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in cotutela con Universität Bern

DOTTORATO DI RICERCA IN MATEMATICA

XXVIII Ciclo

Settore Concorsuale di afferenza: 01/A3

Settore Scientifico disciplinare: MAT/05

SINGULAR SETS OF GENERALIZED

CONVEX FUNCTIONS

Presentata da: VALENTINA PENSO

Coordinatore Dottorato:

Chiar.ma Prof.ssa

GIOVANNA CITTI

Relatori:

Chiar.mi Proff.
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Introduction

It is a classical fact that a convex function u : Rn −→ R is locally Lipschitz

continuous [58]. Therefore one can apply Rademacher’s Theorem to deduce that

a convex function u is almost everywhere differentiable. At this point a question

arises naturally: what can we say about the points at which u is not differentiable?

How many non differentiability points do we have?

We can study these questions by considering a generalization of differentiability.

Let u : Rn −→ R be a function and let x ∈ Rn be fixed. We call the subdifferential

of u at the point x the (possibly empty) set defined as

∂u(x) = {y ∈ Rn |u(z) ≥ u(x) + 〈y, z − x〉 , ∀ z ∈ Rn} .

Clearly, if x is a differentiability point of u and ∂u(x) 6= then ∂u(x) is single valued

and it holds that ∂u(x) = {∇u(x)}. Moreover, if u is a convex function, one can

prove that, for every x ∈ Rn, ∂u(x) is non empty.

To better understand what is our task, we suggest now a simple example. Let

u : Rn −→ R be u(x) = ‖x‖Rn1. It is a convex function, the subdifferential ∂u(x)

is non empty for every x ∈ Rn. Trivially, u is differentiable in every x ∈ Rn \ {0}.
Moreover, one can easily check that ∂u(0) = B(0, 1), the closed ball with center 0

and radius 1. To summarize, it holds that

∂u(x) =

B(0, 1), if x = 0,

x
‖x‖Rn

, if x 6= 0.

1Throughout the dissertation, if there is not danger of misunderstanding, we will write shortly

| · | to denote the Euclidean distance in Rn.
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In this example, we can see that dim ∂u(x) = n, just for one point x = 0. What

happens for a general cost function? Is it possible to classify points x ∈ Rn

according to the dimension of ∂u(x)? In this regards, we define the k-th singular

set of u as the set

Σk(u) = {x ∈ Rn | dim (∂u(x)) ≥ k} .

In 1992, Alberti, Ambrosio and Cannarsa [3] gave a Hausdorff dimension esti-

mate of k-th singular sets of a convex function. More generally, they proved that

the set Σk(u) is countably (n − k)-rectifiable, for every k = 0, ..., n. This result

has an important application in optimal mass transportation theory.

Let us briefly recall some facts related to this topic, as a motivation to our work.

In 1781, Monge [75] formulated the following question: given two sets X and Y ⊂
Rn of equal volume, find the optimal volume-preserving map between them, where

optimality is measured against a non negative cost function c : Rn × Rn −→ R.

Roughtly speaking, one can see the set X as being filled with mass and c(x, y) as

being the cost per unit mass for moving material from x ∈ X to y ∈ Y .

The optimal map minimizes the total cost of redistributing the mass of X to

Y . More specifically, if µ and ν are probability measures supported on X and Y

respectively, the goal is to minimize the functional

I[T ] =

∫
X

c (x, T (x)) dµ(x),

over the set of all measurable maps T such that T#µ = ν. Originally, Monge

considered as cost function c(x, y) = |x− y|. An answer to this problem was first

given by Sudakov in 1979 [90]. He showed that such a map exists.

It is really surprising that Monge’s problem is a prototype for many other

questions arising in differential geometry, infinite-dimensional linear programming,

functional analysis, mathematical economics and in probability and statistics (see,

for instance, [64] and [79]). The Academy of Paris offered a prize for its solution,

which was claimed by Appell [11]. Moreover, Kantorovich received a Nobel prize

in 1975 for related works in economics.

The approach of Kantorovich was slightly different from the original one. He

formulated a more relaxed version of Monge’s problem. His task was to minimize
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the functional

I[π] =

∫
X×Y

c(x, y) dπ(x, y),

over the set of all probability measures π on X × Y with marginals µ and ν.

Recently, two groups of authors studied Monge’s problem for the cost function

c(x, y) = 1
2
|x−y|2. On one side Brenier and on the other Knott and Smith, Cuesta-

Albertos, Matrán and Tuero-Dı́az, Rüschendorf and Rachev, and Abdellaoui and

Heinrich realized that, for the quadratic cost, an optimal map exists, that it is

unique ( [18], [17], [1], [27]). They also proved that it is represented by the gradient

of a convex function ( [63], [17], [87], [85], [17]).

Using Kantorovich’s approach to Monge’s problem, we are led to the study

of singular sets of convex functions. Indeed, one can prove that a probability

measure π on X × Y is optimal if and only if its support is a cyclical monotone

set. This condition is equivalent to the fact that π is supported on the graph of the

subdifferential of a convex function u. If the dimension of the set of those points

x for which ∂u(x) is not single valued is negligible in some sense, then one can

conclude that, up to a “small” set, supp(π) is the graph of ∇u, which turns out

to be the desired optimal map. Thanks to Alberti, Ambrosio and Cannarsa, we

know that dim Σ1(u) ≤ n− 1; therefore, for the quadratic cost, Monge’s problem

is solved, when the probability measure µ does not give mass to sets of dimension

at most n− 1.

In a second step, it is quite natural to investigate the same problem for a more

general cost function. In this direction, many authors gave answers according to

the properties of c.

As already mentioned, optimal transport map for quadratic cost is character-

ized by the gradient of a convex function. Analogously, it turned out that, for a

general continuous cost function, optimal map is related to a generalization of con-

vexity, called c-convexity, and of subdifferentiability, called c-subdifferentiability,

and their counterparts: c-concavity and c-superdifferentiability.

Under certain hypothesis on c, one can prove that π is a solution to Kan-

torovich’s problem if and only if it is supported on a c-cyclical monotone set,
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which is the c-superdifferential of a c-concave map:

∂cϕ(y) := {x ∈ X | ∀ s ∈ Y, ϕ(y) + c(x, y) ≥ ϕ(s) + c(s, y)} .

It is clear that the study of the set of points in which the c-superdifferential is

not single valued has a central role in the pursuit of solutions to Monge’s problem.

Many authors proved results in this direction. For instance, Rüschendorf [84],

Knott and Smith [88] and Gangbo and McCann [51], [52]. In [52], the authors

considered strictly convex, and also strictly concave, cost functions in Rn. For

the case of strictly convex cost functions in Rn, also Ambrosio, Gigli and Savaré

obtained some results using “approximate differentials” [8].

Finally, we recall the result of McCann [70] about uniqueness of a cyclically

monotone transport in Rn. In his work, McCann introduced a condition on the

cost function c: he asked that the function x 7−→ c(x, y) is locally semiconcave,

locally in y. We recall that a function f : Rn −→ R is semiconcave if there exists

a continuous function ω : R+ −→ R+, with ω(r) −→ 0, as r → 0, such that

u(xt) ≤ (1− t)u(x0) + tu(x1) + t(1− t)ω(|x0 − x1|),

for every x0 and x1 ∈ Rn, t ∈ [0, 1] and xt = tx1 + (1 − t)x0. With this new

hypothesis, one can generalize Alberti, Ambrosio and Cannarsa result and prove

that if u : Rn −→ R is a c-concave function, then the c-singular set of u, i.e. the

set

Σc(u) = {x ∈ Rn |#∂cu(x) > 1} ,

has Hausdorff dimension at most n− 1.

In the first part of our dissertation, the main goal is to find a way to avoid

the hypothesis of semiconcavity. We introduce a new assumption, called gradient

continuity condition, on the cost function c : Rn × Rn −→ R:

Assumption. For any compact set K ⊂ Rn, for any ε > 0 and for any η > 0,

there exists δ = δ(ε, η) > 0 such that if p1, p
′
1, p2, p

′
2 ∈ K and x ∈ K are so that

|p1 − p2| > η, |p1 − p′1| < δ, |p2 − p′2| < δ and x ∈ C(p1) ∩ C(p′1) ∩ C(p2) ∩ C(p′2),

then either

|∇xc(x, p1)−∇xc(x, p
′
1)| < ε (1)
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or

|∇xc(x, p2)−∇xc(x, p
′
2)| < ε. (2)

This condition means that the map y 7−→ ∇xc(x, y) can not have too many

discontinuities close to each other. This gradient continuity condition, in addition

to more classical assumptions (Assumption 2.1.1 and Assumption 2.1.2, see Section

2.1), lets us prove the following:

Theorem 0.1. Let u : Rn −→ R be a c-concave function. If the cost function

c : Rn × Rn −→ R satisfies the assumptions introduced above, then

dimH Σc(u) ≤ n− 1.

The main ingredient of the proof is a result due to Mattila [67] about a di-

mension estimate for porous sets. Following this theory, we introduce a sufficient

condition for a set to be porous and apply it to prove Theorem 0.1.

As an application, we can show that, under the hypothesis of Theorem 0.1,

there exists a solution to Monge’s problem:

Theorem 0.2. Let µ and ν two probability measures in Rn such that µ does not

give mass to (n−1)-dimensional sets. Then, under the same hypothesis of Theorem

0.1, there exists an optimal transport map T : Rn −→ Rn transporting µ to ν such

that ∫
Rn
c(x, T (x)) dµ(x) ≤

∫
Rn
c
(
x, T̃ (x)

)
dµ(x),

for any measurable map T̃ : Rn −→ Rn such that T̃#µ = ν. Moreover, there exists

a c-concave function u such that T (x) = ∂cu(x), for µ-almost every x ∈ Rn.

The classical literature about optimal mass transportation theory provides deep

results also in settings different from the Euclidean one. For instance, the first

optimal transport theorem on a Riemannian manifold was given by McCann [71].

Later, this result was extended by Bernard and Buffoni [15] to general Lagrangian

cost functions. More recently, Shao and Fang [31] rewrote McCann’s theorem in

the formalism of Lie groups. They used this reformulation as a starting point to
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derive theorems of uniqueness and existence of the optimal transport on the path

space over a Lie group.

At this point, we would like to cite the work of Ambrosio and Rigot [10], the

paper which inspired the second part of this dissertation. Ambrosio and Rigot ex-

ended McCann’s results to the subriemannian setting, in particular to the Heisen-

berg group Hn. As cost function they chose the squared Carnot-Carathéodory

metric or the squared Korányi metric. Their proof required a delicate analysis

of minimizing geodesics and differentiability properties of the squared distances.

Analogously to the classical cases, Ambrosio and Rigot proved that the optimal

transport map can be represented by the total gradient of a c-concave (and locally

Lipschitz) function.

Our goal is to generalize Ambrosio and Rigot result to a more general cost

function c : Hn ×Hn −→ R. Therefore, analogously to the strategy applied in the

Euclidean case, it is interesting to study singularities of c-concave functions in Hn.

At the moment, we are still far from a deep understanding of this problem, either

for the case of c equals to the squared Carnot-Carathéodory metric or the squared

Korányi metric.

Let us come back to the Euclidean case and consider the quadratic cost c(x, y) =
1
2
|x − y|2. With some simple computations, if ϕ : Rn −→ R is a c-convex func-

tion, one can prove that there exists a convex function u : Rn −→ R such that

ϕ(x) = u(x) − 1
2
|x|2. In this way, we have a correspondance between c-convexity

and classical convexity. Therefore, in this particular case of quadratic cost, the

study of c-subdifferentials is reduced to the study of classical subdifferentials.

Is it possible to argue similarly in Hn? We decided to do a first step in this

direction by considering H-convex functions and their horizontal gradients, which

are the generalizations, in the Heisenberg groups, of the notions of convexity and

subdifferentiability ( [28], [21], [20]).

Let us recall the definition of H-convex function. We say that a function

u : Hn −→ R is H-convex if

u
(
p · δλ(p−1 · p′)

)
≤ u(p) + λ (u(p′)− u(p)) ,

for every p ∈ Hn, p′ ∈ Hp and λ ∈ [0, 1]. Its horizontal subdifferential at a point
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η0 ∈ Hn is the set

∂Hu(η0) = {p ∈ V1 |u(η) ≥ u(η0) + 〈p, ξ1(η)− ξ1(η0)〉 , for every η ∈ Hη0} .

It is very important to notice that the set valued map defined as η 7−→ ∂Hu(η) is

H-monotone, i.e. it satisfies the following condition:

〈ξ1(η)− ξ1(η′) p− p′〉 ≥ 0,

for every η and η′ ∈ Hn such that η ∈ Hη′ and for every p ∈ ∂u(η) and p′ ∈ ∂u(η′).

Thanks to this last property, we decided to focus our attention to the study of

H-monotone set valued maps and their singularities.

Using the recent paper [13], we conjecture a result which would like to be the

subriemannian counterpart of the Euclidean result of Alberti and Ambrosio [2].

They proved that if T : Rn ⇒ Rn is a maximal monotone set valued map, then

the k-th singular set of T ,

Σk(T ) = {x ∈ Rn | dimT (x) ≥ k}

is at most (n − k)-rectifiable. The proof is based on this fact: the resolvent

(T + I)−1 : Rn −→ Rn is a Lipschitz function. Unfortunately, this is not the case

in Hn. Therefore, we needed to change completely the approach. Our conjecture

is the following:

Conjecture 0.1. Let T : H1 ⇒ V1 be a maximal H-monotone set valued map with

dom(T ) = Hn. Then, for every 0 ≤ k ≤ 2n, the Hausdorff dimension of the set

Σk(T ) = {p ∈ Hn | dim (T (p)) = k}

is at most 2n+2-k.

The first step towards the proof of the conjecture is the main theorem of the

second part of the dissertation. We restrict ourselves to study the Hausdorff di-

mension of the set of points p ∈ Σk(T ) such that T (p) is contained, in some sense,

in a horizontal subgroup of Hn. This fact allows us to use the machinery about

decomposition in homogeneous subgroups of Hn and intrinsic Lipschitz functions
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introduced by Franchi, Serapioni and Serra Cassano ( [44], [45], [46], [48] and also

the more recent paper [49]). We denote by Σk
H(T ) the restriction to those special

points of Σk(T ). Since T (p) ⊂ R2n is a convex set, there is an affine subspace of

R2n containing it. Let us denote by Vp the unique linear vector space generating

that affine subspace. In this way we can define

Σk
H(T ) =

{
p ∈ Hn |Vp ∈ GH(2n, k)

}
,

where GH(2n, k) is the Grassmannian of horizontal k-dimensional subspaces of R2n

defined as

GH(2n, k) = {V ∈ G(2n, k) | 〈v, Ju〉 = 0, ∀v, u ∈ V } .

With these notions, we are able to prove the following:

Theorem 0.3. Let T : Hn ⇒ V1 be a maximal H-monotone set valued map with

dom(T ) = Hn. If 1 ≤ k ≤ n, the Hausdorff dimension of Σk
H(T ) is at most

2n+ 2− k.

The structure of the dissertation is the following. The first part, Singular set of

c-convex functions, is divided in two chapters. In Chapter 1, which is motivational

for the second one, we recall the main results and definitions from optimal mass

transportation theory in Rn endowed with the Euclidean metric. We state the

problem as Monge and Kantorovich formulated it and we present the main results,

existing in literature, about existence and uniqueness of the solution to Monge’s

problem, when c is a cost function with some general properties.

Chapter 2 is devoted to the exposition of the result obtained avoiding the

classical property of semiconcavity on c. We introduce our new assumptions, we

justify them with some examples and, finally, recalling the notion of porosity of a

set, we give the proof of our result.

In the second part, Singular set of H-convex functions, we investigate H-

monotone set valued maps and their singular sets. In particular, we recall that the

horizontal gradient of an H-convex function is a maximal H-monotone set valued

map.

xiv



In Chapter 3, we state the main properties about Lie groups and Carnot groups

in particular. We emphasis on their most relevant peculiarities, such as homoge-

neous dilations, graded coordinates and the structure of left invariant vector fields.

We will recall also their basic metric properties.

Chapter 4 is devoted to the study of the Heisenberg group and its homogeneous

subgroups. We stated some results of Franchi, Serapioni and Serra Cassano, useful

for our purpose, and we prove that the set of vertical homogeneous subgroups,

which give rise to a decomposition of Hn, is a compact metric space. The Chapter

ends with a brief digression about intrinsic Lipschitz functions and the Hausdorff

dimension of their graphs.

The last chapter, Chapter 5, contains the results about the dimension of singu-

lar set of H-monotone set valued map. We recall the Euclidean counterpart and

we list the needed ingredient from [13]. Finally, before giving the proof of the main

theorem, we prove that a set, which is locally contained in intrisic cones with axis

a vertical group of algebraic dimension d, has Hausdorff dimension at most d+ 1.
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Part I

Singular sets of c-convex functions
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Chapter 1

Optimal mass transport and

c-convex functions

This first chapter is devoted to recall results about optimal transportation the-

ory which already exist in literature. In particular, we want to focus our attention

on some possible relations between Kantorovich’s problem and Monge’s problem.

The two formulations are quite different but we will discover that, under some

special assumptions, there is a precise relation between them.

In Section 1.1, we give the formulations of the optimal transport problem as

Monge and Kantorovich did. We also propose some examples to highlight the

differences between the two approaches.

In Section 1.2, we recall some notations and some basic facts about convex

analysis. These results will be used in the remaining sections of this Chapter.

Section 1.3 is devoted to the study of solutions of Kantorovich’s problem. It

is here that we need to introduce a generalization of concavity and convexity:

c-concavity and c-convexity.

In Section 1.4, we approach the study of solutions to Monge’s problem, intro-

ducing the Kantorovich duality. This tool will be largely used in Section 1.7, where

we look to the specific case of quadratic cost function.

The short Section 1.5 lets us link solutions of Kantorovich’s problem to solu-

tions of Monge’s problem.
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In Section 1.6, following Alberti, Ambrosio and Cannarsa [3], we recall some

results about singular sets of semiconcave and semiconvex functions.

The Chapter ends with Section 1.8. Here we present, without giving proofs,

some results which provide conditions for existence of an optimal tranport map.

These conditions are exactly those we want to modify in order to improve classical

results.

1.1 Formulation of the optimal mass transport

problem

The first formulation of the optimal transportation problem is due to Monge,

in 1781. In this very first section, we would like to give a quick and selfcontained

introduction to this problem. We will focus on its formulation as Monge intro-

duced it and also on the more recent (and relaxed) Kantorovich optimal mass

trasportation problem. For a deeper excursus on this topic, we refer the reader to

the first and second Chapters of [92].

Assume that we have two sets X and Y ⊂ Rn of equal volume. We can imagine

that the set X is uniformly filled with mass normalized to 1. The task is to move

this mass from the set X to the set Y . We can model the masses of X and Y

with two probability measures µ and ν, respectively. We write µ ∈ P (X) and

ν ∈ P (Y ).

Performing this movement needs some efforts. These efforts are modelled by a

cost function c, which is a non negative function from Rn × Rn to R. Informally,

c(x, y) represent the cost per unit mass for transporting material from x ∈ X to

y ∈ Y . Therefore, the main task is to minimize the total cost of redistributing the

mass of X through Y .

Let us explain this problem in a more formal way. First, we have a question:

how can we define a way of transportation? We define a transference plan as a

probability measure on the cartesian product X × Y . Clearly, we do not want to

loose or gain mass, then we need that our transference plan in admissible. This

4



means that π has marginals µ and ν, i.e.

π (A× Y ) = µ(A), π (X ×B) = ν(B), (1.1)

for every measurable sets A ⊂ X and B ⊂ Y . An equivalent formulation can be

the following∫
X×Y

(ϕ(x) + ψ(y)) dπ(x, y) =

∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y),

for every couple of test functions (ϕ, ψ) ∈ L1(X,µ)× L1(Y, ν).

Notation 1.1.1. We denote by Π(µ, ν) the set of all probability measure on X × Y
such that relations (1.1) holds.

Remark 1.1.1. The set Π(µ, ν) is always not empty, since the tensor product µ⊗ν ∈
Π(µ, ν).

Let us propose the formulation of the mass transportation problem as given

by Kantorovich, who was the one who first tried to give an answer to Monge’s

question (see [62], [61]). We will refer to this problem as Kantorovich’s problem.

Minimize the functional I[π] =

∫
X×Y

c(x, y)dπ(x, y), for π ∈ Π(µ, ν). (1.2)

Let π be a given transference plan. We call I[π] the total transportation cost

associated to π. Notice that I[π] is non negative and it could be infinite. The

optimal transportation cost between µ and ν is the value

Tc(µ, ν) = inf
π∈Π(µ,ν)

I[π].

If there exists π ∈ Π(µ, ν) such that Tc(µ, ν) = I[π], we call π a optimal transfer-

ence plan.

As already mentioned, the optimal mass transport problem was first formulated

by Monge. His problem was a bit stronger than the one of Kantorovich. Indeed, it

additionally requires that each point x ∈ X is associated to a unique point y ∈ Y .
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In other words, there is no splitting of mass: we are looking for a measurable map

T : X −→ Y , which sends the mass in X to Y . We can translate this fact in terms

of transference plans. This means that the plan π in (1.2) has the form

πT = (Id× T ) #µ, (1.3)

for a suitable measurable map T : X −→ Y . More specifically, it holds that∫
X×Y

ζ(x, y)dπT (x, y) =

∫
X

ζ(x, T (x))dµ(x),

for every non negative integrable test function ζ on X × Y . Here, we introduce

the subscript T in the notation of transference plan π to stress that it is related

to the map T . In particular, the associated total transportation cost is

I[πT ] =

∫
X

c(x, T (x))dµ(x).

In Kantorovich’s formulation, we were looking for an optimal transference plan

among the probability measures belonging to Π(µ, ν). Therefore, also in this case

we need a condition under which πT belongs to Π(µ, ν). This condition can be

recovered from equation (1.3). One easily obtains that∫
X

(ψ ◦ T )(x)dµ(x) =

∫
Y

ψ(y)dν(y),

for every non negative ψ ∈ L1(Y, ν). When this condition is satisfied we write

ν = T#µ, i.e. the probability measure ν is the push forward of µ through T .

We are now ready to state the Monge’s optimal mass transportation problem:

Minimize the functional I[T ] =

∫
X

c (x, T (x)) dµ(x), (1.4)

over the set of all measurable maps T such that T#µ = ν.

We present now a very simple example which can clarify the nature of Monge

optimal transport problem.
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Example 1.1.1. Let a ∈ Rn be a fixed point. Let µ be a probability measure in Rn

and let ν = δa, the Dirac mass supported at a. The goal is to move all the mass

represented by µ to the point a in an optimal way. Obviuosly, we have a unique

possibility: T (x) = a, for every x ∈ Rn. Therefore,

Tc(µ, δa) =

∫
X

c(x, a)dµ(x).

As already said, it could happen that there exists a solution for the Kantorovich

problem but not for the Monge problem. Here we propose an example, taken

from [93], in which we have splitting of mass.

Example 1.1.2. Let X = R and also Y = R. We define µ = δ0 and ν = (δ1 + δ−1) /2

In this case the Monge problem has no solution, indeed there is no map such that

T#µ = ν. On the other hand, one can check that the optimal transport plan is

given by 1
2
δ0 × δ−1 + 1

2
δ0 × δ1.

With the formulation of the optimal mass transportation problem, we can

address the study of the solutions. There are two main aspects that we should

consider. The first one is the existence of a solution: do there exist minimizers

for problems (1.2) or (1.4)? The second step is referred to the characterization

of these minimizers. Can we say something about the nature of these solutions,

depending on our knowledge about the probability measures µ and ν? As we will

see in what follows, the answers to these major questions depend strictly on the

properties of the cost function c.

Let us consider some examples in the case when X = Rn and Y = Rn, the cost

function is given by c(x, y) = |x− y|p, for 0 < p <∞, and µ and ν are compactly

supported probability measures.

Example 1.1.3. We assume that p > 1. This implies that c is strictly convex.

It holds that, if µ and ν are absolutely continuous with respect to the Lebesgue

measure, then there is a unique solution to the Kantorovich problem and it is also

a solution of the Monge problem.

A step further can be done. We can weaken the condition on µ, asking that µ

does not give mass to any set with finite (n− 1)-dimensional Hausdorff measure1.

1We recall that, given E ⊂ Rn and k ≥ 0, the k-dimensional Hausdorff and Spherical
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This fact will be a key point in Chapter 2 of this dissertation.

Example 1.1.4. If p = 2, we refer to c as a quadratic cost. In this case it turns out

that an optimal map exists and it is unique. These facts are due to Brenier, Knott

and Smith, Cuesta-Albertos, Matrán and Tuero-Dı́az, Rüschendorf and Rachev

and Abdellaoui and Heinich (see [18], [26], [17], [1], [27]). Moreover, the optimal

transport map can be represented by the gradient of a suitable convex function on

Rn (see [63], [18], [87], [85], [17]).

In Section 1.7, we will focus our attention to this case.

Example 1.1.5. There exist probability measures µ and ν on Rn, which give mass to

some sets of Hausdorff dimension at most n−1 and such that optimal transference

plans in Kantorovich problem have to split mass. In this case it could happen that

a solution to the Monge problem does not exist.

The questions about the existence, uniqueness and characterizations of a so-

lution to the Kantorovich problem, and then of Monge problem, were for long

time studied. It should be apparent that the solution would not be unique. This

aspect was studied by Appel [11] and by Kantorovich [62]. About the existence

of the solution we need to go back to the first who tried to give the solution to

the Monge problem as originally formulated. Sudakov [90] tried to give a solution

of the problem for the case when c(x, y) = |x − y|. Unfortunately the argument

was not completely correct, as pointed out by Alberti, Kirchheim and Preiss. The

interested reader can find the fixed proof in [5] and in Sections 1 and 8 of [9].

Hausdorff measures of E are defined, respectively, by

Hk(E) := lim
δ↘0

inf

{ ∞∑
i=1

(diamEi)
k

∣∣∣∣∣E ⊂
∞⋃
i=0

Ei, diamEi < δ

}

Sk(E) := lim
δ↘0

inf

{ ∞∑
i=1

(diamBi)
k

∣∣∣∣∣E ⊂
∞⋃
i=0

Bi, diamBi < δ, Bi ⊂ Rn balls

}
.
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1.2 Some facts from convex analysis

In this section, we interrupt our investigation of optimal transportation theory

with the purpose of building a little background on convex analysis. The reader

who wants to have a larger view on this topic is referred to [82] and [30].

Definition 1.2.1. Let ϕ : Rn −→ R ∪ {+∞} be a proper2 function. We say that

ϕ is a convex function if it holds that

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y),

for every x and y ∈ Rn and for every t ∈ [0, 1].

Remark 1.2.2. We define dom(ϕ) as the set of those points on which ϕ is finite.

We point out that dom(ϕ) is a convex set. This implies that its boundary is a set

of Hausdorff dimension at most n− 1.

Proposition 1.2.1. Let ϕ : Rn −→ R∪{+∞} be a proper convex function. Then

ϕ is locally Lipschitz continuous on Int(dom(ϕ))

Remark 1.2.3. Since a proper convex function ϕ is locally Lipschitz in the interior

of its domain, one can apply Rademacher’s Theorem and prove that ∇ϕ is well

defined almost everywhere and locally bounded. Furthermore, it turns out that

the set of points where ∇ϕ is not defined has dimension at most n−1 (see Section

1.6).

Now, consider just the points x at which ∇ϕ is well defined. Then it holds

that, geometrically, the graph of ϕ lies above its tangent hyperplane atthe point

x. More specifically, it is true that

ϕ(z) ≥ ϕ(x) + 〈∇ϕ(x) , (z − x)〉 ,

for every z ∈ Rn. In particular, this can be restated by saying that the map ∇ϕ
is monotone, i.e.

〈∇ϕ(x)−∇ϕ(z), x− z〉 ≥ 0,

2We say that a function ϕ : Rn −→ R is proper if for every x ∈ Rb f(x) 6= −∞ and it is not

identically +∞.
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for every differentiability points x and z ∈ Rn.

How can we deal with the points at which a proper convex function is not

differentiable? We introduce a generalized notion of gradient.

Definition 1.2.4. Let ϕ : Rn −→ R ∪ {+∞} be a proper convex function. We

define the subdifferential of ϕ at the point x ∈ Rn as the set

∂ϕ(x) = {y ∈ Rn |ϕ(z) ≥ ϕ(x) + 〈y, z − x〉 , ∀ z ∈ Rn} .

Remark 1.2.5. Obviously, it is well defined the set valued map x 7−→ ∂ϕ(x) (see

Definition 5.0.1), whose graph lies in Rn×Rn. From its definition, it is quite simple

to prove that this set valued map is monotone (see Definition 5.0.2). This means

that

〈y1 − y2, x1 − x2〉 ≥ 0,

for ever y1 ∈ ∂ϕ(x1) and y2 ∈ ∂ϕ(x2).

Remark 1.2.6. Using the Hahn-Banach separation Theorem, one can prove that,

for every x ∈ Int(dom(ϕ)), ∂ϕ(x) is non empty. Moreover, ϕ is differentiable at a

point x if and only if ∂ϕ(x) is a singleton, which is ∇ϕ(x).

Proposition 1.2.2. Let ϕ : Rn −→ R ∪ {+∞} be a proper convex function. If

ϕ is lower semicontinuous3, then the multivalued map ∂ϕ is continuous, i.e. if

xk −→ x and vk ∈ ∂ϕ(xk) −→ y, as k →∞, then y ∈ ∂ϕ(x).

We give now the definition of convex conjugate functions and we state some

properties, very useful in what will follow.

Definition 1.2.7. Let ϕ : Rn −→ R ∪ {+∞} be a proper function. We call its

convex conjugate function, or the Legendre transform, the function defined as

ϕ∗(y) = sup
x∈Rn

(x · y − ϕ(x)) .

3A function F , defined on a metric space Ω, is called lower semicontinuous if, for any x ∈ Ω,

F (x) ≤ lim inf
y→x

F (y).
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By definition, it holds that ϕ∗ is a proper convex semicontinuous function.

Moreover, the following inequality is valid

x · y ≤ ϕ(x) + ϕ∗(y),

for every x and y ∈ Rn.

The notion of convex conjugate function gives rise to a characterization of the

subdifferential of a convex function.

Proposition 1.2.3. Let ϕ : Rn −→ R∪{+∞} be a proper convex lower semicon-

tinuous function. Then, for every x and y ∈ Rn, x · y = ϕ(x) + ϕ∗(y) if and only

if y ∈ ∂ϕ(x), or, equivalently, x ∈ ∂ϕ∗(y).

Proof. See [92], Proposition 2.4.

We conclude this Section with a proposition about Legendre duality for convex

function.

Proposition 1.2.4. Let ϕ : Rn −→ R ∪ {+∞} be a proper function. Then the

following three statements are equivalent

(i) ϕ is convex lower semicontinuous;

(ii) ϕ = ψ∗ for some proper function ψ;

(iii) ϕ∗∗ = (ϕ∗)∗ = ϕ.

Proof. See [92], Proposition 2.5.

1.3 Optimality conditions for transference plans

Let us come back to the Kantorovich’s problem and try to investigate a possible

solution. We want to understand the structure of optimal plans. We start by

considering a particular case.

Let X = Y = Rn and let c(x, y) = 1
2
|x−y|2 be the quadratic cost function. We

assume that µ and ν are two probability measures supported on two finite sets.
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One can show that a tranference plan π ∈ Π(µ, ν) is optimal if and only if it holds

that
N∑
i=1

1

2
|xi − yi|2 ≤

N∑
i=1

1

2
|xi − yσ(i)|2, (1.5)

for every N ∈ N, (xi, yi) ∈ supp(π) and for every permutation σ of the set

{1, ..., N}.
Now, let us perform some computations in (1.5). Expanding the squares, we

get
N∑
i=1

〈xi, yi〉 ≤
N∑
i=1

〈
xi, yσ(i)

〉
, (1.6)

for every N ∈ N, (xi, yi) ∈ supp(π) and for every permutation σ of the set

{1, ..., N}. Inequality (1.6) means that the support of the measure π is cyclically

monotone:

Definition 1.3.1. We say that a set Γ ⊂ Rn × Rn is cyclically monotone if, for

every choice of points (xi, yi) ∈ Γ, for i = 1, ..., N , with N ∈ N,

N∑
i=1

〈yi, xi+1 − xi〉 ≤ 0.

This is a surprising property for a set. Indeed, the next theorem tells us that

there is a correspondance between cyclically monotone sets and graphs of the

subdifferential of convex and lower semicontinuous functions. In particular, this

gives a characterization for an admissible tranference plan to be optimal.

Theorem 1.3.1. Let Γ ⊂ Rn × Rn be a set. Γ is cyclically monotone if and only

if there exists a convex and lower semicontinuous function ϕ : Rn −→ R ∪ {+∞}
sucht that Γ is included in the subdifferential of ϕ.

Proof. See [83], Theorem 12.25.

Remark 1.3.2. We stress that the previous Theorem implies that the following

statements are equivalent:

(i) π ∈ Π(µ, ν) is optimal;

12



(ii) supp(π) is cyclically monotone;

(iii) there exists a convex and lower semicontinuous function ϕ such that π is

supported on the graph of the subdifferential of ϕ.

What happens for a much more general cost function? In the previous example,

the notions of cyclical monotonicity, convexity and subdifferential play a key role,

but they were linked to the special nature of the quadratic cost. Now we need to

study some generalizations. From now on, if it is not specified, c is a generic non

negative continuous cost function.

Definition 1.3.3. Let Γ ⊂ Rn × Rn be a set. We say that Γ is c-cyclically

monotone if, for every choice of (xi, yi) ∈ Γ, i = 1, ..., N , with N ∈ N, it holds

that
N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yσ(i)),

for every permutation σ of the set {1, ..., N}.

Definition 1.3.4. Let X and Y be two subsets of Rn. We say that a function

ψ : X −→ R ∪ {+∞} is c-convex if it is proper and there exists a function

ζ : Y −→ R ∪ {±∞} such that, for every x ∈ X,

ψ(x) = sup
y∈Y

(ζ(y)− c(x, y)) .

Remark 1.3.5. Roughly speaking, a c-convex function is a function whose graph

can be, locally, approximated from below with a tool whose shape is the negative

of the cost function.

Definition 1.3.6. We define also the c-transform of ψ as the function ψc : Y −→
R ∪ {+∞} defined as

ψc(y) = inf
x∈X

(ψ(x) + c(x, y)) .

The functions ψ and ψc are said to be c-conjugate.
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Definition 1.3.7. Let ψ : X −→ R∪{+∞} be a c-convex function and let x ∈ X
be a given point. We call the c-subdifferential of ψ at the point x the set

∂cψ(x) := {y ∈ Y |ψc(y)− ψ(x) = c(x, y)} ,

or, equivalently,

∂cψ(x) := {y ∈ Y | ∀ z ∈ X, ψ(x) + c(x, y) ≤ ψ(z) + c(z, y)} .

We have also the analogous definition for c-concavity.

Definition 1.3.8. With the same notations of Definition 1.3.4, a function ϕ :

Y −→ R ∪ {−∞} is a c-concave function if it is not identically −∞ and there

exists ψ : X −→ R ∪ {±∞} such that

ϕ(y) = inf
x∈X

(c(x, y)− ψ(x)) .

Its c-superdifferential at a point y ∈ Y is the set

∂cϕ(y) := {x ∈ X |ϕ(y) + ϕc(x) = c(x, y)} ,

or, equivalently,

∂cϕ(y) := {x ∈ X | ∀ s ∈ Y, c(x, y)− ϕ(y) ≥ c(s, y)− ϕ(s)} .

Remark 1.3.9. There are some relations between c-convexity and c-concavity. For

instance, ϕ is c-concave if and only if −ϕ is c-convex. Moreover, ∂cϕ = ∂c(−ϕ).

The proofs of these facts are quite trivial and they need just some computations

with the related definitions.

Proposition 1.3.2. Let ψ : X −→ R ∪ {+∞}. Then ψ is c-convex if and only if

ψcc = ψ, where ψcc = (ψc)c.

Proof. See [93], Proposition 5.8.

Let us consider a simple example which links this generalization with the clas-

sical notions.

14



Example 1.3.1. Let X = Y = Rn and let c(x, y) = −x · y. In this case one

can easily see that a set is c-cyclically monotone if and only if it is cyclically

monotone. Moreover, a function is c-convex if and only if it is convex and lower

semicontinuous. Its c-subdifferential is the classical subdifferential. Obviuosly, an

analogous statement holds for c-concave functions and their c-superdifferentials.

We are now ready to state a fundamental theorem in optimal transport theory.

The main part is that, under certain assumptions on the cost c, every c-cyclically

monotone set can be obtained as the c-superdifferential of a c-concave function.

Theorem 1.3.3. Let X and Y ⊂ Rn be two set and let c : X × Y −→ R be non

negative and continuous. Let µ and ν be two probability measures supported on X

and Y , respectively. We assume that

c(x, y) ≤ a(x) + b(y),

for some a ∈ L1(X,µ) and b ∈ L1(Y, ν). If π ∈ Π(µ, ν), then the following

statements are equivalent:

(i) π is an optimal transference plan;

(ii) the set supp(π) is c-cyclically monotone;

(iii) there exists a c-concave function ϕ such that max{0, ϕ} ∈ L1(X,µ) and π is

supported on the graph of ∂cϕ.

Proof. See [51], Theorem 2.7 and Corollary 2.8.

Remark 1.3.10. It holds a statement stronger than Theorem 1.3.3. If supp(π) is

contained in graph(∂cϕ), for some optimal transference plan π ∈ Π(µ, ν), then

supp(π̃) ⊂ graph(∂cϕ), for every π̃ ∈ Π(µ, ν).

1.4 The Kantorovich duality

In what follows, we want to give a powerful tool, the Kantorovich duality, used

in the study of the geometry of optimal transport maps. For sake of simplicity, we

introduce a couple of pieces of notation.
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Notation 1.4.1. Let X and Y be two subspaces of Rn. We define Φc the set of all

measurable functions (ϕ, ψ) ∈ L1(X,µ)× L1(Y, ν) satisfying

ϕ(x) + ψ(y) ≤ c(x, y), (1.7)

for µ-almost every x ∈ X and for ν-almost every y ∈ Y .

Notation 1.4.2. If π ∈ P (X × Y ) and (ϕ, ψ) ∈ L1(X,µ)× L1(Y, ν), we define

I[π] :=

∫
X×Y

c(x, y)dπ(x, y) and J(ϕ, ψ) :=

∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y).

Theorem 1.4.1 (Kantorovich duality). Let µ and ν two probability measures sup-

ported on X ⊂ Rn and Y ⊂ Rn respectively and let c : X × Y −→ R+ be a lower

semicontinuous cost function. Then

inf
Π(µ,ν)

I[π] = sup
Φc

J(ϕ, ψ). (1.8)

Moreover, the infimum in the left-hand side of (1.8) is attained.

Remark 1.4.1. We point out that one can restrict the definition of Φc to functions

(ϕ, ψ) which are continuous and bounded. This restriction does not change the

value of the supremum in the right-hand side of (1.8).

We will skip the rigorous proof of Theorem 1.4.1. The interested reader is

referred to the first Chapter of the book [92]. The proof is essentially based on

a minimax principle due to Fenchel and Rockafellar (see [82]), based on Hahn-

Banach Theorem.

For completeness, we aim to prove the easiest part of Kantorovich Duality

Theorem.

Proposition 1.4.2. Under the same assumption of Theorem 1.4.1, it holds that

sup
Φc

J(ϕ, ψ) ≤ inf
Π(µ,ν)

I[π]. (1.9)

Proof. Let π ∈ Π(µ, ν) and (ϕ, ψ) ∈ Φc be fixed. By definition of Π(µ, ν), we have

that

J(ϕ, ψ) =

∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y) =

∫
X×Y

(ϕ(x) + ψ(x)) dπ(x, y).
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Now, inequality (1.7) holds π-almost everywhere in X × Y . Indeed, let Nx ⊂
X and Ny ⊂ Y be such that µ(Nx) = 0 and ν(Ny) = 0 and (1.7) holds on

N c
x × N c

y . We know that π ∈ Π(µ, ν), this means that it has marginals µ and ν.

Therefore, π(Nx × Y ) = µ(Nx) = 0 and π(X × Ny) = ν(Ny) = 0, implying that

π
((
N c
x ×N c

y

)c)
= 0.

Consequently, we have that∫
X×Y

(ϕ(x) + ψ(y))dπ(x, y) ≤
∫
X×Y

c(x, y)dπ(x, y) = I[π].

Taking the supremum on the left-hand side and the infimum on the right-hand

side, we obtain inequality (1.9), concluding the proof of this simplified version of

Kantorovich Duality Theorem.

Let us conclude this section with the proof of a stronger version of the Kan-

torovich duality: we ask for the continuity of the cost function c.

Theorem 1.4.3. Let µ and ν two probability measures supported on X ⊂ Rn and

Y ⊂ Rn, respectively. Let c : X × Y −→ R be a non negative and continuous cost

function. We assume that

c(x, y) ≤ a(x) + b(y),

for some a ∈ L1(X,µ) and b ∈ L1(Y, ν). Then

sup
Φc

J(ϕ, ψ) = inf
Π(µ,ν)

I[π].

Moreover, the supremum is attained and the maximizing couple (ϕ, ψ) is of the

form (ϕ, ϕc) for some c-concave function ϕ.

Proof. Let π ∈ Π(µ, ν) and notice that if (ϕ, ψ) ∈ Φc, then it holds that∫
X×Y

c(x, y)dπ(x, y) ≥
∫
X×Y

(ϕ(x)+ψ(y))dπ(x, y) =

∫
X

ϕ(x)dµ(x)+

∫
Y

ψ(y)dν(y).

This implies that the minimum of the Kantorovich’s problem is larger than or

equal to the supremum of the dual problem.

We prove now the opposite inequality. Let π ∈ Π(µ, ν) be an optimal transfer-

ence plan and apply Theorem 1.3.3 to find a c-concave function ϕ such that π is
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supported on the graph of ∂cϕ, max{0, ϕ} ∈ L1(X,µ) and max{0, ϕc} ∈ L1(Y, ν).

Then we have that∫
X×Y

c(x, y)dπ(x, y) =

∫
X×Y

(ϕ(x)+ϕc(y))dπ(x, y) =

∫
X

ϕ(x)dµ(x)+

∫
Y

ϕc(y)dν(y),

and
∫
X×Y c(x, y)dπ(x, y) ∈ R. Thus, ϕ ∈ L1(X,µ) and ϕc ∈ L1(Y, ν), which shows

that (ϕ, ϕc) is an admissible couple in the dual problem and gives the thesis.

1.5 Existence of optimal maps and c-singular sets

In this short section, we want to motivate why the study of c-singular sets is

so important. Our goal is to prove existence of a solution to Monge’s problem

passing through Kantorovich’s problem, for which we know that a solution exists.

As already pointed out, it is in general not true that there is a correspondance

between optimal tranference plans and optimal transport maps. Furthermore, it

could happen that there exists a solution to the Kantorovich’s problem but none

for the relative Monge’s problem. We remind that the problem of existence of

optimal transport maps consists in looking for optimal plans π which are induced

by a map T : X −→ Y . In other words, we are looking for plans π such that

π = (Id× T )#µ, where T is some measurable map.

The question is: given µ and ν probability measures and a cost function c, is

that true that at least one optimal plan π is induced by a map? To approach the

answer, we have a proposition.

Proposition 1.5.1. Let X and Y ⊂ Rn and let µ ∈ P (X) and ν ∈ P (Y ). Let

π ∈ Π(µ, ν). Then π is induced by a measurable map T : X −→ Y if and only if

there exists a π-measurable set Γ ⊂ X × Y such that supp(π) ⊂ Γ and, for µ-a.e.

x ∈ X, there exists a unique y = T (x) ∈ Y such that (x, y) ∈ Γ.

Proof. See [7], Lemma 1.20.

By Theorem 1.3.3, we know that optimal transference plans are supported on

c-cyclically monotone sets. Moreover, we know that these c-cyclically monotone

sets are given by c-superdifferentials of c-concave functions. The main problem
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now is to understand “how often” the c-superdifferential of a c-concave function

is single valued. It is here that we discover the importance of the study of the

singular set of the c-superdifferential of a c-concave function.

Definition 1.5.1. Let X ⊂ Rn be a set and let ϕ : X −→ R∪{−∞} be a c-concave

function. We call the c-singular set of ϕ the set

Σc(ϕ) = {x ∈ X |#∂cϕ(x) > 1} .

If we know that, under certain conditions on c, Σc(ϕ) is “small enough” with

respect to the measure µ, we can apply Proposition 1.5.1 to have existence of an

optimal transport map associated to an optimal tranference plan, solution of a

given Kantorovich’s problem.

In the following sections, we will study the Hausdorff dimension of the sin-

gular set of semiconcave and semiconvex functions, which are a generalization of

concave and convex functions. Then, we will consider again the particular case

of the quadratic cost function and we will state the celebrated Brenier’s theorem

regarding the existence and the uniqueness of the optimal transport map. Finally,

we will come back to the general case and introduce some classical results from

the existing literature.

1.6 Study of singular sets of semiconvex and semi-

concave functions

In this section we give a small introduction to the paper of Ambrosio, Alberti

and Cannarsa [3], regarding an estimate for the Hausdorff dimension of the sin-

gular set of the subdifferential of semiconcave, or semiconvex, functions. For a

detailed references, one can give a look also to the book [23], about the theory of

semiconcave functions.

As preannounced, the main question is the following: if u : Rn −→ R is a

convex function and 0 ≤ k ≤ n is a given integer, how can we estimate the
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dimension of the k-singular set of u

Σk(u) := {x ∈ Rn | dim (∂u(x)) ≥ k}? (1.10)

It is clear that Σ0(u) = Rn and that Σn(u) is at most countable. For the case

k = 1, the classical theory gives an answer to the question noting that ∇u has

locally bounded first variation. This is true because the jump set of the function

u is Hn−1-rectifiable4, or, equivalently, Σ1(u) can be covered with a sequence of

C1-hypersurface, up to a subset of (n − 1)-dimensional Haudorff measure zero.

The interested reader is referred to [50] and [81] for the complete proof.

In [3], the authors give an answer to this problem showing that the k-singular

set of a semiconcave function has Hausdorff dimension at most n−k. In particular,

they prove that Σk(u) is countably Hn−k-rectifiable. Their idea is to study the

dimension of the contingent cone (see Definition 1.6.8) and give it an upper bound.

Let us start with some basic definitions.

Definition 1.6.1. Let Ω ⊂ Rn be an open and convex set and let u : Ω −→ R
be a function. We say that u is semiconvex if there exists a continuous function

ω : R+ −→ R+, with ω(r)→ 0, as r → 0, such that

u(xt) ≤ (1− t)u(x0) + tu(x1) + t(1− t)ω(|x0 − x1|), (1.11)

for every x0 and x1 ∈ Ω, t ∈ [0, 1] and xt = tx1 + (1 − t)x0. We denote by ωu,Ω

the least function ω for which (1.11) holds.

Remark 1.6.2. We point out that convex functions are particular cases of semicon-

vex functions. In this case the least ω is simply the identically zero function.

Remark 1.6.3. A similar definition for semiconcavity is obtained in an obvious way

by reversing the sign of the inequality.

4We say that a set S ⊂ Rn is Hm-rectifiable if there exists a countable family of C1 hyper-

surfaces Γh ⊂ Rn, h ∈ N, of dimension m such that

Hm
(
S \

∞⋃
h=1

Γh

)
= 0.
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We define the subdifferential of a semiconvex function, also in this more general

case. It turns out that ∂u(x) is a closed and convex set.

Definition 1.6.4. Let u : Ω ⊂ Rn −→ R be a semiconvex function and let x ∈ Ω

be fixed. We define the subdifferential of u at the point x the set

∂u(x) :=

{
p ∈ Rn

∣∣∣∣ lim inf
y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≥ 0

}
.

Remark 1.6.5. One can check that, in the case of a convex function, this definition

of subdifferential coincides with the classical one, given in Section 1.2.

In the next proposition we summarize the main properties of semiconvex func-

tions.

Proposition 1.6.1. Let u : Ω ⊂ Rn −→ R be a semiconvex function. Then the

following statements are true:

(i) u is locally Lipschitz continuous in Ω;

(ii) the set ∂u(x) is non empty, convex and compact, for every x ∈ Ω;

(iii) a point p ∈ ∂u(x) if and only if, for every y ∈ Ω,

u(y)− u(x)− 〈p, y − x〉 ≥ −|y − x|ωu,Ω(|y − x|);

(iv) the map x 7−→ ∂u(x) is upper semicontinuous.

Proof. See, for instance, [3], Proposition 2.1.

We consider a semiconvex function u : Ω ⊂ Rn −→ R. The goal is to study

the dimension of the

Notation 1.6.1. Let α > 0, we denote

Σk
α(u) :=

{
x ∈ Σk(u) | ∃Bk

α ⊂ ∂u(x), with diam(Bk
α) = 2α

}
,

where Bk
α is a ball of dimension k and radius α.
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Remark 1.6.6. It is clear that

Σk(u) =
⋃
p∈N

Σk
1/p(u).

If one has that Σk
α(u), for every α > 0, is countably Hn−k-rectifiable, it follows

also that Σk(u) is countably Hn−k-rectifiable too. Indeed, the previous union is

countable.

Remark 1.6.7. The same idea of splitting the singular set will be also one of the in-

gredient of the proof of Theorem 2.3.1 of Section 2.3, where we prove an analogous

result for c-convex functions and their c-singular sets.

The idea of Alberti, Ambrosio and Cannarsa is to estimate the dimension of

the contingent cone. Then, it is time to introduce the notion and to give some

results.

Definition 1.6.8. Let S ⊂ Rn be an arbitrary set and let x ∈ S. We call the

contingent cone of S at the point x the set

T (S, x) :=

{
rθ

∣∣∣∣ r ≥ 0, lim
h→+∞

xh − x
|xh − x|

= θ, withxh ∈ S \ {x}, xh → x

}
.

We denote by Tan(S, x) the vector space spanned by T (S, x).

Proposition 1.6.2. Let S ⊂ Rn and let x ∈ S be fixed. We assume that Tan(S, x)

has dimension not larger than m, for every x ∈ S. Then S is countably Hm-

rectifiable.

Proof. See [3], Theorem 3.1.

Remark 1.6.9. The proof passes through a very classical result: if D ⊂ Rm and

f : D −→ Rn is a Lipschitz continuous function, then f(D) is countably Hm-

rectifiable. This fact is proved in [86], Lemma 1.1.

We are now approaching the main result of [3]. We need another preliminary

step. In order to apply Proposition 1.6.2, we need to know that the contingent

cone of Σk
α(u) has dimension at most (n− k). First a notation.
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Notation 1.6.2. Let S be an arbitrary subset of Rn. We denote by S⊥ the set

{p ∈ Hn | q 7−→ 〈q, p〉 is constant onS} .

Proposition 1.6.3. Let u : Ω ⊂ Rn −→ R be a semiconvex function. Then the

set Σk
α(u) is closed in Ω and

Tan
(
Σk
α(u), x

)
⊂ [∂u(x)]⊥ ,

for every x ∈ Σk
α(u) \ Σk+1(u). In particular, the dimension of Tan

(
Σk
α(u), x

)
is

not larger than (n− k), for any x ∈ Σk
α(u) \ Σk+1(u).

Proof. See [3], Proposition 2.2.

Remark 1.6.10. We point out that, from Proposition 1.6.3, it follows that

Tan (Σn
α(u), x) = {0},

for every x ∈ Σn
α(u). This implies that Σn

α(u) is a discrete set.

Putting together all the results stated above, one can prove the desired result.

Theorem 1.6.4. Let u : Ω ⊂ Rn −→ R be a semiconvex and Lipschitz continuous

function. Then, for every 0 ≤ k ≤ n integer number, the set Σk(u) is countably

Hn−k-rectifiable.

1.7 Optimal mass transport for quadratic cost

function

In this section, our aim is to specialize Theorem 1.3.3 to the case of quadratic

cost. Moreover, we want to give the statement of Brenier’s Theorem, which pro-

vides a unique solution to the Monge problem for this specific case. It turns out

that there exists a unique optimal tranference plan π and it is associated to the

gradient of a suitable convex function. This gradient will be the desired optimal

transport map.

23



We recall that, according to Theorem 1.3.3, under some assumptions, an ad-

missible plan π ∈ Π(µ, ν) is optimal if and only if it is supported on the graph

of ∂cϕ, for some c-concave function ϕ. In the specific case of quadratic cost, one

can simplify this fact, discovering that π ∈ Π(µ, ν) is optimal if and only if it is

supported on the graph of the subdifferential of a suitable convex function. This

is what the following proposition says.

Proposition 1.7.1. Let ϕ : Rn −→ R∪ {−∞} be a function not identically equal

to −∞. Then ϕ is c-concave if and only if ϕ̄(x) := 1
2
|x|2 − ϕ(x) is convex and

lower semicontinuous. Moreover, y ∈ ∂cϕ(x) if and only if y ∈ ∂ϕ̄(x).

Proof. The proof follows by some simple computations. By definition of c-concavity,

there exists a function ψ : Rn −→ R ∪ {+∞} such that

ϕ(x) = inf
y∈Rn

(
1

2
|x− y|2 − ψ(y)

)
.

Expanding the square, this is equivalent to say that

ϕ(x)− 1

2
|x|2 = inf

y∈Rn

(
−x · y +

1

2
|y|2 − ψ(y)

)
,

or, equivalently,

ϕ̄(x) = sup
y∈Rn

(
x · y −

(
1

2
|y|2 − ψ(y)

))
,

which implies that ϕ̄ is convex and lower semicontinuous.

Let us prove the second part of the statement. We have that y ∈ ∂cϕ(x) if and

only if

ϕ(x) = ϕc(y) =
1

2
|x− y|2,

which is equivalent to

ϕ(x)− 1

2
|x|2 = −x · y +

1

2
|y|2 − ϕc(y). (1.12)

Now, it holds also that y ∈ ∂cϕ(x) if and only if

ϕ(z) ≤ 1

2
|z − y|2 − ϕc(y),
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for every z ∈ Rn. Equivalently,

ϕ(z)− 1

2
|z|2 ≤ −y · z +

1

2
|y|2 − ϕc(y), (1.13)

for every z ∈ Rn. Finally, we have that (1.12) and (1.13), together, are equivalent

to

ϕ(z)− 1

2
|z|2 ≤ ϕ(x)− 1

2
|x|2 − 〈y, z − x〉 ,

for every z ∈ Rn. This last inequality means that y ∈ ∂ϕ̄(x)

Let us now give a look at the existence of optimal transference plan and the

associated optimal transport map. The main result that we propose here is the

following: if µ and ν are two probability measures with finite second order moments

(see Definition 1.7.1), a trasference plan is optimal if and only if it is supported on

the subdifferential of a convex function. This fact was proved by Knott and Smith

in [63]. Moreover, if we ask for more stronger assumptions on the two probability

measures, Brenier’s Theorem assures the uniqueness of such transference plan.

First of all, we recall that the total transportation cost, in this case, is given

by

I[π] =

∫
Rn×Rn

1

2
|x− y|2dπ(x, y),

and also that

J(ϕ, ψ) :=

∫
Rn
ϕ(x)dµ(x) +

∫
Rn
ψ(y)dν(y).

Definition 1.7.1. Let µ and ν be two probability measures on Rn. We say that

they have finite second order moments if

M2 :=

∫
Rn

1

2
|x|2dµ(x) +

∫
Rn

1

2
|y|2dν(y) < +∞.

Remark 1.7.2. This condition implies that the total trasportation cost is always

finite on Π(µ, ν). This fact is a simple consequence of the triangle inequality and

of the fact that π has marginals µ and ν.

In order of justify Definition 1.7.1, we start with a proposition about the ex-

istence of a minimizer for the functional I. In the proof the condition about the

second order moments of µ and ν plays a key role.
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Proposition 1.7.2. Let µ and ν be two probability measures with finite second

order moments. Then there exists π̃ ∈ Π(µ, ν) such that

I[π̃] = inf
π∈Π(µ,ν)

I[π].

Idea of the proof. First, we recall that Π(µ, ν) is non empty. Moreover, by the

finiteness of the second order moments of µ and ν, we have that π ∈ Π(µ, ν)

implies that ∫
Rn×Rn

(
|x|2 + |y|2

)
dπ(x, y) < +∞.

Therefore, one can deduce that Π(µ, ν) is compact for the weak topology of prob-

ability measures.

Now, let (πk)k∈N be a minimizing sequence for I. We know that, eventually

restricting to a subsequence, there exists a limit point π0 ∈ Π(µ, ν). We can write

the cost function c(x, y) = 1
2
|x−y|2 as the supremum of a non decreasing sequence

of bounded functions, (ch)h∈N. Thanks to the Monotone Convergence Theorem,

we can conclude that∫
Rn×Rn

c(x, y)dπ0(x, y) = lim
h→∞

∫
Rn×Rn

ch(x, y)dπ0(x, y)

≤ lim
h→∞

lim sup
k→∞

∫
Rn×Rn

ch(x, y)dπk(x, y)

≤ lim sup
k→∞

∫
Rn×Rn

c(x, y)dπk(x, y) = inf
π∈Π(µ,ν)

I[π].

Hence, π0 is a minimizer of I

This Proposition is just a preliminary result of what we want. For the main

statement (Theorem 1.7.4), we need to go back to the dual problem. For this

particular case of quadratic cost function, we can have a more precise result. First,

remember that a pair (ϕ, ψ) belongs to Φc, if

ϕ(x) + ψ(y) ≤ 1

2
|x− y|2,

for µ-almost every x and ν-almost every y in Rn. Since we have a specific formula

for c, we can rewrite this inequality in this way

x · y ≤
(

1

2
|x|2 − ϕ(x)

)
+

(
1

2
|y|2 − ψ(y)

)
.
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It is natural to introduce a new pair of functions:

ϕ̃(x) =
1

2
|x|2 − ϕ(x) and ψ̃(y) =

1

2
|y|2 − ψ(y).

Now, using Definition 1.7.1, one has that

inf
π∈Π(µ,ν)

I[π] = M2 − sup
π∈Π(µ,ν)

∫
Rn×Rn

x · y dπ(x, y), (1.14)

and also

sup
(ϕ,φ)∈Φc

J(ϕ, ψ) = M2 − inf
(ϕ̃,ψ̃)∈Φ̃c

J(ϕ̃, ψ̃), (1.15)

where Φ̃c is the set of all pairs (ϕ̃, ψ̃) ∈ L1(Rn, µ)× L1(Rn, ν) such that

x · y ≤ ϕ̃(x) + ψ̃(y), (1.16)

for µ-almost every x and for ν-almost every y in Rn. Now, let us combine (1.14)

and (1.15) with the formula of the Kantorovich Duality Theorem (1.8). We obtain

a restatement of the duality

sup
π∈Π(µ,ν)

∫
Rn×Rn

x · y dπ(x, y) = inf
(ϕ̃,ψ̃)∈Φ̃c

J(ϕ̃, ψ̃).

Consider then (ϕ̃, ψ̃) ∈ Φ̃c. From inequality (1.16), it holds that, for ν-almost

every y ∈ Rn,

ψ̃(y) ≥ sup
x∈Rn

(x · y − ϕ̃(x)) := ϕ̃∗(y).

As a consequence, we have that

J(ϕ̃, ψ̃) ≥ J(ϕ̃, ϕ̃∗). (1.17)

Analogously, one can obtain that, for µ-almost every x ∈ X,

ϕ̃(x) ≥ sup
y∈Rn

(x · y − ϕ̃∗(y)) := ϕ̃∗∗(x),

and therefore

J(ϕ̃, ϕ̃∗) ≥ J(ϕ̃∗∗, ϕ̃∗). (1.18)

Now, we combine (1.17) and (1.18) and we get

inf
(ϕ̃,ψ̃)∈Φ̃c

J(ϕ̃, ψ̃) ≥ inf
ϕ̃∈L1(Rn,µ)

J(ϕ̃∗∗, ϕ̃∗).
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If we admit that (ϕ̃∗∗, ϕ̃∗) ∈ L1(Rn, µ) × L1(Rn, ν), we have that (ϕ̃∗∗, ϕ̃∗) ∈ Φ̃c.

This means that the infimum of J does not change if we restrict to a smaller subset

of Φ̃c. The pairs of type (ϕ̃∗∗, ϕ̃∗) ∈ Φ̃c are convex lower semicontinuous functions.

Indeed, they are the supremum of a family of linear functions. Following the book

of Villani (see [92]), we refer to this reduction of the set on which we look for

minimizers as the double convexification trick.

With this background we are able to give the idea of the proof of the following

proposition.

Proposition 1.7.3. Let µ and ν be two probability measures with finite second

order moments. Then there exists a pair (ϕ, ϕ∗) of lower semicontinuous proper

conjugate functions on Rn such that

inf
Φ̃c

J = J(ϕ, ϕ∗).

Idea of the proof. We use the double convexification trick. Let (ϕk, ψk)k∈N be a

minimizing sequence of J . We assume that (ϕk, ψk) are all pairs of convex con-

jugate functions. The first step is to prove that, eventually reducing to a sub-

sequence, ϕk −→ ϕ ∈ L1(Rn, µ), ψk −→ ψ ∈ L1(Rn, ν), (ϕ, ψ) ∈ Φ̃c and also

that

J(ϕ, ψ) ≤ lim inf
k→∞

J(ϕk, ψk).

If one can prove these facts, then it follows that (ϕ, ψ) is an optimal pair. Applying

the double convexification trick, we can get what we want.

Remark 1.7.3. In the previous proof, it is important to keep in mind that we need

also that (ϕk, ψk) ∈ L1(Rn, µ)× L1(Rn, ν).

We are now ready to state the main theorem about the existence and uniqueness

of an optimal transference plan for the case with cost function c(x, y) = 1
2
|x− y|2.

This theorem summarize what we saw in this Section.

Theorem 1.7.4. Let µ and ν two probability measures with finite second order

moments. Then the following three statements are true.
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(i) Knott-Smith optimality criterion. π ∈ Π(µ, ν) is optimal if and only if

there exists a convex lower semicontinuous function ϕ such that

supp(π) ⊂ graph(∂ϕ). (1.19)

(ii) Brenier’s Theorem. If µ does not give mass to sets with Hausdorff di-

mension at most (n − 1), then there exists a unique optimal plan π which

is

π = (Id×∇ϕ)#µ, (1.20)

where ∇ϕ is the unique gradient of a convex function such that ∇ϕ#µ = ν.

(iii) Under the assumption of (ii), ∇ϕ is the unique solution to the Monge trasporta-

tion problem∫
Rn
|x−∇ϕ(x)|2dµ(x) = inf

T#µ=ν

∫
Rn
|x− T (x)|2dµ(x).

The proof of this Theorem is quite long and complicate. We direct the reader’s

attention to the papers of Brenier and of Knott and Smith (see [18], [63]). For a

more selfcontained digression, one can refer to Chapter 2 of [92].

Here, for a better understanding, we make a small remark.

Remark 1.7.4. Inclusion (1.19) can be reformulated as follows: y ∈ ∂ϕ(x) for π-

almost every couple (x, y) ∈ Rn × Rn. In Brenier’s Theorem, the uniqueness of

the convex lower semicontinuos function ϕ has to be intended as a uniqueness up

to a µ-measure zero set.

In Section 1.6, we saw that the singular set of the subdifferential of a convex

function has Hausdorff dimension at most n− 1. In part (ii) of Theorem 1.7.4, it

is requested that µ does not give mass to sets with Hausdorff dimension at most

n − 1. This implies that we can ignore those points where supp(π) can not be

written as a graph, applying finally Proposition 1.5.1.
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1.8 Optimal mass transport for general cost func-

tions

Let X and Y be two subsets of Rn and let µ and ν be two probability measures

on X and Y , respectively. We consider a non negative and continuous cost function

c : X × Y −→ R.

We recall that, by Theorem 1.3.3, under some assumptions on c, it holds that

an admissible tranference plan π ∈ Π(µ, ν) is optimal if and only if it is supported

on the graph of the c-superdifferential, ∂cψ, of a suitable c-concave function ψ :

X −→ R.

The main goal of this Chapter is to understand under what conditions the

existence of an optimal plan implies the existence of an optimal map, solution of a

Monge’s problem. Similarly to what we did for the case of quadratic cost, we want

to apply Proposition 1.5.1. This requires to know “how large” is the set Σc(ψ).

Obviously, this depends on the properties of the function c.

Following [93], we introduce certain possible assumptions on c, among which

we will choose in the statements of the results we are going to present.

(Super) the function x 7−→ c(x, y) is everywhere superdifferentiable, for every y ∈
Rn;

(Twist) if x, y and y′ are such that ∇xc(x, y) = ∇xc(x, y
′), then y = y′;

(Lip) the function x 7−→ c(x, y) is locally Lipschitz, uniformly in y;

(SC) the function x 7−→ c(x, y) is a semiconcave, uniformly in y;

(locLip) the function x 7−→ c(x, y) is locally Lipschitz, locally in y;

(locSC) the function x 7−→ c(x, y) is a locally semiconcave function, locally in y;

(H∞)1 for any x and for any measurable set S for which T (S, x) is not contained

in a half-space there is a finite collection of elements z1, ..., zk ∈ S, and a

small ball B containing x, such that for any y outside a compact set,

inf
w∈B

c(w, y) ≥ inf
1≤j≤k

c(zj, y);
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(H∞)2 for any x and any neighbourhood U of x there is a small ball B containing

x such that

lim
y→∞

sup
w∈B

inf
z∈U

[c(z, y)− c(w, y)] = −∞.

Now, we list a serie of results concerning the differentiability of a c-convex

function. All together, these results allow us to give an estimate for the Hausdorff

dimension of the c-singular set of the c-superdifferential of a c-concave function.

In this way one can apply Proposition 1.5.1 and obtain the existence of an optimal

transport map.

Theorem 1.8.1. Let X ⊂ Rn be a set. Let c be satisfying Assumption (H∞) and

let ψ : X −→ R ∪ {+∞} be a c-convex function. Let us denote by Ω the interior

of the set ψ−1(R). Then

(i) ψ−1(R) \ Ω is a set of dimension at most n− 1;

(ii) ψ is locally bounded and c-subdifferentiable everywhere in Ω;

(iii) if K ⊂ Ω is a compact set, then also ∂cψ(K) is a compact set.

Proof. See [93], Theorem 10.24.

Theorem 1.8.2. Let X ⊂ Rn be a set. Let c be satisfying Assumption (Super)

and let ψ : X −→ R ∪ {+∞} be a c-convex function. Let x ∈ X be a point such

that ∂cψ(x) 6= ∅. Then ψ is subdifferentiable at x.

Proof. See [93], Theorem 10.25.

Theorem 1.8.3. Let c be satisfying Assumptions (Super), (Twist) and (SC).

Let ψ : X −→ R ∪ {+∞} be a c-convex function. Then ψ is locally semiconvex

and differentiable in the interior of its domain, Ω, apart from a set of dimension

at most n− 1.

Proof. See [93], Theorem 10.26.
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Remark 1.8.1. The previous three statements, combined together, give a final

result about the differentiability points of a c-convex function ψ. If c satisfies

Assumptions (Super), (Twist), (H∞) and (SC), it follows that

dim{x ∈ Ω |#∂cψ(x) 6= 1} ≤ n− 1.

Thanks to remark 1.8.1, one has finally the following theorem.

Theorem 1.8.4. Let X and Y two subsets of Rn and let µ ∈ P (X) and ν ∈ P (Y ).

Consider a cost function c : X × Y −→ R+ such that

(i) c is continuous;

(ii) c satisfies Assumption (locSC), i.e. c is locally semiconcave;

(iii) c satisfies Assumption (Twist), i.e. c is injective;

(iv) µ does not give mass to sets of dimension at most n− 1.

Then there exists a unique optimal transference plan π between µ and ν and there

exists a c-convex function ψ : X −→ R ∪ {+∞} such that π(∂cψ).

Moreover, if we assume also that c satisfies Assumption (SC), one can define

a continuous map x 7−→ T (x) on the set of differentiability points of ψ by the

relation T (x) ∈ ∂cψ, and the suppν = T (suppµ)

Remark 1.8.2. We point out that if one can say that the set of points where the

function ψ is not differentiable is of dimension at most n − 1, then we have the

existence of a (unique) solution of the Monge problem. Actually, this is what

Remark 1.8.1 says. One of the key ingredients is the semiconcavity of the cost

function (Assumption (SC)). The goal of the next Chapter, in fact, is to find a

way to avoid this request.
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Chapter 2

Hausdorff dimension estimate of

c-singular sets

In Section 1.8, we stated some conditions over the cost function c, which imply

existence and uniqueness of the solution for the Monge-Kantorovich problem. This

solution is given in term of the c-subdifferential of a c-convex function. In this

chapter the main goal is to weaken these assumptions and preserve a result similar

to Theorem 1.8.4.

Section 2.1 is devoted to introduce our new assumptions. Continuity, differen-

tiability and twist condition are preserved but the request for c to be semiconcave

is missed. Here we also discuss some examples.

Section 2.2 wants to be a very short recalling of the notion of porosity. We

also state and prove a geometric condition for a set to be porous. This will be the

central ingredient of the proof of the main theorem of Section 2.3, where we give

an estimate for the size of the set of singular points of a c-concave function.

2.1 A general class of cost functions c

Our setting here is the Euclidean space Rn. As already mentioned, we want to

list three assumptions on the cost function. The first and the second are totally

analogous to (Super) and (Twist). Indeed, Assumption (2.1.2) is a quantitative
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restatement of injectivity. The third one is new. It says that the mapping y 7−→
∇xc(x, y) can not have too many discontinuities close to each other. This is the

condition which replace the semiconcavity assumption on c.

Assumption 2.1.1 (Differentiability Condition). The cost function c : Rn ×
Rn −→ R is a continuous function. For every p ∈ Rn, the function x 7−→ c(x, p)

is differentiable almost everywhere. We denote by

C(p) = {x ∈ Rn | ∇xc(x, p) exists} .

We assume that for every x ∈ Rn, there exists r = r(x) > 0 such that for

all 0 < r < r(x) there exists x̂ ∈ B(x, r) with the property that x̂ ∈ C(p) for all

p ∈ Rn. Furthermore, we assume that Taylor’s formula holds in the sense that

lim
r→0

c(x, p)− c(x̂, p)− < ∇xc(x̂, p), (x− x̂) >

r
= 0. (2.1)

Assumption 2.1.2 (Twist Condition). For any compact set K ⊂ Rn and for any

0 < η < 1, there exists 0 < ξ = ξ(η) < 2 such that if p1, p2 ∈ K and x ∈ K are so

that |p1 − p2| > η and x ∈ C(p1) ∩ C(p2), then

|∇xc(x, p1)−∇xc(x, p2)| > ξ. (2.2)

Assumption 2.1.3 (Gradient Continuity Condition). For any compact set K ⊂
Rn, for any ε > 0 and for any η > 0, there exists δ = δ(ε, η) > 0 such that if

p1, p
′
1, p2, p

′
2 ∈ K and x ∈ K are so that |p1 − p2| > η, |p1 − p′1| < δ, |p2 − p′2| < δ

and x ∈ C(p1) ∩ C(p′1) ∩ C(p2) ∩ C(p′2), then either

|∇xc(x, p1)−∇xc(x, p
′
1)| < ε (2.3)

or

|∇xc(x, p2)−∇xc(x, p
′
2)| < ε. (2.4)

Remark 2.1.1. We point out that, in the first condition, the required differentiabil-

ity at the point x̂ does not necessarily imply the validity of Taylor’s formula in the

form that it is written in (2.1). The reason for this is that in Taylor’s development

formula the radius r > 0 depends on the choice of the development point x̂. On
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the other hand, in our case the radius r = r(x) > 0 depends on x and not on x̂

and this is why we need to require in addition the validity of (2.1). In practical

applications however it is rather easy to check this condition as for typical cost

functions the differentiability fails only on the diagonal x = p.

It is natural now to ask a question: is it really true that Assumption 2.1.3 is a

more relaxed condition with respect to (SC)? To give an answer we present some

examples.

Let us observe that the standard quadratic cost function: c : Rn × Rn −→ R,

c(x, y) = 1
2
|x− y|2 satisfies Assumptions 2.1.1, 2.1.2 and 2.1.3.

The next example, the case of the linear cost function c(x, y) = |x− y|, shows

that the second assumption (Twist Condition) is necessary. In this case the first

and the third assumption (and not the second one) are satisfied. Moreover, as a

preliminary counterexample for Theorem 2.3.1, we also prove that there exists a

c-concave function u whose singular set Σc(u) is of full dimension.

Example 2.1.1. Consider the following cost function

c : Rn × Rn −→ R

(x, y) 7−→ |x− y|.

This function is continuous and, for every y ∈ Rn fixed, x 7−→ |x − y| is

differentiable except for the point x = y. This shows that Assumption 2.1.1 is

satisfied. Moreover, for x 6= y we have that ∇xc(x, y) = x−y
|x−y| . Since the only

discontinuity point of this map is at x = y it easy to see that Assumption 2.1.3 is

also satisfied. On the other hand we can observe that, ∇xc(x, ·) is not injective,

i.e. there exist x, y1 and y2 ∈ Rn such that y1 6= y2 but

∇xc(x, y1) = ∇xc(x, p2).

Let us fix x = 0 and consider y 6= x. We have that

∇xc(0, y) = − y

|y|
.

Now, if y1 = λy2, for some λ ∈ R+, then

∇xc(0, y1) = ∇xc(0, λy2) = − λy2

λ|y2|
= ∇xc(0, y2).
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It is clear that this fact conflicts with Assumption 2.1.2.

Let us now indicate a c-concave function u : Rn −→ R such that dim Σc(u) = n.

Let x0 ∈ Rn be fixed and consider the function

ψ(y) = |y − x0|.

We write the respective c-concave function

u(x) = inf
y∈Rn

(|x− y| − |y − x0|) . (2.5)

By the triangle inequality, it holds that

|x− y| − |y − x0| ≥ −|x− x0|.

This implies that the infimum in (2.5) is achieved when y = x. Therefore

u(x) = −|x− x0|.

We prove now that, for every x ∈ Rn, it holds that

#∂cu(x) > 1.

Let us choose an arbitrary x ∈ Rn. By definition of c-superdifferential, we have

that y ∈ ∂cu(x) if and only if

|x− y|+ |x− x0| ≤ |z − y|+ |z − x0|, (2.6)

for every z ∈ Rn.

Define now yt := x0 + t(x − x0) for t ∈ R. We want to show that yt satisfies

(2.6) for every t > 1. Let us perform some calculations:

|x− yt|+ |x− x0| = |x− x0 − t(x− x0)|+ |x− x0| = t|x− x0|

= |t(x− x0) + x0 − x0| = |yt − x0|

≤ |yt − z|+ |z − x0|,

(2.7)

where the last inequality trivially follows from the triangle inequality and is true

for each choice of z ∈ Rn. This means that

{yt ∈ Rn | yt = x0 + t(x− x0), with t > 1} ⊂ ∂cu(x),

and, since x was choosen arbitrarily, implies that

Σc(u) = Rn.
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The next example is a cost function that is simply the sum of the two previously

considered cost functions. As we shall see all three Assumptions are satisfied and

so the statement of Theorem 2.3.1 applies. On the other hand, it does not satisfy

the classical Assumption (SC) about semiconcavity .

Example 2.1.2. Consider the cost function

c : Rn × Rn −→ R

(x, y) 7−→ |x− y|+ |x− y|2.

It is evident that c is a continuous function and that, for every fixed y ∈ Rn,

x 7−→ c(x, p) is differentiable in Rn \ {y}.
Let us prove that c satisfies the Twist Condition. First of all we compute the

gradient of the cost function with respect to the x variable:

∇xc(x, y) =
x− y
|x− y|

+ 2(x− y). (2.8)

In order to proceed we need the following:

Claim. Let v and w be two nonzero vectors in Rn. Then∣∣∣∣(v +
v

|v|

)
−
(
w +

w

|w|

)∣∣∣∣ ≥ |v − w|.
Let us prove this Claim. For simplicity of notation, we set a := |v| and b := |w|.

Therefore, a+ 1 =
∣∣∣v + v

|v|

∣∣∣ and b+ 1 =
∣∣∣w + w

|w|

∣∣∣. Now, it is well known that

|v − w| =
√
a2 + b2 − 2ab cos γ,

where γ is the angle between v and w on the plane spanned by the two vectors.

Analogously, we can compute∣∣∣∣(v +
v

|v|

)
−
(
w +

w

|w|

)∣∣∣∣ =
√

(a+ 1)2 + (b+ 1)2 − 2(a+ 1)(b+ 1) cos γ

=
√
a2 + b2 − 2ab cos γ + 2(1 + a+ b)(1− cos γ)

≥
√
a2 + b2 − 2ab cos γ = |v − w|,

and this completes the proof of the claim.
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Fix 0 < η < 1 and x ∈ Rn. We aim to show that there exists ξ > 0, dependent

on η but not on x, such that, for every y1, y2 ∈ Rn so that y1 6= x 6= y2 and

|y1 − y2| > η, it follows

|∇xc(x, y1)−∇xc(x, y2)| > ξ.

It is here that we need to apply the Claim:

|∇xc(x, y1)−∇xc(x, y2)| =

∣∣∣∣( x− y1

|x− y1|
+ 2(x− y1)

)
−
(
x− y2

|x− y2|
+ 2(x− y2)

)∣∣∣∣
≥ |2(x− y1)− 2(x− y2)| = 2|y1 − y2| > 2η.

If we choose 2η > ξ, we can conclude that Assumption 2.1.2 is satisfied.

Let us check Assumption 2.1.3. Fix ε > 0 and η > 0. For our purposes, we can

assume that ε < 1 and η < 2. Fix also x ∈ Rn. We would like to find a suitable

δ = δ(ε, η) > 0, not dependent on x, such that if y1, y
′
1 and y2, y

′
2 ∈ Rn are so that

|y1 − y′1| < δ, |y2 − y′2| < δ, |y1 − y2| > η and x /∈ {y1, y
′
1, y2, y

′
2}, then either

|∇xc(x, y1)−∇xc(x, y
′
1)| < ε (2.9)

or

|∇xc(x, y2)−∇xc(x, y
′
2)| < ε. (2.10)

We need to do some calculations, for i = 1, 2.

|∇xc(x, yi)−∇xc(x, y
′
i)| =

∣∣∣∣( x− yi
|x− yi|

+ 2(x− yi)
)
−
(
x− y′i
|x− y′i|

+ 2(x− y′i)
)∣∣∣∣

=

∣∣∣∣ x− yi|x− yi|
− x− y′i
|x− y′i|

− 2(yi − y′i)
∣∣∣∣ .

Let us fix δ = 1
16
ηε and check that it is a good choice. We can assume that

|x − y2| > η
4

and |x − y′2| >
η
4
. If these inequalities are not satisfied, then we can

switch and consider the case |x− y1| > η
4

and |x− y′1| >
η
4
. Let us prove why this

is true. Assume that |x − y2| > η
4

and |x − y′2| ≤
η
4
. The cases with |x − y2| ≤ η

4

and |x− y′2| >
η
4
, or with |x− y2| ≤ η

4
and |x− y′2| ≤

η
4
, can be treated in the same

way. First, we notice that, since ε < 1,

|y′1 − y2| ≥ |y1 − y2| − |y1 − y′1| ≥ η − 1

16
ηε >

15

16
η. (2.11)
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Moreover, we can also write that

|y′1 − y′2| ≥ |y′1 − y2| − |y2 − y′2| ≥
15

16
η − 1

16
ηε =

7

8
η. (2.12)

Extimates (2.12) allow us to conclude that

|x− y′1| ≥ |y′1 − y′2| − |x− y′2| ≥
7

8
η − η

4
=

5

8
η >

η

4
.

On the other hand, it holds also that

|x− y1| ≥ |y1− y′2|− |x− y′2| ≥ |y1− y2|− |y′2− y2|− |x− y′2| > η− 1

16
η− η

4
>
η

4
.

This implies that it is not loss of generality if we assume that

|x− y2| >
η

4
and |x− y′2| >

η

4
. (2.13)

We are now ready to prove that, with our choice of δ, (2.10) holds. First of all,

one has

|∇xc(x, y2)−∇xc(x, y
′
2)| =

∣∣∣∣ x− y2

|x− y2|
− x− y′2
|x− y′2|

− 2(y2 − y′2)

∣∣∣∣
≤
∣∣∣∣ x− y2

|x− y2|
− x− y′2
|x− y′2|

∣∣∣∣+ 2|y2 − y′2|

<

∣∣∣∣ x− y2

|x− y2|
− x− y′2
|x− y′2|

∣∣∣∣+
1

8
ηε.

(2.14)

Writing r = |x−y2| and r′ = |x−y′2|, there exist two unit vectors v and v′ ∈ Rn

such that y2 = x+ rv and y′2 = x+ r′v′. It holds that∣∣∣∣ x− y2

|x− y2|
− x− y′2
|x− y′2|

∣∣∣∣ = |v − v′|.

Without loss of generality, we can assume that r ≤ r′. We have

|y2 − y′2| = |rv − r′v′| = |(r − r′)v + r′(v − v′)| ≥ r′|v − v′| − (r′ − r).

This inequality implies the following extimate

|v − v′| ≤ r′ − r
r′

+
|y2 − y′2|

r′
≤ 4

η
((r′ − r) + |y2 − y′2|)

≤ 4

η
(|x− y′2| − |x− y2|) + |y2 − y′2|) ≤

8

η
|y2 − y′2| <

ε

2
.
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Let us come back to (2.14). We have that

|∇xc(x, y2)−∇xc(x, y
′
2)| <

∣∣∣∣ x− y2

|x− y2|
− x− y′2
|x− y′2|

∣∣∣∣+
1

8
ηε <

ε

2
+

1

8
ηε < ε,

which is exactly what we wanted.

In our final example we illustrate applications to our result to the case of sub-

Riemannian type singular metrics. For illustrative purposes we restrict ourselves

to the case of the first Heisenberg group (for more details, the reader can see

Section 4.1). Let us start by introducing the following:

Notation 2.1.1. We denote by ξ1 : R3 −→ R2, ξ1(x, y, t) = (x, y), the projection

to the first components and by ξ2 : R3 −→ R, ξ2(x, y, t) = t, the projection to the

last variable.

Moreover, if we have two points p = (x1, y1, t1) ∈ R3 and q = (x2, y2, t2) ∈ R3,

we introduce the Heisenberg group operation by

p−1 · q = (x2 − x1, y2 − y1, t2 − t1 − 2(x2y1 − x1y2)) . (2.15)

Finally, we introduce this function

N : R3 −→ R

(x, y, t) 7−→
((
x2 + y2

)2
+ t2

) 1
4
,

that is the so-called Korànyi norm on the first Heisenberg group H1.

Example 2.1.3. We define a cost function as follows

c : R3 × R3 −→ R

(p, q) 7−→ N2(p−1 · q) + ξ2(q − p)2.

Our aim is to show that Theorem 2.3.1 can be applied for this cost function, which

is not semiconcave. Clearly, the function p 7−→ c(p, q) is differentiable for every

p ∈ R3 with p 6= q. This means that Assumption 2.1.1 is satisfied.

Let us prove that Assumption 2.1.2 is satisfied too. First, we show that the

map

R3 \ {q} −→ R3

p 7−→ ∇qc(p, q)
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is injective for every q ∈ R3. Without loss of generality we can assume that q = 0.

Hence, one has that, for p = (x, y, t) 6= 0,

∇qc(p, 0) = −1

2

1

N2(p)

(
4(x2 + y2)x− 4ty, 4(x2 + y2)y + 4tx, 2t

)
+ (0, 0, 2t).

(2.16)

Now, let p1 = (x1, y1, t1) and p2 = (x2, y2, t2) ∈ R3 \ {0} be such that

∇qc(p1, 0) = ∇qc(p2, 0). (2.17)

We want to prove that p1 = p2. From formula (2.16), it is easy to see that, for

i = 1, 2,

‖ξ1 (∇qc(pi, 0))‖2
R2 = 4

(
x2
i + y2

i

)
.

Hence, thanks to equality (2.17), it holds that x2
1 + y2

1 = x2
2 + y2

2 := k. Consider

now the third component of ∇qc(pi, 0). If we show that the function

f(t) =
t

(k2 + t2)
1
2

+ 2t

is injective, then (2.17) implies that p1 = p2. This fact is clearly true, because f

is strictly monotone, and it guarantees injectivity of the map p 7−→ ∇qc(p, 0) on

R3 \ {0}.
Let us consider Assumption 2.1.2. We argue by contradiction and we assume

that there exist a compact set K ⊂ R3 and 0 < η < 1 such that for every

n ∈ N there are p
(n)
1 , p

(n)
2 ∈ K and qn ∈ K so that

∣∣∣p(n)
1 − p

(n)
2

∣∣∣ > η, qn ∈

C
(
p

(n)
1

)
∩ C

(
p

(n)
2

)
and

∣∣∣∇qc
(
p

(n)
1 , qn

)
−∇qc

(
p

(n)
2 , qn

)∣∣∣ ≤ 1

n
. (2.18)

Now, since
{
p

(n)
1

}
n∈N

,
{
p

(n)
2

}
n∈N
⊂ K and (qn)n∈N ⊂ K and K is a compact

set, eventually restricting to subsequences, we can assume that there exist p∞1 , p
∞
2

and q0 ∈ K such that p
(n)
1 −→ p∞1 , p

(n)
2 −→ p∞2 and qn −→ q0, as n→∞. Without

loss of generality, we can assume that q0 = 0. We need to consider two cases:

(i) p∞1 6= 0 and also p∞2 6= 0;
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(ii) p∞1 = 0 or p∞2 = 0.

In the first case, it holds that, for i = 1, 2,

∇qc(p
(n)
i , qn) −→ ∇qc(p

∞
i , 0),

as n→∞. Hence, it follows that

|∇qc(p
∞
1 , 0)−∇qc(p

∞
2 , 0)| = 0,

but we have a contradiction with the injectivity, because |p∞1 − p∞2 | > η .

Consider now the second case. Assume that p∞1 = 0, the other case is totally

analogous. By restricting to subsequence if needed, we can assume that the limit

v = limn→∞∇qc
(
p

(n)
1 , 0

)
exists. From explicit formula (2.16), one can easily see

that

v = lim
n→∞

∇qc
(
p

(n)
1 , 0

)
∈ {0} × {0} × [−1, 1]. (2.19)

Again, we have two cases p∞2 = (0, 0, t∞2 ) or p∞2 = (x∞2 , y
∞
2 , t

∞
2 ) /∈ {0} × {0} × R.

In the first case, we notice that

|ξ2 (∇qc(p
∞
2 , 0))| =

∣∣∣∣ t2|t2| + 4t2

∣∣∣∣ > 1.

Therefore, ∇qc(p
∞
2 , 0) /∈ {0} × {0} × [−1, 1]. This fact, and (2.19), provide a

contradiction to (2.18) for large values of n.

On the other hand, when p∞2 6= (0, 0, t∞2 ), we know that

ξ1 (∇qc (p∞2 , 0)) = 4
(
(x∞2 )2 + (y∞2 )2) 6= 0.

Therefore, also in this case ∇qc(p
∞
2 , 0) /∈ {0} × {0} × [−1, 1]. Again, we have a

contradiction with (2.18) and (2.19).

It remains to prove that this cost function satisfies Assumption 2.1.3. Let

K ⊂ R3 be a compact set and let ε > 0 and η > 0 be fixed. We want to find

δ = δ(ε, η) > 0 such that if p1, p2, p
′
1, p
′
2, q ∈ K are so that |p1−p2| > η, |pi−p′i| < δ,

for i = 1, 2, and q ∈ C(p1)∩C(p′1)∩C(p2)∩C(p′2), then one among (2.3) and (2.4)

holds.
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Set δ1 ≤ 1
16
ηε. With this choice of δ1, analogously to Example 2.1.2, we can

assume that |p2 − q| ≥ η
4

and |p′2 − q| ≥
η
4
.

Let us denote

∆η =
{

(p, q) ∈ R3 × R3
∣∣∣ |p− q| < η

4

}
and consider the continuous function

F : K ×K \∆η −→ R3

(p, q) 7−→ ∇qc(p, q).

Since F is a continuous function over a compact set, it is uniformly continuous.

Therefore, there exists δ2 = δ2(ε, η) > 0 such that, if |p− p′| < δ2, then

|∇qc(p, q)−∇qc(p
′, q)| < ε.

Now, if we set δ = min{δ1, δ2}, Assumption 2.1.3 is satisfied.

2.2 Dimension estimate of porous sets

This section is essentially based on [67] and the book of the same author [68], in

particular Chapter 11. We recall here an estimate of the Hausdorff dimension for

porous sets (see Theorem 2.2.1) and we propose a sufficient condition for porosity.

The proof is very simple and based only on some geometrical observations.

Roughly speaking, a porous set A is a “sparse” set: in the neighbourhood of

each point of A, one can find a hole which does not touch the set.

Definition 2.2.1. Let A ⊂ Rn, x ∈ Rn and r > 0 be fixed. We set

p(A, x, r) := sup {ρ > 0 |B(z, ρ) ⊂ B(x, r) \ A, for some z ∈ Rn}

We call the (strong) porosity of A at the point x the number

p(A, x) := lim inf
r→0

p(A, x, r)

r
.
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Remark 2.2.2. Notice that for any point x ∈ A we have 0 ≤ p(A, x, r) ≤ r
2
.

Consequently, it follows that 0 ≤ p(A, x) ≤ 1
2
.

Theorem 2.2.1. Let p ∈ ]0, 1
2
[. Then there exists d(p) ∈ [n− 1, n] such that

lim
p→ 1

2

d(p) = n− 1

and dimA ≤ d(p), for every A ⊂ Rn with the property that p(A, x) ≥ p, for every

x ∈ A.

Proof. See [68], Theorem 11.14.

We can, now, give the proof of the preannounced geometric lemma, which will

be a key ingredient in the proof of Theorem 2.3.1 and which generates a condition

for a set to be porous, for the details of this fact we postpone to Remark 2.2.3.

Lemma 2.2.1. Let x ∈ Rn, r > 0, w ∈ Sn−1 and 0 < ρ < 1
2

be fixed. If

x′ ∈ B(z, (1/2− ρ)r) where z = x+ 1
2
rw, then〈

x′ − x
r

, w

〉
> ρ. (2.20)

Proof. Let us write x′ ∈ B(z, (1/2−ρ)r) in the form x′ = z+y where |y| < (1
2
−ρ)r.

Since z = x+ 1
2
rw we obtain x′ = x+ 1

2
rw + y for y ∈ Rn, |y| < (1

2
− ρ)r.

Observe that

〈x′ − x,w〉 =

〈
1

2
rw + y, w

〉
=

1

2
r + 〈y, w〉 ≥ 1

2
r − |y| > 1

2
r − (

1

2
− ρ)r = ρr > 0.

Dividing this inequality by r > 0 yields the claim.

Remark 2.2.3. Notice that this Lemma provides a sufficient condition for porosity.

Let A ⊂ Rn and let x ∈ A be fixed. If there exists r0 = r0(x) > 0 such that

for all 0 < r < r0(x) there exists a vector w = w(x, r) ∈ Sn−1 such that for all

x′ ∈ A ∩B(x, r) we have 〈
x′ − x
r

, w

〉
≤ ρ, (2.21)

then according to the above Lemma x′ /∈ B
(
z,
(

1
2
− ρ
)
r
)
, for every 0 < r < r0.

This implies that p(A, r, x) ≥
(

1
2
− ρ
)
r.
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2.3 Dimension estimate of the singular set of a

c-concave function

In this section we prove our main results of this first part of the dissertation.

We make some assumptions on the cost function c and we give an estimate for the

dimension of the c-singular set of a c-concave function. As already mentioned, we

need to ask to c to satisfy an injectivity condition, the so-called twist condition,

to be differentiable in some sense and to satisfy a continuity condition regarding

its gradient ∇xc.

The section ends with an application of Theorem 2.3.1: under our assumptions,

we have existence of a solution to Monge’s problem.

Theorem 2.3.1. Let u : Rn −→ R be a c-concave function. Suppose that c satisfies

Assumption 2.1.1, 2.1.3 and 2.1.2. Then dim Σc(u) ≤ n− 1.

Proof of Theorem 2.3.1. Our goal is to show that, given a c-concave function u :

Rn −→ R, the singular set Σ(u) has dimension at most n− 1.

Notice that we can restrict to the case of non isolated points. Indeed, the set of

isolated points of Σ(u) has zero dimension. For simplicity of notation, we denote

by Σ the set {x ∈ Σ(u) |x is not isolated}.
The proof will be divided in several steps, with the purpose of simplifying the

set to which we apply our argument.

Step 1. Let us define, for every ν and N ∈ N,

Σν,N =

{
x ∈ B(0, N)

∣∣∣∣ ∃ p, q ∈ B(0, N) ∩ ∂cu(x), d(p, q) >
1

ν

}
. (2.22)

Therefore, we can assert that

Σ =
⋃

ν,N∈N

Σν,N . (2.23)

Let us check that (2.23) is true. If x ∈
⋃
ν,N∈N Σν,N , there are ν and N ∈ N

such that p, q ∈ B(0, N) ∩ ∂cu(x) with d(p, q) > 1
ν
. This implies that p 6= q so

#∂cu(x) > 1.
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Now the opposite inclusion should be proved. Let x ∈ Σ. Since #∂cu(x) > 1,

there are p, q ∈ ∂cu(x) such that d := d(p, q) > 0. We choose N̄ = dmax{|p|, |q|}+

1e and ν̄ ∈ N such that ν̄ > 1
d
. With this choice, we can conclude that x ∈ Σν̄,N̄ .

Decomposition (2.23) will help us to reach our goal. Indeed, it is clear that

dim Σ = dim

(⋃
ν,N

Σν,N

)
= sup{dim Σν,N | ν,N ∈ N}.

The decomposition built in this first step allows us to focus our attention on a

set of the form

Σν,N =

{
x ∈ B(0, N)

∣∣∣∣ ∂cu(x) ⊂ B(0, N) and diam∂cu(x) >
1

ν

}
.

We shall namely prove that dim Σν,N ≤ n− 1 for general ν and N ∈ N fixed.

Step 2. From now on, let ν ∈ N and N ∈ N be fixed. The proof of the

Theorem is a direct consequence of the following

Claim. Let 0 < ρ < 1
2
. Then there exists a finite family of sets

{
Σi
ν,N

}σ
i=1

such

that

• Σν,N =
⋃σ
i=1 Σi

ν,N ;

• p
(
Σi
ν,N , x

)
> 1

2
− ρ, for every x ∈ Σi

ν,N .

Let us postpone the proof of this Claim for now, and see why it implies the

theorem. By Theorem 2.2.1, if Claim 2.3 is true, it follows that, for every i ∈
{1, ..., σ},

dim Σi
ν,N ≤ d

(
1

2
− ρ
)
,

with the property that

lim
ρ→0

d

(
1

2
− ρ
)

= n− 1.

This implies that, for ε > 0, there exists ρ = ρ(ε) > 0, sufficiently small, such that

dim Σi
ν,N ≤ n− 1 + ε, which clearly entails that

dim Σν,N ≤ n− 1 + ε.

46



Letting ε −→ 0, the Claim follows. The remaining steps are devoted to proving

Claim 2.3. From now on, let 0 < ρ < 1
2

be fixed.

Step 3. The task of this step is to obtain a finite decomposition for the set

Σν,N , proving the first part of Claim 2.3.

Our efforts will focused in building a δ-covering for the ball B(0, N), where the

c-superdifferential lives. The question now is: how do we choose the radius δ > 0,

depending on ρ?

If we set η = 1
2ν

, we can choose ξ > 0, dependent on η therefore on ν, such that

inequality (2.2) holds. We set ε = 1
2
ξρ and then select the relative δ = δ(ρ, ν) > 0,

for which Assumption 2.1.3 is satisfied. Without loss of generality, we assume that

δ < 1
8ν

.

We consider a δ-covering B := {B(qi, δ)}Mi=1 of B(0, N). Clearly, we can assume

that it is a finite family because B(0, N) is a compact set. We then define

Σ
(j,l)
ν,N :=

{
x ∈ Σν,N

∣∣∣∣∂cu(x) ∩B(qj, δ) 6= ∅, ∂cu(x) ∩B(ql, δ) 6= ∅, dist(B(qj, δ), B(ql, δ)) >
1

4ν

}
.

Let us prove that

Σν,N =
⋃
j,l

Σ
(j,l)
ν,N . (2.24)

If x ∈ Σν,N , then there exist p1 and p2 ∈ ∂cu(x) such that |p1 − p2| > 1
2ν

.

Since p1 and p2 ∈ ∂cu(x) ⊂ B(0, N), there are B(qj, δ) and B(ql, δ) ∈ B such that

p1 ∈ B(qj, δ) and p2 ∈ B(ql, δ). Then x ∈ Σ
(j,l)
ν,N , because

dist (B(qk, δ), B(ql, δ)) ≥ d(p1, p2)− 2δ >
1

4ν
.

Moreover, the union in (2.24) is finite; indeed the family B has a finite number

of elements. This concludes the proof of the first part of Claim 2.3.

Step 4. Let us now consider the second part of Claim 2.3: the aim is to show

that, for every j, l ∈ {1, ...,M} fixed,

p
(

Σ
(j,l)
ν,N , x

)
≥ 1

2
− ρ, (2.25)

for every x ∈ Σ
(j,l)
ν,N .
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In this step we show that for a point x ∈ Σ
(j,l)
ν,N there exists r0 = r0(x) > 0 such

that for all 0 < r < r0(x) we find a unit vector w = w(x, r) ∈ Sn−1 such that if

x′ ∈ Σ
(j,l)
ν,N ∩B(x, r), then 〈

x′ − x
r

, w

〉
< ρ. (2.26)

Let x ∈ Σ
(j,l)
ν,N be fixed. By definition of Σ

(j,l)
ν,N , we can select p1 ∈ ∂cu(x)∩B(qj, δ)

and p2 ∈ ∂cu(x)∩B(ql, δ). Saying that p1 and p2 ∈ ∂cu(x) means that the following

two inequalities hold

c(x, p1)− u(x) ≤ c(z, p1)− u(z), (2.27)

c(x, p2)− u(x) ≤ c(z, p2)− u(z), (2.28)

for every z ∈ Rn.

By our differentiability Assumption 2.1.1 we find a r0 = r0(x) > 0 such that for

all 0 < r < r0(x) there exists a point x̂ ∈ B(x, r) that is a differentiability point

for the function x→ c(x, p) for any p ∈ Rn. Without loss of generality we assume

that for the point x̂, the second option in our Continuity Assumption 2.1.2 (i.e.

(2.4)) holds.

We set

w :=
∇xc(x̂, p2)−∇xc(x̂, p1)

|∇xc(x̂, p2)−∇xc(x̂, p1)|
.

In the following we shall prove the estimate (2.26) for this choice of w. In

order to do that, consider a point x′ ∈ Σ
(j,l)
ν,N ∩ B(x, r). Hence there exist p′1 ∈

∂cu(x′)∩B(qj, δ) and p′2 ∈ ∂cu(x′)∩B(ql, δ). Therefore, again by the definition of

c-superdifferential, one has

c(x′, p′1)− u(x′) ≤ c(z, p′1)− u(z), (2.29)

c(x′, p′2)− u(x′) ≤ c(z, p′2)− u(z), (2.30)

for every z ∈ Rn.

We focus our attention to inequalities (2.27) and (2.29). In the first we set

z = x′ and in the second z = x. Consequently, they read as follows

c(x, p1)− c(x′, p1) ≤ u(x)− u(x′). (2.31)
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In a similar way, using inequalities (2.28) and (2.30) we obtain

c(x, p′2)− c(x′, p′2) ≥ u(x)− u(x′). (2.32)

Inequalities (2.31) and (2.32) combined give

c(x, p1)− c(x′, p1) ≤ c(x, p′2)− c(x′, p′2). (2.33)

Using the fact that x′, x̂ ∈ B(x, r) and thus x, x′ ∈ B(x̂, 2r) we can apply

Taylor’s formula at the point x̂. We have

c(x, p1) = c (x̂, p1) + 〈∇xc(x̂, p1) , x− x̂〉 + o(r), (2.34)

c(x′, p1) = c (x̂, p1) + 〈∇xc(x̂, p1) , x′ − x̂〉 + o(r). (2.35)

We subtract equation (2.34) to (2.35) in order to get

c(x, p1)− c(x′, p1) = 〈∇xc(x̂, p1) , x− x′〉 + o(r). (2.36)

With a similar argument, one has also

c(x, p′2)− c(x′, p′2) = 〈∇xc(x̂, p
′
2) , x− x′〉 + o(r). (2.37)

Now, we combine (2.36) and (2.37) with inequality (2.33) and obtain

〈∇xc(x̂, p1) , x− x′〉 + o(r) ≤ 〈∇xc(x̂, p
′
2) , x− x′〉 + o(r),

or, equivalently,

〈∇xc(x̂, p
′
2)−∇xc(x̂, p1), x′ − x〉 ≤ o(r),

which can be written as

〈∇xc(x̂, p2)−∇xc(x̂, p1), x′ − x〉 ≤ 〈∇xc(x̂, p2)−∇xc(x̂, p
′
2), x′ − x〉+ o(r).

Dividing this relation by |∇xc(x̂, p2)−∇xc(x̂, p1)| · r yields:〈
∇xc(x̂, p2)−∇xc(x̂, p1)

|∇xc(x̂, p2)−∇xc(x̂, p1)|
,
x′ − x
r

〉
≤
〈
∇xc(x̂, p2)−∇xc(x̂, p

′
2)

|∇xc(x̂, p2)−∇xc(x̂, p1)|
,
x′ − x
r

〉
+o(1).

Note that |∇xc(x̂, p2)−∇xc(x̂, p
′
2)| ≤ ε and |∇xc(x̂, p2)−∇xc(x̂, p1)| > ξ while

ε
ξ
< ρ

2
by our choices of parameters made at the beginning of Step 3.
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This implies that the first term on the right side of the above estimate is less

than ρ
2

since the second term converges to 0 as r → 0. We obtain that the second

term is also less than ρ
2

for r > 0 small enough. Consequently we obtain that〈
∇xc(x̂, p2)−∇xc(x̂, p1)

|∇xc(x̂, p2)−∇xc(x̂, p1)|
,
x′ − x
r

〉
=

〈
w,
x′ − x
r

〉
≤ ρ,

for r > 0 small enough, as required.

As an application, we state a theorem about the existence of an optimal trans-

port map. Thanks to our Theorem 2.3.1, we are able to weaken the assumptions

on the cost function c.

Theorem 2.3.2. Let us assume that c : Rn × Rn → R satisfies the Assumptions

2.1.1, 2.1.2, 2.1.3. Let µ and ν be two Borel regular probability measures such

that µ does not give mass to (n − 1)-dimensional sets. Then there is an optimal

transport map T : Rn → Rn transporting µ to ν such that∫
Rn
c(x, T (x))dµ(x) ≤

∫
Rn
c(x, T̃ (x))dµ(x),

for any measurable map T̃ : Rn → Rn such that T̃]µ = ν. Moreover, there exists a

c-concave function ϕ such that T(x) = ∂cϕ(x), for µ-almost every x ∈ Rn.

Proof. Based on the general theory of optimal mass transportation recalled in the

first Chapter (see also [92, 93]), there exists an optimal transport plan π with

marginals µ and ν, π ∈ Π(µ, ν), supported on the graph of the c-superdifferential

∂cϕ of some c-concave function ϕ. If the multivalued map x 7−→ ∂cϕ(x) is single

valued for µ-almost every x ∈ Rn, then this will give rise to an optimal transport

map defined by T (x) = ∂cϕ(x) for µ-almost every x ∈ Rn.

According to the above consideration, we only need to check that x 7−→ ∂cϕ(x)

is single valued for µ almost every x (Proposition 1.5.1). Clearly, x 7−→ ∂cϕ(x) is

single valued outside the singular set Σc(ϕ). By Theorem 2.3.1 dim Σc(ϕ) ≤ n−1.

By our assumption on the measure µ, we have µ(Σc(ϕ)) = 0 and thus the claim of

the theorem follows.
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Part II

Singular sets of H-convex

functions
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Chapter 3

An introduction to Carnot groups

In this chapter we will build some background on Carnot groups (see Definition

3.3.4), which are a special case of Lie groups (see Definition 3.1.1).

In the first section, we will introduce the definition of Lie group and its Lie

algebra and we will state some basic facts.

In the second section, we provide a brief exposition of general features con-

cerning the exponential map. We will conclude by recalling the celebrated Baker-

Campbell-Hausdorff formula.

Section 3.3 is devoted to the study of Carnot groups. In particular, we will

recall that every Carnot group G is diffeomorphic to some Rn.

The chapter will end with a couple of sections devoted to the study of the

Carnot-Carathéodory metric. First, we introduce this metric generally in Rn,

then we will specialize to the Carnot-Carathéodory metric on Carnot groups.

3.1 Lie Groups and Lie Algebras

We recall some notations and results about Lie groups and their Lie algebras.

Let us start with the definition of Lie group (for a comprehensive treatment and for

references to the extensive literature on the subject one may refer to the books [91]

and [16]).
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Definition 3.1.1. A Lie group is a differentiable manifold G endowed with a

differentiable group structure. This means that the product (x, y) 7→ x · y and the

inverse x 7→ x−1 are smooth maps.

Definition 3.1.2. A Lie subgroup of G is an embedded submanifold of G which

is also a subgroup of G.

Definition 3.1.3. Let G and H be Lie groups and let k ∈ N. A Lie homomorphism

from G to H is a Ck-map

ϕ : G −→ H

that is also a group homomorphism.

Remark 3.1.4. A map ϕ : G → H is called a Lie isomorphism if it is a Lie

homomorphism and also its inverse is a Lie homomorphism.

To understand the objects we are working with, let us treat a simple example

of Lie groups on Euclidean spaces: the first Heisenberg group. We postpone the

general case and main properties until Section 4.1 of the next chapter.

Example 3.1.1. We consider R3 identified to C× R and use the notation

p = (x, y, t) = (z, t) ∈ C× R.

We give to C× R a Lie group structure with group law:

(z , t) · (w , s) = (z + w , t + s + 2=(z · w̄) ) .

It is not difficult to check that the identity is 0 and that the inverse is given by

(z, t)−1 = (−z,−t). We call the Lie Group H1 = (R3, ·) the first Heisenberg Group.

Definition 3.1.5. Fixed g ∈ G, we denote by

τg : G −→ G

x 7−→ g · x

the left translation by g on G.

Let us give the definition of smooth left invariant vector fields. Indeed, we aim

to study the Lie algebra associated to a Lie group.
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Definition 3.1.6. A smooth vector field X ∈ Γ(TG) is said to be left invariant if,

for every g ∈ G,

dτgX = X ◦ τg, (3.1)

where dτg : TG→ TG is the derivative map of the left translation τg.

Since τg is a Lie isomorphism (a diffeomorphism more generally), notice that

dτgX is well defined as vector field. The condition (3.1) is equivalent to the fol-

lowing one:

dxτg (X(x)) = X(g · x),

for every g, x ∈ G. If we apply the previous formula to the identity of G, we obtain

deτg (X(e)) = X(g),

for every g ∈ G. Moreover, the condition of left invariance can be rewritten in this

way

X (f ◦ τg) (x) = Xf ◦ τg(x),

for all x, g ∈ G and for all smooth function f on G.

Definition 3.1.7. Let G be a Lie group. We call the Lie algebra of G, and write

g, the set of all smooth left invariant vector fields on G.

Proposition 3.1.1. g is a Lie algebra1 under the Lie Bracket product defined as

[X, Y ] f = XY f − Y Xf,

for all X, Y ∈ g, and for all f ∈ Ck(G).

Remark 3.1.8. The dimension of g as vector space equals that of G. Indeed, g is

canonically isomorphic to TeG via the identification of X and X(e).

1We recall that a vector space g is a Lie algebra if there is a bilinear and antisymmetric map

[·, ·] : g× g→ g which satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0,

for all X,Y, Z ∈ g.
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Example 3.1.2. Return to the first Heisenberg group H1. It is not difficult to show

that the vector fields

X1 = ∂x + 2y ∂t

X2 = ∂y − 2x ∂t

are left invariant with respect to the group law.

3.2 The Exponential Map

Given a Lie group G, we defined its Lie algebra. The exponential map gives rise

to a canonical way to associate each element of g to a point of G. In this section

we recall the definition and the main properties. We start with a proposition (for

more details we refer the reader to [16]):

Proposition 3.2.1. The left invariant vector fields on a Lie group G are complete.

Given g ∈ G and X ∈ g, let us consider the solution of the following Cauchy

problem: {
γ̇g(t) = X(γg(t))

γg(0) = g.

Remark 3.2.1. Notice that, by Proposition 3.2.1, the integral curve γg is defined

for each t ∈ R.

In the following, we set

expX(t) := γe(t).

Thanks to this notation, we can construct a canonical map which, with each vector

field in g, associates a point of G. We consider once again the integral curve of a

fixed left invariant vector field X, we stop at time t = 1, that point will be the

element of G associated with X:

Definition 3.2.2. Let G be a Lie group with Lie algebra g, we set

exp : g −→ G

X 7−→ exp(X) := expX(1).
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This map is called exponential map related to the Lie group G.

In the following proposition, we summarize some of the main properties of the

exponential map and of integral curves more generally.

Proposition 3.2.2. Let G be a Lie group and g its Lie algebra. Then

(i) The exponential map is a smooth map;

(ii) For every X ∈ g and for any t, s ∈ R, expX(t+ s) = expX(t) expX(s);

(iii) The derivative map of the exponential map d exp : T0g→ TeG is the identity

map, under the canonical identification of both T0g and TeG with g;

(iv) The exponential map is a local diffeomorphism from some neighborhood of 0

in g to a neighborhood of e in G.

Proposition 3.2.3. If G is a nilpotent,2 simply connected Lie group, then the

exponential map is a global diffeomorphism of g onto G. Moreover, if H is a Lie

subgroup of G, and h is its Lie algebra, then H = exp h.

Consider now two vector fields X, Y ∈ g, we aim to reconstruct the group law

of the Lie group associated with g; we define C(X, Y ) ∈ g setting

exp(C(X, Y )) = exp(X) · exp(Y ).

It is possible to compute explicitly C(X, Y ). We start with some notations: let

α = (α1, ..., αl) be a multiindex of non-negative integers, we define

|α| := α1 + ...+ αl

α! := α1! · ... · αl!,

we say that l is the length of the multiindex α. Let β = (β1, ..., βl) another

multiindex, with the same legth as α, such that αl + βl ≥ 1. We set

Cα,β(X, Y ) :=

{
(adX)α1(adY )β1 · ... · (adX)αl(adY )βl−1Y, if βl > 0

(adX)α1(adY )β1 · ... · (adX)αl−1X, if βl = 0,

2A Lie group is nilpotent of step r if its Lie algebra is nilpotent of step r, that is, defined the

descending central serie of g, g(1) = g and g(k+1) =
[
g(k), g

]
, for k > 1 , there exists r ∈ N such

that g(r+1) = 0 and g(k) 6= {0} if k ≤ r.

57



where (adX)(Y ) := [X, Y ]. Then the Baker-Campbell-Hausdorff formula states

that

C(X, Y ) :=
∞∑
l=1

(−1)l+1

l

∑
α,β

αl+βl≥1

1

α!β!(α + β)
Cα,β(X, Y ), (3.2)

whenever the serie at the right hand side makes sense. Moreover, it is clear that

3.2 holds in nilpotent Lie groups.

3.3 Carnot Groups

In this section we will approach to the setting of our studies. As already

mentioned, we are interested in Heisenberg groups, which form a particular family

of Carnot groups. Therefore, we need a little background about them (for more

details we refer, once more, the reader to [16]). We start with a definition:

Definition 3.3.1. A Lie algebra g is called stratified if it admits a stratification,

i.e. there exists V1, ..., Vr ⊂ g subspaces such that

g = V1 ⊕ ...⊕ Vr,

where

Vj = [V1, Vj−1], for j = 2, ..., r

[V1, Vr] = {0}.

Remark 3.3.2. It is clear that Vr is contained in the center of g. We point out also

that V1 generates the whole Lie algebra. Because of its major role, we will call it

horizontal layer.

Definition 3.3.3. A group G is called stratified if its Lie algebra g admits a

stratification. Moreover, if the dimension of G is finite, then it is nilpotent of step

r, exactly the number of subspaces in the stratification of g.

From the definition of stratified Lie algebra, we can construct on g a one

parameter group of Lie homomorphisms, called dilations and denoted by {δλ}λ≥0.

We fix λ ≥ 0 and define, for X ∈ Vj:

δλX = λjX,
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and then we extend this map over the entire g. Moreover, if λ < 0, we set

δλX = −δ|λ|X.

Proposition 3.3.1. The following properties hold

(i) δλµ = δλ ◦ δµ;

(ii) δλ ([X, Y ]) = [δλX, δµY ];

(iii) δλ (C(X, Y )) = C (δλX, δµY ),

for any λ, µ and for any X, Y ∈ g.

Definition 3.3.4. A Carnot group G is a finite dimensional, connected, simply

connected Lie group, whose Lie algebra admits a stratification. If r is the step of

the stratification, we say that G is of step r.

Remark 3.3.5. We should stress that a Carnot group can admit more than one

stratification. For example, consider again the first Heisenberg group H1. Its Lie

algebra h admits the following stratifications:

span{X1, X2} ⊕ span{[X1, X2]}

span{X1 − 3[X1, X2], X2} ⊕ span{[X1, X2]}

span{X1 +X2, 3X1 + [X1, X2]} ⊕ span{[X1, X2]}.

Definition 3.3.6. Let G be a Carnot group with Lie algebra g. Let V = (V1, ..., Vr)

be a fixed stratification of g. We say that a basis B of g is adapted to V if

B =
(
E

(1)
1 , ..., E(1)

m1
; ....;E

(r)
1 , ..., E(r)

mr

)
,

where, for i = 1, ..., r, we have mi := dim (Vi) and
(
E

(i)
1 , ..., E

(i)
mi

)
is a basis for Vi.

Notation 3.3.1. We say that G has m generators, where m := dim (V1).

In Remark 3.3.5, we saw that a Lie algebra of a Carnot group could admit

more than one stratification. In the following proposition we point out that the

main algebraic aspects of a Carnot group do not depend on the choice of the

stratification:
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Proposition 3.3.2. Let G be a Carnot group and g its Lie algebra. Let (V1, ..., Vr)

and (W1, ...,Wr) be two stratifications of g. Then r = s and dimVi = dimWi for

every i = 1, ..., r. Moreover, the real number

Q :=
r∑
i=1

i · dimVi

depends only on the stratified nature of G and not on the particular stratification.

Q is called homogeneous dimension of G.

We conclude the section introducing on Carnot groups the so-called exponential

coordinates. Let (X1, ..., Xn) a basis for the Lie algebra of G, g. As usual, for

general manifolds, in particular for Lie groups, we can write uniquely two vector

fields in coordinates, setting X =
∑n

i=1 xiXi and Y =
∑n

i=1 yiXi.
3 This fact

permits us to give the following

Definition 3.3.7. A system of exponential coordinates associated with X1, ..., Xn

is the map

Ψ : Rn −→ G

(x1, ..., xn) 7→ exp

(
n∑
i=1

xiXi

)
.

(3.3)

We endow Rn with a group law, so that Ψ is a group isomorphism, that means

x · y = z if and only if, using (3.2),

n∑
i=1

ziXi = C

(
n∑
i=1

xiXi,
n∑
i=1

yiXi

)
.

With this group law, Rn is a Lie group whose Lie algebra is isomorphic to g. Now,

G and Rn are both nilpotent, connected and simply connected, so, by Proposition

3.2.3, Ψ is also a diffeomorphism. From now on, we identify abstract Carnot groups

with Carnot groups on Rn. We will refer to coordinates (3.3) as graded exponential

coordinates.

3The reader should keep in mind that Carnot Groups are connected, simply connected and

nilpotent. Then the exponential map, being a global diffeomorphism (Proposition 3.2.3), provides

a global chart for the manifold.
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As reminded before, the exponential map is a global diffeomorphism, then also

its inverse in well defined. This allows us to introduce a one parameter group of

automorphisms on G. Using for simplicity the same notation of the algebras case,

we define the dilations on G, and write {δλ}, as follows

δλ(x) := exp
(
δλ(exp−1(x))

)
,

for every x ∈ G. With the same notation as in 3.3.6, if i is an index such that

m1 + ...+mdi−1
< i ≤ m1 + ...+mdi ,

for some 1 ≤ di < k, the coordinate xi of x = (x1, ..., xn) ∈ G is said to have

degree di. With this definition, group dilations δλ : G→ G can be written as

δλ(x) =
(
λd1x1, λ

d2x2, ..., λ
dnxn

)
.

Using Proposition 3.3.1, one can prove the following properties:

(i) δλµ = δλ · δµ;

(ii) δλ(x y) = δλ(x) · δµ(y).

Using the notions introduced in Section 3.1, since the exponential map is a

diffeomorphism from g and G, it follows, for each x, y ∈ G,

x · y = exp (C(X, Y )) := P (x, y),

where X and Y ∈ g are such that exp(X) = x and exp(Y ) = y. From this formula,

one can prove some facts about the group law:

Proposition 3.3.3. There exists a polynomial vector function

Q : G×G −→ Rn = Rm1 ⊕ ...⊕ Rmr ,

where Q(x, y) = (Q1(x, y), ..., Qr(x, y)), and Qi(x, y) =
(
Q

(i)
1 (x, y), ..., Q

(i)
mi(x, y)

)
,

for all i = 1, ..., r, such that

x · y = x+ y +Q(x, y) = P (x, y).
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Lemma 3.3.1. The following properties hold:

(i) for all x, y ∈ Rn, λ > 0, P (δλ(x), δλ(y)) = λ(P (x, y));

(ii) for all x ∈ Rn, P (x, 0) = 0;

(iii) for all x, y ∈ G, Qj(x, y) = 0, for j = 1, ...,m1, and Qj(x, 0) = Qj(0, x) =

Qj(x, x) = Qj(x, x
−1) = 0, for j ≥ m1 + 1.

3.4 Carnot-Carathéodory Metric

We give to Rn the so-called Carnot-Carathéodory metric, induced by a family

of vector fields which satisfies certain conditions. For a deeper investigation of

these facts, the reader could refer herself or himself to [77].

After doing that, in Section 3.5, we will discover that, because of their pecu-

liarities, Carnot groups can be naturally equipped with a Carnot-Carathéodory

metric.

Let us consider a family of locally Lipschitz continuous vector fields on an open

set Ω ⊆ Rn

Xj(x) =
n∑
i=1

aij(x)∂i, j = 1, ...,m.

As usual, we call horizontal fiber at the point x, and write HxRn, the subspace

of TxRn generated by X1(x), ..., Xm(x). HRn will be the horizontal subbundle of

TRn.

Notation 3.4.1. We denote by

A =


a11 · · · a1m

...
. . .

...

an1 · · · anm


the matrix whose columns are the coefficients of the vector fields X := (X1, ..., Xm).

Definition 3.4.1. We say that a Lipschitz continuous curve γ : [0, T ]→ Ω is X-

admissible if there exists a measurable vector function h = (h1, ..., hm) : [0, T ]→ Ω

such that
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(i) γ̇(t) =
∑m

j=1 hj(t)Xj(γ(t)), for a.e. t ∈ [0, T ];

(ii) |h| ∈ L∞ ([0, T ]).

The curve γ is called X-subunit if it is X-admissible and ‖h‖L∞ ≤ 1, for a.e.

t ∈ [0, T ].

Definition 3.4.2. We define dc : Ω× Ω −→ [0,∞] as follows

dc(x, y) = inf{T ≥ 0 | ∃ γ : [0, T ]→ Ω subunit curve : γ(0) = x, γ(T ) = y}.

If there exists no X-subunit curve in Ω which joins x to y, then we write dc(x, y) =

∞.

Definition 3.4.3. We say that Ω ⊆ Rn is X-connected if for all x, y ∈ Ω, there

is a X-subunit curve joining x to y.

Theorem 3.4.1. If dc(x, y) < ∞ for all x, y ∈ Ω, then (Ω, d) is a metric space.

We call dc the Carnot-Carathéodory metric on Ω (CC-metric for short).

Notation 3.4.2. We can define, as usual, the metric balls with respect to the

Carnot-Carathéodory metric setting, for r > 0,

B(x, r) := {y ∈ Rn | dc(x, y) < r}.

We point out that the metric d is finite on Rn, and in general we can assume

that the identity map between (Rn, d) and (Rn, | · |) is a homeomorphism. This

condition is satisfied when d is the CC-metric associated with a family of smooth

vector fields X1, ..., Xm which satisfy the Hörmander condition:

rank (L(X1, ..., Xm)) (x) = n (3.4)

for all x ∈ Rn. With L(X1, ..., Xm) we denote the Lie algebra generated by

X1, ..., Xm. Geometrically, condition (3.4) means that the vector fields X1, ..., Xm

and their iterated brackets generate the whole tangent space at every point.
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3.5 CC-Metric on Carnot Groups

Let us consider a Carnot group G with Lie algebra g. We know that we

can represent G by Rn, endowed with a Carnot structure, through a system of

exponential coordinates, associated with a basis adapted to a stratification of g.

Using the same notations as above, let g = V1 ⊕ ... ⊕ Vr, r ≥ 2, m = dimV1

and fix a basis X = (X1, ..., Xm) of V1. From the definition of stratified algebra,

V1 generates the whole g as an algebra. Hence, X1, ..., Xm satisfy Hörmander’s

condition, inducing a Carnot-Carathéodory metric on G.

Proposition 3.5.1. For all x, y, z ∈ Rn and λ ∈ R+, the following properties hold:

(i) dc(τz(x), τz(y)) = dc(x, y);

(ii) dc(δλ(x), δλ(y)) = λdc(x, y).

Let us recall some remarks about measures and metrics. If we denote Hk
dc

and Skdc the k-dimensional Hausdorff and Spherical Hausdorff measures associated

with the Carnot-Caratéodory metric dc, then one can check that

(i) Hk
dc

(x · E) = Hk
dc

(E),

(ii) Hk
dc

(δλE) = λkHk
dc

(E),

for every Lebesgue measurable set E ⊂ Rn and for all x ∈ Rn and λ ∈ R+.

The same formulae hold for Skdc . The homogeneous dimension Q of (Rn, ·) is the

Hausdorff dimension of Rn with respect to the CC-distance.

Moreover, we recall that the n-dimensional Lebesgue measure Ln is the Haar

measure of the group. Therefore, the translation and dilation conditions read as

follows:

Proposition 3.5.2. Let E ⊂ Rn be a Lebesgue measurable set. Then, for all

x ∈ Rn and λ ≥ 0,

(i) Ln (x · E) = Ln (E · x) = Ln (E);

(ii) Ln (δλE) = λQLn (E) .
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In particular Ln (B(x, r)) = rQLn (B(x, 1)).

We conclude this short digression about Carnot groups introducing on them a

homogeneous distance, i.e. a metric which “conserve” the intrinsic aspects of the

groups: invariances by left translations and by dilations.

Definition 3.5.1. We say that a metric ρ on G is a homogeneous distance if, for

all x, y, z ∈ G and λ ∈ R+

(i) ρ(x, y) = ρ(τz(x), τz(y));

(ii) ρ(δλ(x), δλ(y)) = λρ(x, y).

Notice that Proposition 3.5.1 says that the Carnot-Carathéodory metric is a

homogeneous metric. We can construct other examples of homogeneous metrics.

We start by defining the following quasi-metric

d∞(x, y) = ‖y−1 · x‖, (3.5)

where ‖ · ‖ is a homogeneous norm. For example we can choose

‖x‖∞ =
n∑
i=1

|xi|
1
di

or

‖x‖ = max
i

{
εi|xi|

1
di

}
,

where the εi’s are suitable positive constants which depend on the group structure

and which let d∞ be a distance on the group.

Remark 3.5.2. We point out that it is always possible to find the right εi’s such

that d∞ satisfies the triangle inequality (see [24]).

Remark 3.5.3. We notice that these homogeneous metrics induce the same topol-

ogy as the Carnot-Carathéodory one.
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Chapter 4

The Heisenberg group and its

subgroups

This chapter is devoted to the study of the Heisenberg group Hn, the main

setting of our future investigations.

In the first section, keeping in mind the background built in the previous chap-

ter about Carnot groups, we recall the main algebraic and geometric properties

of Hn. In the following sections, our goals is to give a sufficient understanding

about homogeneous subgroups of Hn. We first introduce a metric structure on the

set of some special subgroups and, then, we conclude the chapter giving a look at

the notion of intrinsic Lipschitz functions within the Heisenberg group and their

major properties.

4.1 Heisenberg Groups

In this section we study some peculiarities of the Heisenberg group, which is the

most simple non Abelian Carnot group and the setting of our future investigations.

We start by recalling the definition and some general properties.

Notation 4.1.1. We denote by p = (z, t) a point in Cn×R, where z = (z1, ..., zn) ∈
Cn and t ∈ R. If zj = xj + iyj, we write z = (x1, ..., xn, y1, ..., yn), with xj, yj ∈ R,

for j = 1, ..., n.
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Let us consider in Cn × R the following composition law

(z, t) · (z′, t′) = (z + z′, t+ t′ + 2=(z · z̄′)) , (4.1)

where z · z̄′ denotes the usual Hermitian product in Cn:

z · z̄′ =
n∑
j=1

(xj + iyj)(x
′
j − iy′j).

Remark 4.1.1. If we identify Cn with R2n, we can rewrite the operation law (4.1)

in the following way:

(z, t) · (z′, t′) = (z + z′, t+ t′ + 2 〈Jz, z′〉) ,

where J is the unit (2n× 2n)-symplectic matrix and 〈·, ·〉 denotes the usual inner

product in R2n.

It is not difficult to verify that (R2n+1, ·) is a Lie group, whose identity is the

origin of R2n+1 and the inverse is (z, t)−1 = (−z,−t). We call this Lie group the

n-th Heisenberg group, and we write Hn := (R2n+1, ·).
The Heisenberg group Hn is the Lie group associated with the (2n + 1)-

dimensional real Lie algebra hn generated by {X1, ..., Xn, Y1, ..., Yn, T}, that satis-

fies the relations

[Xi, Xj] = 0, [Yi, Yj] = 0, [Xj, Yj] = T,

for every i, j = 1, ..., n. By the Jacobi’s identity, we get that [Xi, T ] = [Yi, T ] = 0,

for each i = 1, ..., n. This means that hn is a nilpotent Lie algebra. It is also clear

that its center is span{T}.
Let us denote

V1 = span{X1, ..., Xn, Y1, ..., Yn} and V2 = span{T}.

Then the Heisenberg algebra is stratified of step 2 with stratification

hn = V1 ⊕ V2.
1

1Using exponential coordinates, one can prove that Hn is the unique simply connected, nilpo-

tent Lie group associated with hn.
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Remark 4.1.2. By the structure of hn, we can say that the center of the group Hn

is

T = {(z, t) ∈ R2n+1 | z = 0},

and the homogeneous dilations are, for λ ∈ R+,

δλ : R2n+1 −→ R2n+1

(z, t) 7−→ (λz, λ2t).

We can realize the Heisenberg Lie algebra hn as an algebra of left invariant dif-

ferential operators on R2n+1. For example, one can set T = 4∂t and, consequently,

Xj = ∂xj + 2 yj∂t, Yj = ∂yj − 2xj∂t,

for j = 1, ..., n. With this identification between vector fields and first order differe-

tial operators, X1, ..., Xn, Y1, ..., Yn generate a vector bundle on Hn, called horizon-

tal bundle HHn. The horizontal bundle is a subbundle of the tangent bundle THn.

By definition of vector bundle, we know that we can identify canonically each fiber

of HHn with a vector subspace of R2n+1, so each section ϕ of HHn can be identi-

fied with a map ϕ : Hn −→ R2n+1. We denote by Hp the fiber of HHn at a point

p ∈ Hn. On Hn is defined a Sub-Riemannian structure: we can endow each fiber

Hp with a scalar product, denoted by 〈·, ·〉p, and the associated norm |·|p that make

the basis of Hp, X1(p), ..., Xn(p), Y1(p), ..., Yn(p), orthonormal; in other words, if

we consider v =
∑n

i=1 (viXi(p) + vn+iYi(p)) and w =
∑n

i=1 (wiXi(p) + wn+iYi(p))

vectors of Hp, then 〈v, w〉p :=
∑n

i=1 (vi · wi + vn+i · wn+i) and |v|2p := 〈v, v〉p .

We introduce the Korányi norm: if p = (z, t) ∈ Hn,

‖p‖ = 4

√
‖z‖4

R2n + |t|2.

If it is not specified, through this thesis we will use this homogeneous norm. To

verify that dK(x, y) = ‖y−1 · x‖ is a metric, when ‖ · ‖ is the Korányi norm, one

needs to prove the triangle inequality

dK(x, y) ≤ dK(x, z) + dK(z, y). (4.2)
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This can be done by a direct computation.

First, we can replace z−1 · x with x and y−1 · z with y; then it is sufficient to

prove (4.2) in the case when z = e and to show that

‖x · y‖ ≤ ‖x‖+ ‖y‖.

Writing x = (z, t) and y = (w, s) and using the group law (4.1), we find

‖x · y‖4 = ‖v + w‖4
R2n + (t+ w + 2=(v · w̄))2

=
∣∣‖v + w‖2

R2n + 2i (t+ w + 2=(v · w̄))
∣∣2

=
∣∣‖v‖2

R2n + 2it+ v̄ · w + ‖w‖2
R2n + 2is

∣∣2
≤
(
‖x‖2 + 2‖v‖2

R2n‖w‖2
R2n + ‖y‖2

)2

≤ (‖x‖+ ‖y‖)4 .

We conclude this section with a small observation, very useful in the future.

Thanks to the exponential map, we introduced in every Carnot group the so-called

exponential coordinates. In the Heisenberg group, this implies that a vector field∑n
i=1 (xiXi + yiYi) + tT is identified with the point (x1, ..., xn, y1, ..., yn, t) ∈ Hn.

On the other hand, we can consider the inverse of the exponential map ξ : Hn −→
hn. Since hn = V1 ⊕ V2, the map ξ has two components: ξ1 : Hn −→ V1 and

ξ2 : Hn −→ V2. Since we can identify V1 with the Euclidean space R2n, it holds

that ξ1(p) = ξ1(x, y, t) = (x, y) ∈ R2n.

4.2 Decomposition in complementary subgroups

In this section we study the main properties of homogeneous subgroups (see

Definition 4.2.1) of Hn. In Section 4.4, we are interested in intrinsic Lipschitz

graphs. Roughly speaking, we are interested in the graphs of some special functions

whose graphs lie in the Heisenberg group with some Lipschitz-type property. We

can compare this notion with the Euclidean case, in which we decompose Rn

in the cartesian product of two subspaces. In this setting, it is very simple to

imagine a map acting between these two subgroups. In Hn, on the other side, we
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need more conditions for a “nice” decomposition. This notion of decomposition

in homogeneous subgroups was first introduced in [44], in [46], in [48] and also

in [12].

We start with the definition of homogeneous subgroup, which are subgroups

invariant under group dilations.

Definition 4.2.1. We say that a subgroup G of Hn is a homogeneous Lie subgroup

if, for all g ∈ G and λ > 0, δλ(g) ∈ G.

We point out that Definition 4.2.1 can be stated also for a general Carnot

group of step k. In this case, one can prove that each homogeneous subgroup is

necessarily a graded subgroup with step at most k, but in general it is not a Carnot

group.

Definition 4.2.2. We say that Hn is a semidirect product of homogeneous sub-

groups W and V, and we write Hn = W ·V, if W = exp(w) and V = exp(v), where

w and v are homogeneous subalgebras of hn such that

(i) hn = w⊕ v;

(ii) w is an ideal2 in hn.

We will say that W and V are complementary subgroups in Hn.

Remark 4.2.3. If Hn = W ·V, then W∩V = {e}. From (ii), it follows also that W
is a normal subgroup3 of Hn. It is a very classical fact (see [91]) that, in connected

Lie groups, there is a bijective correspondance between normal subgroups and

ideals of the Lie algebra.

Example 4.2.1. A simple example of a semidirect product is given by Hn = W ·V,

where

V = {(x1, 0, ..., 0) |x1 ∈ R}
2Let A be a Lie algebra. We say that a subset B of A is an ideal of A if it is a vector subspace

of A and [x, y] ∈ B, for every x ∈ B and y ∈ A.
3Let G be a group. We say that a subgroup H of G is normal if g · h · g−1 ∈ H, for every

g ∈ G and h ∈ H.
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and

W = {(0, x2, ..., xn, y1, ..., yn, t) |xi, yj, t ∈ R, i = 2, ..., n, j = 1, ..., n}.

Proposition 4.2.1. Let Hn = W ·V be as in Definition 4.2.2. Then each q ∈ Hn

has unique components qW ∈W and qV ∈ V such that q = qW · qV.

Proof. Let us assume that q ∈ Hn admits two decompositions: q = qW · qV and

q = q′W · q′V. Then, since e is the unique common element of W and V,

(q′W)−1 · qW = q′V · (qV)−1 = e.

Thus, q′W = qW and q′V = qV.

Proposition 4.2.2. Let Hn = W ·V be a semidirect product as in Definition 4.2.2.

Then the maps

PW : Hn −→ W

q 7−→ qW

and

PV : Hn −→ V

q 7−→ qV

are continuous.

Proof. See [12], Proposition 3.4.

Proposition 4.2.3. All homogeneous subgroups of Hn are either horizontal, that

are contained in {(z, t) ∈ Hn | t = 0} or vertical, that are containing the subgroup

T.

A horizontal subgroup V has linear dimension k, with 1 ≤ k ≤ n; moreover, V
is algebraically isomorphic and isometric to Rk.

A vertical subgroup W can have any algebraic dimension d, with 1 ≤ d ≤ 2n+1,

and its metric dimension is d+ 1.

From the previous Proposition, we have directly:
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Proposition 4.2.4. All possible pairs W and V of complementary subgroups of

Hn are of the type

(i) V horizontal of linear dimension k, 1 ≤ k ≤ n,

(ii) W normal of metric dimension 2n+ 2− k.

Proof. See [12], Proposition 3.21.

Notation 4.2.1. Let G be a homogeneous subgroup of Hn. We use the symbol

dimG to indicate the linear dimension of the subgroup G, i.e. the dimension of

its Lie algebra, and the symbol dimH G for its Hausdorff dimension, or metric

dimension.

Remark 4.2.4. We aim to highlight that any horizontal subgroup V has a comple-

mentary normal subgroup W; also the converse is true for normal subgroups W
with linear dimension larger than n. On the contrary, normal subgroups of dimen-

sion less than or equal to n do not have complementary subgroups. For example

the center T does not have a complementary subgroup.

We conclude this digression about homogeneous subgroups of Hn with a couple

of results, which will be used in a proof concerning the Hausdorff dimension of the

graph of an intrinsic Lipschitz function (Proposition 4.4.7). First a remark.

Remark 4.2.5. A homogeneous subgroup of Hn, G, can be endowed with a norm,

which is the restriction to G of the Heisenberg norm.

Proposition 4.2.5. Let Hn = W ·V be as in Proposition 4.2.4. Then there exists

a positive constant C = C(W,V) such that

C (‖qV‖ + ‖qW‖) ≤ ‖q‖ ≤ (‖qV‖ + ‖qW‖) . (4.3)

Moreover, (q−1)V = (qV)−1, (q−1)W = q−1
V · (qW)−1 · qV, (p · q)V = pV · qV, and

(p · q)W = pW · pV · qW · p−1
V .

Proof. See [48], Proposition 3.2.
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Remark 4.2.6. By the previous Proposition, it follows that PV is a group homomor-

phism from Hn to V; while, in general, PW is not a group homomorphism from Hn

to W. Moreover, one can notice that PV : Hn −→ V is a Lipschitz map. Indeed,

let p = (z, t) and q = (z′, t′) ∈ Hn. Since V is isometric to Rk,

‖PV(p)−1 · PV(q)‖ = ‖PV(q)− PV(p)‖.

Then it follows

‖PV(q)− PV(p)‖ ≤ ‖z′ − z‖R2n ≤ ‖p−1 · q‖.

On the contrary, PW : Hn −→W, in general, is not a Lipschitz map. For example,

consider the first Heisenberg group H1 decomposed in complementary subgroups

as H1 = W·V, where W = {(0, y, t) | y, t ∈ R} and V = {(x, 0, 0) |x ∈ R}. Now, for

ε ∈ R+, let p = (1, 0, 0) and q =
(
0, ε, ε

2

)
. Then pW = (0, 0, 0) and qW = (0, ε, ε

2
).

Thus,

‖PW(q)−1 · PW(p)‖ = ‖qW‖ ≈ ε
1
2

‖p−1 · q‖ = ‖(0, ε, 0)‖ ≈ ε

Proposition 4.2.6. Let Hn = W · V be as in Proposition 4.2.4 with dim(v) = k,

and let p ∈ Hn be fixed. Then there exists a positive constant C = C(W,V) such

that, for B(p, r) ⊂ Hn,

L2n+1−k (PW(B(p, r))) = C(W,V) r2n+2−k. (4.4)

Proof. See [48], Lemma 4.3.

4.3 The intrinsic Grassmannian

With the notion of decomposition in homogeneous subgroups of Hn, we can

make a step further. Following [69], we endow the set of all vertical subgroups,

which give rise to an admissible decomposition, with a metric. Our metric is

slightly different from the one constructed in [69]. It does not involve the Haus-

dorff distance and it is totally analogous to the metric of the classical space of

Grassmannians in Rn. We will also prove that this metric space is compact.
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Definition 4.3.1. Let d be a non negative integer. We say that a subgroup of

algebraic dimension d (a d-subgroup) of Hn, W, belongs to the intrinsic Grassman-

nian of the d-subgroups G(Hn, d) if there exists a (2n + 1 − d)-subgroup V such

that Hn = W · V. The intrinsic Grassmannian is defined as

G =
2n+1⋃
d=0

G(Hn, d).

Definition 4.3.2. Let W1 and W2 ∈ G(Hn, d). We define

ρ(W1,W2) = sup
‖p‖≤1

‖(PW1(p))
−1 · PW2(p)‖.

Proposition 4.3.1. (G(Hn, d), ρ) is a metric space.

Proof. We need to check that ρ satisfies the properties of metrics. Let W ∈
G(Hn, d) be fixed. Then

ρ(W,W) = sup
‖p‖≤1

‖(PW(p))−1 · PW(p)‖ = ‖e‖ = 0.

Consider now W1 and W2 ∈ G(Hn, d). Since the gauge is a distance, it holds that

ρ(W1,W2) = sup
‖p‖≤1

‖(PW1(p))
−1·PW2(p)‖ = sup

‖p‖≤1

‖(PW2(p))
−1·PW1(p)‖ = ρ(W2,W1).

Finally, we need to check the triangle inequality. Let us take W1, W2 and W3 ∈
G(Hn, d) and consider

‖(PW1(p))
−1 · PW3(p)‖ = ‖(PW1(p))

−1 · PW2(p) · (PW2(p))
−1 · PW3(p)‖

≤ ‖(PW1(p))
−1 · PW2(p)‖ + ‖(PW2(p))

−1 · PW3(p)‖

≤ sup
‖p‖≤1

‖(PW1(p))
−1 · PW2(p)‖ + sup

‖p‖≤1

‖(PW2(p))
−1 · PW3(p)‖

= ρ(W1,W2) + ρ(W2,W3),

for every p ∈ Hn with ‖p‖ ≤ 1. Therefore, taking the supremum, we get that

ρ(W1,W3) ≤ ρ(W1,W2) + ρ(W2,W3).
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We prove a proposition which will be a key ingredient in a proof concerning

the dimension of the singular set of an H-monotone operator (see Definition 5.1.7

and Theorem 5.2.3). Reducing to the classical case, we are able to prove that

(G(Hn, d), ρ) is a compact metric space. To prove this fact we need some simple

preliminary results concerning the Euclidean Grassmannians.

Notation 4.3.1. Let us denote the space of the Euclidean Grassmannians of dimen-

sion k ∈ N in R2n by G(2n, k).

We endow the space G(2n, k) with the usual metric

dG(W1,W2) = sup
‖p̄‖R2n≤1

‖ΠW1(p̄)− ΠW2(p̄)‖R2n ,

where ΠWi
: R2n −→ Wi is the Euclidean projection.

Remark 4.3.3. It is well known that (G(2n, k), dG) is a compact metric space.

With these considerations, we can prove a couple of lemmas useful in the proof

of the main result of this section.

Lemma 4.3.1. Let 1 ≤ h ≤ n and let

GH(2n, h) :=
{
V ⊂ R2n

∣∣ dimV = h, 〈x, Jy〉 = 0, ∀x, y ∈ V
}
. (4.5)

Then GH(2n, h) is a closed subspace of G(2n, h).

Proof. Let us consider a sequence (Vk)k∈N ⊂ GH(2n, h) and assume that there

exists V0 ∈ G(2n, h) such that

dG(Vk, V0) −→ 0,

as k →∞. We want to show that V0 ∈ GH(2n, h).

Let x and y ∈ V0 be two arbitrary points. We want to prove that 〈x, Jy〉 = 0.

Without loss of generality, we can normalize and consider x̂ := x
‖x‖ and ŷ := y

‖y‖ .

By definition of the metric dG, we can notice that

‖ΠVk(x̂)− ΠV0(x̂)‖R2n ≤ sup
‖p̄‖R2n≤1

‖ΠVk(p̄)− ΠV0(p̄)‖R2n .
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If we denote by x̂k := ΠVk(x̂) ∈ Vk, it follows that

‖x̂k − x̂‖R2n −→ 0,

as k →∞. An analogous argument gives that there exists a sequence ŷk := ΠVk(ŷ)

such that

‖ŷk − ŷ‖R2n −→ 0,

as k →∞.

Now, since Vk ∈ GH(2n, k), for every k ∈ N, it holds that

〈x̂k, Jŷk〉 = 0,

for every k ∈ N. We can pass to the limit, letting k →∞. We obtain that

〈x̂, Jŷ〉 = 0,

and this implies that V0 ∈ GH(2n, h).

Remark 4.3.4. We highlight that every V ∈ GH(2n, h) can be seen as a horizontal

subgroup of Hn of linear dimension h.

Lemma 4.3.2. Let n ≤ d ≤ 2n− 1 and let

GV (2n, d) :=
{
W ⊂ R2n

∣∣ dimW = d,

∃V ∈ GH(2n, 2n− d), such thatR2n = W ⊕ V
}
.

(4.6)

Then GV (2n, d) is a closed subspace of G(2n, d).

Proof. Let (Wk)k∈N be a sequence in GV (2n, d) and assume that there exists W0 ∈
G(2n, d) such that

dG(Wk,W0) −→ 0,

as k → ∞. We want to prove that W0 ∈ GV (2n, d), i.e. that there exists V0 ∈
GH(2n, 2n − d) such that R2n = W0 ⊕ V0. In other words, let us consider the

orthogonal complement V0 of W0 such that Rn = W0 ⊕ V0. We want to show that

V0 ∈ GH(2n, 2n− d). Let Vk ∈ GH(2n, 2n− d) be such that R2n = Wk ⊕ Vk.
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Now, let us performe some calculations:

dG(Vk, V0) = sup
‖p̄‖R2n≤1

‖ΠVk(p̄)− ΠV0(p̄)‖R2n

= sup
‖p̄‖R2n≤1

‖ΠVk(p̄) + ΠWk
(p̄)− ΠWk

(p̄) + ΠW0(p̄)− ΠW0(p̄)− ΠV0(p̄)‖R2n

= sup
‖p̄‖R2n≤1

‖p̄− ΠWk
(p̄) + ΠW0(p̄)− p̄‖R2n

= sup
‖p̄‖R2n≤1

‖ΠWk
(p̄)− ΠW0(p̄)‖R2n

= dG(Wk,W0) −→ 0,

as k →∞. Then, thanks to Lemma 4.3.1, it holds that V0 ∈ GH(2n, 2n− d), and

the proof is complete.

Remark 4.3.5. In the previous Lemma, we proved that GV (2n, d), with n ≤ d ≤
2n− 1, is a closed subspace of G(2n, d), which is compact. This implies that also

GV (2n, d) is a compact metric space.

Proposition 4.3.2. Let n + 1 ≤ d ≤ 2n. The metric space (G(Hn, d), ρ) is

compact.

Proof. The strategy of the proof is to realize the metric space (G(Hn, d), ρ) as the

image of a compact metric space through a continuous and surjective map.

For simplicity, we fix a notation. We denote by p = (p̄, t) a point in R2n+1,

where p̄ ∈ R2n and t ∈ R.

Now, we define the map

f : GV (2n, d− 1) −→ G(Hn, d)

W 7−→ W ⊕ R.
(4.7)

By definition of vertical homogeneous subgroups, it is clear that for every

W ∈ G(Hn, d), there exists W ∈ GV (2n, d − 1) such that W = W ⊕ R. This

implies that f is surjective.

It is now necessary to prove continuity of f . In order to do this, some consid-

erations about projections in Hn are needed. Let p = (p̄, t) ∈ Hn be fixed. We

know that

(p̄, t) = PW(p̄, t) · PW⊥(p̄, t), (4.8)
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where W⊥ is the unique homogeneous subgroup of Hn in G(Hn, 2n + 2 − d) such

that Hn = W ·W⊥ is a decomposition in complementary subgroups. Moreover, it

holds also that

p̄ = ΠW (p̄) + ΠW⊥(p̄),

where W ∈ GV (2n, d− 1) is such that f(W ) = W and W⊥ ∈ GH(2n, 2n + 1− d)

satisfies R2n = W ⊕W⊥.

Now, since W⊥ is a horizontal homogeneous subgroup, it holds that

PW⊥(p̄, t) = (ΠW⊥(p̄), 0) . (4.9)

On the other hand, there exists a function h : Hn −→ R such that

PW(p̄, t) = (ΠW (p̄), h(p̄, t)) . (4.10)

Using equations (4.9) and (4.10), we rewrite relation (4.8):

p = (p̄, t) = PW(p̄, t) · PW⊥(p̄, t)

= (ΠW (p̄), h(p̄, t)) · (ΠW⊥(p̄), 0)

= (ΠW (p̄) + ΠW⊥(p̄), h(p̄, t) + 2 〈ΠW (p̄), JΠW⊥(p̄)〉) .

From this chain of equalities, we get an explicit formula for the function h:

h(p̄, t) = t− 2 〈ΠW (p̄), JΠW⊥(p̄)〉 ,

which helps us to write PW(p̄, t) = (ΠW (p̄), t− 2 〈ΠW (p̄), JΠW⊥(p̄)〉).

With this observation, we can come to the last part of the proof. Let p =

(p̄, t) ∈ Hn be such that ‖p‖ ≤ 1 and let W1 and W2 ∈ G(Hn, d) and perform some
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calculations. We will use the properties of the symplectic matrix J .

(PW1(p̄, t))
−1 · PW2(p̄, t)

=
(

ΠW1(p̄), t− 2
〈

ΠW1(p̄), JΠW⊥1
(p̄)
〉)−1

·
(

ΠW2(p̄), t− 2
〈

ΠW2(p̄), JΠW⊥2
(p̄)
〉)

=
(

ΠW2(p̄)− ΠW1(p̄), 2
(〈

ΠW1(p̄), JΠW⊥1
(p̄)
〉
−
〈

ΠW2(p̄), JΠW⊥2
(p̄)
〉)

+2
〈

ΠW1(p̄), JΠW⊥2
(p̄)
〉)

= (ΠW2(p̄)− ΠW1(p̄), 2 (〈ΠW1(p̄), J(p̄− ΠW1(p̄)〉 − 〈ΠW2(p̄), J(p̄− ΠW2(p̄)〉)

+2 〈ΠW1(p̄)− ΠW2(p̄), JΠW2(p̄)〉)

= (ΠW2(p̄)− ΠW1(p̄), 2 (〈ΠW1(p̄), Jp̄〉 − 〈ΠW2(p̄), Jp̄〉)

+2 〈ΠW1(p̄)− ΠW2(p̄), JΠW2(p̄)〉)

= (ΠW2(p̄)− ΠW1(p̄), 2 〈ΠW1(p̄)− ΠW2(p̄), Jp̄〉+ 2 〈ΠW1(p̄)− ΠW2(p̄), JΠW2(p̄)〉) .

Now, let us consider the gauge norm of (PW1(p̄, t))
−1 · PW2(p̄, t), which can be

estimated using the previous computations and the Cauchy-Schwarz inequality,∥∥(PW1(p̄, t))
−1 · PW2(p̄, t)

∥∥
=
(
‖ΠW1(p̄)− ΠW2(p̄)‖

4
R2n + |2 〈ΠW1(p̄)− ΠW2(p̄), Jp̄〉+ 2 〈ΠW1(p̄)− ΠW2(p̄), JΠW2(p̄)〉|

2) 1
4

=
(
‖ΠW1(p̄)− ΠW2(p̄)‖

4
R2n + 16 ‖ΠW1(p̄)− ΠW2(p̄)‖

2) 1
4

≤ max
{
dG(W1,W2), 2dG(W1,W2)

1
2

}
.

Since the previous inequality holds for every p ∈ Hn, with ‖p‖ ≤ 1, we take the

supremum and conclude that

ρ(W1,W2) = ρ(f(W1), f(W2)) ≤ max
{
dG(W1,W2), 2dG(W1,W2)

1
2

}
,

which implies that f is continuous, more precisely f is 1/2-Hölder continuous.

4.4 Intrinsic cones and Lipschitz graphs

Think for a moment about what it means that a function f : Rk −→ Rh is

Lipschitz continuous: there exists a constant L > 0 such that, for every x and

y ∈ Rk,

‖f(x)− f(y)‖Rh ≤ L ‖x− y‖Rk .
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Geometrically, this means that there exists a cone, with opening L, whose vertex

can be translated along the graph, so that the graph always remains locally outside

the cone.

In the case of intrinsic Lipschitz functions within Hn the idea is the same.

With the notion of decomposition of Hn in the semidirect product of homogeneous

subgroups in mind, we can consider a notion of intrinsic cone. The interested

readers are referred to the papers [39], [69] and [48]. The definition of intrinsic cone

is the principal ingredient of the notion of intrinsic Lipschitz map (see Definition

4.4.13).

Definition 4.4.1. Let Hn be the semidirect product of two subgroups W and V.

Let q ∈ Hn and α ∈ R+ be fixed. We call intrinsic closed cone with base W, axis

V, vertex q and opening α

CW,V(q, α) := q · CW,V(e, α),

where

CW,V(e, α) := {p ∈ Hn | ‖pW‖ ≤ α‖pV‖}.

The next proposition justifies the adjective “intrinsic”. Indeed, intrinsic cones

are invariant under group dilations.

Proposition 4.4.1. Let Hn = W ·V be a semidirect product, λ ∈ R+ and 0 < α <

β. Then the following statements hold:

(i) CW,V(e, 0) = V;

(ii) CW,V(q, α) ⊂ CW,V(q, β);

(iii) δλ (CW,V(e, α)) = CW,V(e, α).

Proof. Since (i) and (ii) are trivial, we prove just (iii). Because of the uniqueness of

the components in the decomposition in semirect product, we have that (δλp)W =
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δλ(pW) and also (δλp)V = δλ(pV). Hence,

δλ(CW,V(e, α)) = δλ{p ∈ Hn | ‖pW‖ ≤ α ‖pV‖}

= {δλ(p) ∈ Hn | ‖δλ(p)W‖ ≤ α ‖δλ(p)V‖}

= {δλ(p) ∈ Hn |λ ‖pW‖ ≤ αλ ‖pV‖}

= {p ∈ Hn | ‖pW‖ ≤ α ‖pV‖} = CW,V(e, α).

Here it is a slightly different definition of intrinsic cone, introduced in [69]

and [39]. The two notions are equivalent, as one can see in Remark 4.4.4, but

depending on what it is more convenient, in what follows we will prefer one over

the other.

Definition 4.4.2. Let G be a subgroup of dimension k of Hn. We define the

intrinsic cone X(p0,G, β), with axis G, vertex p0 and opening β ≤ 1, the set

X(p0,G, β) :=
{
p ∈ Hn

∣∣ dist
(
p−1

0 · p,G
)
≤ βd(p, p0)

}
.

Remark 4.4.3. Also for this type of cones, a result similar to Proposition 4.4.1

holds. Indeed, Definition 4.4.2 is invariant by group translations. This means that

X(p0,G, β) = p0 ·X(e,G, β).

Moreover, X(e,G, β) is homogeneous, i.e. if λ ∈ R+, then

δλ (X(e,G, β)) = X(e,G, β).

Remark 4.4.4. Let Hn = W · V be a decomposition in complementary subgroups.

Then, for every 0 < β ≤ 1, there exists α ≥ 1, depending on β,W and V, such

that

CW,V(p0, 1/α) ⊂ X(p0,V, β) ⊂ CW,V(p0, α).

The proof of this fact can be found in [39].
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The following lemma provides a relation between cones with axis V and W,

where V and W are complementary subgroups of Hn. In the Euclidean case,

whenever we have a cone, the complementary space is a cone too. In this setting,

the same holds. We call complementary cones pair of cones built how it follows.

Lemma 4.4.1. Let Hn = W · V be a decomposition in complementary subgroups,

with dimV = k ≤ n. If 0 < α0 < 1 is fixed, then there exists 0 < β0 < 1,

dependent on α0, such that

Hn \X(e,V, α0) ⊆ X(e,W, β0).

Proof. For simplicity of calculations, we can assume that

V = {(x1, ..., xk, 0, ..., 0) ∈ Hn |xi ∈ R, i = 1, ..., k }

and

W = {(0, ..., 0, xk+1, ..., xn, y1, ..., yn, t) ∈ Hn |xj, yi, t ∈ R, i = 1, ..., n, j = k+1, ..., n}.

Let us denote by E := Hn \X(e,V, α0) and π(E) =
{
δ1/‖p‖(p) ∈ Hn | p ∈ E

}
.

It is clear that π(E) is contained in the unit sphere of Hn, denoted by S. Since

E ∩X(e,V, α0) = ∅, it holds that π(E) ∩X(e,V, α0) = ∅.
Now, V∩S = Sk−1, where Sk−1 is the unit sphere of Rk ' span{e1, ..., ek}, with

respect to the Euclidean metric. Therefore, there exists η = η(α0) > 0 such that

S ∩
(
Sk−1

)
η
⊆ S ∩X(e,V, α0), (4.11)

where
(
Sk−1

)
η

=
{
q ∈ Hn | dist(q,Sk−1) ≤ η

}
is the η-neighbourhood of Sk−1.

Thanks to convexity of the gauge ball, inclusion (4.11) implies that there exists

δ = δ(η) > 0 such that, for every p̂ = (x̂1, ..., x̂k, x̂k+1, ..., x̂n, ŷ1, ..., ŷn, t̂) ∈ π(E),

‖(x̂1, ..., x̂k)‖Rk < 1 − δ. We highlight that δ > 0 depends on η, therefore on α0,

but not on the point p̂.

Let p ∈ E be arbitrary and set β0 = 1−δ. We aim to show that p ∈ X(e,W, β0).

Define p̂ = δ1/‖p‖(p). Clearly, p̂ ∈ π(E) as it is true that

dist(p̂,W) = min
q∈W
‖q−1 · p̂‖ ≤ ‖(x̂1, ..., x̂k)‖Rk < β0.
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Hence, by homogeneity of W, we have that

dist(p,W) ≤ β0‖p‖,

which implies that p ∈ X(e,W, β0), giving that E ⊆ X(e,W, β0).

Remark 4.4.5. Let Hn = W · V be a decomposition in complementary subgroups,

with dimV = k ≤ n. Thanks to Lemma 4.4.1, we know that if 0 < α0 < 1, then

there exists 0 < β0 < 1, dependent on α0, such that

Hn \X(e,V, α0) ⊆ X(e,W, β0).

Now, from Remark 4.4.4, since 0 < β0 < 1, there exists α ≥ 1, dependent on β0,

W and V, such that

X(e,W, β0) ⊆ CV,W(e, α). (4.12)

Analogously, since 0 < α < 1, there exists β ≥ 1, such that

X(e,V, α0) ⊆ CW,V(e, β).

Therefore, one has that

Hn \ CW,V(e, β) ⊆ Hn \X(e,V, α0). (4.13)

We combine (4.12) and (4.13) to obtain finally

Hn \ CW,V(e, β) ⊂ CV,W(e, α).

The question now is: what can we say about two cones whose axis are vertical

subgroups which are near to each other? We consider two elements of the intrinsic

Grassmannian and we assume that their distance is very small. It holds that there

exist two openings, depending on the distance, for which we have an inclusion

between the cones.

For simplicity, first, we fix once for all a notation.

Notation 4.4.1. Let n+ 1 ≤ d ≤ 2n. If W ∈ G(Hn, d), we denote by W⊥ the hori-

zontal subgroup of Hn such that Hn = W ·W⊥ is a decomposition in homogeneous

subgroups.
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Lemma 4.4.2. Let n + 1 ≤ d ≤ 2n and let α > 0. If δ < 1
2(1+α)

and W1 and

W2 ∈ G(Hn, d) are such that ρ(W1,W2) < δ, it holds that

CW⊥1 ,W1
(e, α) ⊆ CW⊥2 ,W2

(e, 2(1 + α)).

Proof. By homogeneity of the intrinsic cones, it is sufficient to prove the following

inclusion

CW⊥1 ,W1
(e, α) ∩ ∂B(e, 1) ⊆ CW⊥2 ,W2

(e, 2(1 + α)) ∩ ∂B(e, 1).

Let q ∈ ∂B(e, 1) be such that q ∈ CW⊥1 ,W1
(e, α). This means that∥∥∥PW⊥1 (q)

∥∥∥ ≤ α ‖PW1(q)‖ . (4.14)

We want to show that q ∈ CW⊥2 ,W2
(e, 2(1 + α)), i.e.∥∥∥PW⊥2 (q)
∥∥∥ ≤ 2(1 + α) ‖PW2(q)‖ .

First, we notice that, since Hn = W1 ·W⊥1 = W2 ·W⊥2 , it holds that

q = PW1(q) · PW⊥1 (q) = PW2(q) · PW⊥2 (q).

Therefore, ∥∥PW2(q) · PW1(q)
−1
∥∥ =

∥∥∥PW⊥1 (q) · PW⊥2 (q)−1
∥∥∥ < δ. (4.15)

Now, using the triangle inequality and relations (4.14) and (4.15), we compute∥∥∥PW⊥2 (q)
∥∥∥ =

∥∥∥PW⊥2 (q) · PW⊥1 (q)−1 · PW⊥1 (q)
∥∥∥ ≤ ∥∥∥PW⊥1 (q)

∥∥∥+ δ

≤ α ‖PW1(q)‖+ δ = α
∥∥PW1(q) · PW2(q)

−1 · PW2(q)
∥∥+ δ

≤ α ‖PW2(q)‖+ δ(1 + α) < α ‖PW2(q)‖+
1

2
.

Using the fact that p ∈ ∂B(e, 1), we can make a step further, we have that

1 = ‖q‖ =
∥∥∥PW2(q) · PW⊥2 (q)

∥∥∥ ≤ ‖PW2(q)‖+
∥∥∥PW⊥2 (q)

∥∥∥
< ‖PW2(q)‖+ α ‖PW2(q)‖+

1

2
,

which implies that

‖PW2(q)‖ >
1

2(1 + α)
.
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On the other hand, we have also that∥∥∥PW⊥2 (q)
∥∥∥ ≤ 1 = 2(1 + α)

1

2(1 + α)
< 2(1 + α) ‖PW2(q)‖ ,

which is the inequality we were looking for.

We are ready to consider intrinsic Lipschitz graphs. First we give the definition

of intrinsic graph and some major properties.

Definition 4.4.6. Let W and V be homogeneous subgroups of Hn, with Hn = W·V
a semidirect product. We say that S ⊂ Hn is a (left) graph over W along V (or

from W to V) if

S ∩ (ξ · V)

contains at most one point for all ξ ∈W.

Remark 4.4.7. An equivalent definition is the following: we say that S ⊂ Hn is a

(left) graph from W to V if there exists a function f : E ⊂W −→ V such that

S = {ξ · f(ξ) | ξ ∈ E} .

In this case we write S = graph(f).

Remark 4.4.8. In this definition, it does not play any role which subgroup of the

decomposition is horizontal or vertical.

In [48], the authors explain that they call “intrinsic” these graphs because their

properties are defined only in terms of the group structure of Hn. The following

propositions explain that if we dilate a graph we have again a graph and that the

same holds if we left-translate it. For the left translation, we have to split in two

cases. The first refers to graphs of functions acting from a vertical subgroup to a

horizontal one, the second refers to the opposite case.

Proposition 4.4.2. Let Hn = W ·V be a semidirect product of Hn and let S be a

graph from W to V. Then, for all λ ∈ R+, δλ(S) is a graph.

Proof. Since S is a graph, there exists a function f : E ⊂ W −→ V such that

S = { ξ · f(ξ) | ξ ∈ E }. Let us define

fλ := δλ ◦ f ◦ δ 1
λ

: δλE ⊂W −→ V.
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Therefore, δλS := graph(fλ). Indeed

δλ(S) = { δλ(ξ · f(ξ)) | ξ ∈ E }

= { δλ(ξ) · δλ(f(ξ)) | ξ ∈ E }.

Setting η := δλ(ξ), η ∈ δλ(E), then{
η · δλf

(
δ 1
λ
(η)
) ∣∣∣ η ∈ δλ(E)

}
= { η · fλ(η) | η ∈ δλ(E) } = graph(fλ).

Proposition 4.4.3. Let Hn = W · V be as in Proposition 4.2.4. Let S ⊂ Hn be a

left graph such that

S = { ξ · f(ξ) | ξ ∈ E ⊂W },

with f : E ⊂W −→ V. Then, for every q ∈ Hn, there are

Eq = { q · ξ · (qV)−1 | ξ ∈ E } and

fq : Eq −→ V, fq(η) = qV · f(q−1
V · q

−1
W · η · qV),

such that

q · S = graph(fq) = { η · fq(η) | η ∈ Eq }.

Proof. See [12], Proposition 3.6.

Proposition 4.4.4. Let Hn = W · V be as in Proposition 4.2.4. Let S ⊂ Hn be a

left graph such that

S = { f(ξ) · ξ | ξ ∈ A ⊂ V },

with f : A ⊂ V −→W. Then, for every q ∈ Hn, there are

Aq = { q · ξ | ξ ∈ A} and

fq : Aq −→ V, fq(η) = η−1 · qW · η · f(q−1
V · η),

such that

q · S = graph(fq) = { η · fq(η) | η ∈ Aq }.

Proof. See [12], Proposition 3.6.
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Remark 4.4.9. Let f : A ⊂ V −→W be such that S = { ξ · f(ξ) | ξ ∈ A ⊂ V } is a

left graph in Hn. Then S is also a Euclidean graph over V. Indeed, recalling that

V is isometric and isomorphic to Rk, for some 0 < k < 2n + 1, we can identify V
with a k-dimensional vector subspace of R2n+1. On the contrary, if S = graph(f),

where f : E ⊂W −→ V, then, in general, S is not a Euclidean graph.

An example is given in [44]: consider the semidirect product H1 = W · V,

where W = { (0, y, t) ∈ H1 | y, t ∈ R } and V = { (x, 0, 0) ∈ H1 |x ∈ R }. Let us fix
1
2
< α < 1 and take f : W −→ V defined as

f(0, y, t) = (|t|α, 0, 0).

It is clear that graph(f) = S is not an Euclidean graph near the origin:

S = { ξ · f(ξ) | ξ ∈W } = { (|t|α, y, t+ 2y|t|α) ∈ H1 | t, y ∈ R }.

Let us give the definition of intrinsic Lipschitz function. This first version is

more analytic. In a second moment, we will use the notion of intrinsic cones to

give a more geometrical definition.

Definition 4.4.10. Let Hn = W · V be a semidirect product. We say that

f : E ⊂W −→ V

is an intrinsic Lipschitz continuous function if there exists a positive constant L

such that, for all q ∈ graph(f),

‖fq−1(x)‖ ≤ L ‖x‖, (4.16)

for each x ∈ Eq−1. As usual, we call the intrinsic Lipschitz constant of f the

infimum of the numbers L such that (4.16) holds.

Remark 4.4.11. The same definition holds also for f : E ⊂ V −→W.

Remark 4.4.12. Let Hn = W · V be as in Proposition 4.2.4. Using Propositions

4.4.3 and 4.4.4, we can specify the two cases:

(i) f : W −→ V is said to be an intrinsic Lipschitz function, if there exists a

positive constant L such that, for all ξ, ξ̄ ∈W,

‖f(ξ)−1 · f(ξ̄)‖ ≤ L ‖f(ξ)−1 · ξ−1 · ξ̄ · f(ξ)‖;
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(ii) f : V −→ W is said to be an intrinsic Lipschitz function, if there exists a

positive constant L such that, for all η, η̄ ∈ V,

‖η̄−1 · η · f(η)−1 · η−1 · η̄ · f(η̄)‖ ≤ L ‖η−1 · η̄‖.

Our aim now is to give a more geometrical definition of intrinsic Lipschitz

continuity: if Hn = W · V is a semidirect product and f : W −→ V, we will say

that f is intrinsic Lipschitz continuous if, at every point p ∈ graph(f), there is an

intrinsic closed cone, with vertex p and axis V, intersecting graph(f) only in p.

Definition 4.4.13. Let Hn = W · V be a semidirect product. We say that

f : E ⊂ W −→ V

is intrinsic Lipschitz continuous in E, if there exists a positive constant L such

that, for every q ∈ graph(f),

CW,V

(
q,

1

L

)
∩ graph(f) = {q}. (4.17)

As usual we call the Lipschitz constant of f in E the infimum of the numbers L

such that (4.17) holds.

We prove now the equivalence between the two definitions of intrinsic Lipschitz

continuity:

Proposition 4.4.5. Let Hn = W · V be as in Proposition 4.2.4. A function

f : W −→ V is intrinsic Lipschitz continuous according to Definition 4.4.10, with

Lipschitz constant L, if and only if , for each q ∈ graph(f) and for all α such that

0 ≤ α < 1
L

,

CW,V(q, α) ∩ graph(f) = {q}.

Proof. If q ∈ graph(f),

CW,V(e, α) ∩ graph(fq−1) = {e},

hence,

τq (CW,V(e, α) ∩ graph(fq−1)) = {q}.
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On the other hand,

τq (CW,V(e, α) ∩ graph(fq−1)) = τq (CW,V(e, α)) ∩ τq (τq−1graph(f))

= CW,V(q, α) ∩ graph(f).

Proposition 4.4.6. Let Hn = W · V be as in Proposition 4.2.4. Then

(i) f : E ⊂ V −→ W is intrinsic Lipschitz continuous in E, if and only if the

parametrization map

Φf : E −→ Hn,

defined as Φf (v) = v · f(v), is metric Lipschitz continuous

(ii) f : E ⊂ V −→ W is intrinsic Lipschitz continuous in E, if and only if there

is a positive constant L such that, for all η, η̄ ∈ E,

‖f(ξ)−1 · f(ξ̄)‖ ≤ L ‖f(ξ)−1 · ξ−1 · ξ̄−1 · f(ξ)‖.

Proof. See [48], Proposition 4.6.

Proposition 4.4.7. Let Hn = W ·V be a decomposition in homogeneous subgroups

and let n + 1 ≤ d ≤ 2n be the linear dimension of W. If f : A ⊂ W −→ V
is intrinsic L-Lipschitz in A and A is relatively open in W, then graph(f) has

Hausdorff dimension d+1 and there is a geometric constant c = c(W,V) > 0 such

that, for all p ∈ Hn and R > 0,

Sd+1
dc

(graph(f) ∩B(p,R)) ≤ c(1 + L)d+1Rd+1. (4.18)

Proof. See [49], Theorem 3.9.

Remark 4.4.14. An analogous result holds for intrinsic Lipschitz functions of type

f : V −→W.
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Chapter 5

Hausdorff dimension estimate of

singular sets of H-monotone maps

The main goal of this chapter is to study the singular set of an H-monotone

map (see Definition 5.1.7).

For a better understanding, let us go back to the Euclidean case. In this setting,

the problem was largely studied by Alberti and Ambrosio in [2]. In this paper, the

authors studied the singular set of a monotone map in Rn. What is a monotone

map? First we need the definition of set valued maps.

Definition 5.0.1. We say that a function T : Rn −→ Rn is a set valued map if,

for every point x ∈ Rn, T (x) is a subset of Rn. In this case we write T : Rn ⇒ Rn.

Notation 5.0.1. Let T be a set valued map. For every x ∈ Rn, we denote

• the domain of T the set dom(T ) = {x ∈ Rn |T (x) 6= ∅};

• the image of T is the set im(T ) = {y ∈ Rn | there existsx ∈ Rn such that y ∈
T (x)};

• the graph of T is the set gr(T ) = {(x, y) ∈ Rn × Rn | y ∈ T (x)};

• the inverse of T is the set valued map [T−1] (y) = {x ∈ Rn |x ∈ T (y)}.

If S is another set valued map, we write S ⊂ T when the graph of S is contained

in the graph of T .
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Definition 5.0.2. Let T : Rn ⇒ Rn be a set valued map. We say that T is

monotone if

〈y1 − y2 , x1 − x2〉 ≥ 0,

for every xi ∈ Rn, yi ∈ T (xi), with i = 1, 2.

Remark 5.0.3. We point out that for this definition it is needed just a notion of

scalar product. In fact, one can define a monotone set valued map also on a general

Hilbert space.

Definition 5.0.4. Let T : Rn ⇒ Rn be a monotone set valued map. We say that

T is maximal if it is maximal with respect to inclusion in the class of monotone

functions.

Remark 5.0.5. The previous definition means the following: if S is a monotone set

valued map such that T ⊂ S, then necessarily T = S.

Remark 5.0.6. We point out that T is monotone if and only if T−1 is monotone.

Remark 5.0.7. Let u : Rn −→ R be a convex function. We defined in Section 1.2

the notion of subdifferential and we pointed out that the map x 7−→ ∂u(x) is a

monotone set valued map.

Proposition 5.0.1. Let T : Rn ⇒ Rn be a monotone set valued map. We denote

by I : Rn → Rn the identity map. Then the following statements are true:

(i) if T is maximal, then gr(T ) is closed and T (x) is closed and convex for every

x ∈ Rn;

(ii) T is maximal if and only if (T + I) is surjective or, equivalently, if and only

if the domain of (T + I)−1 is Rn;

(iii) (T + I) and (T + I)−1 are monotone and (T + I)−1 is a 1-Lipschitz function;

(iv) T is upper semicontinuous, i.e. if xn −→ x, yn −→ y, as n → ∞, and

yn ∈ T (xn), then y ∈ T (x).

Proof. See [2], Proposition 1.2 and Corollary 1.3.
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As announced before, we are interested in the study of the singular sets of a

monotone set valued map. With singular set, we mean the set of those points

where the function is not univalued. More specifically, we consider the set of those

points which are sent to a set of a given dimension.

Definition 5.0.8. Let T : Rn ⇒ Rn be a maximal monotone set valued map and

let k = 1, ..., n. We call the k-th singular set of T the set

Σk(T ) = {x ∈ Rn | dimT (x) ≥ k} .

Theorem 5.0.2. Let T : Rn ⇒ Rn be a maximal monotone set valued map. Then

the Hausdorff dimension of the set Σk(T ) is at most (n− k)-rectifiable.

Proof. Since Σk(T ) = Σk(T+I), we can move our investigation to the set Σk(T+I).

Let S be a countable and dense subset of Rn and F be a countable and dense subset

of G(n, n− k), the Grassmann manifold of (n− k)-planes in R. It holds that

Σk(T + I) ⊆ (T + I)−1

( ⋃
y∈S, P∈F

y + P

)
=

⋃
y∈S, P∈F

(T + I)−1 (y + P ). (5.1)

Let us show why this is true. First, notice that by (ii) of Proposition 5.0.1 we

have that (T + I) is surjective. If x ∈ Σk(T + I), then dim(T + I)(x) ≥ k,

therefore there exists a closed and convex set Bk of dimension larger than or equal

to k contained in (T + I)(x). Now, there exist y ∈ S and P ∈ F such that

Bk ∩ (y + P ) 6= ∅. Therefore, (T + I)(x) ∩ (y + P ) 6= ∅. In particular, we can say

that x ∈ (T + I)−1 ∩ (y + P ).

Since the union in (5.1) is countable, it is enough to show that (T+I)−1(y+P ) is

countablyHn−k-rectifiable for any y ∈ S and P ∈ F . This follows from Proposition

5.0.1: we know that (T + I)−1 is a Lipschitz function and the image of a (n− k)-

plane through a Lipschitz function is countably Hn−k-rectifiable (one can find the

proof of this fact, for example, in [86]).

As we can see in the proof of Theorem 5.0.2, the main ingredient is the fact

that the resolvent (T + I)−1 is a Lipschitz continuous function. In the Heisenberg

case this is not true in general (see [21] and [13]). Therefore, we are forced to use

another strategy.
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In the first section, following [13], we give a short introduction to the theory

of H-monotone set valued maps and we will recall some important results about

upper semicontinuity for such operators. This property, analogous to the Euclidean

one, will be central in the proof of the main result of this Chapter (see Theorem

5.2.1 and, also, Theorem 5.2.2).

5.1 Maximal H-monotone maps in Hn

We start by defining the domain and the graph of a set valued map T : Hn ⇒

V1. We recall that V1 denotes the horizontal layer of the Lie algebra hn of the

Heisenberg group Hn. The space V1 can be identified with R2n.

Definition 5.1.1. Let T : Hn ⇒ V1 be a set valued map. We call the effective

domain of T , and we write dom(T ), the set {p ∈ Hn |T (p) 6= ∅}. Morover, the

graph of T , denoted by gr(T ), is the set {(p, v) ∈ Hn×V1 | p ∈ dom(T ), v ∈ T (p)}.

Definition 5.1.2. Let T : Hn ⇒ V1 be a set valued map. We say that T is closed-

valued if, for every p ∈ dom(T ), T (p) is a closed subset of V1. Analogously, we

say that T is compact-valued if, for every p ∈ Hn, T (p) is a compact subset of V1.

Definition 5.1.3. Let T : Hn ⇒ V1 be a set valued map. We say that T is upper

semicontinuous at a point p ∈ Hn if, for every ε > 0, there exists δ > 0 such that

T (p′) ⊆ T (p) + BR2n(0, ε),

for every p′ ∈ Hn with dc(p, p
′) < δ.

Remark 5.1.4. We point out that this Definition is totally equivalent to the one

given in (iv) of Proposition 5.0.1. In fact, this notion does not depend on the

structure of the Heisenberg group. It is needed just a metric space structure.

Remark 5.1.5. If the map T is compact-valued, the upper semicontinuity prop-

erty can be restated as follows: if pk −→ p and vk ∈ T (pk), then there exists a

subsequence {vnk}k∈N such that vnk −→ v ∈ T (p), as k →∞.

Definition 5.1.6. Let T : Hn ⇒ V1 be a set valued map. We say that T is closed

if gr(T ) is a closed subset of Hn × V1.
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Next propositions and remarks give some fine properties for set valued maps

on Hn. The reader interested to the proofs is referred to the book [4], where these

facts are discussed in a very general setting. In fact, all the needed machinery does

not depend on the Heisenberg structure.

Proposition 5.1.1. Let T : Hn ⇒ V1 be a set valued map. Then the following

two statements are true:

(i) if T is upper semicontinuous and closed-valued, then it is closed;

(ii) if T is closed and im(T ) is compact, then T is upper semicontinuous.

Proof. The proof can be done following the line of [4], Theorem 16.12.

Proposition 5.1.2. Let T : Hn ⇒ V1 be a set valued map. If T is compact-valued

and upper semicontinuous, then T (K) ⊂ V1 is compact for every K ⊂ Hn compact

set.

Proof. The proof can be done following the line of [4], Lemma 17.8.

We are now ready to give the definition of H-monotone map in the Heisenberg

group. Due to the special structure of Hn, it is natural to introduce a definition

dependent on the horizontal planes.

Definition 5.1.7. Let T : Hn ⇒ V1 be a set valued map. We say that T is

H-monotone if

〈ξ1(p)− ξ1(p′), v − v′〉 ≥ 0,

for every p and p′ such that p ∈ Hp′ and for every v ∈ T (p) and v′ ∈ T (p′).

Remark 5.1.8. Definition 5.1.7 is equivalent to say that

〈ξ1(p)− ξ1 (p · exp(tw)) , v − v′〉 ≥ 0,

for every p ∈ Hn, for every v ∈ T (p), for every t ∈ R, for every w ∈ V1 and for every

v′ ∈ T (p · exp(tw)). This means that we have information about monotonicity of

T only in the horizontal directions.
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Definition 5.1.9. We say that T is maximal H-monotone if whenever there is a

H-monotone map S : Hn ⇒ V1 such that gr(T ) ⊆ gr(S), then T = S.

Now, we give a look to an important example. Analogously to the definition

of the subdifferential of convex functions, one can give the definition of horizontal

gradient of a H-convex function. It turns out that that the horizontal gradient is

a H-monotone set valued map.

Example 5.1.1. We consider first a H-convex set Ω ⊆ Hn, i.e. a set such that, for

every p ∈ Ω and for every p′ ∈ Hp ∩ Ω,

p · δλ(p−1 · p′) ∈ Ω,

for every λ ∈ [0, 1].

Let u : Ω −→ R be a function, with Ω ⊆ Hn a H-convex set. We say that u is

H-convex if

u
(
p · δλ(p−1 · p′)

)
≤ u(p) + λ (u(p′)− u(p)) ,

for every p′ ∈ Ω ∩Hp and λ ∈ [0, 1].

We define the horizontal gradient of u at the point η0 ∈ Hn the set (possibly

empty)

∂Hu(η0) = {p ∈ V1 |u(η) ≥ u(η0) + 〈p, ξ1(η)− ξ1(η0)〉 , for every η ∈ Hη0} .

As a characterization, in [20], analogously to what happens in the classical case,

the authors show that ∂Hu(η) 6= ∅, for every η ∈ Hn, if and only if u is a H-convex

function.

We define now the set valued map

∂Hu : Hn −→ V1

η 7−→ ∂Hu(η).

If u is H-convex, then it follows that ∂Hu is a H-monotone map. Let us prove this

fact. Consider η1 and η2 ∈ Hn such that η2 ∈ Hη1 and select p1 ∈ ∂Hu(η1) and

p2 ∈ ∂Hu(η2). By defininition of horizontal gradient, the following inequalities are

true

u(η) ≥ u(η1) + 〈p1 , ξ1(η)− ξ1(η1)〉 ,

u(η) ≥ u(η2) + 〈p2 , ξ1(η)− ξ1(η2)〉 ,
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for every η ∈ Hn. Let us set in the first η = η2 and in the second η = η1. Adding

together the new inequalities, we can deduce that

〈p1 , ξ1(η2)− ξ1(η1)〉 ≤ 〈p2 , ξ1(η2)− ξ1(η1)〉 ,

which clearly gives the definition of H-monotonicity.

Following [13], we give some propositions about maximal H-monotone maps.

These results will be used in the study of the dimension of the singular set of an

H-monotone map in Section 5.2.

Proposition 5.1.3. Let T : Hn ⇒ V1 be a maximal H-monotone map. Then T (η)

is closed and convex for every η ∈ Hn. Moreover, if dom(T ) = Hn, then T is also

compact-valued.

Proof. See [13], Proposition 2.2.

From Proposition 5.1.3, together with Proposition 5.1.2, one can prove the

following corollary.

Corollary 5.1.4. Let T : Hn ⇒ V1 be an upper semicontinuous maximal H-

monotone map with dom(T ) = Hn. Then T is closed and T (K) ⊂ V1 is compact

for every K ⊂ Hn compact. Moreover, it is locally bounded.

Corollary 5.1.4 is key to prove the following theorems, useful in what will follow

in the next section.

Theorem 5.1.5. Let T : Hn ⇒ V1 be a maximal H-monotone map with dom(T ) =

Hn. Then T is locally bounded if and only if T is upper semicontinuous.

Proof. See [13], Theorem 2.2.

Theorem 5.1.6. Let T : Hn ⇒ V1 be a maximal H-monotone map with dom(T ) =

Hn. Then T is locally bounded.

Proof. See [13], Theorem 1.1.

Remark 5.1.10. We point out that, from Theorem 5.1.5 and Theorem 5.1.6, one

can deduce that if T is maximal H-monotone with dom(T ) = Hn then it is upper

semicontinuous.
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5.2 Dimension estimate of the singular set of a

H-monotone map

In the previous Section we gave the definition of H-monotone set valued map.

Now it is time to “measure” how much an H-monotone map can assume set values:

we want to study how many points p ∈ Hn are mapped to a subset of V1 of a given

size. Using the same terminology introduced for the Euclidean case, we will call

the sets of these points singular sets. Here it is the definition.

Definition 5.2.1. We call the k-th singular set, or the singular set of order k, of

a set valued map T : Hn ⇒ V1 the set

Σk(T ) = {p ∈ Hn | dim(T (p)) = k} , (5.2)

for k = 0, 1, ..., 2n.

Conjecture 5.2.1. Let T : Hn ⇒ V1 be a maximal H-monotone operator with

dom(T ) = Hn. Then, for every 0 ≤ k ≤ 2n, the Hausdorff dimension of Σk(T ) is

smaller than or equal to 2n+ 2− k, i.e.

dimH

(
Σk(T )

)
≤ 2n+ 2− k. (5.3)

Our goal is to approach Conjecture 5.2.1. For the moment, we are able to

give the proof of a preliminary result. Taking into account the peculiarities of the

Heisenberg group, we study the size just of some particular subsets of Σk(T ).

First, we need some preparatory definitions and lemmas.

Definition 5.2.2. Let k ∈ N. If v1, ..., vk are k linearly independent unit vectors

of R2n and r > 0, we call k-simplex, denoted by ∆ (v1, ..., vk, r), the set

∆ (v1, ..., vk, r) :=

{
k∑
i=1

λivi ∈ R2n

∣∣∣∣∣
k∑
i=1

|λi| ≤ r , λi ∈ R

}
.

Definition 5.2.3. Let T : Hn ⇒ V1 be a maximal H-monotone set valued map

and let p ∈ Hn be fixed. If dim(T (p)) = k, then there exist η ∈ R2n, r1 > 0 and

v1, ..., vk ∈ R2n, linearly independent unit vectors, such that

η + ∆ (v1, ..., vk, r1) ⊂ T (p). (5.4)
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We define the k-dimensional vector space Vp = span{v1, ..., vk} ⊆ R2n.

Remark 5.2.4. We underline that inclusion (5.4) is true because T (p) is convex,

for every p ∈ Hn. This was the statement of Proposition 5.1.3.

Lemma 5.2.1. With the same assumptions and notations introduced in Definition

5.2.3, Vp does not depend on the choice of η, r1 and v1, ..., vk.

Proof. We argue by contradiction. Let η ∈ R2n, r1 > 0 and let v1, ..., vk ∈ R2n be

linearly independent unit vectors such that

η + ∆ (v1, ..., vk, r1) ⊂ T (p).

Let Vp = span{v1, ..., vk}. We assume also that there exist ξ ∈ R2n, r2 > 0, and

w1, ..., wk ∈ R2n, linearly independent unit vectors, such that

ξ + ∆ (w1, ..., wk, r2) ⊂ T (p).

Let Wp := span{w1, ..., wk} and assume that Wp 6= Vp. Since Wp and Vp are two k-

dimensional vector subspaces of R2n, it holds that there is at least a vector w ∈ W
such that w, v1, ..., vk are linearly independent. Without loss of generality, we can

assume that w = w1.

Now, since ξ + ∆ (w1, ..., wk, r2) ⊂ T (p), it holds that for every λ ∈ R, with

|λ| < r2,

ξ + λw1 ∈ T (p).

Moreover, there exists λ̃ ∈ R, with
∣∣∣λ̃∣∣∣ < r2

2
, such that ξ + λ̃w1 /∈ η + Vp. Let

us prove why this is true. Assume, by contradiction, that for every λ̃ ∈ R, with∣∣∣λ̃∣∣∣ < r2
2

, it holds that ξ+ λ̃w1 ∈ η+ Vp. Select λ̃1 and λ̃2 ∈ R, with |λ̃1|, |λ̃2| < r2
2

and λ̃1 6= λ̃2, such that

ξ + λ̃1w1 ∈ η + Vp and ξ + λ̃2w2 ∈ η + Vp.

This is equivalent to say that we can find α1, ..., αk ∈ R and α′1, ..., α
′
k ∈ R such

that

λ̃1w1 = (η − ξ) +
k∑
i=1

αivi and λ̃2w1 = (η − ξ) +
k∑
i=1

α′ivi.
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Subtracting the second equation to the first one, we get

(λ1 − λ2)w1 =
k∑
i=1

(αi − α′i) vi.

Therefore, w1 ∈ Vp, which is clearly not true.

The desired contradiction will be achieved in showing that dimT (p) ≥ k + 1.

To do that, we shall find a (k + 1)-dimensional simplex included in T (p).

Now, consider η̃ = 1
2
η+ 1

2

(
ξ + λ̃w1

)
and let r3 = min

{
r1
4
, r2

4

}
. If we show that

η̃ + ∆(v1, ..., vk, w1, r3) ⊂ T (p), (5.5)

then we have the desired contradiction.

Let us prove inclusion (5.5). Consider an arbitrary point

η̃ +
k∑
i=1

λivi + λk+1w1 ∈ η̃ + ∆(v1, ..., vk, w1, r3),

where
∑k+1

i=1 |λi| < r3. We perform some calculations:

η̃ +
k∑
i=1

λivi + λk+1w1 =
1

2
η +

1

2

(
ξ + λ̃w1

)
+

k∑
i=1

λivi + λk+1w1

=
1

2

(
η +

k∑
i=1

2λivi

)
+

1

2

(
ξ +

(
λ̃+ 2λk+1

)
w1

)
:=

1

2
η +

1

2
ξ.

Let us show that η and ξ ∈ T (p). By definition of k-simplex, η ∈ η+∆(v1, ..., vk, r1) ⊂
T (p) if and only if

∑k
i=1 |2λi| < r1. This is true, indeed

k∑
i=1

|2λi| = 2
k∑
i=1

|λi| ≤ 2
k+1∑
i=1

|λi| < 2r3 ≤ r1.

We prove now that ξ ∈ T (p). We need to check that
∣∣∣λ̃+ 2λk+1

∣∣∣ < r2. This

condition is satisfied, indeed∣∣∣λ̃+ 2λk+1

∣∣∣ ≤ ∣∣∣λ̃∣∣∣+ 2 |λk+1| <
r2

2
+ 2r3 < r2.
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Now, since T (p) is convex, it holds that

η̃ +
k∑
i=1

λivi + λk+1w1 =
1

2
η +

1

2
ξ ∈ T (p),

and this concludes the proof.

We give now the definition of horizontal k-th singular set. Roughtly speaking,

this is the set of those points in the domain of a maximal H-monotone set valued

map which are mapped to a set included in a k-dimensional horizontal subgroup

of Hn.

Definition 5.2.5. We define, for 1 ≤ k ≤ n, the horizontal k-th singular set of

T the set

Σk
H(T ) =

{
p ∈ Σk(T ) |Vp ∈ GH(2n, k)

}
.

Remark 5.2.6. We point out that it is very important to assume k ≤ n, because

horizontal subgroups of Hn can have dimension at most n (see Proposition 4.2.3).

Remark 5.2.7. We epoint out that, in general, Σk
H(T ) 6= Σk(T ). Let us give an

example which shows this fact. Consider the Euclidean convex function (which

is also H-convex) u : H2 −→ R4 given by u(x1, x2, y1, y2, t) = (x2
1 + y2

1)
1
2 and

compute its horizontal subdifferential at a point p = (x1, x2, y1, y2, t) ∈ H2:

∂Hu(p) =


B1, if p = (0, x2, 0, y2, t),

1

(x21+y21)
1
2

(x1, 0, y1, 0) , if p 6= (0, x2, 0, y2, t),

where B1 = {(x1, 0, y1, 0) ∈ R4 |x2
1 + y2

1 ≤ 1}. Since dimB1 = 2, it holds that

Σ2(∂Hu) = {(0, x2, 0, y2, t) ∈ H2 |x2, y2, t ∈ R}, which has Hausdorff dimension 4.

On the other hand, we notice that there is no horizontal subgroup of H2 which

contains B1. Therefore, Σ2
H(∂Hu) = ∅.

We are now ready to give the statement of the main result of the second part

of the dissertation.
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Theorem 5.2.2. Let T : Hn ⇒ V1 be a maximal H-monotone set valued map with

dom(T ) = Hn. If 1 ≤ k ≤ n, then

dimH Σk
H(T ) ≤ 2n+ 2− k.

Remark 5.2.8. If k = 1, then Σ1(T ) = Σ1
H(T ). This is true because a 1-dimensional

vector subspace of R2n can be always seen as a 1-dimensional horizontal subgroup

of Hn. Therefore, thanks to Theorem 5.2.2, Conjecture 5.2.1 is proved for this

case.

Before giving the proof of Theorem 5.2.2, we need a couple of preliminary

results. The first result provides a condition to control the Hausdorff dimension

of a given set. The main idea, which passes through the compactness of intrinsic

Grassmannians, is taken from [6].

Theorem 5.2.3. Let E ⊂ Hn be a Borel set such that, for every p ∈ E, there

exist rp > 0, αp > 0 and Wp ∈ G(Hn, d), with n+ 1 ≤ d ≤ 2n, such that

E ∩B(p, rp) ⊂ CW⊥p ,Wp
(p, αp). (5.6)

Then E has Hausdorff dimension smaller than or equal to d+ 1.

Remark 5.2.9. We recall that if Wp ∈ G(Hn, d), then dimH Wp = d+ 1.

Proof of Theorem 5.2.3. First of all, for every k ∈ N ∪ {0}, we define the set

Ek := {p ∈ E | k < αp ≤ k + 1} .

It is clear that

E =
⋃
k∈N

Ek. (5.7)

We point out that the union in (5.7) is countable. Therefore, if we prove that

dimH E
k ≤ d+ 1, for every k ∈ N, the assertion will follow.

Let us fix k ∈ N and consider Ek. For simplicity of notations, in what follows,

we skip the superscript k.

We define α := supp∈E αp. We highlight that α is finite. This is true because

of the decomposition in (5.7). Let δ > 0 be such that δ < 1
2(1+α)

.
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By Proposition 4.3.2, we know that (G(Hn, d), ρ) is compact. This implies that

there exists a set G := {W1, ...,WN} ⊂ G(Hn, d) such that, for every W ∈ G(Hn, d),

there is Wi ∈ G such that

ρ(Wi,W) < δ.

This observation allows us to split the set E in the following way:

E =
N⋃
i=1

Ei, (5.8)

where Ei = {p ∈ E | ρ(Wp,Wi) < δ}. Since the union in (5.8) is finite, our asser-

tion follows if we show that dimH Ei ≤ d+ 1.

Let us fix a point p ∈ Ei. By Lemma 4.4.2, we have that

CW⊥p ,Wp
(p, α) ⊂ CW⊥i ,Wi

(p, 2(1 + α)).

Consequently, keeping in mind the hypothesis, one has that

Ei ∩B(p, rp) ⊂ CW⊥i ,Wi
(p, 2(1 + α)).

Now, by Remark 4.4.5, it holds that there exists β > 0 such that

Ei ∩B(p, rp) ∩ CWi,W⊥i
(p, β) = {p}. (5.9)

Our goal is to apply Proposition 4.4.7, stated in Section 4.4 and show that Ei

is contained in the graph of an intrinsic Lipschitz function ϕ : F ⊆Wi −→W⊥i .

We have now a claim.

Claim. For every p1 and p2 ∈ Ei such that p1 6= p2, it holds that PWi
(p1) 6= PWi

(p2).

The proof of this claim is by contradiction. Let p1 and p2 ∈ Ei, sufficiently

near to each other, be such that p1 6= p2 and PWi
(p1) = PWi

(p2). We will provide

the desired contradiction by showing that p2 ∈ CWi,W⊥i
(p1, β). This can not be

possible, because of (5.9). Since PWi
(p1) = PWi

(p2) =: q and Hn = Wi ·W⊥i , there

exist q1 and q2 ∈ W⊥i such that p1 = q · q1 and p2 = q · q2. From these relations,

we can write

p−1
1 · p2 = q−1

1 · q−1 · q · q2 = q−1
1 · q2.
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Since q−1
1 · q2 ∈W⊥i , it holds that PWi

(p−1
1 · p2) = e.

Now, by definition of intrinsic cone, p2 ∈ CWi,W⊥i
(p1, β) if and only if p−1

1 · p2 ∈
CWi,W⊥i

(e, β), more specifically, if and only if

‖PWi
(p−1

1 · p2)‖ ≤ β‖PW⊥i
(p−1

1 · p2)‖. (5.10)

Since the left-hand side is zero, the inequality (5.10) is true. We have the desired

contradiction and the claim is proved.

Let us set Fi := PWi
(E) ⊂ Wi. The previous Claim implies that the map

PWi
|Ei : Ei −→ Fi is injective. Therefore, it is well defined the map ϕ = (PWi

|Ei)
−1,

whose graph is Fi × Ei.
Keeping in mind the definition of intrinsic Lipschitz function, since Ei =

graph(ϕ), it holds that, locally,

graph(ϕ) ∩ CWi,W⊥i
(p, β) = {p},

for every p ∈ graph(ϕ). Therefore, ϕ : Fi ⊂ Wi −→ W⊥i is an intrinsic Lipschitz

function.

The proof of the theorem is to the end; indeed we finally call into play Propo-

sition 4.4.7 and we can conclude that dimH(Ei) ≤ dimH(graph(ϕ)) ≤ d+ 1.

Lemma 5.2.2. Let T : Hn ⇒ V1 be a maximal H-monotone set valued map with

dom(T ) = Hn. Let h ∈ N and define

Σk,h
H (T ) :=

{
p ∈ Σk

H(T )

∣∣∣∣ ∃ η + ∆

(
v1, ..., vk,

1

h

)
⊂ T (p)

}
. (5.11)

Let p0 ∈ Σk,h
H (T ) and let {pm}m∈N ⊂ Σk,h

H (T ) be such that pm −→ p0, as m→∞.

Then there exist a subsequence of {pm}m∈N, denoted in the same way, η0 ∈ R2n

and v1
0, ..., v

k
0 linearly independent unit vectors such that:

(i) span{v1
0, ..., v

k
0} ∈ GH(2n, k):

(ii) η0 + ∆
(
v1

0, ..., v
k
0 ,

1
h

)
⊂ T (p0);

(iii) for each w0 ∈ η0+∆
(
v1

0, ..., v
k
0 ,

1
h

)
, there exists wm ∈ T (pm), for every m ∈ N,

such that wm −→ w0, as m→∞.
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Proof. Let us select {v1
m, ..., v

k
m} an orthonormal basis of Vpm , for every m ∈ N.

Fix i ∈ {1, ..., k}. It holds that ‖vim‖R2n = 1, for every m ∈ N. Therefore, up to a

subsequence, there exists vi0 ∈ R2n such that vim −→ vi0, as m→∞.

We prove that v1
0, ..., v

k
0 are linearly independent unit vectors. Let i and j ∈

{1, ..., k}. We know that 〈vim, vjm〉 = δij
1, for every m ∈ N. Passing to the limit

for m → ∞, we conclude that
〈
vi0, v

j
0

〉
= δij, for every i and j ∈ {1, ..., k}. A

second step is to prove that span{v1
0, ..., v

k
0} ∈ GH(2n, k). Since span{v1

m, ..., v
k
m} ∈

GH(2n, k), it holds that 〈vim, vjm〉 = 0, for every m ∈ N and for every i 6= j. Again,

if m→∞, we obtain
〈
vi0, v

j
0

〉
= 0, for every i 6= j.

Now, since pm ∈ Σh,k
H (T ), there exists ηm ∈ T (pm) such that

ηm + ∆

(
v1
m, ..., v

k
m,

1

h

)
⊂ T (pm).

By hypothesis, we know that T is a maximal H-monotone set valued map. More-

over, pm −→ p0, as m→∞. Therefore, we can apply Remark 5.1.5 and Proposi-

tion 5.1.3. It follows that there exists η0 ∈ T (p0) such that, eventually restricting

to a subsequence, ηm −→ η0, as m→∞.

It remains to show that

η0 + ∆

(
v1

0, ..., v
k
0 ,

1

h

)
⊂ T (p0).

We argue by contradiction. Let η0 +
∑k

i=1 λ̃iv
i
0 /∈ T (p0), for some λ̃1, ..., λ̃k ∈ R

such that
∑k

i=1 |λ̃i| <
1
h
. By definition of Σh,k

H (T ), it holds that

wm := ηm +
k∑
i=1

λ̃iv
i
m ∈ T (pm).

Again by upper semicontinuity of the set valued map T , it holds that there exists

w0 ∈ T (p0) such that wm −→ w0, as m→∞.

1With the simbol δij we denote the Kronecker’s delta

δij =

1, if i = j,

0, if i 6= j.
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On the other hand, one has that

wm = ηm +
k∑
i=1

λ̃iv
i
m −→ η0 +

k∑
i=1

λ̃iv
i
0,

as m→∞. Hence, by uniqueness of the limit, we can conclude that

w0 = η0 +
k∑
i=1

λ̃iv
i
0 ∈ T (p0),

which provides the desired contradiction.

Proof of Theorem 5.2.2. First of all, we consider the set defined in (5.11), for every

h ∈ N. It holds that

Σk
H(T ) =

⋃
h∈N

Σk,h
H (T ). (5.12)

Let us check why this is true. First, by definition, Σk,h
H (T ) ⊂ Σk

H(T ), for every

h ∈ N.

For the opposite inclusion, let p ∈ Σk
H(T ). We want to show that there exists

h ∈ N such that p ∈ Σk,h
H (T ). We know that dimT (p) = k and that T (p) is a

convex set. This implies that there exists a k-dimensional ball B contained in

T (p). Let r > 0 be the radius of B and η its center. There exists h̃ ∈ N such that
1
h̃
≤ r.

Let v1, ..., vk be linearly independent unit vectors such that Vp = span{v1, ..., vk}.
It follows that ηp + ∆

(
v1, ..., vk,

1
h̃

)
⊂ B ⊂ T (p). Therefore p ∈ Σk,h̃

H (T ).

Since the union in (5.12) is countable, we can reduce our investigation to

Σk,h
H (T ), for every h ∈ N. Let us choose an arbitrary h ∈ N. We aim to prove that

dim Σk,h
H (T ) ≤ 2n+ 2− k.

Our strategy is to apply Theorem 5.2.3: we need to show that, for every p ∈
Σk,h
H (T ), there exist a radius rp > 0, an opening αp > 0 and a vertical homogeneous

subgroup Wp ∈ G (Hn, 2n+ 1− k) such that

Σk,h
H (T ) ∩B(p, rp) ⊂ CVp,Wp(p, αp),
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where Vp is the unique horizontal subgroup of Hn of dimension k such that Hn =

Wp · Vp is a decomposition in complementary subgroups.

Without loss of generality, we can assume that 0 ∈ Σk,h
H (T ) and we restrict our

investigation to 0.

Since 0 ∈ Σk,h
H (T ), there exists V0 ∈ GH(2n, k) defined as in Definition 5.2.3.

Let us call it V0 = V0. This is equivalent to say that there exist a point η0 ∈ T (0)

and a k-simplex ∆
(
v1

0, ..., v
k
0 ,

1
h

)
such that η0 + ∆

(
v1

0, ..., v
k
0 ,

1
h

)
⊂ T (0). This fact

implies that there is a k-dimensional disk D0 ⊂ V0, centered at zero, such that

η0 +D0 ⊂ T (0).

Let W0 be the vertical subgroup of Hn of linear dimension 2n+ 1−k such that

Hn = W0 · V0 is a decomposition in complementary subgroups.

For simplicity of calculations, we can assume that V0 = {(v1, ..., vk, 0, ..., 0) ∈
Hn | vi ∈ R, i = 1, ..., k} and W0 = {(0, ..., 0, wk+1, ..., w2n, t) ∈ Hn |wj ∈ R, t ∈
R, j = k + 1, ..., 2n}.

We have now the following:

Claim. There exist r0 > 0 and β0 > 0 such that

Σk,h
H (T ) ∩B(0, r) ∩ CW0,V0(0, β) = {0},

for every 0 < r < r0 and 0 < β < β0.

The proof of the Claim is by contradiction. Let us assume that for every β > 0

and for every r > 0 there exists p 6= 0 such that

p ∈ Σk,h
H (T ) ∩B(0, r) ∩ CW0,V0(0, β).

Let us choose r = 1
m

and β = 1
m

, for m ∈ N. Then, for every m ∈ N, there

exists p(m) 6= 0 such that

p(m) ∈ Σk,h
H (T ) ∩B

(
0,

1

m

)
∩ CW0,V0

(
0,

1

m

)
.

It is clear that

lim
m→∞

p(m) = 0.
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Moreover, since p(m) ∈ Σk,h
H (T ), there exists Vp(m) ∈ GH(2n, k), here denoted by

Vm, defined as in Definition 5.2.3.

Now, let us choose arbitrarily a vector w0 ∈ η0 +D0. Let v0 ∈ D0 be such that

w0 = η0 + v0. Thanks to Lemma 5.2.2, we can select a subsequence of
{
p(m)

}
m∈N,

still denoted in the same way, such that we can find wm ∈ T
(
p(m)

)
, for every

m ∈ N, in order to have wm −→ w0, as m→∞.

By definition of intrinsic cone, we have that

CW0,V0

(
0,

1

m

)
= {p = (p1, ..., p2n, p2n+1) ∈ Hn|

(p2
k+1 + ...+ p2

2n)2 +

(
p2n+1 − 2

k∑
i=1

pi · pn+i

)2

≤ 1

m4
(p2

1 + ...+ p2
k)

2

 .

(5.13)

Therefore, since p(m) ∈ CW0,V0

(
0, 1

m

)
, one can deduce that((

p
(m)
k+1

)2

+ ...+
(
p

(m)
2n

)2
)2

≤ 1

m4

((
p

(m)
1

)2

+ ...+
(
p

(m)
k

)2
)2

.

This implies that there exists α = (α1, ..., αk, 0, ..., 0), with ‖α‖R2n = 1 for which

there is an index i ∈ {1, ..., k} such that αi 6= 0 and

lim
m→∞

ξ1

(
p(m)

)
‖ξ1 (p(m))‖R2n

= α.

More specifically, we have that

lim
m→∞

p
(m)
i

‖ξ1 (p(m))‖R2n

= αi, for i = 1, ..., k,

lim
m→∞

p
(m)
j

‖ξ1 (p(m))‖R2n

= 0, for j = k + 1, ..., 2n.

Without loss of generality, we can assume that αi 6= 0. Therefore, eventually

restricting to a subsequence, p(m) 6= 0, for every m ∈ N.

Consider now p̃(m) ∈ Hp(m) ∩H0, for every m ∈ N. By definition of horizontal

plane at the point p(m) =
(
p

(m)
1 , ..., p

(m)
2n , p

(m)
2n+1

)
∈ Hn, there exists (u1, ..., u2n, 0) ∈
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Hn such that

p̃(m) =
(
p̃

(m)
1 , ..., p̃

(m)
2n , p̃

(m)
2n+1

)
=

(
p

(m)
1 + u1, ..., p

(m)
2n + u2n, p

(m)
2n+1 + 2

n∑
i=1

p
(m)
i un+i − 2

n∑
j=1

p
(m)
n+juj

)
.

Since we asked for p̃(m) ∈ H0, in order to satisfy condition

p
(m)
2n+1 + 2

n∑
i=1

p
(m)
i un+i − 2

n∑
j=1

p
(m)
n+juj = 0,

we choose

ui =

−
p
(m)
i

2
, if i 6= n+ 1, i = 1, ..., 2n,

−p
(m)
2n+1

2p
(m)
1

− p
(m)
n+1

2
, if i = n+ 1.

(5.14)

Consider now w̃(m) ∈ T
(
p̃(m)

)
. Since p̃(m) −→ 0, as m → ∞, by upper

semicontinuity of T , eventually restricting to a subsequence, there exists w̃0 ∈ T (0),

such that w̃(m) −→ w̃0, as m → ∞. By convexity of T (0), there exists ṽ0 ∈ V0

such that w̃0 = η0 + ṽ0.

Now, we use the definition of H-monotonicity of the set valued map T , evalu-

ated at the points p̃(m) and 0. It holds that〈
ξ1

(
p̃(m)

)
, w̃(m) − w0

〉
≥ 0.

Writing explicity in coordinates, we have〈(
p

(m)
1

2
, ...,

p
(m)
n

2
,−

p
(m)
2n+1

2p
(m)
1

+
p

(m)
n+1

2
,
p

(m)
n+2

2
, ...,

p
(m)
2n

2
,

)
, w̃(m) − w0

〉
≥ 0.

Dividing by
∥∥ξ1

(
p(m)

)∥∥
R2n , one has

1

2 ‖ξ1 (p(m))‖R2n

〈(
p

(m)
1 , ..., p(m)

n ,−
p

(m)
2n+1

p
(m)
1

+ p
(m)
n+1, p

(m)
n+2, ..., p

(m)
2n

)
, w̃(m) − w0

〉
≥ 0.

The task now is to compute the limit for m −→∞. We already know that

lim
m→∞

p
(m)
i

‖ξ1 (p(m))‖R2n

= αi, for i = 1, ..., k,

lim
m→∞

p
(m)
j

‖ξ1 (p(m))‖R2n

= 0, for j = k + 1, ..., 2n.

(5.15)
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Hence, it remains to show that

lim
m→∞

p
(m)
2n+1

‖ξ1 (p(m))‖R2n p
(m)
1

= 0.

By definition of intrinsic cone (see (5.13)), it holds that∣∣∣∣∣p(m)
2n+1 − 2

k∑
i=1

p
(m)
1 · p(m)

n+i

∣∣∣∣∣ ≤ 1

m2

((
p

(m)
1

)2

+ ...+
(
p

(m)
k

)2
)
.

Therefore, we can estimate

p
(m)
2n+1

‖ξ1 (p(m))‖R2n p
(m)
1

≤ 1

m2

((
p

(m)
1

)2

+ ...+
(
p

(m)
k

)2
)

‖ξ1 (p(m))‖R2n p
(m)
1

+
2
∑k

i=1 p
(m)
1 · p(m)

n+i

‖ξ1 (p(m))‖R2n p
(m)
1

=
1

m2

∥∥ξ1

(
p(m)

)∥∥2

R2n

‖ξ1 (p(m))‖R2n p
(m)
1

+
2
∑k

i=1 p
(m)
1 · p(m)

n+i

‖ξ1 (p(m))‖R2n p
(m)
1

∥∥ξ1

(
p(m)

)∥∥
R2n

‖ξ1 (p(m))‖R2n

=
1

m2

∥∥ξ1

(
p(m)

)∥∥
R2n

p
(m)
1

+ 2

∥∥ξ1

(
p(m)

)∥∥
R2n

p
(m)
1

k∑
i=1

p
(m)
i

‖ξ1 (p(m))‖R2n

p
(m)
n+i

‖ξ1 (p(m))‖R2n

−→ 0,

as m → ∞. The final limit follows from (5.15). Analogously, one can estimate

from below in the following way

p
(m)
2n+1

‖ξ1 (p(m))‖R2n p
(m)
1

≥ − 1

m2

((
p

(m)
1

)2

+ ...+
(
p

(m)
k

)2
)

‖ξ1 (p(m))‖R2n p
(m)
1

+
2
∑k

i=1 p
(m)
1 · p(m)

n+i

‖ξ1 (p(m))‖R2n p
(m)
1

−→ 0,

as m→∞. Thus, we can conclude that〈(α1

2
, ...,

αk
2
, 0, ..., 0

)
, w̃0 − w0

〉
≥ 0. (5.16)

Consider now H-monotonicity at the points p̃(m) and p(m). It holds that〈
ξ1

(
p̃(m)

)
− ξ1

(
p(m)

)
, w̃(m) − wm

〉
≥ 0.

Repeating the previous argument, we obtain〈(
−α1

2
, ...,−αk

2
, 0, ..., 0

)
, w̃0 − w0

〉
≥ 0. (5.17)
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Combining together inequalities (5.16) and (5.17), we have〈(α1

2
, ...,

αk
2
, 0, ..., 0

)
, w̃0 − w0

〉
=
〈(α1

2
, ...,

αk
2
, 0, ..., 0

)
, (η0 + ṽ0)− (η0 + v0)

〉
= 0.

This equality provides a contradiction. Let us see why. We recall that α ∈ V0,

ṽ0 ∈ V0 is fixed and that we chose v0 arbitrarly in the k-dimensional disk D0 ⊂ V0.

Therefore, equality〈(α1

2
, ...,

αk
2
, 0, ..., 0

)
, ṽ0

〉
=
〈(α1

2
, ...,

αk
2
, 0, ..., 0

)
, v0

〉
,

is verified if and only if α is the zero vector, which is a contradiction. The Claim

in finally proved.

The proof of the Theorem is now to the end. Thanks to the Claim, we now

know that there exist r0 > 0 and β0 > 0 such that

Σk,h
H (T ) ∩B(0, r) ∩ CW0,V0(0, β) = {0},

for every 0 < r < r0 and for every 0 < β < β0. Using Remark 4.4.5, it holds that

there exists α0 > 0 such that

Σk,h
H (T ) ∩B(0, r) ⊂ CV0,W0(0, α),

for every 0 < r < r0. With this observation the proof is finished. Indeed, we can

apply Theorem 5.2.3, which guarantees that dimH Σk,h
H (T ) ≤ 2n+ 2− k.
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