at the Council for 

agricultural research and economics, Research center for industrial crops (CREA-CIN) of 

Bologna. 

The studies were supervised from Prof. Alejandro Hochkoeppler, associate Professor at 

the Department of Pharmacy and Biotechnology, of the Alma Mater Studiorum-University of 

Bologna and by Dr. Luca Lazzeri, which coordinates the ‘biorefinery’ research group of 

CREA-CIN research center, a group characterized by a multidisciplinary approach which 

covers expertise in agronomy, microbiology, phytopathology, chemistry, biochemistry and 

technology. In this field CREA-CIN research center has been involved for more than 25 years 

in the study of minor non-food industrial oleaginous crops, focused on their agricultural 

production and the technological valorization of biomasses, including co-products. Among 

the different Green chemistry production chains CREA-CIN  has operated mainly in the 

biolubricant and biofuel sector and is specialized in the study of natural biological active 

molecules from agricultural biomasses for the management and defense of horticultural and 

fruit crops, as an alternative to synthetic phytochemicals. In those sectors CREA-CIN 

research activities has been focused mainly, but not exclusively, on the industrial crop family 

of Brassicaceae and their peculiar defensive system myrosinase-glucosinolate, known for its 

biological activity against numerous plant pathogens and pests. CREA-CIN contributed to the 

isolation, purification and biochemical, analytical and technological characterization of the 

myrosinase-glucosinolate system components and studied their application in the agriculture 

sector, for crop management and defense, but also in the food-sector, as ingredients for 

functional food development. 

 

The reported work is the result of a multidisciplinary project, which also involved other 

research institutions. Among them, the Centre for postharvest protection and storage of 

horticultural producs (CRIOF), Department of Agricultural Sciences of the Alma Mater 

Studiorum-University of Bologna, covered an important role for the expertise on various 

topics related to the postharvest life of fresh fruit and vegetables. The CRIOF group, 

coordinated by Dr. Marta Mari, has collabotated with the CREA-CIN group on this subject 

for more than 20 years and also supervised this work for the part dealing with the studies on 

fruit postharvest disease control and quality maintenance by natural biological molecules 

produced from the Brassicaceae family. Within this subject the study was also improved 

thanks to the collaboration of the research group of Dr. Katya Carbone of the Fruit Tree 
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Research Centre of Rome (CREA-FRU).  Finally, the last part of the work availed itself of the 

contribution of the research group of Prof. Marco Biagi, Department of Veterinary Medical 

Sciences, and the research group of the Prof. Donatella Canistro, Department of Pharmacy 

and Biotechnology, Alma Mater Studiorum-University of Bologna, which conducted the 

conclusive trials regarding the applicative uses of protein hydrolysates of vegetal origin. 
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ABSTRACT 

 

The aim of this work was the study of the transformation and valorization of industrial crop 

biomasses into high-value products with different applications in the agro-food sector, in a full 

biorefinery approach. Defatted seed meals (DSMs), co-products of the oil extraction procedure, 

from different industrial crops of high economic importance such as Brassicaceae (Rapeseed, 

Carinata et al.) and of Asteraceae (Sunflower et al.), were used, such as or after processing. Their 

biological active compound and protein content were employed to produce bio-based products for 

agriculture and functional food and feed applications. The bio-active molecules, generated by the 

myrosinase-glucosinolate system of the Brassicaceae family, were applied for the postharvest fruit 

pathogen control (Botrytis cinerea) and quality control in strawberry and kiwifruit: fruits were 

treated with vapors of allyl-isothiocyanate produced from previously formulated and standardized 

Brassica carinata A. Braun or Brassica nigra L. DSM and the pathogen incidence, biochemical and 

nutraceutical evaluations were performed after fruit storage. Also another brassica DSM, from 

Eruca sativa Mill., was studied for the glucosinolate content, to produce innovative food, as 

functional bakery products, rich in healthy compounds. Finally the protein component of DSMs 

from  sunflower (Helianthus annuus L.) and rapeseed (Brassica napus L.) DSMs, were employed 

for the production of hydrolysates by mild enzymatic hydrolysis. The sunflower hydrolysate 

produced by a two-step process, showed a good free amino acid content and was tested as 

biostimulant by in vitro and in vivo bioassays, showing an interesting hormone-like properties and a 

stimulating effect on roots. In this context the biostimulant properties derived from another 

Brassica, Barbarea verna Mill. Asch., DSM were also explored in in vitro bioassay. Finally 

sunflower and rapeseed hydrolysates, obtained by a one-step hydrolysis process, resulted as a 

product rich in small peptides and low amount of amino acids, a characteristic potentially suitable 

for the development of pet food supplements.  
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ABBREVIATIONS 

ABTS•+ 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) 

ACO1  ACC oxidase 1 

Act d1  Actinidin 

ADI   Acceptable daily intake  

AFRs   Adverse food reactions  

AITC  Allyl-isothiocyanate 

APH  Animal protein hydrolisate 

AsA   Reduced ascorbic acid 

AsAC   Ascorbic acid content 

AU  Anson Unit 

BAM  Beta-amylase 

BBI JU  Bio-based industries joint undertaking  

BHA   Butylated hydroxyanisole 

BHAE  Butylated hydroxyanisole equivalent  

CA   Controlled atmosphere  

CAE   Catechin equivalents  

CAR-PDMS  Carboxen-polydimethylsiloxane 

CAT   Catalase  

CHS3  Chalcone synthase 

CREA-CIN  Consiglio per la ricerca in aghricoltura e l’analisi dell’economia agraria – Centro di 

ricerca per le colture industriali 

CV   Cyclic voltammetry  

DH   Hydrolysis degree  

DHA   Dehydroascorbic acid  

DM   dry matter 

DNA   Deoxyribonucleic acid 
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DPPH•  2,2-diphenyl-1-picryl-hydrazyl-hydrate 

DPV   Differential pulse voltammetry 

DSM   Defatted seed meal 

DTNB  5,5’-dithiobis(2-nitrobenzoic acid  

EC50  Half maximal effective concentration 

EC95  95% maximal effective concentration 

EDTA   Ethylenediaminetetraacetic acid  

EFSA  European food safety authority 

ESP  Epithio-specifier protein 

ETR2  Ethylene receptor 

EU   European Union 

FAO  Food and agriculture organization of the United Nations 

FDA  Food and drug administration 

FID  Flame ionization detector 

FLC  Flavan-3-ol content 

FMOC  9-fluorenylmethylchloroformate 

FPLC   Fast protein liquid chromatography  

FW  Fresh weight 

GA   Gallic acid  

GAE   GA equivalent  

GalDH  L-galactose dehydrogenase 

GC  Gas-chromatography 

GER  Glucoerucin  

GL   Glucosinolate 

GPP  L-galactose-1-phosphate phosphatase 

GRA  Glucoraphanin 

GRAS  General recognized as safe 
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GSH  Reduced glutathione 

GSSG   glutathione 

GST  Glutathione S-transferase  

HPLC  High-performance liquid chromatography 

HS  headspace 

HSD  Honest significant difference 

IAA  Indol-3-acetic acid  

IEA  International energy agency  

ITC  Isothiocyanate 

LAPU  Leucine aminopeptidase unit 

LOD  Limit of detection 

LOQ  Limit of quantification 

LSD  Least significant difference 

MDHAR  Monodehydroascorbate reductase 

MEA   Malt extract agar 

MES   2-(N-morpholino)ethanesulfonic acid 

M2PV   1-methyl-2-vinylpyridinium triflate 

MRL   Maximum residue limit  

MS  Mass spectrometry 

MYR   Myrosinase 

NADPH β-Nicotinamide adenine dinucleotide 2′-phosphate reduced 

NBT   nitrobluetetrazolium 

NSP  Nitrile-specifier protein 

OPA  o-phtalaldehyde-3-mercaptopropionic acid  

PAL  Phenylalanine ammonia-lyase  

PG  Polygalacturonase 

POD   peroxidases  
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PPO  Polyphenol oxidase 

PR5  Thaumatin-like protein 

RMH   Rapeseed meal hydrolysates  

RNA   Ribonucleic acid 

ROS  Reactive oxygen species 

RPH  Rapeseed protein hydrolysate 

RSD  Relative standard deviation 

SAM   S-adenosylmethionine synthase 

SDS-PAGE  Sodium dodecyl sulphate - polyacrylamide gel electrophoresis 

SE  Standard error 

SME   Medium-size enterprises 

SMH   Sunflower meal hydrolysate  

SOD  Superoxide dismutases 

SPH   Sunflower protein hydrolysates  

SPME   Solid phase micro-extraction 

SSA   Sulfosalicylic acid  

SSC   Soluble solid content  

TA   Titratable acidity  

TCEP   Tris(2-carboxyethyl)phosphine  

TE   Trolox equivalent  

TFP  Thiocyanate-forming protein 

TPC   Total polyphenol content  

TUA  Alpha-tubulin 

UBC9   Ubiquitin conjugating enzyme 

UBQ   Ubiquitin 

VPH   Vegetal protein hydrolysate 
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CHAPETER 1.  

INTRODUCTION 
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1.1 The Biorefinery concept in the Circular Bioeconomy 

Today more than 80% of energy and 90% of organic chemicals in the world are derived from 

fossil fuels (oil, coal and natural gas) and their demand is constantly growing due to the world 

population increase (Maity, 2015). Therefore renewable resources are becoming more and more 

necessary due to the progressive depletion of fossil supply and their high costs, economic and 

environmental, linked to the high greenhouse gas emissions and the climate change.  

The Bioeconomy is a large and rapidly growing segment of the economy and more strictly of 

the Green Economy, which policy is centered on the use of renewable raw materials from land and 

sea – such as crops, forests, fish, animals and microorganisms – and on the application of research, 

development and innovation and industrial biotechnology to produce added value products as food, 

feed, biobased-products and bioenergy
1
 (Scarlat et al., 2015). The Bioeconomy goals are the 

reduction of reliance on fossil fuels and non-renewable resources, preventing the loss of 

biodiversity and limiting soil use transformation, and finally to protect the environment and 

promote economic growth and local traditions. The scientific research and the biotechnology 

innovations are the foundation of the related economic activities, where the recycling and re-use of 

waste in the agro-food, forest, bio-industry and marine sectors, is a part of the winning strategies, 

promoted by the European community, following the concepts of Circular Economy and 

environmental sustainability.  

According to the REN21’s 2016 report only around 20% of global energy consumption comes 

from renewable energy, of which more than 50% derives by biomasses (biofuels and waste), with 

China, United States and Germany being the top three countries in renewable power capacities, 

while Italy is the sixth one (REN 21, 2016). Furthermore, while for energy production other natural 

sources are also available (wind, sun, water etc.), for the chemical and biotechnological industry, 

the biomass dependence is even more strict (Kamm et al., 2015). Among the renewable resources, 

biomasses comprise in fact a large class of materials of organic origin, such as from forest, 

agriculture and urban waste, including dedicated energy crops and trees, agricultural foods and feed, 

crop residues, aquatic plants, wood, animal and other waste materials, which can be used as 

feedstock for the bio-based industry and for bioenergy production (Ohara, 2003). Biomasses 

availability, sustainable technology progress, in terms of technical performances and cost 

effectiveness, are necessary for a transition to Bioeconomy (Scarlat et al., 2015). Global 

Bioeconomy policies and strategies promote the use of dedicated, purposely developed biomasses 

in a sustainable production system throughout a cascading approach of biorefinery. This means that 

                                                           
1
 https://ec.europa.eu/research/bioeconomy/index.cfm 

https://en.wikipedia.org/wiki/World_energy_consumption
https://ec.europa.eu/research/bioeconomy/index.cfm
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the biomass could be firstly processed into high value products (e.g. pharmaceutical materials, 

chemicals) and the residues could be then re-used in order to reduce final waste accumulation (Van 

Lancker et al., 2016). The relevance of these subjects is demonstrated by their strong insertion in 

the European framework program for research and innovation for 2014/2020, Horizon 2020 

(Societal challenge 2: Food security, sustainable agriculture and forestry, marine and maritime and 

inland water research and the Bioeconomy). In this context in 2014 a public-private partnership 

between the EU commission and the bio-based industries consortium was officially established (EU 

Council Regulation No 560/2014 of 6 May 2014), the so called Bio-based Industries Joint 

Undertaking (BBI JU). This partnership, is focused on the use of biomasses (including their co and 

by products) for the production of innovative added-value bio-based materials and fuels applying 

the biorefinery approach as the most effective strategy
2
. However the interest is shared also by other 

countries, in a world common perspective. In April 2012, in fact, the US administration launched 

the “National Bioeconomy Blueprint”
3
, focusing on the bioscience research, and other countries as 

Japan, India, Brazil, and China are investing in a more sustainable economy (Van Lancker et al., 

2016).  

The concept of biorefinery, originated in the late 1990s, has been defined by the International 

Energy Agency (IEA, 2015) as ‘the sustainable processing of biomass into a spectrum of 

marketable products and energy’. Initially it mainly involved the ethanol fermentation processes for 

fuels (Keller, 1996), but it is still under constant evolution and growth, driven by the scientific 

research and technology improvement. Biorefineries are currently classified as 1
st
 to 4

th
 generation 

based on the applied technology and feedstock raw materials. 1
st
 generation biorefineries process 

agricultural biomasses as vegetable oils or sugars from food crops for biofuel production; the 2
nd

 

generations start from non-food materials, as lignocellulosic biomass, wood, agricultural residues 

and purpose-grown energy crops on marginal lands; the 3
rd

 generation biorefineries regard the uses 

of aquatic biomass i.e. algae, while the 4
th

 is under definition and deals with new technologies and 

biotechnologies, as those called “synthetic biology” for the production of photo-biological solar 

fuels and electro-fuels (Aro, 2016; Parada et al., 2016). While the application of the 1
st
 generation 

of biorefineries is now often discouraged owing to their negative impact on food security and 

supply, the other biorefinery generations are still under development and the 3
rd

 and even more the 

4
th

 are currently subjects of many scientific researches (Popp et al., 2014). Nevertheless 1
st
 

generation biorefineries could still be considered at local scale in small plants for instance for 

vegetal oil production directly on the farm (Spinelli et al., 2013; Lazzeri et al., 2015). Finally, the 

                                                           
2
 http://ec.europa.eu/research/press/jti/factsheet_bbi-web.pdf 

3
 https://obamawhitehouse.archives.gov/blog/2012/04/26/national-bioeconomy-blueprint-released 

http://www.welcomeurope.com/european-subsidies-sector-Research.html
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0560&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0560&from=EN
http://ec.europa.eu/research/press/jti/factsheet_bbi-web.pdf
https://obamawhitehouse.archives.gov/blog/2012/04/26/national-bioeconomy-blueprint-released
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biorefinery could be projected on an existing abandoned industrial infrastructure with the aim of 

recovering areas fallen into disuse (browfield), or new built (greenfield) or could result from an 

integration of new technologies within existing operating plant structures (retrofit) (Batsy et al., 

2013).  

Agriculture is one of the macro-sectors in which Circular Economy and Bioeconomy 

strategies are investing most, since a huge quantity of biomass is generated and represents one of 

the most abundant and low cost renewable resources (Santana-Méridas et al., 2012). Agriculture 

biomasses include non-edible crop-based residues, as those derived from the field or horticultural 

production (e.g. cereals, tubers, legumes stalks, wheat straw, leaves, roots etc.) and processing-

based residues, derived from the post-harvest agro-industrial processing of the crop and the relative 

by-products (e.g. husks, seeds, bagasse, peels, hulls, meals from the industry of fruit, coffee, cereal, 

grape, oil, wood etc.). Great is the economic and social interest in the efficient recovery of 

agricultural industry residues to be used as a source of energy or as raw materials for the conversion 

into different bioproducts (animal feed, compost, panels, paper, biofertilizers, biofibers etc) or for 

the isolation of bioactive natural products through chemical or enzymatic transformation and 

fractionation technologies (flavonoids, polyphenols, tocopherols, tannins, carotenoids, vitamins, 

sugars, essential oils, terpenes, lignin, fibre, proteins, peptides, etc). 

In the recent years some controversies have arisen from the use of crop biomasses concerning 

the competition for land, food, feed or sustained carbon storage. For this reason the re-use of 

marginal, unused or contaminated land and the biodiversity maintenance have been now strongly 

encouraged, together with the individuation of dedicated local species at low impact, the recycle of 

crop residues and waste and the improvement of transformation technology efficacy, as valid 

alternatives to the direct landfilling, according to the Directive 1999/31/EC.  

1.2  Industrial oleaginous crops 

Oleaginous crops are widely used for vegetable oil production for food and non-food 

applications as bioenergy or industrial green chemistry. They include conventional crops, such as 

sunflower (Helianthus annuus L.) and rapeseed (Brassica napus L.), but also other industrial crops 

form the Brassicaceae family (Crambe abyssinica Hochst., Brassica carinata A.Braun, Brassica 

nigra L., Brassica napus L., Camelina sativa L. Crantz). They are usually short rotation crops, with 

a high yield in term of seed and residual biomass, and some of them, as Brassica carinata, offer the 

advantage of being of high rusticity, pedo-climatic adaptability and at low-input request, thus 

suitable for a sustainable cultivation in marginal unused lands (Lazzeri et al., 2010; Taylor et al., 

2010).  

https://en.wikipedia.org/wiki/Husk
https://en.wikipedia.org/wiki/Bagasse
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The seeds can be considered as a natural chemical factory, starting point for the production 

and isolation of different bio-based products, fuels, chemicals, cosmetics and pharmaceuticals, from 

a circular/zero waste Bioeconomy perspective.  

The oil fraction represent the 20 to 50 % (w/w) of the industrial culture seed and it was 

mainly produced for biofuels (e.g. energy crops for biodiesel) and for technical oil. Extraction is 

usually performed by hexane and/or physical pressing of seeds, the latter determining a higher 

residual oil content in the press-cake (10-12%). In function of the different physical and chemical 

properties it could be exploited as primary renewable source in diversified field for the production 

of biolubricants, biopolymers, hydraulic fluids, cosmetics, bio-plastic, carboxylic acid as building 

blocks for bioactive molecules, technical media in agriculture (mulching film), bio-construction 

(Lazzeri et al., 1994; Bergman and Flynn, 2008; Soni and Agarwal, 2014; Li et al., 2015). 

The uses of oil have been extensively studied, while other seed components, as the protein 

fraction and bioactive molecules, have often been neglected.  

The residual meal after oil extraction, the defatted seed meal (DSM), constitutes the major by-

product (around 60% of the seed) of the process and it is usually used for animal feed. Nevertheless 

it represents a source of high added-value materials for the agro-food and industrial sectors and its 

transformation into co-products, in an integrated biorefinery framework, indeed makes it possible to 

decrease the amount of waste and to increase the efficiency of the entire industrial process. The 

DSM is mainly composed of proteins (30-40%), fibres (lignocellulosic materials, 10-50%), and 

minerals (5-7%). The use of plant storage proteins in food and non-food industries is determined by 

their functional properties which can also be improved by chemical, physical or enzymatic 

treatments (Santana-Méridas et al., 2012). They could be exploited for example for the production 

of bioplastics and biopolymers, including packaging materials, emulsifier and surfactants as 

renewable and biodegradable alternative to petroleum synthetic-based chemicals (Zhang and Mittal, 

2010). In animal and human nutrition they could be an alternative protein source to meat proteins, 

as such or after hydrolysis, which permit to obtain free amino acids and small peptides, with 

potential biological health promoting properties (Xue et al., 2009; Aoife et al., 2013 and Section 

4.2.2). Small peptides could in fact be potential ingredients of functional foods, nutraceuticals, bio-

preservatives or pharmaceuticals, with antimicrobial, or antihypertensive properties (Carrasco-

Castilla et al., 2012; Wanasundara et al., 2016). Other uses of protein hydrolysates are those within 

the agricultural field such as biofertilizer and biostimulants for plants (Ertani et al., 2009, Section 

4.2.1.). In addition other low molecular weight compounds, in low percentage (3-7%), but with high 

biological and pharmaceutical value, could be present in the seed, as glucosinolates (Chapter 3), 
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vitamins, tocols, phytosterols and phenolic compounds.  They could be used in the food industry for 

their antimicrobic and/or antioxidant activities, as natural preservatives or as protecting agents 

against many degenerative diseases as cancer, cardiovascular and neurodegenerative or 

inflammatory diseases, (Santana-Méridas et al., 2012; Terpinc et al., 2012; SzydłOwska-Czerniak, 

A., 2013; Das et al., 2014; Dua et al., 2014). 

Finally, in order to succeed in applying a valuable biorefinery strategy, biomass proper 

individuation and selection have to be combined with efficient, innovative, cost-effective and 

environmentally-friendly processes for the extraction and fractionation of the bioactive molecules 

from the biomass. Green chemical technologies that take advantage of ultrasounds, microwaves, 

supercritical fluids or enzymes, the so called White technologies, have to be used with the aim of 

reducing solvent consumption, to preserve biological activity of the isolated molecules and to define  

the overall process as environmental sustainable.  

1.3  The Bioeconomy in Italy 

In Italy, in 2015, the bioeconomy comprises the ‘agriculture, forestry and fishery’ sectors, 

which amounts to around the 23% of total turnover, the ‘food industries, beverages and tobacco’ 

sector which reaches the 51,5%, while the bio-based pharmaceutical and chemical industry and the 

bioenergy and biodiesel production amount for the 3% and 1% respectively
4
. 

In the bio-industry sector Italy has a relevant role and important private investments made it 

possible the realization of biorefineries integrated in the local area which use renewable raw 

materials or dedicated sustainable crops, for the production of bioplastic and biochemical, 

revitalizing abandoned industrial sites, unused or no longer competitive (Ganapini et al., 2013). 

Indeed different projects are recognized as lighthouse projects in Europe by the BBI JU such as the 

First2run case study at Biocirce
5
, regarding the sustainability of a local integrated biorefinery for 

the production of biobased products from low input oil crops (e.g. cardoon and safflower). 

The rural diversification, the rich biodiversity and the long and rich cultural tradition are in 

fact prestigious and characterizing elements that make Italian agriculture internationally competitive 

even on non-food application.  

Furthermore the Italian contribution to the bio-based economy is demonstrated by the recent 

institution of national clusters, partnership of public and private stakeholders companies and 

research centers, as the National Technology Agrifood Cluster CL.A.N., active in the agri-food 

                                                           
4http://www.agenziacoesione.gov.it/opencms/export/sites/dps/it/documentazione/NEWS_2016/
BIT/BIT_EN.pdf 
5http://www.first2run.eu/ 

http://www.first2run.eu/
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sector, and the National Technological Cluster of “Green Chemistry” SPRING with the mission of 

revitalizing the Italian green chemistry value chain, starting from renewable resource from 

agriculture, for the development of innovative bio-based industries through the promotion of 

biorefineries integrated on the territory and the implementation of investments in new technologies 

to stimulate bioeconomy at a national and regional level
6
. 

In this contest the Italian VALSO project (technology integrated system for the valorization 

of the by-products derived from the biodiesel production chain) coordinated by the CREA-CIN 

research center of Bologna, was funded by the Italian Ministry of Agriculture and Forestry 

(MiPAAF) in 2010, and, in line with the European and international biorefinery approach, involved 

private companies, public research centers and universities. The project aimed at valorizing the 

economic and environmental sustainability of biodiesel chain through the recovery and valorization 

of by-products, mainly glycerin and defatted seed meals as secondary biomass residues, derived 

from Italian oil extraction plants. The project worked starting from seeds of the most common 

sunflower and rapeseed, but also of the promising cultures Brassica carinata and Brassica nigra. 

The research project, ended in 2014, permitting the identification of new biobased products, mainly 

for the industry (biopolymers, hydraulic fluids, coolants), for the agriculture, as technical means 

(fertilizers, amendments, biostimulants, herbicides, biopesticides), and for animal feed (pet food), 

that could substitute conventional fossil source chemicals (Lazzeri et al., 2015). The re-use of 

byproducts and coproducts and the consequent improving of the economic feasibility of the Italian 

biodiesel chain has been an example of a multidisciplinary, integrated project, whose organization 

and management could be easily transferred to many other innovative agricultural and food chains 

with industry involvement. The project was developed following the concept of diversified 

biorefineries integrated in the local area, linked to the specificity agricultural productivity, by using 

local raw materials and protecting local biodiversity, key factors for the realization of a Circular 

Economy and its enhancement of markets and competitiveness.  

The CREA-CIN is also partner of the Italian project SUSCACE (Axbb, Materie prime 

Agricole italiane per Bioprodotti e Bioenergie – 2012-2018) focused on the agronomic and 

productive evaluation of some high-rusticity oleaginous crops (Linum usitatissimum L., Camelina 

sativa L. Crantz, Carthamus tinctorius L. and Crambe abyssinica Hochst.) for the recovery of raw 

materials, oil, defatted seed meals and field residues, to be used in the biolubricant, nutraceutical, 

cosmetic and construction sectors
7
. In April 2016, the research center has being also involved in the 

five year national project AGROENERGY (D.D. n. 26329, 1 april 2016) - 
                                                           
6
 http://www.clusterspring.it/home-en/ 

7
 http://www.chimicaverde.it/progetto-axbb/ 

http://www.clusterspring.it/home-en/


17 
 

http://agroener.crea.gov.it/), funded by MiPAAF, dealing with the use of agro-forestry and agro-

industrial by-product (in the biogas chain) and the use of dedicated cultures (Camelina sativa L. and 

Carthamus tinctorius L.) for the biofuel and biolubricant extraction within a biorefinery approach
8
. 

The research activities reported in the present thesis have being partly performed under the 

above mentioned VALSO, SUSCACE and AGROENERGY projects. 
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CHAPTER 2.  

AIMS OF THE STUDY 

The aim of the thesis was to study the potential uses of industrial biomasses derived by 

oleaginous crops, in particular the residual meal after oilseed defatting procedure, for the production 

of high-added value materials for application in agriculture and food and feed sectors.  

Defatted seed meals (DSMs) from Brassicaceae, Brassica carinata A. Braun and Brassica 

nigra L., were mainly examined for the production of the bioactive molecule allyl-isothiocyanate, 

with the following objectives: 

  to develop a rapid analytical method for the screening of the allyl-isothiocyanate 

releasing properties of biofumigant materials for crop protection and their standardization;  

  to apply the gaseous allyl-isothiocyanate in the postharvest phase and to investigate 

the effect on pathogen control and fruit quality, through the evaluation of biochemical and 

physiological parameters, in strawberry and in kiwifruit. 

DSM from the brassica Eruca sativa Mill. was also explored as potential ingredient in functional 

food for human nutrition, thanks to the healthy properties of the glucosinolate content and the 

corresponding isothiocyanate production.  

Finally, the protein fractions of other DSMs were studied and the production processes of two 

hydrolysates from sunflower (Helianthus annuus L.) and rapeseed (Brassica napus L.) DSMs, with 

different amino acid and peptide compositional characteristics, were set up. The obtained products 

were preliminarily tested as follows: 

  the sunflower DSM hydrolysate was tested as biostimulant for agriculture in in vitro 

and in vivo bioassays; in this context the potential biostimulant properties of Barbarea verna 

Mill. Asch. DSM were also investigated; 

  both sunflower and rapeseed DSM hydrolysates were tested in animal feed, as 

supplement for pet diets, evaluating the in vitro digestibility test and in vivo safety.  
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CHAPTER 3.  

BRASSICACEAE DEFATTED SEED MEALS 
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3.1. Introduction 

3.1.1. The Brassicaeae family 

Among industrial crops Brassicaceae (Cruciferae) represent a wide botanical family 

belonging to the Brassicales order that comprise well known plants, historically part of the human 

diet and widely cultivated as important vegetable, condiment, oilseed, and forage crops (Fenwick et 

al., 1983). They are composed of 350 genera and about 3500 species, including some edible and 

industrial oilseed crops of great economic importance (Fahey et al., 2001). Rapeseed (Brassica 

napus L.) for instance, is the most important source of vegetable oil in Europe and the second most 

important oilseed crop in the world after soybean (SzydłOwska-Czerniak, A., 2013). Almost all 

rapeseed production in EU has shifted to ‘double-low’ or ‘double 00’ or ‘canola’ rapeseed cultivars, 

with low content of potential anti-nutritional compound as erucic acid in the oil (<2%) and 

glucosinolates in the meal (< 30 μmol g
-1

), developed by breeding and now mainly used in food and 

feed production. In addition, it has become in Europe the primary feedstock for biodiesel production 

and for other non-food applications.  Examples of Brassicaceae include also Brassica juncea L., 

Sinapis alba L. and Brassica nigra L. respectively indian, white and black mustard, known as 

mustard condiment crops (Warwick, 2011) and other edible plants. These plants are often present in 

human diet and are well-known for their nutritive and healthy properties in folk medicine, but also 

in the modern medicine, being object of numerous recent research studies (Jahangir et al., 2009). 

Among those Brassicaceae some are broccoli, cabbage, cauliflower, Brussels sprouts, kale 

(Brassica oleracea L.), turnip (Brassica rapa L.), radish (Raphanus sativus L.), horseradish 

(Armoracia rusticana P.), salad rocket (Eruca sativa Mill.), consumed worldwide. The Arabidospis 

thaliana also belongs to the Brassicaeae family and it is well-known as model organism for the 

cellular and molecular biology research. Conversely wallflower (Erysimum pseudoraethicum L.) 

and honesty (Lunaria annua L.), are grown as ornamental flowering plant, while Isatis tinctoria L. 

is  an invasive wild species used for producing a blue dye mainly from the leaves and some others 

plant parts, that grow even on marginal lands. In this regard the CREA-CIN Institute of Bologna has 

one of the most rich collection in Europe of Brassicaceae seeds, from wild and cultivated non-food 

species, which were characterized for their fatty acids and bioactive molecules content, and some of 

them also tested in full-field, in order to valorize the Brassicaceae biodiversity (Lazzeri et al., 

2013).  

All plants of the Brassicaceae family are characterized by the presence of a bioactive 

endogenous system, being part of the plant defensive mechanism, the myrosinase-glucosinolate 

system (MYR-GL), particularly concentrated in the seed, where it accumulates during ripening. 

https://www.britannica.com/science/invasive-species
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3.1.2. The myrosinase-glucosinolate system 

GLs are secondary metabolites representing around 5% of seed composition and have been 

subject of several studies over the last half-century, initially for the effects of various derivatives in 

food and feed sectors due to the undesired pungent flavour and anti-nutritional characteristics and 

more recently, for their therapeutics and chemo-preventive properties (Fahey et al., 2001; Holst and 

Williamson, 2004). GLs share a common hydrophilic β-D-glucopyranose residue linked via a 

sulphur atom to a (Z)-N-hydroximinosulfate ester plus a variable hydrophobic aglycone side chain 

derived from one of eight amino acids. Among the around 130 GLs documented by 2011, the 

aglycone side chain may be characterised from aliphatic, arylaliphatic or indolic side chains, and it 

is the part of the molecule that determines the structural molecular variation of GLs (Agerbirk and 

Olsen, 2012; Blažević et al., 2016). A single GL is often dominant in brassica plant and their GL 

quali-quantitative composition largely depends on the plant genotype, the plant organ, growth stage, 

and even on the cultivation conditions (Björkman et al., 2011; Katsarou et al., 2016).  

GLs consistently occur in plants in conjunction with the hydrolytic enzyme thioglucosidase 

hydrolase, commonly known as myrosinase, MYR (-thioglucosidase, E.C. 3.2.1.147) (Bones and 

Rossiter, 1996, 2006; Mithen, 2001). Upon biotic (pathogen attack) or abiotic (harvesting, 

processing or mastication) lesions that determine physical disruption of the plant cell, GLs and 

MYR come into contact, triggering, in the presence of water (comprise the endogenous plant 

water), the hydrolysis reaction that releases, starting from GLs, glucose and an unstable aglycone. 

Finally the aglycone undergoes a fast Lössen rearrangement to form a broad range of degradation 

compounds, in function of several factors as substrate structure, reaction conditions, in particular 

pH and the presence of specifier proteins (Hanschen et al.,  2014). The isothiocyanates (ITCs) are 

often the main products when the reaction occurs at 5-7 pH range, while nitriles, epithionitriles, 

thiocyanate and oxalidinethiones could be formed under different conditions (Figure 1).  
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Figure 1. General pathway of MYR-catalyzed hydrolysis of GLs. TFP, thiocyanate-forming 

protein; ESP, epithio-specifier protein; NSP, nitrile-specifier protein. 

 

The protein cofactors that influence MYR reaction are the heat-sensitive epithio-specifiers 

(ESPs), nitrile-specifiers (NSPs), and thiocyanate-forming proteins (TFPs), and they redirect the 

hydrolysis of GLs to nitriles, or epithionitriles or thiocyanates in function of the GL side chain 

structure and the reaction conditions. The aglycone seems to be their substrate, in presence of MYR, 

but not the intact GL (Burow et al., 2009; Kong et al., 2012). MYR constitutes a group of 

isoenzymes that are present in specialized ‘myrosin cells’ distributed throughout seeds (Figure 2), 

seedlings, and mature tissues of plants and are glycoproteins containing various thiol groups, 

disulfide and salt bridges. They often show multiple forms with different molecular weights (135-

580 kD), number of subunits (2-12) and a variable percentage of carbohydrate (up to 22.5%), 

mostly hexoses (Bones and Rossiter, 1996; Ahuja et al., 2015; Bones, 2015). The most 

characterized MYR isoenzyme was isolated from ripe seeds of Sinapis alba, and consists of two 

identical subunits with a molecular weight of 71.7 kD, of which 15 kDa are due to
 
glycosylation, 

stabilized by a Zn2+ ion bound on a 2-fold axis, with tetrahedral coordination (Burmeister et al., 

1997). MYR activity is enhanced by magnesium chloride and L-ascorbic acid, and it is differently 

inactivated by temperature and pressure depending on the type of  Brassica (Sharma et al., 2012; 

Dal Prá et al., 2013). MYR also occurs in fungi, bacteria and even in the microflora of soil and of 

human gastrointestinal tract where converts GLs in nitriles and ITCs, even when the plant enzyme 
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is inactivated viz. after cooking (Mullaney et al., 2013; Martinez-Ballesta et al., 2015). Anyway gut 

GL hydrolysis in absence of plant MYR is poor, unless microbiota is previously exposed for days to 

GL containing food (Angelino et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (A) Compartmentalization of the enzyme myrosinase (MYR) in myrosin cells in a 

Brassica Napus seed tissue section, stained with toluidine blue and observed under a light 

microscope. (B and C) Myrosin cell surrounded by myrosin grains visible as globular green 

vacuoles, containing MYR. The glucosinolates (GLs) are indeed dissolved in the cytoplasm of 

neighboring cells. It is only the simultaneous damage of at least three membranes which permits the 

initiation of the hydrolysis of GLs. Picture rearranged by Ahuja et al. (2011). 

 

 

ITCs are bioactive compounds largely known for their broad-spectrum biological activity 

against nematodes, soil-borne fungi and insects or weeds. (Fahey et al., 2001; Matthiessen and 

Kirkegaard, 2006; Lazzeri, et al., 2009; Lazzeri, et al., 2013). Their biological activity is due to the 

high electrophilic carbon atom of the (–N=C=S) group, which reacts with amines, thiols and 

hydroxyls to generate thiourea, thiocarbamates and carbamates respectively, thus leading to protein 

and enzyme biochemical behaviour and biological activity modifications (Dufour et al., 2015). 

Anyway the mechanism of action at molecular level in cells has not being completely clarified yet 

(Lin et al., 2000). In bacteria ITCs seem to have a multi-targeted mechanism of action, affecting 

pH > 6,5 
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several metabolic pathways, probably involving membrane damage, inhibition of enzyme activities, 

such as those of cellular respiration, induction of heat-shock and oxidative stress responses, and free 

amino acids depletion (Luciano and Holley, 2009; Dufour et al., 2015). In addition, conjugation 

with glutathione (via glutathione-S-transferase enzyme) is a major metabolic route of ITC 

accumulation and detoxification in both rodents, humans and probably also in microorganisms and 

plants (Øverby et al., 2015; section 3.3). Their different chemical structure indeed determines 

important chemical and physical properties as hydrophobicity and volatility, but also their 

specificity towards different organism or different life cycle stages among the same organism 

(Brown et al., 1997; Smith and Kirkegaard, 2002).  

3.1.3. The Biofumigation 

Crop diseases caused by pathogen and parasite attach are one of the major responsible for 

product loss and consequent lower income for farmers. Synthetic pesticides and in particular 

fumigants for soil-borne fungi and pests control are compounds with low selectivity and a high 

environmental impact (viz. halogenated hydrocarbons as methyl bromide, subjected since 2005 to 

phase out due to its negative environmental impact). These products are till now the most applied 

defence strategy in conventional agriculture even if the EU is giving great attention to less impact 

alternatives. In fact, together with awareness of the toxicity of synthetic compounds and the arising 

interest for innovation in organic agriculture, there is the need for more environmental friendly 

alternatives to synthetic pesticide. One of the most promising alternative strategies has been the 

incorporation of plant tissues or their derived products in the soil, a technique that combines the 

positive effect of organic matter and biocidal natural molecules (allelochemicals). The use of ITCs 

generating from brassica plants and products as biological active green manure is one of the most 

studied control method to replace the use of synthetic pesticide: the so-called biofumigation 

technique (Kirkegaard and Matthiessen, 2004; Lazzeri et al., 2004; Matthiessen and Kirkegaard, 

2006; Gimsing and Kirkegaard, 2008). Recently at the CREA-CIN of Bologna, different liquid and 

solid formulates were studied applying patented industrial technologies to Brassica carinata A. 

Braun (Ethiopian mustard) defatted seed meals (DSMs), and these biofumigant products are today 

largely utilized in organic and conventional horticulture as pre-plant treatment, but also for the plant 

defence and control during cultivation and, although still at experimental stage, for the fruit and 

vegetable pathogen control in postharvest phase (Lazzeri et al., 2010, 2013; Section 3.2 and 3.3). 

Allyl-isothiocyanate (AITC) is the degradation product of sinigrin (2-propenyl GL) present in the 

DSM as basic component of those products, and it is a volatile reactive molecule with favourable 
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chemical-physical properties (as the good volatility), that results in a broad-spectrum biological 

activity (Lazzeri et al., 2009, 2011; Benfatto et al., 2015; Section 3.2).  

3.1.4. Brassica beneficial properties in human health 

ITCs are known and recently studied also for their chemio-protective and antioxidant 

activities assayed in vitro, and in vivo in human and in epidemiological studies (Herr I. and Büchler, 

2010). The glucoraphanin, 4-methylsulfinylbutyl GL, found in broccoli, precursor of the ITC 

sulforaphane, has been the focus of many of these studies, but there are other ITCs with interesting 

potential health promoting properties. Their anti-carcinogenic activity is due to direct detoxification 

of xenobiotics, as heterocyclic amines, by inhibition of phase I enzymes of the cytochrome P450 

system, responsible for the activation of numerous carcinogens. In addition, ITCs are potent inducer 

of numerous nuclear factor erythroid-derived 2 (Nrf2)-dependent phase II enzymes involved in 

xenobiotic detoxification (NADH quinone reductase, NQO1, y-glutamilcysteine synthetase, GGCS, 

eme oxigenase-1, HO-1, glutathione S-transpherase, GST, glucuronosil transferase, epoxidic 

hydrolases). They are characterized from an inhibitory activity towards inflammatory cytokine 

production (iNOS, COX-2, IL-1 and TNF-) and they suppress the signal transduction mediated 

by the nuclear factor NF-kinvolved in the production of adhesion molecules, inflammatory 

cytokines, growth factors and anti-apoptotic factors. ITCs are thus indirectly involved in the 

elimination of reactive anti-oxidants (ROS). They also induce cell cycle arrest and apoptosis in 

cancer cells (Melchini and Traka, 2010; Sulforaphane Glucosinolate Monograph, 2010; Zhang, 

2012; Gupta et al., 2014). They conjugate with intracellular glutathione and could affect the redox 

homeostasis by depleting it and by inhibiting glutathione/thioredoxine reductases (Hu et al., 2007; 

Zhang, 2000). Anyway, the ITC biological effects are dose-dependent and so they can become toxic 

at high concentrations, hence, bioavailability is a fundamental key factor for exerting beneficial 

properties. Once absorbed by the intestine they are metabolized in the liver to N-acetyl cysteine 

conjugates and finally excreted in urine as mercapturic acids (Conaway et al., 2002). In addition to 

their antioxidant and anti-carcinogenic activities they also exert their health effect throughout a 

broad range of anti-microbic activity against several human bacteria, in particular the Helicobacter 

pylori (Fahey et al., 2013). Allyl-isothiocyanate as well, known above all for its broad-spectrum 

antimicrobial activity, seems to be a good candidate as a cancer chemo-preventive agent, in 

particular acting in the bladder, where it accumulates after oral exposition, even if at high dose 

levels exhibit a low degree of cytotoxicity and genotoxicity in animal studies (Zhang, 2010). On the 

contrary, neoglucobrassicin (1-methoxy-3-indolylmethyl GL) is a potent mutagen and it counteracts 

some inductive effects of sulforaphane, while progoitrin and epi-progoitrin are considered 
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goitrogenic (Fahey et al., 2001; Haak et al., 2010). Furthermore the well documented pleiotropic 

actions of ITCs was recently completed by studies on the detoxifying effect in carcinogenesis of 

intact GLs (glucoraphanin and glucoreucin), largely supported by clinical study (Abdull Razis, et 

al., 2010; Yu Jiang, et al., 2014).  

Brassicaceae vegetables are also a rich source of other health promoting nutrients and 

phytochemicals apart from GLs, such as vitamins (carotenoids, tocopherol, ascorbic acid, folic 

acid), minerals (Cu, Zn, P, Mg, among others), fibers, soluble sugars, amino acids and indole 

phytoalexins and phenolic compounds. All these biologically active molecules contribute to the 

antioxidant, anticarcinogenic, and cardiovascular protective activities of Brassica vegetables 

(Jahangir 2009, Reviews). Among the different phenolic compound categories Brassicaceae mostly 

contains flavonoids, in particular flavonols, although the composition could be extremly different in 

function of the species and cultivation environmental factors (Cartea et al., 2011). In particular, 

some Brassicas as Brassica juncea, characterised by a high GL content both in root and plant aereal 

part, are very rich in poliphenol compounds active as anti-diabetics and antioxidants at the brain 

level with excellent benefic effect on cognitive functions (Thakur et al., 2013). Camelina sativa L. 

Crantz DSM resulted to be a good source of GL degradation products also containing good amount 

of quercetin, synergically acting as detoxifying agents in hepatic cells (Das et al., 2014). The 

potentiality of these molecules for human health and protection from cardiovascular and metabolic 

disease are gaining more and more interest and research is directed towards the study of ‘functional’ 

and/or ‘enriched’ food with specific benefic effects (Section 4.1). 
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3.2. Screening of isothiocyanate releasing properties of biofumigant materials in a 

simple model system 

3.2.1. Introduction 

Biofumigation refers to the use of isothyocyanates (ITCs) released from glucosinolate (GL) 

hydrolysis in Brassica crops for the management and defense from soil-borne pests and pathogens 

control (Kirkegaard and Matthiessen, 2004; Lazzeri et al., 2004). GL secondary metabolites are 

present in all plant organs of brassica plant, but after seed ripening they are concentrated in the 

seeds, where they accumulate during seed development. Seeds are also the main source of oil for 

industrial and bioenergy purpose. The defatting procedure by pressure preserves the high GL 

content and residual defatted seed meals (DSMs) are therefore an abundant by-product and at the 

same time a good starting material for the production of innovative biofumigant materials. The 

DSM offers in fact different advantages if compared to the use of fresh manure commonly used in 

the biofumigation tecnique, as its higher availability and low moisture content, makes it an 

optimum stock material with a stable composition. Nevertheless seed meal oil extraction by 

pressure plant deactivates almost completely the endogenous myrosinase (MYR) enzyme and the 

consequent biological activity of the material is compromised. A patented biotechnological 

formulations of DSM was set up and permitted to restore the MYR-GL system and the ITC 

release after watering (Lazzeri et al., 2010, 2011). Actually formulated Brassica carinata A. 

Braun (Ethiopian mustard) DSM is the basic component of different commercial bio-products, as 

well as experimental ones, with different ITC releasing properties. ‘Biofence’ has been registered 

since 2004 in the Italian Catalogue of Fertilizers, and today it is admitted in organic farming and 

is marketed as a fertilizer with soil conditioning effects. B. carinata is an industrial crop that is 

gaining growing interest for its agronomic characteristics, especially in the Mediterranean area, 

and was thus selected as starting crop for seed and DSM production to be used in formulates. It is 

in fact an industrial crop with favorable cultivation features, as high productivity and biotic and 

abiotic stress resistance, high seed erucic acid oil content, mainly used for the biodiesel and other 

bio-based materials production (biopesticide, plastics, polymers, pharmaceutical, and 

neutraceutical, etc.) and high biomass production, represented by crop residues (Del Gatto et al., 

2015). Instead DSM has a good GLs content (75÷140 mol g
-1

 of DSM, depending on the 

defatting procedures) mainly constituted by sinigrin (2-propenyl-GL) (~96% of sinigrin and ~4% 

of the hydroxylated indolyl-methyl-GL, the 4-hydroxy-glucobrassicin). Allyl-isothiocyanate 

(AITC) is the product formed by the MYR catalyzed hydrolysis reaction in presence of water and 

at 5-7 pH range (Mari et al., 1993).  AITC is a molecule characterized by a high vapor pressure 
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and, especially in vapor phase, has largely demonstrated high biological activity against several 

plant and soil pathogens (Isshiki et al., 1992; Delaquis and Mazza, 1995).   

The optimized release of ITC from Brassica derived products represents a key factor for the 

achievement of their maximal biofumigation potential (Matthiessen and Kirkegaard, 2006). 

Therefore a method for rapid screening of those material ITC releasing properties, beside the 

systematic characterization performed by classical analysis of glucosinolates (GLs), lipids and 

myrosinase (MYR), is necessary. In the present work a simple model system based on headspace 

gas-chromatographic (HS-GC) technique, that gives a first insight of ITC kinetic release 

properties was developed. The method parameters were determined and its potential applications 

evaluated.  

3.2.2. Material and methods 

Meals 

For method development trials, the cultivar Brassica carinata ISCI7 was grown in the 

experimental farm of Budrio (Bologna-Italy), located in the Po Valley (44° 32′ 13″ N, 11° 29′ 40″ 

E,, altitude 29 m. asl).  

All the cultivation phases, from sowing to harvesting, were performed by low impact 

cultivation techniques, applying neither irrigation nor chemical treatments. After harvesting, seeds 

were cleaned, partially dried and milled. Seeds and meals were stored in darkness at 19°C and 

40% relative humidity. The meals were totally or partially defatted by hexane at room temperature 

in laboratory (meal:hexane 1:10 w/v). For Biofumigant material quality control trials, DSMs, 

defatted by an endless screw press in a temperature and pressure controlled procedure, were 

provided as pellets by Agrium Italia SpA (Livorno, Italy) and subsequently milled. In this case the 

MYR-GL system was differently reactivated by a patented procedure (Lazzeri et al., 2010). Meals 

or pellets were all ground to a 0.5 mm size before analysis and characterised for main components 

including GL content and MYR activity (Lazzeri et al., 2011; Franco et al., 2016). The MYR 

assays were carried out with the pH-stat method at 37 °C and one MYR unit (U) was defined as 

the amount of enzyme that hydrolyses 1 mol min
-1

 of sinigrin. The GL content was determined 

by the desulf-GL HPLC analysis following the UNI EN ISO 9167-1:1992/Amd 1:2013 method 

with some minor modifications and was expressed as moli g
-1

 of DSM calculated at 0% lipid.  

Analytical system and method validation 

The selected analytical system was composed by 1 L screw Erlenmayer flask equipped with 

a pierceable rubber septum were the MYR-GL reaction was activated by the addition of water to 
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the thin powdered meal at the bottom of the flask. The flask was maintained at 25 °C. AITC was 

produced in gaseous form by hydrolysis of sinigrin and its quantification was performed by 

analyzing 100 l of the atmosphere inside the flask every ten min by an Agilent 7820AC GC 

system equipped with an Agilent HP-5 column (30 m length, 0.32 mm inner diameter, 0.25 m 

film thickness) and FID detector (Agilent Technologies, Santa Clara, USA) (GC-FID). Injector 

and detector temperatures were set at 200°C and 300°C respectively; the oven program started at 

60°C and raised to 120°C at a rate of 10°C min
-1

; the carrier gas (He) flow rate was 1 mL min
-1

 

and the splitless injection mode was selected. The AITC amount was determined on the basis of a 

defined ten-point calibration curve using a pure AITC standard (Sigma-Aldrich, Saint Louis, 

USA). Linearity and validation range, limit of detection LOD and quantification LOQ, were 

experimentally determined from the calibration curve and precision was evaluated by the 

calculation of assay variability expressed in term of relative standard deviation % RSD, from six 

replicates (Sanagi et al., 2009). For the AITC quantification at the final optimal determined assay 

conditions a calibration curve was also constructed with pure AITC in presence of sunflower 

DSM as control (0.1 g and 0.75 mL of water), in order to consider the matrix effect of the meal on 

AITC release. For meal releasing properties evaluation, kinetic curves were drawn by plotting the 

AITC yield % versus time. AITC yield was calculated on the basis of the DSM sinigrin content 

determined by classical desulfo-HPLC analysis as described above.  

Different meal to water ratios and meal quantity were tested in order to obtain the maximum 

AITC yield. Measurements were replicated at least three times.  

Method applications  

The method was applied for the fast evaluation of different parameter effects on AITC 

production. The meal oil content effect was taken as an example. The kinetic plot was constructed 

for native B. carinata meal with an oil content of 44% and DSMs partially and completely 

extracted by hexane, with a 32.4 and 3.9% of residual oil respectively. 

Biofumigant material quality control 

The method was applied for the fast evaluation of MYR-GL system changes brought to 

different formulates. Deactivated B.carinata DSM was the defatted meal derived, such as, from 

the pressure plant. Different Biofence formulations, developed in order to reactivate the MYR-GL 

system, were tested and compared. The kinetic plots (AITC moles g
-1

 of DSM vs time) were 

then constructed for deactivated B.carinata DSM, the classical Biofence formulation and some 
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experimental new products called Fast Biofence, Plus Biofence and Fast-Plus Biofence. 

Formulation details are not reported as confidential (Lazzeri et al., 2010). 

Statistics 

Data expressed as mean ± standard deviation were subjected to one-way analysis of variance 

ANOVA and Tukey’s post hoc test performed with R software (R version 3.00.00, The R 

Foundation for Statistical Computing) and P<0.05 was considered statistically significant.  

3.2.3. Results and discussion 

Analytical system and method validation 

A calibration curve for AITC headspace quantification was constructed by adding pure 

aliquots of liquid AITC to the flask, at 25 °C and analyzing the atmosphere by GC-FID (Figure 

1).  

 

Figure 1. Allyl-isothiocyanate calibration curve determined by headspace-GC-FID analysis in the 

flask-model system. 

 

A good linearity was established until 4 L L
-1

 (41.15 moles L
-1

) and calculated 

parameters reported in Table 1, show the good precision of the analytical method.  
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Table 1. Method parameters determined with pure allyl-isothiocyanate (AITC), at 25°C. 

 

 

 

 

 

 

 

 

 

 

*calculated for maximum values 

 

DSM of B.carinata defatted by hexane at lab scale used for method development had a GL 

content of 137,5 moli g
-1

. First, different quantities of DSM were tested maintaining the 

meal:water ratio of 1:7.5 (Table 2). Good yields were found with 0.1 and 0.05 g, while with 0.2 g 

the AITC yield % was significantly lower, probably due to the higher quantity of proportionally 

added water to the flask and the consequent headspace vapor development that partially inhibited 

the volatilization of AITC. This effect was clearly visible from the flask glass wall that became 

opaque during experiments. Quantity of meal 0.1 g was chosen for the following trials because it 

was easier to handle  than 0.05 g (<RSD%). 

 

Table 2. AITC maximum yield determined after 70 min with different quantities of B.carinata 

DSM (g) and maintaining the meal to water ratio at 1:7.5 (g mL
-1

). Mean values followed by the 

same letters are not statistically different (P <0.05, Tukey’s HSD test). 

 

 

 

 

 

 

 

Different DSM to water ratios were then tested and 1:7.5 (g mL
-1

) gave the best results with 

the maximum yield (Table 3). Minor quantity of water (1:5) were not sufficient to wet the meal 

homogeneously and data had a higher variability (>RSD%), while higher quantities (1:1 and 

1:1.5) probably had the same above mentioned problem referring to humidity development. 

 

Method parameters   

Linearity range 0.69 - 41.15 mol L
-1

  

r
2
 0.9994 

AITC Retention time 4.9 min 

LOD  0.69 mol L
-1

 

LOQ 2.29 mol L
-1

 

RSD %  3.18* 

DSM:water (g:mL) AITC moli g
-1 

±SD RSD % AITC yield % 

0.05 : 0.375 120.0 ± 5.2 4.3 87.3 a 

0.1 : 0.750 123.1 ± 3.9 3.2 89.5 a 

0.2 : 1.500 100.2 ± 5.8 5.8 72.9 b 
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Table 3. AITC maximum yield determined after 70 min with different amount of water and 0.1 g 

of B.carinata DSM. Mean value followed by the same letters are not statistically different (P 

<0.05, Tukey’s HSD test). 

 

 

 

 

 

Maintaining the optimum found conditions, DSM quantity at 0.1 g L
-1

 and DSM to water 

ratio at 1:7.5, a maximum AITC yield corresponding to 89.5%, was obtained after 60-70 min, that 

could be considered a relative short time for a quality control meal evaluation, especially if 

compared to classical GL analysis (Figure 2).  

 

Figure 2. Allyl-isothiocyanate (AITC) kinetic release at optimized conditions of 0.1 g L
-1

 DSM 

and DSM to water ratio at 1:7.5, 25 °C. AITC concentration was calculated from a previous 

determined calibration curve with pure AITC on the basis of the defatted seed meal containing 

sinigrin. 

 

The remaining unrecovered 10.5 % of AITC could have been lost because bound to 

the DSM proteins or solubilized in the added water and not completely passed to the vapor phase, 

or for other unknown reasons. In order to investigate this aspect and to consider the DSM/water 

matrix effect a calibration curve was also constructed by adding pure AITC to a neutral, not ITC-

producing, DSM (0.1 g), as sunflower, and water (0.75 mL). Calculation of AITC concentration 

utilizing the new calibration plot permitted to obtain a recovery of 98.3%, demonstrating that the 

presence of the meal and/or water prevented about 10% of AITC from going in the headspace.       
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Method applications  

The method could be applied for the fast evaluation of the effect of different 

parameters on AITC realising properties, as meal particle size, GL and lipid content, MYR 

activity. It could also be employed to investigate the effect of factors that could affect MYR 

activity, as temperature, pH, ascorbic acid, magnesium chloride and so on (Dai and Lim, 2014; 

Sharma et al., 2012). In the present work the effect of meal oil content on AITC yield was 

confirmed by using the developed flask-model system. The kinetic release of B.carinata meals 

with three different oil content is shown in Figure 3.  

 

Figure 3. Allyl-isothiocyanate release from B.carinata meals with different oil content. 

 

The AITC release capacity of the B.carinata meal was inversely correlated to the meal oil 

content (Figure 4) and native B.carinata with a 44% oil content had an AITC maximum yield as 

low as 32.7%.  

 

Figure 4. AITC releasing yield (%) as a function of B.carinata meal oil content (%). 
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The MYR activity of meals was also measured by pH-stat method (Franco et al., 2016) and 

it was similar to native and hexane extracted DSMs (~ 30 U g
-1

 DSM), so it is not affected by the 

presence of oil. Therefore the different releasing behaviour could be ascribed to the retaining 

capacity of the oil on AITC as a lipophilic molecule. (Dai and Lim, 2014; Li et al., 2015). 

Biofumigant material quality control 

Deactivated B.carinata meal was defatted at the pressure plant and had a GL content of 95.4 

moles g
-1 

and a residual oil content of 10.7% (dry mass), higher than meals subjected to 

exhaustive oil extraction by hexane (3.9%). Kinetic plot relative to deactivated and different 

formulated DSMs are presented in Figure 5.  

 

 

Figure 5. AITC releasing properties of biofumigating materials differently formulated.  

 

It is clear from the graph that deactivated B.carinata DSM had a very slow and 

incomplete AITC release capacity and a maximum AITC concentration reached about 24 mol g
-1

 

after 120 min (25.2% yield). The releasing properties were restored in the formulate Biofence 

where AITC reached the concentration of 81 moli g
-1

 (84.9% yield) in 110 min. Starting from 

this basic and commercial formulation, new experimental formulations with different behaviors 

were developed: Fast Biofence, instead, determined a faster AITC release which reached the same 

maximum AITC concentration and yield as with Biofence, but after only 50 min, while with Plus 

Biofence a higher amount of AITC (132.2 moles g
-1

, 92.4% yield) could be obtained in the same 

time (110 min), by increasing DSM GL content; in Fast-Plus Biofence both actions took place and 
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a higher amount of AITC (124.5 moles g
-1

, 87.0% yield) was released in a shorter time (60 min). 

Therefore the developed method permitted a rapid evaluation of formulate MYR-GL system 

changes and could be applied in biofumigant material quality control in order to verify, at a first 

look, its behavior. Furthermore it could also efficiently support the experimental development of 

new formulations, giving a rapid response on the modulation of AITC release from the meals.   

3.2.4. Conclusions 

The proposed analytical method is practical, fast and requires only a GC-FID 

instrument for measurements. It allows a rapid evaluation of the parameters which can affect meal 

AITC release, as MYR activity, GL and oil meal content. The method was also employed for the 

investigation and development of DSM formulations, but above all it is now routinely applied at 

laboratory level to every batch of commercial or experimental biofumigant material as a quality 

pathway for solid formulations: pellets or powder for mechanical or manual distribution, 

respectively applied as soil pre-plant treatment or fruit postharvest biofumigation (Section 3.3), but 

also DSMs as components of liquid formulations for ipogeal and epigeal distribution, based on a 

vegetable oil in water emulsion at 1-2% (Lazzeri et al., 2011, 2013).  
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3.3. The Biofumigation technique in fruit postharvest: evaluation of the Brassica 

derived allyl-isothiocyanate effect on the pathogen control and the fruit quality 

The post-harvest system and the agro-food chain comprise multiple and interconnected 

technical and economic activities from the harvest to the household consumption phase, including 

transport, storing, processing, product evaluation and quality control, packaging and marketing 

(Grolleaud, 2017). Food losses can occur at any stage of the supply chain and represent the 5-20% 

of harvest product (in Italy 10%), but can easily reach the 50% in developing countries, due to 

technological limitation and/or difficult climatic conditions and inefficient infrastructure systems 

(Gustavsson et al., 2011). The consequent economic loss is cumulative throughout the chain and 

becomes more important when it involves the last stages of the product processing/distribution. A 

more efficient and sustainable management of the entire food chain, a major awareness among 

industries and consumers, is necessary to reduce food losses and increase the quality and quantity of 

food supply in a sustainable approach, also in view of population increase (Gustavsson et al., 2011, 

El-Ramady et al., 2015).  

In this context, storage can be considered the postharvest phase where different management 

strategies could be applied in a more controlled way than pre-harvest strategies in the field, even if a 

holistic approach and an integrated management program is often necessary to minimize 

postharvest losses and to substitute phytochemical uses (Romanazzi et al., 2016a). Food losses can 

be quantitative (physical reduction in weight and volume) but moreover qualitative referring to the 

edibility and food safety and nutritive/nutraceutical value in term of health promoting 

phytochemical content. In addition, the consumption of fresh fruit and vegetables, in particular, is 

strongly recommended as they are products rich of water, fibres, minerals, and are an important 

source of vitamin C, A, potassium, flavonoids and other bioactive molecules involved in 

antioxidant mechanisms and in prevention of cancer and cardiovascular diseases (Yahia, 2017). 

Postharvest fruit losses can be caused by physiological disorders, linked to senescence or physio-

pathologies as scald or chilling injuries. Nevertheless the main cause of losses is the 

microbiological decay, attributed to pathogen fungi of the genera of Penicillium, Botrytis, 

Monilinia, Rhizopus, Alternaria, Fusarium etc (Mari et al., 2014). 

Postharvest handling practice and its success depends on the type of product: perishable 

horticultural crops, which can be stored for few days, as strawberries, and low-perishable goods, as 

pear, apple and kiwifruit. Temperature (usually kept between 0 and 10 °C), humidity and 

atmosphere gas composition are some of the main physical parameters which influence product 

maintenance (Romanazzi et al., 2016a). Until now synthetic fungicides have been the first line of 
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defence in conventional agriculture even though the European and local legislation regarding 

quantity and quality of permitted molecules and maximum residue limits, have been more and more 

strictly regulated, aiming to a higher human and environment safety. In postharvest phase, the list of 

the allowed phytochemicals depends on the country and is limited to a few active ingredients for 

most commodities, while for other, chemical treatments are completely banned. EU stated rules for 

the sustainable use of pesticides to reduce their risks and the impact on people health and 

environment (Directive 2009/128/EC). In Italy the use of postharvest phytochemical is not allowed 

for stone fruit while pre-harvest fungicide applications are performed, even if chemicals used for 

pome and kiwi fruit (es thiabendazole) are frequently ineffective (Mari et al., 2014). The research of 

alternative solutions to fungicides is in fact also driven by the insurgence of pathogen resistance, 

consequence of the chemical systemic application, and by an increasing attention on food safety. 

Consumers more and more often request foods with lower residues, safe, and environmentally and 

economically sustainable. The EU encouraged the scientific research for an integrated pest and 

disease management to reduce the use of pesticides in the horticultural sector by including, in the 

Horizon 2020 program framework part ‘Food security, sustainable agriculture and forestry, marine 

and maritime and inland water research and the bioeconomy’, the so called ‘Sustainable food 

security – resilient and resource efficient value chain’ and in particular in the topic of ‘Innovations 

in plant protection (SFS-17-2017
9
)’. 

Among alternative strategies the most promising are those based on the use of microbial 

biocontrol agents, which act through different modes of action including antibiotic or lytic enzyme 

production and competition for nutrient and space (Janisiewicz and Korsten, 2002; Liu et al., 2013); 

plant elicitors (chitosan) which have the indirect effect of plant defense system induction 

(Romanazzi et al., 2016b); disinfecting agents; physical treatments (heating, irradiation, ozone, 

waxing) and the use of plant secondary metabolites with antimicrobial activity (Mari et al., 2011; 

Hintz et al., 2015). Glucosinolate (GL)-derived isothiocyanates (ITCs) belong to the latter category 

and are known for their strong biological activity on fungal pathogens, even of postharvest 

relevance, and also against several food-borne pathogens dangerous for human health (Delaquis and 

Mazza, 1995; Wilson et al., 2013; Dufour et al., 2015). 

Some ITCs are characterized by high volatility and have been exploited for gaseous 

treatments of fruit and vegetables, as in the ‘biofumigation’ technique, to increase storage time, 

giving successful results in in vitro and in vivo studies (Troncoso-Rojas et al.,  2005; Chanjirakul et 

al., 2007; Troncoso-Rojas et al., 2009; Wang et al., 2010; Manyes et al., 2015; Sotelo et al., 2015; 
                                                           
9
 https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sfs-17-

2017.html 

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:02009L0128-20091125
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-food_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-food_en.pdf
https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sfs-17-2017.html
https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sfs-17-2017.html
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Chen et al., 2015). In previous studies, a treatment based on an atmosphere enriched in specific 

ITCs was found to be active against Penicillium expansum on pears (Mari et al., 2002) and 

Monilinia laxa on peaches and nectarines (Mari et al., 2008), while on B. cinerea there are only  

few data from in vitro and in vivo trials (Mari et al., 1993, 1996). Among ITCs tested in the cited 

works, allyl-isothiocyanate (AITC), produced from the GL sinigrin (2-propenyl-GL), seems to be 

one of the most active, for biological activity and favourable vapour pressure (sections 3.1 and 3.2). 

Furthermore, AITC is a molecule ‘generally recognized as safe’ (GRAS) by the Food and Drug 

Administration (FDA) in the United States since 2006 (Manyes et al., 2015) and, if derived from 

plant sources, is authorized as a natural food preservative in Japan. The European Food Safety 

Authority (EFSA, Parma, Italy) evaluated its safety as a food additive with interesting results 

(EFSA 2010). Recently, several studies have been directed towards the use of AITC incorporated in 

antimicrobial food packaging systems as modified atmosphere packaging (Isshiki et al., 1992; 

Delaquis and Mazza, 1995; Nielsen and Ros, 2000; Winther and Nielsen 2006) or active packaging 

with AITC-films (Hendrix et al., 2012; Seo et al., 2012; Dias et al., 2013) in order to increase 

significantly the product shelf life.  

AITC demonstrated its antimicrobial activity in vivo either applied as a synthetic compound 

or as GL-derived ITC produced in situ from renewable sources as cabbage leaves (Troncoso-Rojas 

et al., 2005) or Brassica carinata defatted seed meal (DSM) (Mari et al., 2008), thus making the 

process economically and environmentally sustainable. In order to investigate the AITC effect in 

vivo on a small pre-pilot scale, a system was developed at the CREA-CIN laboratories, consisting in 

a cabinet of 0.1 m
3
, connected to an external reactor where the production of AITC from GL-MYR 

system of brassica DSMs was achieved by a simple water addition. The obtained rich AITC vapor 

phase was then pumped inside the cabinet with a continuous flow of  around 250 L h
-1

 from and to 

the external reactor in a closed circuit (Mari et al., 2008). Up to 4 trays of fruit could be treated in 

one trial. The AITC concentration was continuously monitored by gas-chromatographic-flame 

ionization detector (GC-FID) analysis throughout the atmosphere sampling in order to maintain it at 

the established value (Figure 1).  
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Figure 1. Cabinet (0.1 m
3
) for postharvest fruit treatment with allyl-isothiocyanate (AITC) 

produced from brassica defatted seed meals (DSMs) in an external reactor and pumped inside the 

treatment cell (on the left). AITC atmosphere concentration GC-FID continuous monitoring system 

(on the right). 

 

The system was also preliminarily verified at a pilot scale in refrigerated treatment/storage 

cells (30 m
3
) with interesting results on pear and peaches even if the technology needed further set-

up studies (Bernardi et al., 2005). 

While the antimicrobial activity of AITC vapours is well known, the effects of the molecule 

on fruit quality attributes, related to appearance, flavour and nutrient properties are less investigated 

even if of fundamental relevance for the final product appeal to the consumer and marketability. 

The molecule is highly reactive and a low concentration is needed for pathogen control while at the 

same time, its volatility determines low residue content in treated goods (Isshiki et al., 1992; Mari et 

al., 2002). Anyway further studies are necessary to know if AITC adducts are formed in the fruit, 

for instance by their known reaction with protein thiols. The effect of the molecule on fruit general 

appearance had no detrimental effect in netted melon and in bel pepper as observed by Troncoso-

Rojas (2005, 2009) after ITC treatment. Moreover the product organoleptic quality should also be 

taken in consideration and some studies showed positive results on the effort of neutralizing the 

AITC pungent smell, which badly characterises it, by appropriate formulations (Ko et al., 2012; Wu 

et al., 2015). 

Regarding the AITC effect on plant and the cellular and molecular mechanisms of action, few 

investigation have been performed until now. As mentioned before, AITC is a reactive molecule 

binding thiols, such as cysteine or glutathione (GSH), thus modifying protein structure and 

GC-FID monitoring system 

Treatment cabinet  0.1m
3

 

Reactor: 
MEAL+water 
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function. Khokon et al. (2011) observed that AITC induced stomata closure in Arabidopsis thaliana 

via production of reactive oxygen species (ROS) and nitric oxide, probably with the function of 

preventing water loss and enhancing plant defence against microorganisms. At higher doses it also 

caused oxidative stress and ROS production in Arabidopsis seedlings, while expression of 

glutathione S-transferase (GST)-encoding genes and reversible GSH depletion was observed at low 

doses, as a potential detoxifying mechanism (Øverby et al., 2015). Besides, some works speculate 

on the AITC function as ethylene analogue or inhibitor based on their structural similarity, but this 

action has not been fully investigated yet (Nagata, 1996).  

At present, from the standpoint of fruit crops, postharvest AITC biofumigation has been 

successfully applied to limit fungal decay in different kinds of berries (e.g. raspberries, strawberries, 

blackberries, blueberries), apparently due to its direct effect on fungi and pro-oxidant activities. 

Wang et al. (2010) suggested that the observed increased ROS production in blueberries could be a 

possible defence mechanism induced in AITC-treated fruits. Nevertheless, the treatment was 

reported to have a detrimental effect on the antioxidant phytochemical content of these fruits even 

though a global fruit quality improvement was observed (Chanjirakul et al., 2006; Chen et al., 

2015). 

In the sections 3.3.1. and 3.3.2. the results of the study of the in vivo effect of AITC vapour, 

produced from brassica DSMs with the small pre-pilot system described above, on the fungal 

pathogen Botrytis cinerea and on the fruit quality and nutraceutical properties are presented on two 

different host fruit, strawberry and kiwifruit. 
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3.3.1. Control of postharvest grey mould (Botrytis cinerea Per.: Fr.) on strawberries by 

glucosinolate-derived allyl-isothiocyanate treatments. 

3.3.1.1. Introduction 

Strawberries (Fragaria x ananassa Duch.) are fruits characterized by unique taste and 

flavour, highly appreciated by consumers, but also by healthy properties as they are rich in natural 

antioxidants as polyphenols and anthocyanin, vitamins and amino acids. They are a good sources of 

vitamin C, L-Ascorbic acid (around 40-70 mg/100 g strawberries, FW), which is an essential 

nutrient in human diet, thanks to its important antioxidant and metabolic functions, protecting from 

carcinogenesis and cardiovascular diseases and stimulating the immune system (Sapeia and Hwaa, 

2014; Du et al., 2009). Anyway vitamin C and other nutrient content strongly depends on fruit 

ripening stage, storage conditions and cultivar. Gray mould caused by Botrytis cinerea Per.: Fr. is 

one of the main disease of strawberries occurring both in the field and after harvest (Droby and 

Lichter, 2007). Losses can be severe, reaching up to the 25% in the main harvest and the 37% in the 

second. However the main losses happen during the postharvest phase, with a maximum incidence 

of 89% in the second harvests (Ceredi et al., 2009). Chemical control is essential to prevent pre and 

post-harvest fruit decay; in conventional agriculture anilinopyrimidine, cyprodinil, phenylpyrrole 

and fludioxonil had been widely applied for grey mould control for more than 10 years. Since all 

these active ingredients are site-specific inhibitors, the appearance of resistance has to be considered 

with great attention (Fernàndez-Ortuno, et al., 2013), suggesting the need of an alternative to these 

products, overall in organic agriculture where treatments with synthetic fungicides are not admitted. 

Several non-conventional methods have been recently investigated with encouraging results, among 

which the use of chitosan (Romanazzi et al., 2013), of biocontrol agents  (Huang et al., 2012) and of 

physical methods, as pre-storage hypobaric treatment (Hashmi et al., 2013) or hot water treatment 

(Villa-Rojas et al., 2011). Treatments with chitosan-based edible coatings also showed to maintain 

better strawberry quality and treated fruits had higher contents of antioxidants (phenolics, 

anthocyanins, flavonoids), ascorbic acid, glutathione and antioxidant enzyme activity, than 

untreated fruits, thus reinforcing the resistance against fungal invasion and extending fruit shelf-life 

(Wang and Gao, 2014). Natural substances with biological activity could be an interesting option 

that has been less investigated and few experiences are reported on the efficacy of natural 

compounds against B. cinerea on strawberries. Archbold et al. (1997) tested some natural volatile 

compounds for their antifungal activity against pathogens on artificially inoculated strawberry 

fruits. Wang et al. (2007) showed the efficacies of natural essential oils derived from plants 

(thymol, eugenol, menthol) in inhibiting decay and increase free radical scavenging capacity and 
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anti-proliferative activity in strawberry, thus extending fruit shelf life. Chanjirakul et al. (2007) 

evaluated the effect of methyl jasmonate, allyl isothiocyanate (AITC), essential oil of Melaleuca 

alternifolia and ethanol on strawberries and blackberries, and found that AITC gave the best results 

in terms of reduction of decay severity (not specified of which nature), with a less important effect 

on the overall free-radical scavenging fruit capacity.  

Since strawberries, after harvest, are particularly perishable fruits, highly susceptible to rapid 

deterioration and spoilage, but also to B. cinerea infections, the aim of this work was overall to 

define a strawberry postharvest treatment based on the natural antimicrobial compound AITC that 

in preliminary experiences showed to be able to reduce decay and to increase the fruit shelf-life. In 

particular, the present study addressed the following objectives: (i) to determine the EC50 and EC95 

of synthetic AITC on conidia germination and mycelial growth of B. cinerea; (ii) to evaluate in vivo 

the activity of synthetic or GL-derived AITC against B. cinerea on two naturally infected 

strawberry cultivars; (iii) to assess AITC residues on strawberry fruit after treatment; (iv) to 

investigate the influence of AITC treatment on the nutraceutical and antioxidant characteristics of 

strawberry as fruit antiradical capacity, and anthocyanin, polyphenol, ascorbic acid and glutathione 

content. 

3.3.1.2. Material and Methods 

Pathogen 

 B. cinerea strain was isolated from strawberries showing typical grey mould infection. The 

pathogen was grown on oat meal agar (60 g of oatmeal, 10 g of sodium nitrate, 30 g of saccharose 

and 12 g of agar per 1000 mL of distilled water), and the culture was incubated at 25°C under UV 

(350-420 nm) light for 12 h daily for 10 days. The isolate was maintained on malt extract agar 

(MEA) slant at 4°C. For the in vitro trials, a conidial suspension was prepared by washing the 

colonies of pathogen with sterile distilled water containing 0.05% (v/v) Tween 80, and the 

concentration of suspension was quantified by a hemacytometer and diluted to the final 

concentration of 10
3
 conidia mL

-1
. 

Isothiocyanate  

The chemical AITC was obtained from Aldrich Chemical (> 98%, Milwaukee, Wi, USA). 

GL-derived AITC was released from B. carinata defatted seed meal (DSM), produced by 

mechanical oil extraction and appropriately formulated by a patented procedure able to modulate 

AITC release in time after watering (Lazzeri et al., 2010; section 3.2.). Meal was characterized for 

its moisture content, residual oil and GL content as described in De Nicola et al. (2013).  
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Effects of AITC on conidia germination and mycelium growth in in vitro trials 

The inhibition of conidia germination was tested by spreading 100 L of pathogen conidia 

suspension (10
3
 conidia mL

-1
) on Petri dishes containing 20 mL of MEA. Mycelium growth 

inhibition was evaluated by placing a plug (6 mm diameter) from an actively growing culture in the 

centre of a MEA plate. In each case, different aliquots of pure AITC (0.08, 0.16, 0.32, and  0.64 L 

x Petri dishes) were placed, using a microsyringe, on a 90 mm diameter paper filter (Whatman N°. 

1), positioned inside the cover. The dishes were quickly closed, sealed by Parafilm and incubated at 

20°C. The dishes were opened to evaluate AITC fungicidal activity of after 2 days for conidia 

germination and after 3 days for mycelium growth (first evaluation); the paper filter was 

subsequently removed, allowing the fungus to grow for the next 2 and 3 days respectively (second 

evaluation). Petri dishes inoculated with the pathogen, but treated with distilled water were used as 

a control. Five replications were used for each treatment (different AITC concentrations) and the 

experiment was repeated three times. Conidia germination was determined as reported by Mari et 

al. (2008). Mycelium growth was gauged with a centimetre ruler. EC50 and EC95 were calculated as 

the concentration that inhibits conidia germination or mycelium growth by 50% and 95 % 

respectively, compared to the control.  

Fruit  

Three strawberry cultivars were used: ‘Tecla’ a spring-bearing cultivar; ‘Monterey’ a day-

neutral cultivar and ‘Clery' used for antioxidant and phytochemical content evaluations. All of them 

were cultivated in experimental fields located in the Romagna region (Northern Italy) under organic 

management; ‘Tecla’ and ‘Clery’ strawberries were harvested in the last decade of May and 

‘Monterey’ strawberries in the first decade of October. Fruit free from evident wounds and rot and 

homogeneous in maturity and size were selected and treated on the same day as harvest.  

Treatment  

Selected strawberries were distributed in baskets (almost 250 g of fruit each) on two trays 

placed in a 0.1 m
3
 sealed cabinet and treated by AITC vapours as described in Mari et al. (2008) 

(section 3.1). Preliminary trials were conducted on ‘Tecla’ strawberries by injecting aliquots of pure 

synthetic AITC directly in the cabinet, at different times during treatment, to maintain a constant 

atmosphere concentration. In order to determine the time of exposure and AITC concentration able 

to contain the pathogen and at the same time to avoid phytotoxic effect on fruit, two different 

concentrations of commercial AITC (0.1, 0.2 mg L
-1

) and different treatment times (2, 3, 4 and 6 

hours) were tested. Synthetic AITC was then substituted with AITC released from DSM by 
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endogenous GL (sinigrin) - MYR system. In this latter case, 10 g of DSM were placed in an 

external 500 mL flask with 30 mL of water. The gas phase, AITC-enriched, was pumped into the 

cabinet at 250 L h
-1

. AITC concentration was maintained constant by flow regulation of the air 

pump and was determined by atmosphere sampling at regular intervals followed by gas 

chromatography-flame ionization detector (GC-FID) analysis as described below. In order to 

confirm the activity of GL-derived AITC also on a day-neutral cultivar, even a trial on ‘Monterey’ 

strawberries was conducted, using the optimum treatment conditions previously defined as 0.1 mg 

L
-1

 of AITC for 4 hours. In all experiments, control fruits were represented by untreated fruits 

placed in the same conditions. After treatment, fruits were stored for 2 days at 0°C and then at 20°C 

for another 3 days (shelf-life). Finally, the percentage of infected fruit was recorded. The sample 

unit was represented by 10 replicates (baskets) of 15 fruit each, unless differently specified. 

Effective index was calculated as control incidence – treated incidence/control incidence x 100.  

Headspace gas chromatographic analysis 

The atmosphere in the cabinet was monitored by an Agilent 7820AC GC system equipped 

with a Varian HP-5 column (30 m length, 0.32 mm inner diameter, 0.25 m film thickness) and FID 

detector. Instrument settings were as follows: injector and detector temperature were set at 200°C 

and 300°C respectively; the oven program started at 60°C and raised to 120°C at a rate of 10 °C 

min
-1

; the carrier gas (He) flow rate was 1 mL min
-1

 and the splitless injection mode was selected. 

The AITC amount was determined on the basis of a previously defined calibration curve using a 

pure AITC standard. 

AITC residue analysis in fruits 

AITC residue analysis were carried out on ‘Tecla’ strawberries treated by GL-derived AITC, 

0.1 mg L
-1

, for 4 and 6 h in order to investigate the influence of treatment duration on residue level. 

Residue determination was performed on fruit one hour after the treatment and at the end of fruit 

storage (2 days at 0°C and 3 days at 20°C), corresponding to consumption time. The solid phase 

micro-extraction, SPME, technique coupled with GC-FID analysis was used. Treated fruits 

randomly chosen from the trays (two per basket) were cut into small pieces and samples of 5 g were 

introduced in a 20 mL vial. Sample pre-incubation, extraction and injection on GC were performed 

through an automatic auto-sampler CombiPAL (CTC Analytics) under the following conditions: 10 

min pre-incubation in the heated agitator block at the constant temperature of 80°C and agitation 

speed of 250 rpm; insertion of the SPME needle in the sample vial and exposure of the fibre for 10 

min extraction; insertion of SPME needle in the injector port and exposure of the fibre for 2 min at 

260°C, for compound thermal desorption. The extraction fibre used was coated with 75 m 
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Carboxen-polydimethylsiloxane film (CAR-PDMS) (Supelco, Bellefonte, USA). GC analysis was 

carried out on a Varian GL-3800 equipped with a J&W DB23 column (30 m lenght, 0.25 mmn 

inner diameter, 0.25 m film thickness) and FID detector. The analytical conditions were: injector 

temperature 260°C; detector temperature 280°C; flow 1 mL min
-1

 of the carrier gas (nitrogen); 

column oven temperature initially maintained at 50°C for 6 min, followed by a gradient to 220°C, 

with a rate of 40 °C/min, finally held for 2 min. The splitless mode was used for injection. Blank 

samples of untreated fruit were analysed following the same protocol. AITC quantification was 

performed plotting a calibration curve by spiking blank samples of non-treated fruit with 10 L 

AITC standard solutions in hexane, at different concentrations, in order to minimize the matrix 

effect of fruits on AITC determination. Measurements were replicated 8 times for treated fruits and 

5 times for calibration samples.  

Antiradical capacity and phytochemical content determination  

For the evaluation of the effect of AITC treatment on the antioxidant and nutraceutical 

parameters of fruit, ‘Clery’ strawberries were treated as described above (0.1 m L
-1

 for 4h), then 

stored at 20°C for two days. At the end of storage (d2), 5 pools of 10 treated and untreated fruits 

(one-fourth of fruit), with no physical injury, diseases, or incidences of pests, were selected and 

frozen in liquid nitrogen, grinded by a Waring Commercial laboratory blender (Waring products 

division Torrington, CT, USA) and stored at -80°C.  

Antiradical capacity, anthocyanin and total phenolic content. 50 mg of frozen strawberries 

(d2) were extracted with 1 mL of solution of methanol:water (80:20 v/v) acidified with 0.1% HCl 

(v/v), by using ultrasound-assisted extraction (20 min). For anthocyanin determination the same 

method was used except for solvent methanol:water (80:20 v/v) and 0.15 M HCl. After 

centrifugation (30,500 g, 10 min, 4 °C) supernatants were collected and immediately analysed. 

Total phenolic content was determined following the spectrophotometric Folin-Ciocalteu method 

(765 nm), using gallic acid (GA) as standard (Weitz et al., 2010). Six serial dilution of samples and 

standards were performed and the slope ratio of the two obtained calibration curves 

(sample/standard) were calculated. Blank sample with extraction solvents without samples or fruit 

extracts without colouring reagents were considered. Results were expressed as mg of GA 

equivalent (mg GAE) per g of fresh material. Anthocyanin content was determined by following the 

Gould et al., (2000) spectrophotometric method by using the cyanidin-3-O-glucoside (Kuromanin) 

chloride external standard calibration curve. Samples absorbance was recorded at 530 and 653 nm. 

Antiradical capacity was assessed by measuring the ability of the extracts to scavenge synthetic 

radicals [i.e. 2,2-diphenyl-1-picryl-hydrazyl-hydrate, DPPH• and 2,2′-azinobis-(3-
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ethylbenzothiazoline-6-sulfonic acid), ABTS•+]. Both DPPH• and ABTS•+ quenching capacities 

were estimated spectrophotometrically, and expressed in terms of EC50 (Carbone and Mencarelli, 

2015). Reference antioxidant standard trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 

acid) and BHA (butylated hydroxyanisole) were used for assay calibration and results were also 

expressed as mol of trolox equivalent (TE) or of BHA equivalent (BHAE) per g of fresh sample. 

All spectrophotometric assays were performed by using an Infinite M200 PRO microplate 

reader and measurements were replicated two times for each pool. 

Ascorbic acid content. Sampling was performed as described above, at different times: at 

harvest (H), soon after treatment (d0) and after one (d1) and two days (d2) of storage at 20°C. 

Ascorbic acid was extracted three times from frozen samples with 20mM NaH2PO4, containing 

1mM ethylenediaminetetraacetic acid, EDTA, pH 2.1. (1:4 w/v), by using a TissueLyser (Retsch 

GmbH, Haan, Germany). After centrifugation (31,500 g, 20 min, 4 °C) supernatant were filtered 

and used for analysis. Reduced ascorbic acid (AsA) content was determined by HPLC analysis by 

using a Hewlett-Packard chromatograph 1100 equipped with a diode array detector, a ChromSep 

HPLC column SS (250 × 3.0 mm) and a ChromSep guard column Intersil 5 ODS-3 (Varian). AsA 

was detected at 245 nm and the mobile phase A and B were 20 mM KH2PO4, pH 2.5 and 60% 

methanol - 40% acetonitrile, respectively (Agilent application note 5990-8720EN). AsA standard 

(Sigma Aldrich) was used for external calibration. Dehydroascorbic acid (DHA) was reduced to 

AsA with tris(2-carboxyethyl)phosphine (TCEP) reducing agent, by incubating 200 L of diluted 

extract and 50 l of 50 mM TCEP (pH 2.1) for 60 min, at 4°C, in the dark. DHA was calculated as 

the difference between the total ascorbic acid (reduced plus oxidized, AsA + DHA) and AsA. AsA 

and DHA contents were expressed as mg/100g FW. The redox status of ascorbate pool was 

calculated as AsA/(AsA+DHA) %. 

Glutathione content. Frozen ground strawberry samples collected from fruit at d0, d1 and d2 

were extracted with cold 5% 5-sulfosalicylic acid (SSA), 1:10 w/v, at 4°C by using a TissueLyser 

and subsequently centrifuged at 31,500 g for 15 min at 4°C. Total glutathione (reduced + oxidized 

glutathione, GSH + GSSG) spectrophotometric analysis was performed by using the GSH assay kit 

(Sigma-Aldrich), with GSH reductase, 5,5’-dithiobis(2-nitrobenzoic acid (DTNB) and NADPH, 

according to the provided protocol on an Infinite M200 PRO microplate reader. GSSG was 

determined by the same method in the presence of GSH masking agent 1-methyl-2-vinylpyridinium 

triflate (M2PV) (Shaik and Mehvar, 2006). Results are expressed as nmol g
-1

 FW. GSH was 

estimated as the difference between total and oxidized form and GSH redox state calculated as the 

percentage of GSH over total: GSH/(GSH+GSSG) x 100. 
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Statistical analysis 

EC50 and EC95 values were calculated using the probit analysis applied to the percentage of 

conidia germination and mycelial growth inhibition (Lesaffre and Molenberghs, 1991). All other 

data were subjected to one-way analysis of variance (ANOVA) using Statistica 8.0 software 

(Statsoft, USA). Data were reported as mean values ± standard error (SE), separation of means was 

performed using the least significance difference (LSD) test, at P<0.05, unless differently specified. 

All experiments were carried out in a completely randomized design.  

3.3.1.3 Results  

Effects of AITC treatment on conidia germination and mycelium growth 

AITC vapours were tested on conidia germination and mycelial growth of B. cinerea in in 

vitro trials. The mycelium appeared to be less sensitive to AITC than conidia, with an EC50 value 

for mycelial growth (1.35 mg L
-1

) almost double the EC50 for conidial germination (0.62 mg L
-1

) 

(Table 1). In addition, the AITC showed a fungistatic effect against the pathogen since at the 

second evaluation, two or three days after Petri dish opening and after removal of the paper filter, 

the values of EC50 for both parameters increased by almost 30%.  

Table 1. EC50 and EC95 values (mg L
-1

) of synthetic allyl-isothiocyanate vapours on conidia 

germination and mycelial growth of a Botrytis cinerea isolate. 

 

Biological 

parameters 
1

st
 evaluation

a
 2

nd
 evaluation

a
 

 EC50 EC95 EC50 EC95 

Conidial 

germination 
0.62 1.04 0.86 1.54 

Mycelial 

growth 
1.35 2.83 1.97 3.94 

a
The evaluations were carried out after 2 and 3 days for conidial germination and mycelial growth 

respectively (1
st
) and 4 and 6 days (2

nd
) after Parafilm and paper filter removal. 

 

AITC fruit treatment 

 Some preliminary experiments carried out with synthetic AITC showed that the exposure to 

AITC vapours at a concentration of 0.1 mg L
-1

 for 4 hours determined no phytotoxic effect on 

strawberry fruit and a significant reduction of infection (P<0.018) over 45%, if compared to the 

control. On the contrary, treatments with AITC concentration of 0.2 mg L
-1

 for 2 or 3 hours or 0.1 

mg L
-1

 for 6 hours did not improve efficacy of grey mould infection control compared to results 
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obtained with 0.1 mg L
-1

 for 4 hours (data not shown). Therefore, treatment conditions were 

established at AITC 0.1 mg L
-1

 and 4 hours for all subsequent trials. GL-derived AITC was 

produced in situ from formulated DSM with defined characteristic as 6% moisture content, 10.9% 

residual oil and GL content of 80.92 mol g
-1 

(on dry matter). In the case where strawberries with a 

high level of infection were considered, after 2 days of storage at 0°C and another 3 days at 20°C, 

untreated fruit showed an incidence of grey mould that varied from 44.7 to 40.1 (Table 2). AITC 

treatment significantly reduced the losses caused by the pathogen, with a reduction of 47.4% 

(synthetic AITC) and 48.9% (GL-derived AITC). In the second case, the trials were performed with 

a lower disease pressure; the control fruit showed an incidence of grey mould of 13.0% and 8.9% in 

the two sets of trials. AITC treatment reduced B. cinerea infections better than in the experiments 

with high disease pressure: the pathogen reduction was 91.5% for synthetic AITC and 86.5% for 

GL-derived AITC. In all trials, no differences were observed in the efficacy associated with 

different AITC sources. 

 

Table 2. Effect of allyl-isothiocyanate (AITC) vapours from synthetic and GL-derived origin on 

Botrytis cinerea (%) in ‘Tecla’ strawberries naturally infected (high and low disease levels), after 2 

days at 0°C plus 3 days at 20°C. AITC treatment was performed at 0.1 mg L
-1

 for 4 hours. Values 

for each trial correspond to the mean of 15 fruit per ten replicates. Mean values  SE within the same 

treatment, followed by different letters are significantly different according to the LSD test (P<0.05) 

 

Disease Level 
AITC 

source 
Control AITC 

Effective 

Index
a
 (%) 

 

High 

Synthetic 44.7 7.27 a 23.5  3.67 b 47.4 

GL-derived 40.1  2.95 a 20.5  4.46 b 48.9 

 

Low 

Synthetic 13.0  4.19 a 1.1  0.76 b 91.5 

GL-derived 8.9  2.17 a 1.2  0.78 b 86.5 
a
Effective index = (control incidence–treated incidence)/(control incidence) x 100 

 

The incidence of disease in untreated day-neutral strawberry cultivar (‘Monterey’) was high 

(> 54%) however, the GL-derived AITC treatment confirmed its efficacy, significantly reducing the 

grey mould by more than 38% (Table 3).  
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Table 3. Effect of allyl-isothiocyanate (AITC) vapours from GL-derived origin on Botrytis cinerea 

(%) in day-neutral ‘Monterey’ strawberries naturally infected, after 6 day at 0°C plus 2 days at 

20°C. AITC treatment was performed at 0.1 mg L
-1

 for 4 hours. Values for each trial correspond to 

the mean of 15 fruit per ten replicates. Mean values  SE within the same trial, followed by different 

letters are significantly different according to the LSD test (P<0.05). 

 

Trials Control AITC 

Effective 

Index
a
 

(%) 

1st 54.5 +  4.77a 23.4  4.31b 57.1 

2nd 59.2 + 3.72a
b
 28.9  4.55b 51.2 

3th 59.2 + 3.72a
b
 36.2  5.44b 38.9 

a
Effective index= (control incidence–treated incidence)/(control incidence) x 100 

b
A control was used for two different trials, performed in the same day. 

 

AITC residues in treated fruit 

Fruit AITC residue quantification, performed by the SPME GC-FID technique, was achieved 

by using the designed calibration curve which showed an excellent linearity under the investigated 

concentration range (R
2
 ~ 0.99997) (Figure 1).  

 

Figure 1. Calibration plot of pure allyl-isothiocyanate (AITC) for fruit residue determination: AITC 

gas chormatography-flame ionization detector (GC-FID) area vs AITC concentration in spiked 

blank samples of non-treated fruit (mg kg
-1

). Samples for each concentration were replicated 5 

times and mean values 
+ 

SE are reported.  

 

Analysis on fruit treated with GL-derived AITC showed a residual presence of AITC that did 

not significantly differ at the two sampling times, 1 hour and 3 days of storage at 0°C plus 4 days of 

y = 5.2594x - 0.5084 
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shelf-life after treatment. AITC residue was in fact 0.93 and 0.91 mg kg
-1

 of fruit in both cases. 

When the treatment duration was increased from 4 to 6 hours, a higher AITC residue in fruit was 

observed: 2.36 and 1.53 mg kg
-1

, 1 hour and 7 days after treatment, respectively (Figure 2).  

 

Figure 2. Influence of glucosinolate-derived AITC treatment duration on AITC residues (mg kg
-1

) 

in naturally infected ‘Tecla’ strawberries. Residue analyses were performed 1 hr after treatment 

(black column) and at consumption time, 7 days of storage (grey column). Treatment dose was 

maintained at 0.1 mg L
-1

, for 4 and 6 hours. Values for each trial correspond to the mean of 8 

samples per treatment. Mean values 
+ 

SE followed by different letters (lower-case-treatment length; 

capital-case-hr after treatment) are significantly different according to the Least Significance 

Difference (LSD) test (P<0.015); no AITC was detected in control fruit under the Limit of 

Detection  (0.019 mg kg
-1

). 

 

In this case, AITC detected one hour after treatment was higher but, as a consequence of the 

high volatility of the molecule, rapidly decreased to the stable value that was recorded one week 

later. At the same time, if referred to the activity of GL-derived AITC against grey mould, a longer 

treatment of 6 hours did not improve the control of the pathogen; indeed, the effective index, rated 

as 85.8% (with low level of infection, equal to 15.7% in untreated fruit) was similar to those found 

for treatment of 4 hours discussed above (Table 2). No AITC was detected in control fruit (Limit of 

detection 0.019 mg kg
-1

) (Sanagi et al., 2009).  

Effect of AITC on antioxidant and nutraceutical properties of strawberries 

The main nutraceutical and antioxidant parameters in treated and untreated strawberries were 

evaluated.  
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Antioxidant capacity, total phenolic and anthocyanin content. Antiradical capacity was 

expressed as EC50 or as standard (trolox and BHA) equivalents and in all cases resulted lower in 

treated samples respect to control, even if the differences were not significant. Total phenolic and 

anthocyanin content seemed also not to be significantly affected by treatment (Table 4). 

 

Table 4 - Effect of GL-derived allyl-isothiocyanate (AITC) vapours treatment on nutraceutical 

parameters (means ± SE) in frozen ‘Clery’ strawberries after AITC treatment and two days of 

storage at 20 °C. AITC treatment was performed at 0.1 mg L
-1

 for 4 hours. Results are expressed on 

fresh weight (FW). Antioxidant capacity is expressed as ABTS•+ or DPPH•  EC50 (mg)
a
 or moles 

g
-1

 trolox equivalent (TE) or moles g
-1

  butylated hydroxyanisole BHA equivalent (BHAE);  TPC 

(mg gallic acid equivalents GAE g
-1

); anthocyanin (mg Cya-3-glu g
-1

). Mean values ± SE (LSD test, 

P<0.05).  

 

a
EC50 = mg of strawberry required to obtain 50 % DPPH• or ABTS•+ scavenging 

 

Ascorbic acid content. Reduced and oxidised form of ascorbic acid (AsA and DHA) and the 

redox status were determined at the time of harvest, soon after AITC treatment and after storage at 

20°C, in AITC treated and untreated samples. ‘Clery’ strawberries showed to have a good ascorbic 

acid content at the harvest, which was mostly preserved during the storage in treated and untreated 

samples. Results showed, in fact, no significant differences between treated and control samples, 

except for DHA content, which was significantly lower than control in treated strawberries, 

analysed soon after treatment (d0). As a consequence the redox status was higher in treated 

strawberries at d0, respect to control, indicating a less oxidized cellular redox state. DHA increased 

its content in treated sample at day d1 and d2, and the redox state of the two pools was then 

comparable. No significant differences were also noted between different storage times.  

 

 

 

 

  EC50_ABTS•+ EC50_DPPH•   TPC Anthocyanin 

Control 

IC50 0.163 ± 0.031 0.065 ± 0.011   

TE 12.24 ± 2.52 9.02 ± 1.05 2.04 ± 0.62 1.13 ± 0.12 

BHAE 12.25 ± 2.52 11.09 ± 1.29   

AITC 

IC50 0.198 ± 0.018 0.076 ± 0.008   

TE 10.18 ± 0.98 8.51 ± 1.06 2.18 ± 0.39 0.94 ± 0.11 

BHAE 10.29 ± 0.98 10.46 ± 1.30   
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Table 5. Reduced ascorbic acid (AsA) and dehydroascorbic acid (DHA) content (mg/100g FW) 

determined in strawberry at harvest,  immediately after AITC treatment (d0), and after one and two 

(d1 and d2) days of storage at 20°C. Redox status: AsA /(AsA+DHA) %. AITC treated sample 

means followed by an asterisk are significantly different from untreated control means (LSD test, P 

<0.05). 

  Control AITC 

AsA  H 51.42 ± 4.62  

d0 56.08 ± 5.13  55.38 ± 3.16 

d1 51.96 ± 3.94 53.69 ± 3.92 

d2 56.90 ± 3.19  52.64 ± 3.48  

DHA  H 3.38 ± 1.04  

d0 3.05 ± 1.58 1.55 ± 1.14* 

d1 3.21 ± 0.75 2.41 ± 1.05 

d2 3.71 ± 0.92 3.29 ± 0.71 

AsA /(AsA+DHA) % H 93.73  

d0 94.82 97.37* 

d1 94.22 95.73 

d2 93.88  94.07  

 

 

Glutathione content. Reduced and oxidised glutathione (GSH and GSSG) were determined at 

d0, d1 and d2, after storage at 20 °C of treated and untreated samples and results are shown in 

Table 6. The AITC determined a significant decrease of the reduced form of glutathione, GSH, 

soon after treatment (-89%). The GSSG content was also strongly reduced at d0, and the determined 

value for treated strawberry was very close to the assay limit of detection. Both parameters 

increased after one and two days of storage, but the GSH and GSSG content of treated samples 

were still more than 40% lower than control ones. The redox state seemed to be higher for treated 

samples respect to control at any sampling time, indicating a possible protective action of AITC 

against oxidative action, but the differences were not significant. 

 

 

 

 

 

 

 



63 
 

 

Table 6. Reduced glutathione (GSH) and oxidised glutathione (GSSG) content (nmol g
-1

 FW) 

determined in strawberry at harvest, immediately after AITC treatment (d0), and one and two (d1) 

and d2) days of storage at 20°C. Redox status: AsA / (AsA+DHA) %. AITC treated sample means 

followed by an asterisk are significantly different from untreated control means (LSD test, P <0.05). 

 

  Control AITC 

GSH   d0 54.7 ± 3.4 6.2 ± 5.0* 

d1 69.7 ± 10.1 42.1 ± 6.4* 

d2 67.2 ± 20.6 42.1 ± 6.8* 

GSSG   d0 10.4 ± 1.6 0.3 ± 0.6* 

d1 7.8 ± 2.0 2.0 ± 1.0* 

d2 7.7 ± 3.4 3.5 ± 2.8 

GSH/(GSH+GSSG)% d0 84.00 95.82 

d1 89.8 95.5 

d2 90 93.1 
 

 

3.3.1.4. Discussion and conclusions 

The trial results showed the possibility of containing B. cinerea on strawberries by an 

alternative treatment to conventional fungicides, based on AITC, a natural compound released from 

B. carinata DSM. The in vitro efficacy of various ITCs, including AITC, against food-borne 

pathogens and spoilage bacteria was reported by many authors (Inatsu et al., 2005, Liu and Yang, 

2010, Wilson et al., 2013), but there are fewer data on in vitro and in vivo activity of AITC and 

other ITCs against postharvest pathogens. In agreement with other authors that found mycelium 

more resistant than conidia towards natural fungicides (Fallik et al., 1998), the mycelium of B. 

cinerea was inhibited by AITC less than conidia (Table 1). In a previous work (Mari et al., 2008) 

the AITC EC50 values were determined on M. laxa for conidia germination and mycelial growth, 

using the same methodology. Comparing these results, the EC50 values for M. laxa conidia 

germination were lower than those found in this work, for B. cinerea (0.17 mg L
-1

 against 0.62 mg 

L
-1

), while the mycelial EC50 resulted higher (1.90 mg L
-1

 against 1.35 mg L
-1

). Wu et al. (2011), 

instead, found lower AITC EC50 values for conidia and mycelium of B. cinerea than those obtained 

in the present study (0.15 and 0.18 mg L
-1

, respectively), but these differences could be explained 

by a different applied methodology, adopting 8000-mL desiccators instead of Petri dishes, in order 

to prevent AITC loss. AITC is a volatile compound and therefore different amounts of this 

substance could be lost during performance, despite the applied precautions.  

Strawberries infected by B. cinerea in the field support latent infections that can spread during 

the postharvest phase, causing a high incidence of grey mould. In our experiments, in untreated 

‘Tecla’ fruit, the incidence of B. cinerea was influenced by weather conditions with a percentage of 
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natural grey mould that varied between 44.7% (high disease level) and 13% (low disease level). 

Precipitations can play an important role in spore production and in inoculum dispersion. Frequent 

rains during the strawberry fruiting season can increase the splash dispersal of conidia, improving 

fruit infection (Maas, 1998). This could be a critical point for day-neutral strawberries, due to the 

longer production period and the later ripening period, and their disease management requires 

control approaches specific for each environmental condition not yet well investigated (Burlakoti et 

al., 2013). The efficacy of AITC against natural infections of B. cinerea on spring-bearing (‘Tecla’) 

and day-neutral (‘Monterey’) strawberries reported in our work, appeared promising, significantly 

reducing postharvest losses if compared to the control (Table 2 and 3). Few data have reported the 

activity of AITC on berries, while our results showed, for the first time, a significant control of a 

fungal pathogen in highly perishable fruit as strawberries. Wang et al. (2010) found a good 

reduction of decay development in blueberries treated with pure AITC (5 l L
-1

) and stored at 10°C 

for 21 days, even if the nature of decay was not specified. In addition, the AITC treatment dose, 

calculated from AITC added to the containers rather than the real AITC atmosphere concentration, 

appeared 50 times higher than the concentration applied in the present work. 

AITC is generally classified as an antimicrobial substance active against a wide range of 

pathogens, including postharvest pathogens as P. expansum (Mari et al., 2002; Wu et al., 2011), and 

M. laxa (Mari et al., 2008). Other ITCs, assayed in similar trials, also showed an antifungal activity, 

such as benzyl-ITC vs Alternaria alternata on tomato (Troncoso-Rojas et al., 2005a), ethyl-ITC vs 

P. expansum on apple (Wu et al., 2011), butenyl-ITC vs M. laxa on peach (Mari et al., 2008) and a 

phenyl, benzyl, 2-phenylethyl and allyl-ITC mixture vs Alternaria rot on bell pepper (Troncoso-

Rojas et al., 2005b).  

In addition, previous results on the pathogen control obtained using AITC produced in situ 

from DSMs proved very scant. In the present work, synthetic and GL-derived AITC were compared 

and both controlled the disease with an efficacy index ranging from 47.4% to 91.5%. Previously, 

Troncoso-Rojas et al. (2005b) studied the potential of ITCs, including AITC, present in cabbage 

leaves to control Alternaria rot in bell pepper, but the treatments were based on a mixture of 

commercial reagent grade ITCs. In some cases, the ITCs were obtained from shredded, macerated 

or homogenized Brassica plant tissues (Mayton et al., 1996; Charron and Sams, 1999; Harveyet al., 

2002), while in our experiments AITC was obtained from DSM, a co-product of B. carinata oil 

extraction developed with a biorefinery approach, as described in Lazzeri et al. (2013). The applied 

DSMs were formulated under patent (Lazzeri et al., 2010) to optimize the AITC releasing rate and 

consequently the biological potential activity on pathogens (section 3.2). This is a fundamental 
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aspect, showing that biofumigation could be optimized and used for industrial application. 

Moreover the use of bio-based chemicals obtained from renewable natural resources well fits with 

the European institutional goals, i.e. Regulation (EC) No. 1107/2009, Directive 2009/128/EC, COM 

(2012) 60 and the European Technology Platform ‘Plant for the Future’ (Mari, et al., 2011; De 

Nicola et al., 2013).  

The influence of AITC on the level of antioxidant capacity and phytochemical content, was 

also investigated in ‘Clery’ strawberries, a variety very rustic and tolerant to diseases. Our results 

on antioxidant capacity, phenol and anthocyanin quantification showed no significant differences 

between treated and untreated fruit (Table 4), similar to those obtained on blueberries by Wang et 

al. (2010), thus suggesting that the AITC treatment had no harmful effect on fruit nutritional quality 

associated with this aspect. The treatment did not influenced also the final ascorbic acid content in 

the reduced, AsA, and oxidised, DHA, form, and the ascorbic acid redox state was unchanged 

between control and treated samples at the end of storage, d2 (Table 5). Anyway a lower level of 

DHA and a slight increase of the redox state in treated sample, soon after treatment, d0, seemed to 

indicate a protective action of AITC against oxidation, even if a physiological consequence of this 

transient effect, was not clearly evidenced on fruit. On the contrary a strong action of AITC on 

glutathione was observed in treated fruits, as it caused a significant depletion of GSH and GSSG, 

more evident at d0, but still significant at the end of storage. Nevertheless the redox status was not 

significantly affected by treatment (Table 6). The glutathione reversible depletion effect and 

consequent reactive oxygen species (ROS) accumulation has already been observed in AITC treated 

Arabidopsis thaliana seedlings, possibly indicating a role of the glutathione in the 

detoxification/control of ITCs in plant tissue in accordance with findings in mammalian cells 

(Øverby et al., 2015). Moreover, Wang et al. (2010) attributed the increased resistance of fruits to 

microbial infection after AITC treatment to a mechanism not related to antioxidant properties rather 

to the enhanced H2O2 production and hydroxyl radical formation in blueberries that resulted in an 

intolerable level of high oxidative stress on fungi cells. More investigations are needed to elucidate 

the AITC mechanism of action in fruit and its role on the generation of ROS.  

Despite numerous data on ITCs antifungal, antibacterial, anti-nematode and anti-insect 

activities only a few studies have reported the analysis of residue content on treated fruits. AITC 

residues were found on fruit by the SPME technique (Arthur and Pawliszyn, 1990) coupled with 

GC-FID analysis, a solvent free, rapid and very sensitive technique that has become more and more 

popular in the extraction and analysis of organic and volatile compounds in food samples 

(Lambropoulou and Albanis, 2003; Vallverdù-Queralt et al., 2013). The concentration of GL-
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derived AITC residue in fruit, treated 4 h at 0.1 mg L
-1

, after 7 d from treatment, appeared lower 

than 1 mg kg
-1

. Similarly, Mari et al. (2002) found less than 12 mg kg
-1

 of AITC and no detectable 

residue in the fruit pulp, after 7 d at 20°C, in pear skin treated with 5 mg L
-1

 (amount added to the 

treatment cabinet). AITC analysis of single fruit from different sampling points in the treatment 

cabinet, also showed a more homogeneous distribution of active molecule when GL-derived AITC 

was used than with the synthetic AITC (data not reported). This was probably due to the fact that, 

when DSM was used, AITC was produced in the reactor in vapour phase and then sent to the 

cabinet through a closed circle by a pump, with a consequently greater homogeneous active 

compound distribution. Synthetic AITC was instead injected as a liquid directly into the cabinet, 

thus creating concentration gradients in the cabinet. Regarding AITC safety, more detailed 

toxicological studies are needed. As a matter of fact, there is no AITC maximum residue limit 

(MRL) on strawberry. The MRL reported in the Regulation (EU) No 34/2013 for folpet, a fungicide 

applied against B. cinerea, is fixed at a limit of 3 mg kg
-1 

of strawberry, a concentration higher than 

that observed after AITC treatment (Table 3). Overall, when assessing health risks, two key factors 

have to be considered: the levels where no health effects occur and the levels to which consumers 

may be exposed. Regarding the first key factor, AITC was defined as a flavouring substance which 

may be used as a foodstuff applying an acceptable daily intake (ADI) of 0.02 mg kg bw
-1

 day
-1

 

(EFSA 2010). Taking into account the results reported in this paper, it can be calculated that to 

exceed the ADI a man of 60 kg should eat in a day more than 1.2 kg of strawberries treated as 

described. In addition, the strawberry taste should not be affected by AITC residues according to 

the results obtained by Ko et al. (2012) in assessing the sensory quality of Kimchi, a traditional 

Korean vegetable food, where an AITC concentration under 1.5 g kg
-1

  did not affect the food taste.  

In conclusion the reported results confirm even on strawberry the possibility of reducing the 

incidence of postharvest grey mould by over 45% with a biofumigation approach based on AITC, 

making this treatment promising for conventional and organic fruit production.  
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3.3.2. Postharvest application of brassica meal-derived allyl-isothiocyanate to kiwifruit: effect on 

fruit quality, nutraceutical parameters and physiological response 

3.3.2.1. Introduction 

Kiwifruit is a fruit crop successfully adopted by international markets, with China, Italy and 

New Zealand being the top three producers worldwide (http://faostat3.fao.org/browse/Q/QC/E). 

Despite the spread of new varieties developed from different species, the most popular cultivar is 

the green-fleshed ‘Hayward’ (Actinidia deliciosa), whose distinctive appearance and flavour are 

highly appreciated by consumers. The great economic interest in kiwifruit is linked to its high 

nutraceutical values, together with the long-term storage capability and consequent exportability. 

After harvest, fruits are usually stored at 0°C under controlled atmosphere (CA), where the removal 

of ethylene increases the storage time up to 4 months, preserving both fruit quality and flavour 

(Latocha et al., 2014). Kiwifruits are an excellent source of minerals (e.g. potassium), dietary fibres, 

and bioactive compounds, such as vitamins E and C (L-ascorbic acid, AsA), flavonoids, 

anthocyanins, and carotenoids (Drummond, 2013). A. deliciosa, in particular, is rich in ascorbic 

acid and polyphenols that contribute to the total antioxidant capacity and to the capability of 

limiting oxidative stress due to reactive oxygen species (ROS). These properties make kiwifruit a 

‘functional food’ with preventive effects against certain types of cancers, vascular diseases and 

gastro-intestinal disorders (Padmanabhan and Paliyath, 2016). In plants, ROS are involved in fruit 

senescence, as excessive production causes lipid peroxidation and membrane damage, but they are 

also response factors for the activation of defence mechanisms after abiotic and biotic stress. 

Whether they act as toxic or signalling factors in response to environmental changes depends on the 

balance between their production and scavenging, and a complex network of mechanisms is 

involved in ROS homeostasis. L-ascorbic acid and glutathione are the main key players involved in 

this process, the first as direct antioxidant or as cofactor of enzymes participating in the biosynthesis 

of secondary metabolites and plant hormones, the second with a primary role in xenobiotic 

detoxification, redox balance, plant development and defence (Foyer and Noctor, 2011). Together 

with those non-enzymatic antioxidant compounds, enzymes as catalases (CAT), superoxide 

dismutases (SOD) and peroxidases (POD) are also involved in ROS scavenging and play an 

important role in fruit physiological changes during ripening and stress response (Xia et al., 2016). 

Besides, even though kiwifruits contain low levels of proteins, two of the most abundant soluble 

proteins (actinidin, a cysteine proteinase and a thaumatin-like protein, PR5) can affect fruit quality 

and have beneficial effects on humans. In particular,  actinidin contributes to the digestive process, 

while PR5 is known as a sweetener and flavour modifier, inducible by various agents from ethylene 



71 
 

to pathogens. Nonetheless, several pre and postharvest factors, such as the physiological state of the 

fruit at harvest time, genotype, cultivation techniques, storage period and temperature management, 

can greatly affect both qualitative and nutritional aspects of kiwifruits (Tavarini, et al. 2008, Oz, 

2010). Among postharvest techniques, the use of natural preservatives, as plant secondary 

metabolites, could represent a valid option, within an integrated management, for the shelf-life 

extension of goods. Allyl-isothiocyanate (AITC) demonstrated a strong antimicrobial activity on 

fruit as strawberries (section 3.3.1), while the effect on plant and the mechanism of action at cellular 

and molecular level is still poorly studied. At the best of our knowledge, there are no literature data 

on the AITC effect on the nutraceutical characteristics of kiwifruit. This work was therefore focused 

on the evaluation of the effects of an AITC treatment on kiwifruit physico-chemical parameters, 

antioxidant enzymes, glutathione content, expression of genes involved in ripening, stress response 

and secondary metabolism, in order to assess the potential application of the treatment in improving 

fruit quality and nutraceutical properties. 

3.3.2.2. Materials and methods 

Plant material  

Kiwifruits (Actinidia deliciosa, cv. ‘Hayward’) were harvested at commercial maturity stage 

from an orchard located in the production district of Emilia Romagna Region (Italy) after a 

management by the Italian integrated production guidelines. Fruits homogenous in maturity stage 

and size were carefully selected, with the aim of excluding those fruit with physical injury, diseases, 

or incidences of pests. 

Isothiocyanate   

Allyl-isothiocyanate was produced in situ from the endogenous GL (sinigrin) - MYR system 

of Brassica nigra defatted seed meal (DSM), provided by Agrium Italia SpA (Livorno, Italy) and 

opportunely formulated (Lazzeri et al., 2010). DSM used for the trials had defined characteristics as 

5.1 % moisture content, 7.9 % residual oil and sinigrin content of 153 mol g
-1

 (on dry matter, DM) 

determined with standard procedures (Franco et al., 2016).  

AITC treatment  

Selected kiwifruits were distributed in 3 trays (26 fruits each), placed in a 0.1 m
3
 airtight 

cabinet and treated by AITC vapours produced by the DSM plus water added in an external reactor 

as described in Mari et al., (2008) (section 3.1). Allyl-isothiocyanate concentration was maintained 

at 0.15 mg L
-1

 for 5 hours. The atmosphere in the cabinet was monitored by an Agilent 7820AC GC 

system equipped with an Agilent HP-5 column (30 m length, 0.32 mm inner diameter, 0.25 m film 
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thickness) and FID detector (Agilent Technologies, Santa Clara, USA). Injector and detector 

temperatures were set at 200°C and 300°C respectively; the oven program started at 60°C and 

raised to 120°C at a rate of 10°C min
-1

; the carrier gas (He) flow rate was 1 mL min
-1

 and the 

splitless injection mode was selected. The AITC amount was determined on the basis of a 

previously defined calibration curve using a pure AITC standard (Sigma-Aldrich, Saint Louis, 

USA). Treated fruits and non-treated control fruits were stored at 12-15 °C overnight and then for 

120 days in CA (2% O2, 4.5% CO2) at 0°C and 95% relative humidity, maintaining ethylene 

concentration <0.02 L L
-1 

by scrubbing the gas with KMnO4. Six to ten fruits were randomly 

sampled per each time point: i) at harvest, ii) at the end of the treatment (d0), iii) one day after the 

treatment (d1) and iv) at the end of storage (d120). All analyses were performed on three pools of 

fruits. 

Kiwifruit quality traits  

Quality trait evaluation was performed on fruits at harvest at d120. Kiwifruits were weighed 

and peeled, and the homogenised samples were analysed for: 

Soluble solid content (SSC), determined by a digital refractometer (Refracto 30 PX, Mettler Toledo, 

Milan, Italy), (expressed as °Brix); 

Total titratable acidity (TA), measured by titration of kiwi juice acids with 0.1 N sodium hydroxide 

(expressed as meq L
-1

); 

pH value, measured using a digital pH-meter (785 DMP, Methrom, Milan, Italy); 

Firmness, measured on fresh fruit by a penetrometer (Fruit Pressure Tester FT011, TR snc, Forlì, 

Italy), using a 10 mm tip (expressed as Newton, 1 N = 9.8 kg); 

Moisture content (unbound water) measured by weight loss after drying fresh samples at 105° ± 

1 °C, until a constant weight was reached (expressed as % dry matter, DM).  

Extraction and analysis of phytochemical content and antiradical capacity of kiwifruits  

A mixed sample of fresh fruits at harvest and at d120 were peeled, cut into small pieces, 

freeze-dried and stored at -80°C until analysis. Freeze-dried samples (0.5 g) were extracted with 10 

mL of a solution of methanol: water (80:20 v/v) acidified with 0.1% HCl (v/v) to determine fruit 

phytochemical content and antiradical capacity (AC). The extraction was carried under magnetic 

stirring (300 rpm), for 30 min, at room temperature in the dark. The mixture was then submitted to 

an ultrasound-assisted extraction for another 30 min (40 kHz, 10°C) and centrifuged at 6792 g, for 
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15 min at 4 °C. After a second extraction, supernatants were collected together and immediately 

analysed.  

Total polyphenol content (TPC) and flavan-3-ol content (FLC) of extracts were determined 

according to Carbone and Mencarelli (2015). Data were expressed as mg of gallic acid equivalents 

(GAE) and mg catechin equivalents (CAE) per g on DM for TPC and FLC, respectively.  

L-ascorbic acid content (AsAC) of kiwifruits was determined by Differential Pulse Voltammetry 

(DPV) and Cyclic Voltammetry (CV). Briefly, the DPV measurements were performed using a 

computer-controlled system, AUTO-LAB model PGSTAT 12 with GPES software (ECO-

CHEMIE, the Netherlands). Voltammetric measurements employed a screen-printed electrode 

produced in house, which consisted of a three electrode configuration with graphite working and 

counter electrodes and a silver pseudo-reference electrode printed onto a plastic support film. All 

measurements were carried out in 0.1 M KCl aqueous solutions at room temperature. The DPV and 

CV were performed according to Cavalieri et al. (2013) using 60 µL of AsA standard solutions and 

extracted fruit samples in order to observe the electrochemical behaviour of each analyte and the 

matrix effect. The quantitative determination of AsA in kiwifruits was extrapolated using the 

calibration curves obtained with increasing amounts (0 – 125 x 10
-6

 M) of AsA (standard solutions) 

in 0.1 M KCl using DPV.   

Antiradical capacity (AC) was assessed measuring the ability of the extracts to scavenge synthetic 

radicals [i.e. 2,2-diphenyl-1-picryl-hydrazyl-hydrate, DPPH• and 2,2′-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid), ABTS•
+
]. Both DPPH• and ABTS•

+
 quenching capacities 

were estimated spectrophotometrically according to Carbone and Mencarelli (2015), and expressed 

in terms of EC50.  

Antioxidant enzyme activity assays  

Fruit pericarps, collected at d0 and d1, were cut, frozen, grinded in liquid nitrogen by a 

Waring Commercial laboratory blender (Waring products division Torrington, CT, USA) and stored 

at - 80 °C. Enzyme extraction and analysis were performed according to Yang et al. (2013), unless 

otherwise stated. Samples were homogenised with 0.5 M potassium phosphate (pH 7.0), 1 mM 

ethylene diamine tetraacetic acid (EDTA), 50 g L
-1

 polyvinylpolypyrrolidone and 10 mL L
-1

 Triton 

X-100. After centrifugation (31.500 g, 20 min, 4°C), the supernatant was used for enzyme 

spectrophotometric assays carried out in a Varian Cary 300 Bio Uv/Vis spectrophotometer (Agilent 

Technologies).  
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Catalase (CAT) activity was determined by monitoring the decrease of absorbance at 240 nm of the 

reaction mixture containing 50 mM phosphate buffer (pH 7), 10 mM of H2O2 and the kiwifruit 

extract.  

Guaiacol peroxidase (POD) activity was determined by monitoring the increase in absorbance at 

470 nm of the mixture composed by 50 mM potassium phosphate (pH 7), 20 mM guaiacol (Sigma-

Aldrich), 10 mM H2O2, and kiwifruit extract.  

One unit (U) of CAT or POD activity was defined as the amount of enzyme causing a change 

in absorbance of 0.01 min
-1

.  

Superoxide dismutase (SOD) activity was determined by using an Infinite M200 PRO microplate 

reader (Tecan Austria GmbH). The reaction mixture containing 50 mM potassium phosphate (pH 

7.8), 13 mM methionine, 75 M nitrobluetetrazolium (NBT), 2 M riboflavin (Sigma-Aldrich), 0.1 

mM EDTA and enzyme extract was exposed 10 min to light from a fluorescent lamp (Sylvania 

F15T8-CW Cool White fluorescent lamp). The absorbance was read at 560 nm and subtracted from 

blank samples with and without kiwifruit extracts, illuminated or not. One U of SOD was defined as 

the amount of enzyme that inhibits the photoreduction of NBT by 50% under the assay conditions. 

Specific enzyme activities were expressed as U g
-1

 protein. Extract protein concentration was 

determined using the Bio-Rad dye reagent (Bio-Rad, Munchen, Germany).  

Glutathione content determination of kiwifruit 

Frozen ground pericarp samples collected from fruit at d0 and d1 were extracted with cold 5% 

5-sulfosalicylic acid (SSA), 1:10 w/v, at 4°C by using a TissueLyser (Retsch GmbH, Haan, 

Germany), and subsequently centrifuged at 31,500 g for 15 min at 4°C. Total glutathione (reduced 

+ oxidized glutathione, GSH + GSSG) spectrophotometric analysis was performed by using the 

GSH assay kit (Sigma-Aldrich), with GSH reductase, 5,5’-dithiobis(2-nitrobenzoic acid (DTNB) 

and NADPH, according to the provided protocol on a Infinite M200 PRO microplate reader. GSSG 

was determined by the same method in presence of GSH masking agent 1-methyl-2-

vinylpyridinium triflate (M2PV) (Shaik and Mehvar, 2006). Results are expressed as nmol g
-1

 FW. 

GSH was estimated as the difference between total and oxidized form and GSH redox state 

calculated as the percentage of GSH over total: GSH/(GSH+GSSG) x 100.  

Gene expression analysis: RT-qPCR  

Total RNA was isolated from 200-300 mg of frozen kiwifruit outer pericarp collected at d0 

and d1, following the protocol of  Chang et al. (1993), scaled down in order to work in 2 mL tubes. 

RNA was then cleaned up using MinElute column and on column DNAse I treatment (Qiagen), 
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according to manufacturer’s instructions. RNA quantity and quality were evaluated with the Infinite 

200-PRO NanoQuant system (Tecan, Männedorf, Switzerland) and on 1% agarose gel, respectively. 

cDNA synthesis was performed starting from 500 ng of RNA in 10 µL reactions, using High-

Capacity RNA-to-cDNA Kit (Life Technologies). Gene-specific primers (Table 1) were chosen 

from literature or designed using Primer3 software 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi, Huang et al. 2013) from EST sequences 

available at NCBI or gene predictions available at the Kiwifruit Genome database 

(http://bioinfo.bti.cornell.edu/cgi-bin/kiwi/home.cgi).  

Table 1 List of the primers used for transcript abundance analysis by RT-qPCR, with respective 

gene identification code (ID) from the Kiwifruit Genome Database 

(http://bioinfo.bti.cornell.edu/cgi-bin/kiwi/search.cgi, or GeneBank database 

(https://www.ncbi.nlm.nih.gov/genbank). The gene type (reference or gene of interest, GOI) and the 

metabolism in which GOIs are involved are specified. Superscript letters indicate the reference of 

the primers’ sequences: a: Günther et al., 2011, b: Richardson et al., 2011, c: Li et al., 2010. 

 
Short 

name 
Gene description Type / metabolism Primer forward 5'->3' Primer reverse 5'->3' Gene ID 

TUA alpha-tubulin reference ACAACACAGCAGTGGCAGAG AGAGAACTCCCCTTCCTCCA FG466654 

UBC9 a 
ubiquitin conjugating 

enzyme 
reference CCATTTCCAAGGTGTTGCTT TACTTGTTCCGGTCCGTCTT FG524028 

UBQ  ubiquitin reference CCAAGATCCAGGACAAGGAG TGGAGGGTCGATTCTTTCTG FG409945 

SAM  
S-adenosylmethionine 

synthase 

GOI/Ethylene 

synthesis 
CCCAGATTTCACTTGGGAGA TCTTCCTCAGCCAGAATGGT ACU17240 

ACO1 ACC oxidase 1 
GOI/Ethylene 

synthesis 
CCGCTTGTGTTTGTGTGAAC TTCTTTCTGGGGAATGCAAC HQ293204 

ETR2 ethylene receptor 
GOI/Ethylene 

Perception 
AAAACGTGTGGGAAAGATGC CAATCCCGTCATCACACAAC EU170629 

PG polygalacturonase 

GOI/Fruit 

softening/Cell wall 

degradation 

GTTAGGGGTGTGCTCTTCCA GATTGGGGCAATTTTTGTTG AF152756 

BAM b beta-amylase 

GOI/Fruit 

ripening/starch 

degradation 

ATCCTGACCTTGTCTACACA ATGGGTGTTCTTCCTCTAAG FG525163 

PAL 
phenylalanine 

ammonia-lyase 

GOI/Phenyl 

propanoid pathway 
GCTTGGATTACGGGTTCAAA GAGTTCACATCTTGGTTGTGTTG 

Achn153791; 

Achn066341 

CHS3 chalcone synthase 
GOI/Phenyl 

propanoid pathway 
AGAGAAGTTCCAGCGCATGT ATTTGGGAATTTCCACCACA Achn168721 

PPO polyphenol oxidase 
GOI/Stress 

response 
GGTGATCCGACCTGACAACT ACAGCTCCGTGATACCCAAC Achn226891 

GPP 
L-galactose-1-

phosphate phosphatase 

GOI/Ascorbic acid 

synthesis 
TACCAAACCAAGCATGTGGA ACTTGTGGTCAGGGAAATGC AY87585 

GalDH c 
L-galactose 

dehydrogenase 

GOI/Ascorbic acid 

synthesis 
TTGGGAAGGATGCGAAAAC GCAGCCACTTCACAAAGCA EU525846 

MDHAR 
c 

monodehydroascorbate 

reductase 

GOI/Ascorbic acid 

recycling 

TCAAATTATCAAGGGAACTGT

GGC 
ACCAACAACAACGATGTCCGCT 

Achn091771; 

Achn075231; 

GU339041 

GST 
tau class glutathione 

transferase 5 

GOI/Glutathione 

metabolism 
TTGCTGGAGCAAAGACAATG GGCTTCCTGAATGATTCCAA Achn223211 

Act d1 actinidin 
GOI/Abundant 

protein in kiwifruit 
AGGCTACATGAGGATCCTGC GGCCATCCTTGCTCATTGAG M38422 

PR5 thaumatin-like protein 
GOI/Abundant 

protein in kiwifruit 
TGATGGGTTCAATGTGGCGA CCAGGGGCACGTAACTCATT AJ871175 

  

http://bioinfo.bti.cornell.edu/cgi-bin/kiwi/home.cgi
http://bioinfo.bti.cornell.edu/cgi-bin/kiwi/search.cgi
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qPCR was performed using the Rotor-Gene 6000 Instrument (Corbett Life Science) and Sybr 

Select Master Mix (Life Technologies) with 100 nM specific primer pairs and 2 µL of 1:10 diluted 

cDNA, in 15 µL total volume. After the initial denaturation at 95°C for 2 min, 45 amplification 

cycles were performed (95°C for 15 sec, 60°C for 60 seconds), followed by melting curve analysis. 

Each analysis was repeated twice. UBQ, UBC9, and TubA were used as reference genes. 

Calculations were made according to the 2–∆∆Ct method using REST software (Pfaffl et al., 2002). 

 AITC residue analysis in kiwifruits 

Residual AITC quantification was performed on kiwifruits at d120. Fruits were peeled and 

0.5-1 g of the epicarp (2-3 mm thick) or 5 g of the outer pericarp were separately cut into small 

pieces and analysed by solid phase microextraction (SPME) coupled with GC-FID technique as 

described in section 3.3.1. GC analysis was carried out on a Varian GL-3800 equipped with an 

Agilent HP-5 column (30 m, 0.25 mm, 0.25 m), an automatic auto-sampler CombiPAL (CTC 

Analytics) and FID detector. The analytical conditions were: injector and detector temperature 

maintained at 260 °C and 280 °C respectively; flow of the carrier gas (nitrogen) set at 1 mL min
−1

; 

column oven temperature followed a gradient from 60 °C to 90 °C, with a rate of 5 °C min
-1

 and 

from 90 to 200 °C with a rate of 40 °C min
-1

. The splitless mode was used for injection. Blank 

samples of untreated fruit were analysed following the same protocol. A calibration curve with 

blank sample of the non-treated epicarp and the outer pericarp spiked with AITC hexane dilutions 

was constructed and the limit of quantification and detection (LOQ and LOD) were determined. 

Measurements were replicated 5 times for treated fruits and calibration samples. 

Statistical analysis 

Described analysis were carried out in triplicate and statistical analysis of data expressed as 

mean ± standard error was performed with the SPSS 17.0 software (SPSS, Inc., Chicago, Illinois), 

unless differently specified. Data were then subjected to a one-way analysis of variance (ANOVA) 

employing Tukey’s HSD test to assess significant differences between samples analysed (P < 0.05). 

Finally, Pearson’s correlation coefficient (r) was used to determine variable correlations (P < 0.01). 

3.3.2.3. Results and discussion 

Effect of AITC on kiwifruit quality traits, phytochemical content and antiradical capacity 

The mean values of the physicochemical attributes of kiwifruit at the end of storage are 

shown in Table 2.  
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Table 2 Pomological and nutraceutical parameters (mean ± SE) of kiwifruits treated or not with 

AITC and determined at the end of storage (d120). Results are expressed on a dry matter (DM) 

basis. DM (%), soluble solid content (SSC, °Brix); titratable acidity (TA, meq L
-1

); firmness (N); 

ascorbic acid content (AsAC, g g
-1

); total phenolic content (TPC, mg gallic acid equivalents GAE 

g
-1

); total flavanol content (FLC, mg catechin equivalents CAE g
-1

); EC50_DPPH• (mg)
a
; 

EC50_ABTS•
+
 (mg)

a
. AITC treated (AITC) sample means followed by an asterisk are significantly 

different from untreated control means (P <0.05, Tukey’s HSD test). 

 
 

 Control AITC 

DM  14.9 ± 0.4  14.1 ± 0.2  

SSC  13.3 ± 0.1 12.93 ± 0.03*  

TA  258 ± 1  261 ± 2  

pH 3.43 ± 0.02  3.38 ± 0.02  

Firmness 31.5 ± 0.3  33.8 ± 0.2  

AsAC 69 ± 2  105 ± 4* 

TPC 3.078 ± 0.009 3.48 ± 0.03* 

FLC 1.398 ± 0.007 1.505 ± 0.002* 

EC50_DPPH•   12.56 ± 0.01 10.0 ± 0.1* 

EC50_ABTS•
+
  1.029 ± 0.004 0.86 ± 0.01*  

 

a
EC50 = mg of kiwifruits required to obtain 50 % DPPH• or ABTS•

+
 scavenging 

 

All fruits were at an adequately ripe stage for consumption (SSC ≥ 12.5 °Brix) (Beirão-da-

Costa et al., 2008), with no decay. Postharvest AITC treatment did not significantly influence the 

overall quality of kiwifruits except SSC, which decreased in the treated samples as compared to the 

control after cold storage (P < 0.05). These findings agree with those reported in the literature on 

the ability of AITC in maintaining the postharvest fruit quality (Wang, 2003). 

Kiwifruits are generally recognised as a valuable source of vitamin C. However, this is a 

readily degradable compound, so it is fundamental to know how postharvest technologies could 

affect its content to identify the treatments that reduce AsA losses in ripe fruit. In  this study, 

kiwifruit AsAC was markedly affected by AITC treatment (Table 2). In fact, AsAC strongly 

decreased with storage (- 55% in control fruits) as already observed by Oz (2010), while AITC 

application significantly reduced its losses, keeping the level similar to those of samples at harvest 

time (152 ± 6 g g
-1

 DM). Kiwifruits are also known for the presence of other valuable compounds 

as polyphenols (Du et al., 2009). In this study, storage markedly affected even the total polyphenol 

content (TPC) of analysed samples. The highest TPC was found in AITC treated kiwifruits, which 

was 24% higher compared to that at harvest time (2.810 ± 0.007 mg GAE g
-1 

DM; P < 0.05) and 

also significantly higher than control samples (+ 13%). FLC was also increased by AITC treatment, 

which produced a significant accumulation of flavans compared to the control samples (~ + 8%). In 
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this work the antioxidant potential of kiwifruits was also evaluated by means of two different in 

vitro assays: the DPPH• and ABTS•
+
 scavenging methods. The results are expressed as the amount 

of antioxidant able to reduce the initial radical concentration by 50%,  a value generally defined as 

EC50 (Table 2): the higher the antiradical capacity, the lower this value is. In both assays, AITC 

treated samples showed the highest AC, which was 1.6-fold higher than that at harvest (EC50 = 

15.75 ± 0.08 mg on DM; EC50 = 1.39 ± 0.03 mg on DM, for DPPH• and ABTS•
+
 scavenging, 

respectively). Parametric correlation analysis pointed out a very good negative correlation between 

TPC and AC (r = -0.96 and -0.89, for DPPH• and ABTS•
+
, respectively) significant at 0.01 level (2-

tailed). AC also showed a good negative correlation with AsAC, which was higher in the case of 

ABTS•
+
 radical scavenging (r = -0.59 and -0.75, for DPPH• and ABTS•

+
, respectively; p < 0.01, 2-

tailed). These findings are in agreement with those reported in the literature (Du et al., 2009), 

highlighting the contribution of vitamin C and polyphenols to the antioxidant potential of kiwifruits. 

The results show for the first time the AITC effect of prevention of AsAC and TPC loss on 

kiwifruits during postharvest storage in AC. The same effect was not observed in strawberries 

(Section 3.3.1), also probably because of the different storage conditions of the fruit (subjected to 

short storage) compared to the AC long storage of kiwifruit, besides the overall different fruit 

characteristics. The exact mechanism of action of the AITC is not known and investigations by 

biochemical and gene expression analysis were performed in kiwifruits as described below in order 

to have some indication on the possible metabolic pathways and enzymes to be involved. 

Effect of AITC on antioxidant enzyme activity and glutathione kiwifruit content  

The short- and long-term effect of AITC on the activity of antioxidant enzymes in kiwifruits 

was investigated. The results (Table 3) highlighted a significant increase of SOD activity in treated 

kiwifruits compared to untreated ones, determined immediately after the treatment (d0). The basal 

level of activity was quickly restored at 24 h (d1) and no differences were detected at the end of 

storage (d120). Regarding CAT and POD activities, these were similar to those found by other 

authors for kiwifruits stored 120 days in cold storage (Yang et al., 2013), but no significant 

differences were evidenced between AITC-treated and control kiwifruits as between fruits before 

and after storage. SOD is the first line of defence against ROS toxicity and is a strong free radical 

scavenging enzyme that neutralizes the superoxide radical into the less toxic hydrogen peroxide 

which can be further converted into water by CAT and POD enzymes (Xia et al., 2016). It can be 

speculated that SOD increased activity might play a protective role against an initial burst-like 

effect of AITC treatment. This hypothesis was further validated by reduced and oxidized 

glutathione quantitative determination. Soon after AITC application (d0) reduced glutathione 
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(GSH) content was significantly lower (-16%) in treated compared to control samples, while 

oxidized glutathione (GSSG) content was higher in AITC treated samples, even if not significantly. 

After 24 hours (d1), GSH and GSSG levels increased and decreased respectively in both treated and 

control, and the redox state of the two pools was comparable. This effect was also observed for 

AITC treated strawberries (0.1 mg L
-1

, 4 h treatment) as described in section 3.3.1. where the GSH 

depletion was even higher (-89%). Nevertheless a strong decrease of GSSG was also noted in 

strawberry. Furthermore in strawberries the GSH and GSSG AITC depletion effect was not 

recovered at 100% after only two days of storage. 

Table 3 Antioxidant enzyme activities (Unit mg
-1

 of protein) and glutathione content (nmol g
-1

 FW) 

determined in kiwifruit immediately after AITC treatment (d0), one day later (d1) and after 120 

days of storage under controlled atmosphere (d120): superoxide dismutase (SOD), guaiacol 

peroxidise (POD), catalase (CAT), reduced glutathione (GSH), oxidized glutathione (GSSG), redox 

state [GSH/(GSH+GSSG)%]. Untreated control and AITC treated (AITC) sample means followed 

by the same letters are not statistically different (P <0.05, Tukey’s HSD test). 

 

 

  Control AITC 

SOD  

d0 30.8 ± 2.4 b 40.2 ± 4.5 a 

d1 29.6 ± 3.4 b 31.2 ± 1.7 b 

d120 34.6 ± 5.5 ab 32.4 ± 5.7 ab 

POD  

d0 12.9 ± 1.7 a 17.7 ± 4.5 a 

d1 17.9 ± 3.5 a 17.3 ± 5.7 a 

d120 22.0 ± 2.6 a 15.8 ± 10.4 a 

CAT  

d0 1.4 ± 0.6 a 1.7 ± 1.2 a 

d1 1.5 ± 0.7 a 1.4 ± 0.5 a 

d120 1.3 ± 0.3 a 1.3 ± 0.5 a 

GSH  d0 158.2 ± 10.5 a 133.3 ± 11.9 b 

 d1 171.3 ± 25.7 a 153.1 ± 8.7 ab 

GSSG  d0 6.4 ± 1.0 a 8.1 ± 1.0 a 

 d1 2.9 ± 0.4 b 2.7 ± 0.1 b 

GSH/(GSH+GSSG)% d0 96.1 b 94.3 c 

 d1 98.3 0.2 a 98.3 0.2 a 

 

 

AITC treated kiwifruit samples showed a more oxidized cellular redox state than control 

immediately after treatment, suggesting an initial but reversible oxidative stress caused by AITC 

treatment. On the contrary, in strawberries, the redox state was not significantly affected by 

treatment at any sampling time. As already mentioned the glutathione reversible depletion effect 

and consequent ROS accumulation has already been observed in AITC treated Arabidopsis thaliana 

seedlings, possibly indicating a role of the glutathione in the detoxification/control of ITCs in plant 
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tissue in accordance with findings in mammalian cells (Øverby et al., 2015). Total glutathione level 

was also rapidly recovered after a few hours in Arabidopsis. Lower GSH content after AITC 

postharvest treatment has also previously been observed in blueberries and raspberries (Chanjirakul 

et al., 2006; Chen et al., 2015). The GSH depletion effect seems to be dose and time dependent and 

strawberries are probably more susceptible than kiwifruit due to their very different physiological 

and morphological characteristics. Anyway although it is established that AITC conjugates with 

GSH in causing oxidative stress, it remains unclear whether the consequent GSH depletion is linked 

to a physiological response in plant. GSH/GSSG is the major cellular redox buffer along with 

ascorbate/dehydroascorbate and changes in these ratios can reflect cellular toxicity but have also 

been associated with important redox signalling and regulation of gene expression related to stress 

defence. In kiwifruit the AITC effect on the redox state could be correlated with the induction of 

protective and antioxidant non-enzymatic systems and could be responsible for the increased AsA, 

polyphenol and flavan content in AITC treated fruit (Table 2), even though this hypothesis needs 

further investigation.  

Gene expression analyses 

The expression level of 14 genes involved in different metabolisms related to fruit ripening 

and stress responses (as detailed in Table 1) was analysed in response to AITC application, 

immediately after treatment (d0) and one day later (d1). Results are shown in Figure 1. 

 

Figure 1. Relative transcript abundance by RT-qPCR of genes belonging to different metabolisms 

in kiwifruits treated with AITC at the end of the treatment (d0) and 24 hours afterwards (d1).  

a) ethylene synthesis and perception. SAM: S-adenosylmethionine synthase, ACO1: ACC oxidase 

1, ETR2: ethylene receptor; b) Cell wall and starch degradation. PG: polygalacturonase, BAM: 

beta-amylase; c) Phenyl propanoid pathway and phenol oxidation. PAL: phenylalanine ammonia-

lyase, CHS3: chalcone synthase, PPO: polyphenol oxidase; d) Ascorbate/glutathione biosynthesis 

and metabolism. GPP: L-galactose-1-phosphate phosphatase, GalDH: L-galactose dehydrogenase, 

MDHAR: monodehydroascorbate reductase, GST: tau class glutathione transferase 5; e) others. Act 

d1: actinidin, PR5: thaumatin-like protein. Each bar represents the ratio between expression in 

AITC treated fruits and their untreated control at the specified time point. The results were 

normalized to multiple reference genes and expressed as 2
-ΔΔCt

. Stars indicate significant difference 

according to REST software analysis 
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Since the reported qualitative results on kiwifruits indicated a reduced loss of AsAC after 

AITC treatment during postharvest storage (Table 2), it was decided to investigate two genes 

involved in AsA biosynthesis through the main L-galactose pathway (L-galactose-1-phosphate 

phosphatase GPP and L-galactose dehydrogenase GalDH) and one (monodehydroascorbate 

reductase MDHAR) involved in AsA recycling. The increased expression levels of GPP and GalDH 

suggest that AITC might compensate for AsA degradation through de novo biosynthesis. MDHAR, 

instead, was not affected at all by AITC. The transcriptional behaviour of a tau class glutathione 

transferase-encoding gene (GST) was also assessed in this work as linked to AsA through the 

glutathione-ascorbate cycle. GST enzymes have functions in detoxification as they catalyse the 

conjugation between GSH and electrophilic xenobiotics and their activity is often up-regulated in 

response to various types of stress. Øverby et al. (2015) in A. thaliana demonstrated that AITC is 

not only involved in a reversible depletion in GSH-pool, as mentioned above, but also in the 

elevated expression of GST-encoding genes. In agreement with this report, GST gene was up-

regulated upon AITC treatment. The different GSH redox state observed early in treated fruit 

(Table 3) could be part of the signalling transduction induced by AITC that influenced the 

expression levels of these genes. 

In kiwifruits, contrary to tomato and many other climacteric fruits, most physiological 

changes associated to ripening occur before autocatalytic ethylene production is detectable and 

ethylene production is associated more to fruit softening and senescence than ripening. In this work, 

three genes potentially involved in ethylene production and perception (S-adenosylmethionine 

synthase SAM, 1-aminocyclopropane-1-carboxylate oxidase 1 ACO1 and ethylene receptor 2 ETR2) 

were found either slightly increased or significantly up-regulated in response to AITC, suggesting 

the activation of ethylene synthesis and perception. SAM synthase genes and enzymes and ethylene 

receptors have previously been shown to be ethylene-responsive in kiwifruits (Atkinson et al., 

2011), therefore AITC could initiate an autocatalytic process of ethylene biosynthesis and response 

that would normally occur later. It is known that the expression of beta-amylase (BAM) is 

positively linked to this process and associated to starch degradation and soluble sugar 

accumulation. Consistently, in our system BAM and polygalacturonase PG, which is involved in 

cell wall degradation, were induced one day after treatment, suggesting that cell wall remodelling 

and soluble sugar accumulation, naturally occurring in kiwifruit during late stages of fruit ripening, 

would be anticipated by AITC treatment. However, this did not affect final fruit firmness (Table 2), 

probably because this process was stopped by subtracting ethylene during CA storage.  
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Phenolic secondary metabolites affect plant-derived food quality characteristics such as 

appearance, flavour and other health-promoting properties. Their content in foods is affected by 

many factors that influence phenolic stability, biosynthesis and degradation. In terms of 

biosynthesis, the key enzyme phenylalanine ammonia-lyase (PAL) is especially relevant, as it can 

be induced by different stress conditions and ethylene itself can induce both the gene expression 

and the enzyme activity of PAL (Singh et al., 2010). In this work, a 4x induction of PAL expression 

level was observed, probably responsible for the significantly higher TPC value in kiwifruit at the 

end of storage (Table 2), even though the tested chalcone synthase gene (CHS3), a downstream 

gene in the flavonoid biosynthetic pathway, was not affected by the treatment. Moreover, a 

polyphenol oxidase (PPO), encoding one of the main enzymes responsible for fruit quality loss due 

to phenolic degradation, was down-regulated.  

Finally, the expression level of two-gene coding for the most abundant proteins in kiwifruit 

was also investigated, actinidin (Act d1) and a thaumatin-like protein (PR5). Both genes were 

sensitive to AITC, though with divergent trends of modulation. Interestingly, Act d1 was three times 

more expressed in AITC treated samples than in control ones. This could lead to an increased 

concentration in actinidin, which generally decreases during fruit ripening, contributing to further 

enhancement of nutritional values and shelf-life of the fruit. The opposite was found for PR5, 

although further studies are required to understand if this could impact on fruit quality. 

AITC residues in treated  kiwifruits 

After a 4-month storage period of kiwifruits, the concentration of AITC residues in the 

epicarp was below the LOQ of 0.26 mg Kg
-1

, corresponding to about to 0.075 mg Kg
-1

 of the whole 

fruit, and no detectable residues were found in the outer pericarp (LOD = 0.0096 mg Kg
-1

, 

corresponding to about 0.0024 mg Kg
-1

 of the whole fruit). According to EFSA, the acceptable 

daily intake (ADI) for AITC used as food additive is 0.02 mg/Kg bw/day (EFSA, 2010), so in our 

case the residues are largely below this limit, even in the case of presumable use of freeze-dried 

kiwifruit pulp extracts. 

3.3.2.4. Conclusions 

A 5-hour treatment with 0.15 mg L
-1

 AITC in combination with CA can preserve ‘Hayward’ 

kiwifruit quality and enhance the nutraceutical properties in terms of increased antiradical capacity 

and phytochemical content, without leaving any detectable AITC residues on fruit. GSH cycle 

involvement in AITC mechanism of action/detoxification was confirmed in kiwifruits and AITC 

influence on AsAC and ethylene synthesis and PAL was depicted at gene expression level. These 
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findings open new perspectives in the use of this natural compound to enhance phytochemical 

content and antioxidant properties of fresh and, potentially, minimally processed fruits. 
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CHAPTER 4.  

OTHER DEFATTED SEED MEAL APPLICATIONS 
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4.1. Eruca sativa and industrial crops: a wealth of active ingredients for the health-

food industry 

Growing evidences demonstrate that a correct Mediterranean Diet is associated with a 

significant reduction in total mortality (Estruch et al., 2013). The dominant component of this diet 

as predictor of lower mortality are moderate consumption of alcohol, low intake of meat and meat 

derivatives, high consumption of vegetable, fruits, nuts and olive oil. Among vegetables, 

Brassicaceae family, are particularly beneficial as reported in several clinical trials or 

epidemiological studies (Wu et al., 2013; Jiang et al., 2014). Glucosinolates (GLs) are claimed to be 

the active components of cruciferous vegetables responsible for many beneficial effects assayed in 

vitro, and in vivo in human and in epidemiological studies (section 3.1.4.). Since 1992, the year of 

broccoli GL identification, more than 1000 studies have been conducted to determine the 

mechanisms and biological activities of sulforaphane (4-methylsulphinylbutyl isothiocyanate, ITC) 

and of its precursor, glucoraphanin (GRA, 4-methylsulphinylbutyl GL). When ingested 

sulforaphane has an half-life of ~2h, while little is known about the slow hydrolysis sustained by 

microbiota at intestinal level. Recent studies are trying to elucidate the metabolism of sulforaphane 

in vivo and it seems clear that the sulfoxide sulforaphane is in part converted in the liver, as well as 

in the gut microflora, in its thio-ether analogue erucin (4-methylthiobutyl ITC) (Clarke et al., 2011; 

Angelino et al., 2013). Eruca sativa Mill. seeds are the main holders of glucoerucin (GER, 4-

methylthiobutyl GL), and its leaves contain also glucoraphanin, high levels of vitamin C, 

flavonoids, nitric oxide and phenols, which together contribute to the beneficial effects obtained by 

their sustained and controlled intake (Figure 1). The concentration of these molecules in food crops 

was in the past continuously lowered to moderate pungent taste and distinctive aroma which is not 

always appreciated by consumers. Non-food crops, such as oleaginous industrial crops of 

cruciferous family, can guarantee up to 100 moles g
-1

 of GLs at seed level, and this content could 

be even higher after meal defatting.  
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Figure 1. Main glucosinolates in Eruca sativa Mill. seeds and their isothiocyanate (Franco et al., 

2016). 

 

After a solvent-free oil extraction the residual defatted seed meal (DSM) can be considered 

not only a simple industrial waste but a true co-product of the oil production, particularly attractive 

for the food industry and for the production of functional foods with a high healthy value. Indeed 

Brassicaceae DSMs are particularly rich in protein, fibers, vitamins and GLs at concentrations not 

common for any other type of commercial horticultural product. 

Four species of rocket seeds from the Brassicaceae collection of CREA-CIN (Lazzeri et al., 

2013) were analyzed and one of them was selected to produce pressure defatted flours under 

controlled conditions in order to obtain a valid product for the enrichment of functional bakery 

products. 

The design and production of glucoerucin and glucoraphanin rich bakery products was 

developed through the steps described as follows. 

Starting material selection and optimization  
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The cultivar Eruca sativa Mill, Nemat, known for its use in biofumigation (Lazzeri et al., 

2013), was selected and the main characteristics of the DSM, defatted under controlled conditions 

by pressing pilot extraction plant, were analyzed (Lazzeri et al., 2010; Lazzeri 2011). The obtained 

DSM showed a moisture content of 7.4%, 31% proteins and a 20.5% residual oil content, with 37% 

of erucic acid. DSM from E.sativa could be considered safe for food enrichment up to a maximum 

of 25% concentration, in order to not exceed the erucic acid European established limits 

(80/891/EEC, 1980).  

Nemat DSM GL contents were determined by HPLC analysis of desulfo-GL following the 

ISO 9167-1 method with some minor modifications, using a Hewlett-Packard chromatograph 1100 

equipped with a diode array detector, a ChromSep HPLC column SS (250 × 3.0 mm) and a 

ChromSep guard column Intersil 5 ODS-3 (Varian) (Franco et al., 2016). Sinigrin was used as 

external standard and the response factors of compounds were considered.  

MYR activity was detected by the pH-stat technique as described by Finiguerra et al. (2001). 

One MYR unit (U) was defined as the amount of enzyme able to hydrolyze 1 µmol of sinigrin per 

minute at pH 6.5 and 37 °C. 

Nemat DSM had a glucoraphanin (GRA) content of 0.44 moli g
-1

 and glucoerucin (GER) of 

89.8 moli g
-1

 (Figure 2). 

 

Figure 2. HPLC analysis of desulfo-GLs of Nemat E. sativa DSM. 

 

Therefore peculiarities of the Nemat DSM are the high concentration in GLs and the presence 

of only GLs that are considered, at the moment, safe for food, with beneficial properties, as widely 

described in the literature (Dinkova-kostova and Kostov, 2012). 
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Recipes and products 

 Two rocket DSMs with different properties in term of MYR activity were prepared: one with 

partially active MYR (low pressure extracted DSM) and the other with a totally deactivated enzyme 

(high temperature pressure extracted DSM). A mild oil extraction by pressure in fact preserved 50% 

MYR activity (11 ± 2 U compared to the maximum MYR activity of 24 ± 3 U for E. sativa DSM, 

defatted by cold hexane). This allowed to try recipes with active MYR at the time of the mix (0-4) 

and recipes with MYR completely deactivated by heat treatments (5 and 6), preserving on the 

contrary intact GLs (Table 1). In deactivated DSM in fact the GER and GRA content were 74.6 and 

0.47 moli g
-1

 respectively. Recipes and final food products were produced in the R&D and QA of 

Colussi-Group (Perugia, Italy) by adding DSM to a standard cracker mixed with wheat flour baked 

at 200 °C in industrial plant (Figure 3). Further information on the recipes is commercially 

confidential and property of Colussi-Group. 

 

Figure 3. Crackers products  
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Table 1. Cracker recipes with Nemat DSM added in different amounts, with active (0-4) or 

deactivated myrosinase (5 and 6). 

 

 

Recipes Supplements Theoretical GLs 

(moles/100 g) 

MYR 

0(b) 2,5 % Nemat DSM  

1,3% Dehydrated broccoli 

250 Yes 

1(e) 2,5 % Nemat meal  

1,3% Dehydrated broccoli 

250 Yes 

2(e) 2 % Nemat meal  

1% Dehydrated broccoli 

200 Yes 

3(e) 1,5 % Nemat meal  

1% Dehydrated broccoli 

150 Yes 

4(e) 1 % Nemat meal  

1 % Dehydrated broccoli 

110 Yes 

5(b) 2,5 % Nemat meal  

1,3% Dehydrated broccoli 

210 No 

6(e) 1 % Nemat meal  

1 % Dehydrated broccoli 

100 No 

Where (b) stands for basic recipe, and (e) stands for enriched recipe (Colussi-Group). 

 

Product quality control and troubleshooting   

Isothiocyanate analysis. Free erucin concentration was determined in crackers by extraction 

in CH2Cl2 and GC analysis was performed by an Agilent 7820A GC system coupled with flame 

ionization detector (FID), and a Varian HP-5 capillary column (30 m lenght, 0.32 mm internal 

diameter, 0.25 m film thickness). Instrument settings were as follows: injector and detector 

temperature were set at 200°C and 300°C respectively; the oven program started at 60°C and raised 

to 120°C at a rate of 10 °C min
-1

; the carrier gas (He) flow rate was 1 mL min
-1

 and the splitless 

injection mode was selected. Benzyl ITC (Sigma Aldrich) was used as internal standard and erucin 

content was calculated by using the previously determined response factor according to Brown et al. 

(1994).  

Only recipe 1 presented appreciable amounts of free Erucin (33.3 moles/100 g product), but 

in very small quantities compared to the initial theoretical 250 moles, probably because of the 

instability of the molecule at the baking oven temperature (Figure 4).  
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Figure 4. GC-FID analysis of the isothiocyanate erucin in crackers. 

 

Intact GL analysis: the typical extraction of GLs with heated solvents was not sufficient for 

extracting GLs from bakery products. Figures 5 shows results from three extraction procedures 

followed to achieve the best method, starting from recipe 6: (A) standard extraction in boiling 70% 

ethanol, according to ISO 9167-1 method (7 g in 20 mL of finely ground crackers); (B) standard 

extraction followed by a microwave assisted extraction step (4 g in 25 mL of finely ground crackers 

- 400 Watt, 80 ° C for 10 min, Green Chem Plus vessels, Mars5 CEM corporation System); (C) 

sonication (30 min, 40 kHz) in 70% boiling ethanol (4 g in 25 mL of finely ground crackers) and 

two microwave assisted extraction steps performed as before, in 70% ethanol. 
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Figure 5. (A) HPLC determination of crackers GLs (recipe 6) according to the standard extraction 

ISO 9167-1 method, in boiling 70% ethanol; (B) GL extraction in boiling 70% ethanol followed by 

microwave assisted extraction step; (C) GL extraction via sonication step followed by two 

microwave extraction steps; LOD, limit of detection; GRA, glucoraphanin; GRE, glucoerucin. 
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The pre-sonication step followed by two microwave assisted extractions allowed a recovery 

of more than 96 % of total GLs, compared to the classical ISO 9167-1 method (13.5 %) and the 

single microwave assisted extraction (52.7 %).  

Only products made with recipes containing deactivated MYR showed a high yield of GLs 

(70.4 moles/100g of GER for recipes 6), probably because active MYR determined GL hydrolysis 

during the dough preparation for the other recipes. It is worth noticing that the process of mixing 

and cooking caused the loss of only 5 % of GLs in the MYR deactivated recipe thus confirming the 

potential use of Brassicaceae meals in nutraceutical products. 

Due to the low content of erucin ITC found in bakery product deriving from all designed 

recipes (Table 1, Figure 4), and to the low yield of GLs in products made with recipes containing 

MYR-activated DSM, MYR-deactivated DSM has been chosen to proceed with the development of 

the enriched bakery product. Such a DSM would be theoretically able to ensure an intake of GLs up 

to 70 mol/100 g of product, adding only 1% of E. sativa DSM to standard industrial recipes of 

crackers after baking at 180 °C. Such a conceived product may exert its beneficial effects only after 

the slow hydrolysis of GLs to ITC by intestinal microbioma. The addition of active MYR to the 

dough may be possible in the cooling phase of production using mustard seed meal (Sinapis alba), 

in order to increase GL hydrolysis rate. The determination of ITC and GLs during a simulated 

chewing process was also considered.  DSM based cracker extracts obtained after stirring for 1 min 

with minimum quantity of artificial saliva (Perdigão et al., 1998) at 37 °C was re-suspended in 

boiling ethanol 70%, treated with microwaves (800W for 2 min) and analyzed by HPLC. The 

bakery products ensure a release of about 20 moles/100 g ITC during chewing, and the 

achievement of about 50 moles of GLs/100 g of crackers in the gastrointestinal tract for the 

stimulation of a slow hydrolysis by gut microbiota. 

Conclusion 

 In this work an Eruca sativa Mill. cultivar was selected to produce pressure defatted oilseed 

meal under controlled conditions in order to obtain a valid product for the enrichment of functional 

bakery products. The development of an extraction method for the assessment of GLs in complex 

matrices permitted the quality control and improving of GL enriched bakery products. Developed 

methods for ITC and GL analysis in crackers made in fact possible to verify the production chain 

steps which led to the development of prototypes, interesting both for appeal and active substance 

concentration per portion. 
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The product developed giving the best results was able to release about 20 moles/100 grams 

of isothiocyanates during chewing, and to achieve in the stomach a concentration of intact GLs 

equal to about 50 moles/100 grams of product enough to stimulate a slow hydrolysis by intestinal 

microbioma (Angelino et al., 2013). 
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4.2. Production of enzymatic protein hydrolysates from sunflower and rapeseed 

defatted seed meal and two potential applications  

Oleaginous crops are widely used mainly for the oil fraction in non-food applications in green 

chemistry and for energy production, as in the biodiesel chain. Lately, there is a growing interest 

even in defatted seed meals (DSMs), as the main co-products of seed defatting. Usually DSM are 

used in low-value application as animal feed, but their steadily increase valorisation is becoming a 

fundamental opportunity with interesting economic and environmental perspectives (Lomascolo et 

al., 2012). The potential of the DSM carbohydrate fraction as a source of biofuels and bio-based 

materials has been extensively studied (Bozel and Petersen, 2010), while researches on proteins 

have received minor attention, despite their high economic value. Industrial oil extraction processes, 

though, may affect DSMs protein biological value, decreasing their solubility and bioavailability 

due to temperature/pressure/solvent denaturation (Lomascolo et al., 2012). To overcome this aspect, 

protein hydrolysates with enhanced functional properties have been studied for different agricultural 

applications (Ertani et al., 2009), as supplements in food and feed industry or as feedstock for the 

production of new bio-based chemicals (Gassman, 1983; Lammens et al., 2012). In this section the 

production of hydrolysates by mild enzymatic processes from sunflower (Helianthus annuus L.) and 

rapeseed (Brassica napus L.) DSM, and their potential application in two case studies are described 

and discussed. The first study explores the use of a sunflower meal hydrolysate (SMH) as plant 

biostimulant, while the second one investigates the use of sunflower and rapeseed meal 

hydrolysates (RMHs) as sources of protein in pet food, alternative to meat proteins. The different 

application fields also determined the choice of the hydrolysate production process. In the first case, 

in fact, the direct two-step extensive hydrolysis from sunflower DSM had the final aim to obtain a 

high percentage of free amino acids and low molecular weight peptides, while preserving other 

substances, which would make the product not suitable for feed application, but, on the contrary, 

could contribute to the biostimulant properties (Ordonez et al., 2007). In this perspective, some 

preliminary results were also outlined for the development of a biostimulant from DSM of 

Brassicaceae, which would include also bioactive glucosinolates. In the second case the hydrolysate 

production from sunflower and rapeseed DSMs was conducted through a one-step procedure, in 

order to obtain high percentage of medium-low molecular weight peptides and low amounts of free 

amino acids. In this case, a step of protein isolation before hydrolysis was needed, in order to obtain 

a product with a very high protein content and free of anti-nutritional compounds such as high 

fibres, phenols, chlorogenic acid (from sunflower DSM) or fitic acid and glucosinolates (from 

rapeseed DSM) (Parrado et al., 1991; Villanueva et al.,1999). Rapeseed and sunflower DSMs were 

produced by an industrial pressure-hexane oil extraction process, and provided by Italcol S.p.A 
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Castelfiorentino (Florence, Italy). Prior to analysis and hydrolysis trials DSMs were milled to a 0.5 

mm size. DSM protein content were 31.1 % and 32.7 % (on dry matter basis) for sunflower and 

rapeseed, respectively. Results are summarized in the following sections (4.2.1; 4.2.2.). 
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4.2.1. Production of an enzymatic protein hydrolysate from sunflower defatted seed meal 

for potential application as a plant biostimulant 

Polypeptides, peptides and amino acids of animal and/or plant origin, obtained by protein 

hydrolysis, have been increasingly applied in agriculture, not only as a source of organic nitrogen, 

but also as a sustainable and renewable bio-based tool to improve soil quality and nitrogen 

acquisition efficiency of plants, contributing to reduce chemical fertilizer input (Maini, 2006; 

Schiavon et al., 2008). Amino acid containing products, together with microbial inoculants, humic 

substances, seaweed extracts, and other natural origin plant hormone-like compounds are in fact 

studied for their biostimulant properties (Calvo et al., 2014). Biostimulants were recently defined as 

substances and materials that, when applied to plants, seeds, or growing substrates in specific 

formulations, have the capacity to provide potential benefits to growth, development and/or stress 

response (Du Jardin, 2012). Different mechanisms of action were observed and studied as the 

improvement of soil microbial activity and soil enzymes and modulation of numerous plant 

physiology aspects, acting as positive growth regulators or metabolic enhancers. The biostimulant 

effect of hydrolysates, containing free amino acids and oligo-peptides, but also other bioactive non-

protein components, has been demonstrated in many application studies, and related products have 

been successfully commercialized. Europe represented in 2012 the largest market for biostimulants 

which is a fast growing sector (+10% per year), deserving more and more research and 

development investments, especially in small and medium-size enterprises, SME (Maini, 2006; 

Ertani et al., 2009; Calvo et al., 2014). In Italy, vegetal extracts and hydrolysates rich in free amino 

acids (from alfalfa, Fabaceae and animal skin) fall within the biostimulant category according to 

the 75/2010 legislative decree. Accordingly, sunflower defatted seed meal (DSM), which contains 

about 30% of protein with a high quality amino acid profile, is an interesting starting material for 

the production of hydrolysates as bio-based supply of nitrogen and microelements with fertilizing 

properties, but also as a biostimulant.  

Hydrolysate production 

Hydrolysis protocol optimization. The use of enzymes from fungi and bacteria has become 

the most common choice for mild hydrolyses, avoiding the use of chemical processes, preserving 

the quality of free amino acids, and making sustainable the whole process. Preliminary trials aimed 

at finding the optimal hydrolysis conditions (temperature, pH, enzyme/substrate ratio, one or two 

step process) and the best starting material (DSM as such or subjected to component fractionation 

or protein isolation step). Hydrolysis was followed by the pH-stat technique (Adler-Nissen, 1986), 

where an automatic titrator maintained the pH at the desired value (Mettler-Toledo DL 50 Graphix).  
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The direct hydrolysis of DSM was carried out suspending it in water (10% w/v) and the 

combination of protein extraction and hydrolysis steps was chosen as the best method, enhancing 

the overall process efficiency: preliminary protein isolation step, in fact, determined a quantitative 

loss in terms of proteins and other bioactive compounds, without increasing the hydrolysis degree 

of the final product (data not shown). A two-step hydrolytic process by using Alcalase®, an 

endopeptidase from Bacillus licheniformis, and Flavourzyme®, an exopeptidase and endoprotease 

complex from Aspergillus oryzae (Sigma Aldrich), was performed in order to obtain a larger 

fraction of small peptides and amino acids. Optimal conditions were established as: i) preliminary 

incubation for 15 min at 50°C for maximum protein extraction; ii) a first step of hydrolysis with 

Alcalase enzyme, for 60 min, at 50°C, pH 8 and with an enzyme/protein ratio of at 0.2 AU/g; iii) a 

second step with Flavourzyme for 120 min, at 50°C, pH 7 and 50 LAPU/g as enzyme/protein ratio 

(Villanueva et al., 1999 for unit definition). The hydrolysis was stopped by adjusting to pH 6.0 with 

citric acid. This simplified approach made it possible to simultaneously extract and efficiently 

hydrolyse (hydrolysis degree DH 41% - Adler-Nissen, 1979) more than 75% of the protein content 

in DSM, minimizing time, costs and wastes of the process. An additional washing step of the 

residual meal could increase the protein yield to more than 90%, but it was not considered for the 

same economic considerations.  

Sunflower meal hydrolysate characterization 

Peptide molecular weight distribution. Peptide molecular weight distribution values were 

determined by SDS-PAGE, in 15 % polyacrylamide gels in Tris (Glycine SDS running buffer - 25 

mM Tris-HCl pH 8.3, 192 mM Glycine, 0.1% SDS) and size exclusion chromatography using an 

AKTA fast protein liquid chromatography (FPLC) system equipped with a Superose 12 HR 10/30 

column (Amersham Biosciences in 50 mM phosphate buffer pH 7, 0.15 mM NaCl, flow rate of 0.4 

mL min
-1

). Elution was monitored at 280 nm by a UV UCP-900 monitor (Amersham Biosciences). 

The electrophoretic profile clearly shows, at different incubation times, the hydrolysis of proteins 

with molecular weight higher than 30 kDa by Alcalase, while the action of Flavourzyme could not 

be highlighted as the free amino acids produced by the exopeptidase migrate with the front dye 

(Figure 1 A). Figure 1 B shows the gel filtration qualitative profiles of the final SMH and native 

DSM protein extract. It is clear how the hydrolysis led to a shift towards lower molecular size 

protein-peptide in SMH, if compared to the DSM extract profile, and to the appearance of low 

molecular weight compounds, probably new-formed amino acids and small peptides, but also other 

small compounds.  
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Figure 1. (A) SDS-PAGE of protein extract before the enzyme addition (time 0) and sunflower 

meal hydrolysates (SMHs) after different time intervals of hydrolysis (30, 60, 90, 120, 180 min): 

MW, molecular weight markers (kDa); Alcalase and Flavourzyme were added, at 0 and 60 minutes 

respectively. (B) Gel filtration chromatography of the native defatted sunflower meal (DSM) 

protein extract () and of the final SMH (---) on Superose 12 HR 10/30. 

 

DSM and SMH chemical composition. The main chemical characteristics of DSM and freeze-

dried SMH are presented in Table 1 and show how the hydrolysis process permitted to concentrate 

the protein fraction and to eliminate the majority of the initial fibre content. The final freeze dried 

SMH had a 67.7% (w/w) protein content, corresponding to 10.8% of nitrogen, values comparable to 

the common commercial biostimulant products.  

Other components deserve particular attention due to their possible involvement in the 

biostimulant activities, as plant growth promoters, auxin-like substances, soil microbial population 

enhancer or throughout different mechanisms of action: 

- organic matter: the SMH had a good organic matter content, higher than other 

biostimulant (Nardi et al., 2002). 
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- indol-3-acetic acid (IAA): IAA was present in low amount, 0.8 mg kg
-1

; (Ertani et 

al., 2013a); 

- sugars: 16.9 % in SMH, mainly composed of glucose (44%) and fructose (36.5%). 

(Wang and Ruan, 2013).   

- Amino acids: 16.4 % of the SMH and 24.3 % of the total protein content. (Cerdán et 

al., 2013).  

- Micro and macronutrients were mostly preserved in the SMH.  

 

Table 1. Chemical characterization of defatted sunflower meal (DSM) and sunflower meal 

hydrolysate (SMH). Analytical methods for moisture, oil, protein, ash, organic matter and carbon 

content are reported in De Nicola et al. (2013); fiber was analysed with FIWE analyser (Van Soest 

and McQueen, 1973), micro and macroelements, sugar and indol-3-acetic acid content were 

determined by the Research Institute for Agroindustry s.r.l. (Modena) (AOAC 958.01:1988; AOAC 

922.02:1933; EPA 5050 1994; APAT CNR IRSA 2020 Man; Matsuda et al 2005). Data are 

reported as the means of three measures ± standard deviation and are expressed on dry matter basis. 

 

 DSM SMH 

Nitrogen % 5.0 10.8 

Free amino acids (g Kg-1, w/w) ND
a
 164.4 ± 6.7 

Organic Matter % 93.1 ± 0.4 75.8 ± 0.0 

Sugars % 2.4 ± 0.3 16.9 ± 1.5 

Moisture  %  7.5 ± 0.6 9.5 ± 0.3 

Lipids %   0.8 ± 0.1 ND
a
 

Protein % 31.1 ± 0.3 67.7± 1.3 

Fiber %   47.2 ± 0.5 1.1 ± 0.2 

Ashes %   6.9 ± 0.4 14.7 ± 0.0 

Carbon % 47.0 ± 0.3 41.7 ± 0.2 

P % 1.1± 0.1 0.33 ± 0.01 

Ca % 0.7 ± 0.1 0.33 ± 0.02 

Na (mg Kg-1, w/w) 83.0 ± 3.1 232.9 ± 8.4 

K  (mg Kg-1, w/w) 8800.0 ± 900.0 42199.0 ± 4640.0 

B (mg Kg-1, w/w) 22.3 ± 1.7 42.2 ± 3.0 

Co (mg Kg-1, w/w) 0.3 ± 0.03 0.18 ± 0.02 

Cu (mg Kg-1, w/w) 25.3 ± 1.2 43.2 ± 2.0 

Fe (mg Kg-1, w/w) 298.4 ± 5.5 50.1 ± 0.9 

Mg % 0.5 ± 0.1 0.3 ± 0.03 

Mo (mg Kg-1, w/w) 0.9 ± 0.0 1.3 ± 0.0 

S (mg Kg-1, w/w) 2809.0 ± 0.0 5567.0 ± 0.0 

Zn (mg Kg-1, w/w) 70.1 ± 1.9 26.0 ± 0.7 

Indole-3-acetic acid (mg Kg-1, w/w) ND
a
 0.8  0.2 

 

 
a
ND : not determined 
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Amino acid composition. The free amino acid content of SMH, is reported in Table 2 and was 

compared with the composition of two commercial protein hydrolysates, of different vegetal or 

animal source purchased from the market (VPH and APH).  

SMH proved to contain a high and complete distribution of amino acids: twenty amino acids 

were detectable, at different concentration levels, in contrast to VPH and even more dramatically to 

APH. Only L-amino acids were present and tryptophan was also detected at 2.2%, thanks to the 

mild enzymatic hydrolysis condition which preserves them, differently from more aggressive 

chemical processes.  

Amino acids have proved to have various beneficial effects on plants with different 

mechanisms of action: they act on nutrients and nitrate up-take, on the regulation of enzymes 

involved in N assimilation, resistance to biotic and abiotic stresses, secondary metabolism and plant 

growth promotion. The role of amino acid in plants was subject of different studies (Liu and Lee, 

2012; Calvo et al., 2014) and there are evidences that plants can take up amino acids from the soil 

through specific transporters in roots (Hirner et al., 2006). Cerdán et al. (2013) found that foliar and 

root application of a vegetal hydrolysate, with 80% glutamic acid, enhanced ferrous root uptake and 

plant growth. Glutamine and arginine, the most abundant amino acids in SMH, were shown to have 

an effect on French bean growth, and secondary metabolism (Haroun et al., 2010). Forsum et al. 

(2008) showed that six amino acids individually promote plant growth on Arabidopsis, among 

which glutamine, asparagine and aspartic acid were most efficient. Some amino acids, like proline, 

protected plants from heavy metals and contributed to micronutrients uptake by means of chelating 

properties and exert antioxidant activities (Kaur and Asthir, 2015).  

Nevertheless, a complex interaction between them, and among plant extrinsic and intrinsic 

factors could take part of the overall biostimulant effect (Forsum et al,. 2008; Liu and Lee, 2012). 

Short peptides may also contribute to the improvement of micronutrient assimilation, and are 

involved in many aspects of plant growth, including defence response (Maini, 2006). 
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Table 2. Free amino acid composition (% w/w of total free amino acids) of sunflower meal 

hydrolysate (SMH), a commercial vegetal protein hydrolysate (VPH) and a commercial animal 

protein hydrolysate (APH). Amino acids were determined by reversed phase HPLC analysis and 

automated pre-column derivatization with o-phtalaldehyde-3-mercaptopropionic acid (OPA) and 9-

fluorenylmethylchloroformate (FMOC) (Schuster, 1988; Henderson and Brooks, Application note 

5990-4547EN 2010). A Hewlett-Packard Model series 1100 system, coupled with a diode array 

detector, and a Zorbax Extend-C18 column (4.6 x 150 mm, 3.5 m) was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
 Under the limit of quantification. 

Biostimulant assays  

Biostimulant activity of SMH was demonstrated by two assays, the in vitro Audus test, and 

the in vivo pot test on Zea mays. 

Audus test. The auxin-like activity of SMH was assessed by performing the Audus test (1972) 

on germination of Lepidium sativum L. (cress) and Lactuca sativa L. cv. Cosmic (lettuce), with 

some minor changes (Ertani et al., 2009) by using indol-3-acetic acid, IAA and gibberellic acid 

(Sigma Aldrich) respectively as reference standards. From results shown in Table 3 it is clear that 

SMH application caused, on garden cress, a root shortening in a dose-dependent way (from 4 to 800 

ppm), and a parallel improvement of root density together with the emergence of lateral branches 

and root hairs (Figure 2 A and B), similarly to what was expected from IAA treatment. It is well 

known, in fact, how auxins act as root growth inhibitor at high concentration, while they stimulate 

  SMH VPH APH 

 % % % 

Aspartic acid 1.92 13.83 -
a
 

Glutamic acid 2.67 14.06 -
a
 

Asparagine 5.52 -
a
 -

a
 

Serine 3.84 5.82 -
a
 

Glutamine 14.38 -
a
 -

a
 

Histidine 4.04 -
a
 -

a
 

Glycine 2.05 3.37 39.50 

Threonine 4.59 3.74 -
a
 

Arginine 11.84 4.13 -
a
 

Alanine 3.68 12.89 60.50 

Tyrosine 4.96 3.91 -
a
 

Cystine 1.34 -
a
 -

a
 

Valine 5.97 6.50 -
a
 

Methionine 3.48 -
a
 -

a
 

Isoleucine 5.32 5.77 -
a
 

Tryptophane 2.19 -
a
  

Phenylalanine 6.83 4.39 -
a
 

Leucine 8.75 8.32 -
a
 

Lysine 5.42 5.37 -
a
 

Proline 1.21 7.90 -
a
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roots at very low concentrations (about 1 part in 10
11

) (Audus, 1972) and they are also the dominant 

regulators of lateral root development (Overvoorde, 2010).  

Anyway, the SMH content of IAA (Table 1) could not be the only responsible of the 

observed hormone like activity as it was present at too low concentration (0.8 mg kg
-1

 which means 

3.2 10
-4

 ppm in the SMH applied at 800 ppm) suggesting the contribution of other compounds. The 

amino acid L-tryptophan, for instance, is a precursor for auxin synthesis and an hormone-like effect 

on Arabidopsis root architecture was previously observed (Walch-Liu et al., 2006).  

Conversely, no significant gibberellin-like activity was observed on epicotyls when SMH was 

applied.   

 

Table 3: Auxin-like activity of Indolacetic acid (IAA) and sunflower meal hydrolysate (SMH) 

tested on garden cress roots. The test was performed by positioning sterilized seeds in filter paper in 

Petri dishes, wetted by 1.8 mL of solutions at different concentrations of IAA and SMH (Audus, 

1972; Ertani et al. 2009). 1mM CaSO4 solution was used as control. 50 measurements were 

performed per treatment. The values are expressed as percentages of root length decrease compared 

by Abbott’s (1925) formula, to untreated control, measured after 72h, in the dark, at 25 °C. The arc-

sine transformed percentages were subjected to ANOVA and post hoc Fisher’s LSD statistical tests 

(P≤0.05) were performed on arcsine transformed data by Statistica ® software (StatSoft Inc.USA). 

Significant differences between treatments are expressed by different letters.  

 

Treatment Concentration (ppm) Root length decrease (%) 

IAA 0.01 4.8 ef 

 0.1 42.1 c 

 1 75.5 b 

 10 80.7 a 

SMH 4 9.6 ef 

 10 10.8 ef 

 40 16.6 e 

 400 30.3 d 

 800 37.0 cd 

 

A          B 

 

 

 

 

Figure 2. (A) Garden cress roots in control (CaSO4 solution) and treated samples (SMH 10 ppm in 

water). (B) Root morphology observed in bright field microscopy. 

 

control Treated
ato 
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Pot test on Zea mays test. Figure 3 shows the results of the sand bioassay performed on 

maize plant where the main root length was determined after SMH treatment, at different 

concentrations (from 0.9 to 900 ppm), in the presence or absence of nutrient Hoagland solution at 

50% (Trinchera et al. 2010) with some modifications; Hoagland and Arnon, 1950).  

SMH determined a 30 % maize root length increase over the control at low concentration in 

water solution (0.9 ppm) while at higher concentrations root length decreased (Figure 3 A). 

Biostimulant products, in fact, usually show their activity at low doses (1-10 ppm), thus differing 

from phyto-hormones, effective at even lower concentration (< 1 ppm), and fertilizer, active on the 

contrary at concentration higher than 100 ppm, depending on the real concentration of bioactive 

compounds in the product. Moreover, a decrease in root elongation was observed in control 

samples, compared to water treated plants, when plants had been treated with HS (nitrate 

concentration 7.5 mM), probably due to the consequent reduction of IAA levels in roots determined 

by high nitrate supply (up to 5mM) as observed by Tian et al. (2008). However, under SMH 

treatment, maize root partially restored elongation, probably mimicking the action of auxins 

(Figure 3 B). Root morphology also seemed to be influenced by hydrolysate application and again 

a more complex architecture was observed in the treated plant (Figure 3 C). 
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A       B 

 

 

 

 

 

 

 

 

C 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Root elongation of maize treated in pots with solutions (150 mL) at different 

concentrations of sunflower meal hydrolysate (SMH) in water (A) or in Hoagland solution at 50% 

(HS, B). (C) Control and treated (SMH 0.9 ppm) maize plant. Concentrations are expressed in ppm 

(mg of SMH on Kg of sand). Test were performed as described by Trinchera et al. (2010) on Zea 

mays (cv FAO 300) first germinated for 48h and after than two seedlings had been transferred in 

pot (6 cm of diameter) on sand. Plant were grown in growth chamber at 28°C with a photoperiod of 

12/12 and relative humidity at 70% and evaluated for principal root length after two weeks. 

ANOVA and post-hoc Fisher’s LSD statistical tests were performed. Significant differences 

between treatments (expressed by different letters) were determined by the LSD test (P≤0.05).  
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Other authors tested protein hydrolysates on maize seedlings hydroponically grown and 

evidenced how root and shoot increased their growth correlated with enhanced activity of enzymes 

involved in nitrate assimilation and carbon metabolism, partly ascribing those effects to the 

presence of indole-3-acetic acid, amino acids and small peptides (Ertani et al., 2013b). Furthermore 

the combined application of biostimulant products acting with different mechanisms of action could 

determine synergistic effects as observed for microbial-based and plant derived-protein hydrolysate 

biostimulants on lettuce (Rouphael, 2017). 

Conclusions 

In the last years biostimulants are object of common interest as alternative ways for 

increasing plant growth, limiting the extensive use of mineral fertilizers and going towards the 

public growing concern for human health conditions and environmental pollution.  

The reported results confirm several previous experiences on protein hydrolysis, optimizing 

and improving some process steps. The possibility of a direct hydrolysis of the DSM valorises this 

co-product through an easier and lower-impact process, obtaining a product rich in free amino acids 

and other bioactive compounds. The final SMH showed an interesting effect on root growth, linked 

to an auxin-like activity, demonstrating the promising properties of the product as a biostimulant, 

even if further studies are needed to confirm this action. Amino acids, humic substances, 

microelements and sugars in SMH could coordinate, as and with, auxin-like compounds in complex 

signaling cross-talks promoting plant growth, favouring plant transplanting and final crop yield. 

Finally, hydrolysates from a variety of plant residues have been studied and compared with 

animal origin hydrolysates, not only for their different and often better efficacy (Cerdán et al., 

2013), but also being considered biologically safer and are easily accepted by consumers. In fact, 

even if Corte et al. (2014) recently showed the absence of toxic and genotoxic effects, on different 

bioassay systems, of some hydrolysates derived from the leather industry, the EU banned the 

application of such animal protein hydrolysates on the edible parts of organic crops, through the 

Commission Implementing Regulation (EU) n° 354/2014 with regard to organic production, 

labelling and control (Colla et al., 2014). In this view,  bio-based products of vegetal origin play an 

important role, also considering the debate on the use of animal hydrolysate in organic farming. 
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 4.2.2.1. Exploring the use of other defatted seed meals for plant biostimulant production 

Preliminary evaluation of isothiocyanates and Brassicaceae extract 

The study of different defatted seed meals (DSMs) characterized by interesting biostimulant 

properties not only limited to protein content but also for the presence of bioactive secondary 

metabolites is currently ongoing. Among them the Brassicaceae family deserves particular attention 

for the glucosinolate (GL) content, some of which structurally related to the recognized plant 

hormone indol-3-acetic acid. The effect on plants of GLs and derived products have not been deeply 

studied yet. Some results were obtained in in vitro assays by treating maize seedlings with Brassica 

napus L., var. oleifera extracts: root length increased and radicle morphology modifications were 

registered at 0.1-1 ppm (w/v) suggesting an evidence for the biostimulant activity of the extract 

(Rivera et al., 2010). 

Some experiments were therefore conducted in order to investigate the possibility of 

obtaining a new biostimulant product from Brassicaceae DSM, enriched in GLs, by testing a GL 

degradation product and a DSM extract in in vitro bioassays. A preliminary screening of different 

isothiocyanates (ITCs) (not shown) brought to the selection of the gluconasturtiin ITC (phenethyl 

ITC), largely known for its chemo-protective and anti-microbial properties (Conaway et al., 2005; 

Kim and Lee, 2009). This ITC is formed from the corresponding GL found in Barbarea verna Mill 

Asch., a species characterised by winter hardiness, relatively large and high yield seeds, with a good 

potential to become a valuable oilseed crop (Andersson et al., 1999). 

Experimental. The effect of pure ITC, hydrolysis product of the Brassicaceae secondary 

metabolite gluconasturtiin, and of the Barbarea verna DSM extract, containing the same molecule, 

was tested on Lepidium sativum seedling roots by the Audus test performed as described before 

(Audus, 1972; Ertani et al. 2009). ITC was formed in situ by purified myrosinase (MYR) enzyme 

and GL, in 25mM 2-(N-morpholino)ethanesulfonic acid, MES, buffer, pH 6.5 (Figure 1) and its 

concentration (ppm) was expressed as starting GL concentration, as pure molecule or as component 

of B.verna DSM extract (hydrolysis conversion GL-ITC = 100%).  
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Figure 1. Myrosinase catalyzed hydrolysis of gluconasturtiin (phenethyl) glucosinolate into 

the corresponding isothiocyanate. 

 

B.verna extract was prepared in the same buffer (1:10 w/v). 1.8 mL of solution containing the 

ITC or extract was added, after centrifugation, to the filter paper inserted in the Petri dish (9 cm 

diameter). After 72h at 20°C, in the dark, the garden cress root length was measured. 25 mM MES 

pH 6.5 was used as control. Experiments were replicated three times with 10 seeds each.  

 Myrosinase (thioglucoside glucohydrolase, EC 3.2.1.147), was isolated from Sinapis alba 

seeds as reported in Pessina et al. (1990).
 
MYR activity was detected by the pH-stat technique as 

described by Finiguerra et al. (2001). The enzyme solution was stored at 4 °C in sterile distilled 

H2O until use and its activity (36 U/mL) was tested before each use. One MYR unit (U) was 

defined as the amount of enzyme able to hydrolyze 1 µmol of sinigrin per minute at pH 6.5 and 37 

°C. 

Gluconasturtiin GL was extracted and purified according to Barillari et al. (2005) with some 

minor modifications. The GL purity was improved by gel-filtration performed using a XK 16/60 

column packed with Sephadex G10 chromatography media (Amersham Biosciences), connected to 

an FPLC System (Pharmacia). The purity of GL assessed by HPLC analysis of desulfo-GL by 

following the ISO 9167-1 method with some minor modifications, by using a Hewlett-Packard 

chromatograph 1100 equipped with a diode array detector, a ChromSep HPLC column SS (250 × 

3.0 mm) and a ChromSep guard column Intersil 5 ODS-3 (Varian) (Franco et al., 2016).   

Isothiocyanate production from pure GL or from DSM, and its identification was checked by 

ethyl acetate extraction (1:1 v/v) and GC-MS analysis: Bruker GC 451 gas chromatograph equipped 

with a HP-5 fused silica capillary column (30 m length, 0.25 mm inner diameter, 0.25 µm film 

thickness, J&W Scientific Inc, Folsom, CA) connected to a quadrupole mass detector (Bruker Scion 
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SQ Premium, Bruker Daltonics, Macerata, Italy) was used. The oven temperature was set at 60 °C, 

and maintained for 4 min, after that it was programmed to rise from 60 to 220 °C at 10 °C min
-1

, 

and finally held at 220 °C for 4 min. The transfer line was maintained at 280 °C and the ion source 

at 220 °C. Split injection (1:20) was applied and the carrier gas flow (helium) was 1 mL min
-1

. The 

mass spectrometer was operated in electron impact mode at 70 eV, scanning the range of 10-250 

m/z, in a full scan acquisition mode. Mass spectra were identified by matching the recorded mass 

spectra with the NIST/EPA/NIH Mass Spectral Database (NIST 11, Gaithersburg, MD), or 

compared with those of ethyl acetate solutions of authentic standards. 

Results. The results showed an inhibition by gluconasturtiin-ITC on garden cress root 

elongation respect to the control at doses higher than 31 ppm, while an enhancing effect was 

observed at the lowest doses (Figure 2). This trend resembles the typical behavior of auxin-like 

compounds, which act as root growth inhibitor at high concentration, while they stimulate roots at 

very low concentrations (about 1 part in 10
11

) (Audus, 1972). Anyway lower concentration (≤ 4.6 

ppm) should probably also be tested in order to observe a more pronounced biostimulant effect. A 

similar trend was observed also with the B.verna extract, even if much less pronounced. 

 

 

 

 

 

 

 

 

 

Figure 2. Auxin-like activity of gluconasturtiin derived isothiocyanate and Barbarea verna defatted 

seed meal extract, tested on garden cress roots (Audus test). ANOVA and post-hoc Fisher’s LSD 

statistical tests were performed. Significant differences among treatments (expressed by different 

letters) were determined by the LSD test (P≤0.05). 

 

These preliminary results showed an interesting perspective on the production of a 

biostimulant product from Brassicaceae DSMs, with the aim of preserving the GL together with 
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other possible bioactive molecules. The product could in fact contain GLs, but also amino acids and 

peptides that can be produced by hydrolysis of the DSM protein fraction, thus combining the two 

possible biostimulant effects. Further researches on the synergic interaction between amino acids 

and peptides with GLs, but also phenolics or phyto-hormones, should deserve more attention, even 

more considering the wide availability of bioactive compounds from other residual DSMs. In fact, 

among residual biomasses derived from industrial oil production, other DSMs (Camelina sativa L. 

Crantz, Linum usitatissimum L., Carthamus tinctorium L., Crambe abyssinica R.E.Fr.), interesting 

for their proteins and bioactive compound content which could play a role in the biostimulant 

activity, are under investigation.  
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4.2.2. Production of an enzymatic protein hydrolysate from defatted sunflower and 

rapeseed seed meal as alternative protein sources for pet food 

Sunflower and rapeseed defatted seed meal (DSM) are the main co-products of the vegetal 

industrial oil production chain, and may constitute an optimal source of proteins for human and 

animal nutrition as they contain between the 30 and 45% of protein. Protein composition of both 

DSMs is represented by a low level of low molecular mass (14 kDa) as albumin (20-30%), and a 

high level of higher molecular mass (300 kDa) as globulin (55-70%), named napin and cruciferin 

respectively, in rapeseed (Ordonez et al., 2007; Wanasundara et al., 2016). The two DSM have a 

high quality and balanced amino acid profile, except for a deficiency in lysine in sunflower DSM, 

compared to most legumes and animal protein sources. Rapeseed in particular satisfies the FAO 

requirements and is rich in sulfur containing amino acids and lysine too. 

Today the mostly utilized vegetal proteins as food supplements are those from soy, barley and 

maize, but different research studies have considered also hydrolysate/extracts from sunflower and 

rapeseed DSMs (Villanueva et al., 1999; Yoshie-Stark et al., 2006; Chabanon et al., 2007). 

Rapeseed proteins were studied as a substitute or supplement of animal or vegetal proteins in 

processed food, improving their technological and nutritive values (Mansour et al., 1996; Cumby et 

al., 2008). 

Anyway several non-protein chemical constituents of the seed, as fibre, phenols, or 

glucosinolates, could be associated to proteins and could alter their nutritional value and functional 

properties. Furthermore napin, mustard (B. juncea and S. alba) and derived products are recognised 

as human gastro-intestinal allergens; proteins capable of eliciting immunogenic response could 

represent a problem also in sunflower and rapeseed DSM-derived food (Monsalve et al., 2001, 

Wanasundara et al., 2016).   

The production of protein isolates and/or protein hydrolysates from DSMs could overcome 

those hindrances, improve the quality and stability of hydrolysate-based nutritional formulas and 

represent an alternative source of protein for the food industry and especially for pet food. This 

need arises from the growing demand of products, in particular for dogs and cats suffering from 

adverse food reactions (AFRs) (Kang et al., 2014; Willis-Mahn et al., 2014; Suto et al., 2015). 

Hydrolysed proteins are less allergenic and more digestible (Sá et al., 2013), but the protein 

hydrolysates currently used for this purpose mainly derive from animal by-products and non-EU 

seeds as soybeans, implying an expensive economic and environmental effort. Trying to overcome 

this problem, rapeseed and sunflower DSM-derived hydrolysates (RPH and SPH) were investigated 

for their possible application in this context.  
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Hydrolysate production 

Protein isolate preparation: protein isolates were obtained from DSM by alkaline extraction 

(KOH 2 M, pH 10.5, 1:10 w/v, 1 hour in agitation) and isoelectric precipitation with citric acid (at 

pH 4.3 for sunflower and pH 5.0 for rapeseed proteins) as described by Villanueva et al. (1999) and 

Vioque et al. (1999). However, differently from the cited works, the sedimentation/flotation method 

and aqueous ethanol washing steps, performed to eliminate fibres, sugars and phenolics and obtain a 

higher protein purity, were skipped not being achieved a real protein purification improvement (data 

not shown), especially considering the overall cost/benefit ratio on a large scale production. No 

sodium sulphite was added, as antioxidant, to the alkaline extraction solution, as it did not 

influenced the final product browning, possibly due to the polyphenol oxidation. After protein 

precipitation, extracts were separated by centrifugation. Extraction and precipitation of sunflower 

proteins were performed at room temperature with yields of 84% and 48% respectively. The final 

protein isolate had a high protein content (92.2 % w/w on dry weight). For rapeseed a lower 

extraction yield was obtained, 58%, when temperature of 40 °C was applied, while higher or lower 

temperatures did not improve the process yield. The final protein isolate had a 73.4 % protein 

content. The lower protein content respect to sunflower DSM could have been caused by co-

precipitation of other non-protein components. Anyway extraction yield could be increased to more 

than 95 % with a second extraction, but a one-step procedure was nevertheless chosen for further 

productions, minimizing time and costs.  

Hydrolysis protocol optimization. A mild enzymatic one-step hydrolysis of DSM protein 

isolates previously prepared was performed by using the food-grade proteases Alcalase® 

(endopeptidase from Bacillus licheniformis, Sigma-Aldrich), to obtain a product rich in small 

peptides, that could be more easily absorbed by the animal intestine than the original proteins 

(Parrado et al., 1991, 1993). Protein isolates were suspended in distilled water (12.5 %, w/v), and 

the enzyme was added at the concentration of 0.2 AU g
-1

 (Alcalase-meal protein ratio). The process 

was followed by the pH-stat technique (Mettler Toledo DL 50 Graphix), for 60 min, at pH 8 and 

50°C and stopped by adjusting the pH to 6.0 with citric acid. The final sunflower and rapeseed 

protein hydrolysates (SPH and RPH) were characterised by a protein content of 83.2 and 70.2 %, 

respectively (Table 1). Other components (ashes) are probably derived by the reagents used for pH 

control during the hydrolysis process (citric acid and KOH). Nevertheless, protein purity could be 

improved by using volatile reagents or by reducing their addition (just using them for setting the 

initial pH), and conversely exploiting the buffer capacity of the isolated proteins to maintain pH 

during hydrolysis (results not shown). Phenolics and other non-protein compounds (fibre, lipids, 

soluble sugars, glucosinolates) were mostly eliminated by the preliminary precipitation process as 
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reported by Villanueva et al. (1999), and the final hydrolysates showed good characteristics to be 

tested as pet food protein integrators. It has to be noted that the starting rapeseed DSM used in this 

trials derived from a ‘double-low’ cultivar and had a low content of GLs known for their 

goitrogenic properties (mostly progoitrin, R-2-hydroxy-3-butenyl-GL, 4.9 μmol g
-1

). The complete 

absence of those GLs in the hydrolysates was confirmed by standard GL analysis (section 4.1).  

 

Table 1. Chemical composition of sunflower and rapeseed defatted seed meal (DSM) and 

hydrolysates. Methods are reported in section 4.2.1. 

 

 Sunflower 

DSM 

Rapeseed  

DSM  

Sunflower 

hydrolysate 

Rapeseed 

hydrolysate 

Protein % 31.1±0.3 32.7±0.1 83.2±1.8 70.2±1.2 

Ashes % 6.7±0.1 7.0±0.1 14.4±0.8 13.8±1.2 

Moisture % 8.3±0.6 9.5±0.5 9.8±0.3 9.9±0.3 

 

Hydrolysate characterisation 

The composition of the two hydrolysates SPH and RPH was determined by SDS-PAGE and 

size exclusion chromatography as described in the previous section (4.2.1.). The SDS-PAGE 

analysis showed the presence of peptides with a molecular weight lower than 25 KDa and 14 KDa 

for SPH (Figure 1) and RPH (Figure 2), respectively. The gel filtration chromatography profile 

clearly indicated the shift towards lower molecular size protein-peptide in SPH and RPH, if 

compared to the protein isolates, and showed the presence of new-formed low molecular weight 

compounds, represented by peaks with elution volume higher than 15 ml. This could be probably 

due to the presence of small peptides (as showed by SDS-PAGE) and a low percentage of amino 

acids (Figure 1 and 2). The use of Alcalase alone, in fact, permitted a mild protein hydrolysis 

(hydrolysis degree DH 18%, Adler-Nissen, 1979) and the SPH and RPH hydrolysate content of 

total free amino acids determined by HPLC analysis following OPA-FMOC derivatization (see 

section 4.2.1.) was limited to 0.6-1.0% w/w.  

 

Figure 1: Gel filtration chromatography of the sunflower protein isolate () and the final 

sunflower protein hydrolysate (---) on Superose 12 HR 10/30. Inset: SDS-PAGE of sunflower 

protein hydrolysates (SPH); MW, molecular weight markers (kDa). 
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Figure 2: Gel filtration chromatography of the rapeseed protein isolate () and the final rapeseed 

protein hydrolysate (---) on Superose 12 HR 10/30. Inset: SDS-PAGE of rapeseed protein 

hydrolysates (RPH); MW, molecular weight markers (kDa). 

 

 
 

 

In vitro digestibility test and in vivo safety evaluation 

The digestibility, sub-acute toxicity and metabolic effects of diets containing DSMs or RPH 

and SPH have been evaluated in a murine animal model, at the
 
Department of Veterinary Medical 

Sciences, and the Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University 

of Bologna (Canistro et al., 2017), as a prerequisite for determining the suitability of these 

foodstuffs to be potentially added to pet diets. 

The digestibility of a mix of commercial cereals for dogs and DSMs or hydrolysates (5:4.5 g) 

was tested in vitro, simulating the enzymatic digestion that takes place in the stomach and in the 
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small intestine of dogs. Both hydrolysates showed higher in vitro digestibility than the respective 

DSMs, presumably as a consequence of the hydrolysis process that they had undergone, and the 

absence of fibre. 

For in vivo experiments mice Swiss Albino CD1 were fed for 28 consecutive days with diets 

containing 10% of RPH or SPH, with the aim of showing up both sub-acute adverse toxicological 

effects in major vital systems and the modulation of drug metabolism enzymes. 

Animal body weight and food intake, general signs and symptoms, blood biochemistry 

parameters, phase I and II enzymatic activities were determined. The results showed that RPH and 

SPH were well tolerated and there was no evidence of toxicological effects. Body and organ 

weights, biochemical blood measurements of treated male mice were comparable to controls. Food 

intake was regular in suggesting a good palatability of the hydrolysates. Not relevant perturbations 

of the principal hepatic and renal drug metabolism enzymes were observed (Canistro et al., 2017).  

Conclusions 

The market of industrial pet food, especially for those with a suspect or a confirmed diagnosis 

of adverse food reactions (AFRs), is currently growing. More recently, hydrolysed veterinary diets 

have been proposed for the diagnosis of canine AFRs (Gaschen and Merchant, 2011). During 

hydrolysis, protein sources, are enzymatically broken down to low molecular weight peptides, 

changing and reducing the allergenic properties of the molecules (Boumans, 2001; Cave and 

Guilford, 2004). The employment of rapeseed and sunflower DSM easily useful and broadly 

available, could represent a valid opportunity for solving this problem with a cost reduction. A first 

protein isolation step from the DSM was necessary in order to obtain a product free of anti-

nutritional compounds, and a high protein content. The obtained RPH and SPH were finally tested 

for a safety assessment, in the sub-acute toxicity study, and the observations in this study imply that 

mice well tolerated the hydrolysates when added to their diet. Moreover, RPH and SPH did not alter 

the hepatic and renal drug metabolizing enzymes. 

In conclusion, the present findings encourage further exploration of the protein hydrolysates 

from sunflower and rapeseed DSM as alternative protein sources in several applications, such as 

food for pets suffering from adverse food reactions. 
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GENERAL CONCLUSION 

The results reported in this thesis showed different possibilities of high value product 

diversification starting from defatted seed meal (DSM). This is a co-product derived from industrial 

oil extraction processes from seeds of oleaginous crops of great economic importance, such as 

Brassicaceae (Rapeseed, Carinata et al.) and of Asteraceae (Sunflower et al). Bioactive molecules, 

as glucosinolate derived products, and proteins, were employed for plant management and defense 

in several agricultural systems or as food or feed supplements, with interesting and promising 

results.  

In particular biofumigation with allyl-isothiocyanate (AITC), produced from formulated 

brassicas DSMs, from Brassica carinata A. Braun or Brassica nigra L., previously set up and 

characterized, permitted to obtain good results on the shelf-life extension of fruit in the postharvest 

phase. In strawberries in fact the treatment with AITC vapors (0.1 mg L
-1

, 4 h) significantly 

contained the incidence of postharvest fungus Botrytis cinerea by over 45%, up to 91.5%, without 

affecting the overall nutritional properties of the fruit. Low AITC residues were detected in fruit 

after a short storage (<1m Kg
-1

 of fruit). In kiwifruit, a similar treatment (0.15 mg L
-1

, 5 h) 

preserved quality and enhanced the nutraceutical properties in terms of increased antiradical 

capacity and phytochemical content, without leaving any detectable AITC residues on fruit after 

long storage in controlled atmosphere. AITC influence on ethylene, ascorbic acid, phenylpropanoid 

biosynthesis was also depicted at gene expression level in kiwifruit. Furthermore the GSH cycle 

involvement in AITC mechanism of action/detoxification was confirmed in both fruits.  

Among other DSM application studies Brassicacea were also used for the development of 

functional bakery products enriched in bioactive molecules. A prototype of crackers with interesting 

properties both for appeal and active substance concentration was set up starting from Eruca sativa 

Mill. DSM. 

Finally, different components of other DSMs were explored: the sunflower (Helianthus 

annuus L.) and rapeseed (Brassica napus L.) DSMs, largely produced oil extraction co-products, 

characterized by an interesting protein content, were employed for the production of protein 

hydrolysates through mild enzymatic processes.  

The obtained sunflower DSM hydrolysate, rich in free amino acids and other potentially 

biological active molecules, showed, in in vitro and in vivo assays, promising properties for plant 

biostimulation with significant effects on plant roots, linked to an auxin-like activity. The product 

could represent, particularly in organic farming, a valuable biostimulant vegetal alternative to the 
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animal hydrolysate, which use on the edible parts of organic crops was recently banned by EU (n° 

354/2014). In this context the potentiality of Brassica DSMs as biostimulant source was also 

preliminarily evaluated, obtaining results with Barbarea verna Mill. Asch. isothiocyanate.  

Again, sunflower DSM, but also rapeseed DSM-derived protein hydrolysates, were also 

produced for the development of pet food supplements that were tested in mice, obtaining 

satisfactory results in term of digestibility, toxicity, safety, and metabolic effects.   

In conclusion, the presented approach aimed at valorizing the biomasses, considered as 

residues of low value, and change their role from by-products of the oil extraction process to co-

products, with high added value for applications in different agro-food sectors.  

The attention to the entire biomass and the full utilization of crop raw materials to produce a 

wide range of different ‘green’ materials based on DSMs, represents today a fundamental bet for the 

development of an economic and environmental valuable, sustainable and innovative biorefinery 

chain.  

Furthermore the reliance on innovative bio-based products as an alternative to conventional 

chemical sources, such as the examples reported in this study, is today more and more necessary for 

the human and environmental safety and well fit with the EC Regulation (EC) N° 1907/2006 

concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) 

which has the aim of regularizing the entire chemical sector and of limiting its environmental 

impact. This strategy is therefore strongly encouraged by the European union for the development 

of a new circular economy prospective, in addition to be always more frequently requested by 

consumers.  
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