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“In tutto c’è qualcosa che resta insondato, perché siamo caduti 

nell’abitudine di ricordare, ogni volta che usiamo i nostri occhi, quello che 

gli altri prima di noi hanno pensato su ciò che stiamo osservando. Anche 

l’oggetto più insignificante ha un che di sconosciuto. Tocca a noi scoprirlo. 

Per descrivere un fuoco ardente o un albero in una pianura, dobbiamo 

rimanere dinanzi a quel fuoco o a quell’albero finché per noi essi non 

assomiglino a nessun altro fuoco o albero” 

Guy de Maupassant 

 

 

L’approccio “antipodale” della descrizione scientifica (biologica e 

neurofisiologica) e di quella fenomenologica emerge chiaramente da 

questo scritto “ante-litteram” (rispetto alla corrente fenomenologica) di 

Guy de Maupassant. Eppure quanto Maupassant dice può essere in parte 

applicato alla scienza, giacché per scorgere lo sconosciuto, bisogna in senso 

lato applicare il concetto di epochè husserliana. La differenza rispetto a una 

mera descrizione fenomenologica, sta nel fatto che l’epochè (intesa in 

termini non strettamente husserliani, ma come “conoscenza attuale-

bagaglio culturale” relativo a un fenomeno) deve rappresentare comunque 

un punto di partenza e che, nell’osservare con un occhio nuovo un 

fenomeno, bisogna comunque conoscere alla perfezione tutto ciò che è 

stato già detto o fatto al fine di indagare lo stesso. 

E.A. 
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Chapter 1 

Idiopathic isolated cervical dystonia 

GENERAL INTRODUCTION 

Dystonia over the years 

Dystonia is a chronic movement disorder characterised by an aberration in the control of 

movement, with subsequent co-contraction of agonist and antagonist muscles causing 

repetitive and twisting movements, and abnormal postures.  

We can find a first description calling to mind dystonia in the “Divina Commedia”, when Dante 

Alighieri described the punishement of the fortune tellers and diviners who, for having looked 

too far forward, were then obliged with their heads twisted backwards (Divina Commedia, 

1315; Inferno; Circle eight, Bolgia four). 

And when I looked down from their faces, I saw 

that each of them was hideously distorted 

between the top of the chest and the line of jaw; 

for the face was reversed on the neck, and they came on 

backwards, starting backwards at their loins, 

for to look before them was forbidden. Someone 

sometime, in the grip of palsy may have been 

distorted so, but never to my knowledge; 

Dante Alighieri 

 

The first medical description of cervical dystonia was probably by Tulpius, in his Observationes 

Medicae (1672), while the first description of a generalized dystonia was likely given by Gowers 

(1888) under the name of “tetanoid chorea”, which he used to describe some of the clinical 
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features of patients affected with Wilson’s disease. Then in 1908, Schwalbe reported the first 

description of a family with three affected children presenting features likely resembling those 

of a primary generalized dystonia. 

The term however was firstly coined by Oppenheim in 1911 and in the same year Flatau and 

Sterling (1911) pointed out a likely inherited nature of the disorder. 

At the beginning, patients with dystonia were often considered to be hysterical but later the 

identification of the gene locus for Oppenheim dystonia (Ozelius et al., 1989) and the 

observation of an autosomal dominant pattern of transmission in the Ashkenazi Jewish 

population (Bressman et al., 1989) pointed to its organic nature. 

The classification of dystonia has evolved over the years and in 2013 an international panel of 

experts provided the last consensus update on the definition, phenomenology and classification 

of dystonia (Albanese et al., 2013). According to the latest consensus update “dystonia is a 

movement disorder characterized by sustained or intermittent muscle contractions causing 

abnormal… movements, postures …. Dystonia is often initiated or worsened by voluntary action 

and associated with overflow muscle activation”. Previously, dystonic syndromes were classified 

along three main axes: etiology, age at onset, and body distribution (Fahn, 2011; Albanaese et 

al., 2011). The new classification encompasses only two axes, i.e. ‘clinical characteristics’ and 

‘etiology’.  

Axis I regards clinical characteristics, namely age at onset, body distribution, temporal pattern, 

coexistence of other movement disorders and other neurological manifestations. The age at 

onset was subdivided into infancy (birth to 2 years), childhood (3–12 years), adolescence (13–20 

years), early adulthood (21–40 years) and late adulthood (>40 years). The body distribution is 

described as focal, segmental, multifocal, generalized or hemidystonia. The temporal pattern 

includes both the disease course, which may be static or progressive, and the variability of 
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symptoms, which may persist, fluctuate diurnally or occur only on specific actions or in 

paroxysms. Associated features distinguish dystonia combined with another movement disorder 

(e.g., myoclonus-dystonia) or with other neurological or systemic manifestations.  

Axis II regards etiology and namely those related to the nervous system pathology (evidence of 

degeneration/structural lesions/neither) and those due to inherited or acquired causes, 

respectively acquired forms (such as perinatal brain injury, infections, drugs among others) or 

idiopathic (sporadic/familial), which may be reclassified as inherited if new genes are recognized. 

The term ‘primary’ was replaced by the term ‘isolated dystonia’ to describe cases in which 

dystonia is the only motor feature, apart from tremor. The previously called heredodegenerative 

dystonia and dystonia plus syndromes (e.g., myoclonus-dystonia) are now named ‘combined 

dystonia’, therefore referring to phenomenology rather than etiology.  

 

Focal dystonia 

In June of 1975, at the International Symposium on Dystonia in New York City chaired by Stanley 

Fahn and Roswell Eldridge, David Marsden firstly reported on focal and sporadic forms (for 

instance, cervical dystonia, blepharospasm, oromandibular dystonia and writer’s cramp), 

proposing these disorders as ‘formes frustres’ of generalized dystonia. 

Adult-onset idiopathic isolated focal dystonia (AOIFD) consists in dystonia involving the neck 

(cervical dystonia), the upper face (blepharospasm), the mouth and jaw (oromandibular 

dystonia), the larynx (laryngeal dystonia), or a limb (e.g., writer’s cramp and other focal hand 

dystonia).  

 

Cervical Dystonia 
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Cervical dystonia, characterized by sustained or intermittent neck muscle contractions causing 

abnormal head movements, is the most common form of AOIFD, with a prevalence ranging from 

4.98 per 100,000 (Steeves et al., 2012) to 120 per million and a female preponderance 

(Donaldson et al., 2012). CD usually develops around one’s forties and the risk of spreading is 

around 15% over 5 years (Jinnah et al., 2013). It may be sporadic or familial. A clinical 

classification is based on the type of movement and position of the head in the affected patients, 

the most common type being rotational torticollis (>50%). Involuntary neck muscles activity 

indeed may result in different patterns, i.e. torticollis when the head turns to one side (right or 

left), laterocollis when head tilts to one side, retrocollis when it tilts upward, or anterocollis if 

downward. Patients often show a combination of various abnormal patterns, even when a 

predominant component can be identified. A jerky tremor of the head is a common overlapping 

feature (Erro et al., 2014; Defazio et al., 2015) and overflow to the shoulder and to the 

contiguous arm is also observed.  

Various sensory tricks, such as touching the contralateral face but also ipsilateral in the direction 

of head rotation, can improve the involuntary neck movements albeit temporarily. As in other 

forms of focal dystonia, stress exacerbates whereas relaxation improves the symptoms of CD.  

Idiopathic CD is the most common form, although rare cases of CD due to basal ganglia lesions 

have been reported (Albanese et al., 2013). 

Idiopathic CD is the result of the combination of genetic make-up and environmental risk factors.  

Different genes have been linked with CD, but commonly, even if a familial link may be seen, the 

genetic analyses are negative, indicating that further unknown genes and the interaction with 

other risk factors and modifiers may be associated with this disease. Less frequently, CD may 

represent the onset feature or an associated feature of other conditions, like a parkinsonian 

syndrome (as for anterocollis or retrocollis in multiple system atrophy) or more complex 
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heredodegenerative diseases. It can be due to drug exposure, mainly dopamine receptor 

antagonists (Cardoso, 2008), to a trauma (van Rooijen et al., 2011), to an autoimmune disease 

(Baizabal-Carvallo and Jankovic 2012) or to a focal lesion (LeDoux, 2003), while when fixed it 

might be due to syrinx or psychogenic causes (Schrag et al., 2004; Hawley and Weiner, 2011). 

Isolated CD, as said, is mainly an idiopathic condition. Few genes may present at first with CD, 

but usually in these contexts the clinical picture is broader and encompasses additional clinical 

signs. In patients with onset around midlife, the first gene to exclude is THAP1 (thanatos 

associated protein domain containing, apoptosis associated protein 1) related to DYT6 (Almasy 

et al., 1997; Fuchs et al., 2009). Inheritance is autosomal dominant with a reduced penetrance, 

which is around 60% (Saunders-Pullman et al., 2007). The clinical spectrum of THAP1 mutations 

varies. Presentations with oromandibular, cranio-cervical or laryngeal dystonia are common, but 

presentations with focal dystonia of the limbs, segmental or generalized dystonia are all 

described in the literature. 

Recently, however, an additional four more genes have been described as cause of adult onset 

primary pure dystonia. The first gene to appear on the scene was CIZ1 (Cip1- interacting zinc 

finger protein 1; DYT23) (Xiao et al., 2012). It causes mainly focal CD developing in mid-to-late 

life, without subsequent generalization. However, this has not been replicated in other cohorts. 

Mutations of the anoctamin 3 gene (ANO3) were recently identified to cause autosomal 

dominant isolated dystonia and have been assigned to the locus dystonia-24 (DYT24) 

(Charlesworth et al., 2013). Age at onset ranged from early childhood to one’s forties. The 

predominant phenotype was tremulous CD, whereas cranial and laryngeal dystonia were present 

to a variable degree. Mild dystonia of the arms might be observed in the arms, while 

generalization has not been reported. Tremor involving the arms and the head instead has been 

described as a consistent feature. 
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TUBB4A has recently been identified by two groups independently as the cause of DYT4 

dystonia, also known as whispering dysphonia (Lohmann et al., 2012; Hersheson et al., 2013). 

However, this mutation seems rare and the dystonia usually generalized over the years. A cue is 

the association with the “hobby horse” gait.  

Mutations in GNAL, encoding guanine nucleotide-binding protein, alpha activating  activity 

polypeptide, olfactory type Ga(olf), which is involved in dopamine (D1) signaling, have recently 

been identified (Fuchs et al., 2013) as a cause of autosomal dominant primary dystonia. It mainly 

results in craniocervical dystonia, with rare (10%) generalization. Dystonic head tremor might be 

present. Some patients had laryngeal onset or developed spasmodic dysphonia. A distinguishing 

feature may be the association with hyposmia (Vemula et al., 2013). 

Finally, even if the typical presentation of DYT1 is childhood-onset dystonic posturing of the foot 

or leg, with subsequent generalization, late-onset or milder forms of the disorder have been 

reported (Jamora et al., 2006).  

 

Treatment 

Initially, CD was treated with oral medications or surgical interventions, with frequent 

disappointing outcomes. Nowadays, chemodenervation using botulinum toxin (BoNT)-A has 

become the cornerstone of treatment for CD, with a good safety and efficacy profile. Surgical 

treatment, particularly pallidal neurostimulation, may be considered for patients with severe CD 

refractory to the combination of oral drugs and chemodenervation, while adjuvant 

physiotherapy might be proposed regardless of the therapeutic option. 

Oral treatment (including anticholinergic agents, γ-aminobutyric acid -GABA mimetic agents, 

dopamine receptor antagonists, dopamine-depleting agents and even dopamine receptor 

agonists) is limited in efficacy and is mainly based on empirical evidence. Particularly, 
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anticholinergic medications, mainly trihexyphenidyl, might be useful and are generally well 

tolerated but they should be increased slowly, in order to avoid side effects. Usually, it is worth 

starting with a 2 mg tablet of trihexyphenidyl, one-half tablet twice a day and slowly increasing 

the dosage over several weeks up to 80 mg/ day divided into 3 doses. Larger doses may give 

dose-related drowsiness, confusion, or memory difficulty limiting the medication’s usefulness.  

Once the efficacy of BoNT had been demonstrated in the 1980s, it rapidly assumed a place as the 

treatment of choice for this condition (Albanese et al., 2010; Albanese et al., 2015). 

A systematic review supports this and shows that BoNT is the most effective treatment for 

reducing dystonic symptoms in patients with focal dystonia (Zoons et al., 2012). 

The benefits from BoNT can be sustained for decades and no permanent adverse effects of BoNT 

have been reported (Jankovic, 2006, 2013). The occurrence of blocking antibodies decrease is 

rare (Ramirez-Castaneda et al., 2013) and in this case an immunologically distinct type of BoNT 

may be used. 

Deep brain stimulation (DBS) for dystonia has been performed since 1977 for CD and since 1999 

for generalized dystonia (Kurnar et al., 1999).  Internal globus pallidus (GPi) is the target in class I 

and II studies, which are level 1 evidence (Vidailhet et al., 2013). It is considered effective both 

for generalized and segmental dystonia. Younger age at surgery (< 21 years) and shorter 

duration of symptoms (< 15 years) are predictive of a better outcome. As regards DYT6, Vidailhet 

et al. (2013) showed that the site of dystonia itself is a better predictor than the genetic status, 

as patients with spasmodic dysphonia and cranial involvement tend to have a limited response 

to DBS. 

 

Neurophysiology  
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Dystonia is the result of a disruption within a motor network, likely related to an interaction 

between the genetic make-up and the environmental modifiers.  However, even if a large bulk of 

knowledge about dystonia has been produced in the recent years, the neurophysiopathological 

mechanisms underlying dystonia are still arcane and particularly it is still unclear what is 

correlative and what endophenotipic (Hallet, 2011).  

Three core underlying mechanisms seem to drive abnormalities in dystonia (Quartarone and 

Hallet, 2013): loss of inhibition (Hallet and Rothwell, 2011), sensory dysfunction (Quartarone et 

al., 2006a; Tinazzi et al., 2009) and disruption of homeostatic plasticity, with a prevailing 

facilitation of synaptic potentiation and loss of synaptic inhibitory processes (Quartarone and 

Pisani, 2011). 

Loss of inhibition can be easily read from clinical observations by observing the phenomena of 

overflow dystonia, of mirror dystonia and of geste antagoniste. Several neurophysiological 

findings further support this notion. By using transcranial megnetic stimulation (TMS), abnormal 

inhibition has been reported at several levels of the nervous system, i.e. at cortical level (Ridding 

et al., 1995; Huang et al., 2004), but also at the brainstem and at the spinal levels (Tish et al., 

2006a and b) and despite unilateral symptoms, abnormal findings have been reported in both 

hemispheres (Ridding et al., 1995; Huang et al., 2004). The most consistent abnormalities among 

different studies are reduced short interval intracortical inhibition (SICI) and reduced motor 

surround inhibition (mSI) (Hallet, 2011). 

Loss of inhibition seems to involve also the sensory system.  In dystonic patients, impaired 

performances have been reported both in spatial discrimination (Bara-Jimenez et al., 2000a) and 

temporal discrimination (Bara-Jimenez et al., 2000b; Tinazzi et al., 2002; Molloy et al., 2003; 

Fiorio et al., 2003 e 2008; Scontrini et al., 2009). Abnormalities involving the sensory pathway 

were further proved by neurophysiological measurements, including recording of the 
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somatosensory evoked potentials (Bara-Jimenez et al., 1998), magnetoencephalography 

(Meunier et al., 2001) and functional brain magnetic resonance (Butterworth et al., 2003) or by 

studying somatosensory evoked potentials with dual or double stimulation (Tinazzi et al., 2000; 

Frasson et al., 2001; Tamura et al., 2008). 

Sensorimotor integration also seems to be affected, and particularly the contingent negative 

variation, which is the EEG activity between two sensory stimuli (first warning and second 

commanding) that triggers a movement, it has been found to be abnormal prior to hand 

movements but not to neck movements in focal hand dystonia (Ikeda et al,. 1996), and prior to 

neck movements but not to hand movements in neck dystonia (Kaji et al., 1995). 

Surround and lateral inhibitions are supposed to cause a breakdown in the circuits involved in 

the encoding of motor memories, therefore promoting the generation of abnormal motor 

engrams. In that regard, it appears deducible how intensive training might represent a causal 

trigger. Indeed, the mechanisms of long-term potentiation-like and long-term depression-like 

facilitatory and inhibitory effects on TMS motor evoked potentials have been reported to further 

enhance abnormal neurophysiological findings and symptoms in dystonic patients (Quartarone 

et al., 2003; Weise et al., 2006). Moreover, it has emerged clearly how abnormalities pertain not 

only to the neural circuits affected with dystonia but to the entire sensorimotor system 

(Quartarone et al., 2005; Quartarone et al., 2006; Quartarone et al., 2008). 
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List of the PhD projects. 

During the three years of my PhD I have focused my research on dystonia with the aim to 

further analyze this fascinating disorder from a neurophysiological and clinical point of view. 

Three main aims/projects have guided my studies: 

- To  analyze the pathophysiology of tremor in dystonia (Chapter 2); 

- To analyze the pathophysiology of sensory abnormalities in dystonia (Chapter 3);  

- To analyze the role of sleep in dystonia and the pattern of dystonic movements during the 

different state of beings (i.e., wakefulness and different sleep stages) (Chapter 4);  

 

All the three study designs have been performed in patients with CD, being the most common 

type of isolated idiopathic dystonia. 

 

The first two studies have been performed at the Sobell Department of Motor Neuroscience and 

Movement Disorders, Institute of Neurology, University College London, London, UK in Professor 

John Rothwell’s laboratories. All patients were examined in the outpatient’ clinic of Professor 

Kailash Bhatia.  

The last study has been conducted at IRCSS, Institute of Neurological Sciences, Bologna, Italy of 

the Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of 

Bologna, Bologna, Italy. All the patients were examined in the outpatient clinic of Professor 

Rocco Liguori. 
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Chapter 2 

FIRST STUDY  

The role of the cerebellum in dystonic tremor* 

 

 

 

 

 

 

 

 

 

 

 

 

*Published as: Antelmi E, Di Stasio F, Rocchi L, et al. Impaired eye blink classical conditioning 

distinguishes dystonic patients with and without tremor. Parkinsonism Relat Disord 2016;31:23-7.  
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Background 

Tremor is a common feature of dystonia (Erro et al., 2014; De Fazio et al., 2015), with a 

prevalence ranging from 11% to 87%, depending on the different cohorts (Erro et al., 2014; De 

Fazio et al., 2015).  So far, dystonic tremor has frequently been misdiagnosed as essential 

tremor or Parkinson disease. The frequent misdiagnoses are likely due to the lack of markers 

for the differential diagnosis of tremulous conditions, and highlight the difficulty with the 

clinical diagnosis of dystonia. Isolated head tremor, presentation of head tremor before arm 

tremor and more severe head tremor than arm tremors are virtually all manifestations of 

dystonic tremors (Erro et al., 2014; De Fazio et al., 2015). An interesting clue is that in essential 

tremor, head tremor often disappears when the patient lies down but persists in CD, 

supporting the notion that tremor in ET is a postural tremor that dissipates when a patient lies 

down (Agnew et al., 2012). Patients presenting with isolated voice tremor predating the onset 

of hand tremor, and being more severe than hand tremor, are considered to be affected with 

“tremulous dystonia” (Erro et al., 2014). Usually dystonic tremors have irregular amplitudes 

and superimposed jerks. Rest tremor may occur in dystonia, but it is mostly unilateral or 

asymmetric and, remarkably, it does not have re-emergent tremor (Erro et al., 2014). 

Additional peculiarities revealing the underlying dystonic nature of tremor are: the 

position/task specificity, the jerkiness, the presence of tremor-flurries, thumb hyperextension, 

the pronation-supination type rather than vertical, the absence of a remarkable response to 

levodopa and the static rather than progressive disease (Erro et al., 2014). Tremor seems more 

frequent in adult onset patients with cervical involvement and segmental or multifocal 

dystonia (De Fazio et al., 2015). 
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In patients with CD, according to the classification of tremor in dystonia, (Deuschl, 2003) 

tremor may manifest in a body part affected by dystonia (dystonic tremor) or in body parts 

unaffected by dystonia (tremor associated with dystonia). 

The pathophysiology of tremor in dystonia however is still largely elusive (De Fazio et al., 

2015). Several studies have been conducted trying to disentangle this issue by means of 

neurophysiological findings. Mṻnchau et al. (2001) by investigating spinal circuitry reported on 

abnormally reduced presynaptic reciprocal H reflex inhibition in patients with severe and early 

onset harm tremor, when compared to the milderly affected and to patients with ET. The blink 

reflex R2 recovery cycle showed higher brainstem excitability in patients with DT when 

compared to patients affected with ET (Nisticò et al., 2012 a-b). Finally, while the 

somatosensory temporal discrimination threshold has been reported to be abnormal both in 

ET and DT, temporal discrimination movement threshold was reported as a discrete feature of 

DT (Tinazzi et al., 2013). Besides, neurophysiologic studies in patients implanted with DBS in 

the GPi proposed that excessive synchronization in the frequency range of 3–18 Hz may be 

responsible for generating dystonic symptoms including tremor (Liu et al., 2008).  It remains 

unclear, however, why GPi DBS improves dystonia but fails to improve tremor in dystonic 

patients. Yet, even confirming abnormal brainstem excitability and inhibitory processes, which 

are well known features of dystonia itself, there are no studies comparing neurophysiological 

findings in dystonic patients with and without tremor.  

Dystonia is currently considered as the result of a network impairment (Quartarone and Hallet, 

2013), within which the cerebellum has been recently suggested to play a pivotal role 

(Prudente et al., 2014). Structural changes were observed in CD in the anterior and posterior 

cerebellum (Piccinin et al., 2014) and in motor areas connected to the cerebellum, like the 

premotor and supplementary motor areas, globus pallidus, striatum, and thalamus (Draganski 
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et al., 2003; Colosimo et al., 2005; Egger et al., 2007; Obermann et al., 2007; Prell et al., 2013). 

Cerebellar dysfunction could also be claimed to explain certain behavioral deficits observed in 

patients with dystonia, such as impairments in movement timing (Bares et al., 2007; Bares et 

al., 2011; Filip et al., 2013; Avanzino et al., 2013).  

Recently, by using functional MRI activation analysis, connectivity analysis, and voxel-based 

morphometry in patients with CD, a miscommunication between the basal ganglia and the 

cerebellar loops has been found, with decreased activation in the posterior cerebellar lobules 

as well as in the premotor areas, in the associative parietal cortex, and in visual regions (Filip et 

al., 2017). Patients showed also decreased cerebellar connectivity with bilateral basal ganglia 

structures and the dorsolateral prefrontal cortex (Filip et al., 2017). 

To further stress a cerebellum involvement in dystonia, and particularly in dystonic tremor, 

microscopic cerebellar changes have been reported in patients with dystonia and tremor (Ma 

et al., 2012) and stimulation applied to Vim (the main target of cerebellar projections to the 

thalamus) have been reported to improve tremor in dystonia (Hedera et al., 2013).  

Overall, the cerebellum and inferior olives are known to play a critical role in the 

pathophysiology of action-induced tremors (Raethjen and Deuschl, 2012) and therefore it is 

possible that a cerebellar dysfunction may contribute somewhat also to dystonic tremor. 

A great body of literature reports on eye blink classical conditioning (EBCC) as a type of 

associative learning tightly linked to the cerebellum (Gerwig et al., 2007). Indeed, animal 

models documented the role of the cerebellar output, via interpositus neurons, in modulating 

eyeblink learned responses (Thompson, 2005), along with other structures, such as the 

hippocampus (Delgado-García and Gruart, 2006) and the amygdala (Boele et al., 2009). In 

humans, both cerebellar lesions and functional brain imaging data provide evidence that the 

cerebellum plays a pivotal role in classical conditioning, along with the brainstem circuitry and 
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likely with the diencephalic structures (Woodruff-Pak et al., 2001; Dimitrova et al., 2009; Berry 

and Hoffmann, 2011).  

EBCC has been widely used to study the cerebellum in different diseases and it has been 

reported to be impaired in patients with ET (Kronenbuerger et al., 2007) and neuropathic 

tremor (Schwingenschuh et al., 2013).  

As long as dystonic diseases are concerned, this paradigm has been reported to be normal in 

patients with generalized dystonia due to TOR1A (DYT1) and THAP1 (DYT6) mutations 

(Sadnicka et al., 2015), as well as in patients with secondary dystonia (Kojovic et al., 2013) and 

a paradigm testing a fundamental cerebellar computation, i.e. motor adaptation, has been 

found to be normal in patients with CD (Sadnicka et al., 2014), hence leading to question about 

the role of the cerebellum in the pathophysiology of dystonia. However, patients with different 

types of isolated focal dystonia have been instead found to have lower rates of classical 

conditioning when compared with healthy controls (Teo et al., 2009; Hoffland et al., 2013; 

Kojovic et al., 2013). In all the former studies the presence of associated tremor has been 

however overlooked. 

Therefore, the aim of the study at issue has been to test if a cerebellar dysfunction, studied by 

means of EBCC, segregates with the presence of tremor in patients with dystonia.  

 

Materials and Methods 

 

Population 

Patients with idiopathic isolated CD were prospectively recruited among those attending the 

movement disorders outpatient clinic at the National Hospital for Neurology and 

Neurosurgery, London. All of them underwent an extensive neurological examination, 
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including also a video recording of patients’ motor signs. Patients with known acquired or 

genetic forms of dystonia were excluded from the study on the basis of clinical records and 

examination.  A great deal of effort was taken in order to characterize tremor in all the 

patients. To depict head tremor, patients were examined in different positions: seated upright, 

with the head in neutral position and while turning the head to either side. Arm tremor as well 

was assessed in different positions, i.e. with arms relaxed on the lap for the evaluation of rest 

tremor, arms outstretched or flexed at the elbow for postural tremor, and finger-to-nose 

maneuver for kinetic tremor. We instructed the patients to maintain each condition for 15 s. 

After the examination, patients were judged tremulous if tremor was present for at least 50% 

of each condition. Finally, patients were classified as having dystonic tremor (DT) if they 

showed cervical tremor with irregular amplitude and superimposed jerks, which are recognized 

as characteristic of dystonic tremor,  while tremor affecting a non-dystonic body part was 

defined as tremor associated with dystonia (TAWD), as per consensus  statement of the 

Movement Disorder Society (Deuschl, 2003). Clinical assessment included also: the scale for 

the assessment and rating of ataxia (SARA scale) (Schmitz-Hübsch et al., 2006), the Fahn-

Tolosa-Marin Tremor Rating Scale (TRS) (Fahn et al., 1993) for the rating of tremor and the 

Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) (Fahn et al., 1987) for assessing 

the severity of CD. 

All the patients were on treatment with botulinum toxin injection and therefore the study was 

performed at the wearing-off of the treatment, i.e. at least three months after the last 

injections. Patients taking additional drugs for their neurological condition were excluded from 

the study. We finally selected 25 patients with isolated idiopathic CD. In order to compare 

findings, we performed the same measurements in 12 age-matched healthy subjects (HS). 
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Paradigms 

Blink reflex and blink reflex recovery cycles 

Stimulation of the supraorbital nerve evokes an early ipsilateral response (R1) and two late 

responses, one ipsilateral to the stimulation (R2) and the other contralateral (R2′). The afferent 

limb of the reflex loop is due to the sensory trigeminal root and the ophthalmic division, 

whereas the efferent limb consists of the facial nerve.The R1 response is an oligosynaptic reflex 

response mediated through the pons. The R2 and R2′ are polysynaptic reflex responses 

mediated through the pons and the lateral medulla and correlate with closure of the eyelid. 

Nerve impulses responsible for R2 are conducted by the descending spinal tract through the 

dorsolateral region of the pons and medulla oblongata to the lower spinal trigeminal nucleus. 

From there, impulses are relayed through polysynaptic medullary pathways ascending both 

ipsilaterally and contralaterally to the stimulus side, before making connections with the facial 

nuclei. The impulses cross in the lower medullary region. Trigemino-facial connections are 

thought to pass through the reticular formation and lie medial to the spinal trigeminal 

(Berardelli et al., 1999). 

Stimulation of the infraorbital nerve always evokes an R2 response but not necessarily an R1. 

For normative value and procedure, please see Berardelli et al. (1999). 

The study of the habituation, the recovery cycle and the pre-pulse modulation, use the R2 blink 

reflex to study the excitability of the brainstem reticular formation and the cortico-reticular 

drive. 

The recovery cycle is studied by applying two shocks of equal intensity (conditioning and test 

stimuli) to the supraorbital nerve at interstimulus intervals ranging from 100 ms to 2 s. The size 

of the response to the test stimulus, measured as the rectified and integrated EMG activity, is 
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expressed as a percentage of the size of the response to the conditioning stimulus (Kimura, 

1973).  

Physiologically, repeated stimulation should produce habituation and decrease the amplitude 

and the numbers of responses. Blink reflex recovery has extensively been studied in a number 

of diseases, including movement disorders, cortical lesions, Bell's palsy, and brain stem lesions 

(Beradelli et al., 1999). 

Eye blink classical conditioning (EBCC) 

EBCC is a form of classical conditioning that has been widely used to study neural structures 

and mechanisms that underlie learning and memory. The procedure is rather simple and 

typically consists of pairing a conditioned stimulus (CS) (usually an auditory or visual stimulus)  

with an eyeblink-eliciting unconditioned stimulus (US) (e.g., a mild puff of air to the cornea or a 

mild shock with electrical stimulation). Physiologically this paradigm induces a reflexive, 

unconditioned response (UR) that follows US onset. After many CS-US pairings, an association 

is formed, i.e a conditioned response (CR) that precedes US onset. The magnitude of learning is 

related to the percentage of all paired CS-US trials. 

A great body of evidence proposed the cerebellum as the essential structure for producing 

eyeblink CRs and particularly the interposed nucleus has been proposed as the critical site to 

learning, retaining, and executing the conditioning blink response (Thompson et al., 2009). 

Of course, structural or functional abnormalities involving the afferent or efferent branches 

connecting structure might influence the responses.  

The US travel with the trigeminal nucleus and sends efferent projections to the inferior olive, 

from there the climbing fibers project to both the deep cerebellar nuclei and Purkinje cells in 

the cerebellar cortex. When the CS is a tone, auditory information is received via the cochlear 

nuclei and then from the pons the mossy fibers transmit to the cerebellum, and terminate in 
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both the cerebellar nuclei, and at granule cells of the cerebellar cortex. Output from the 

interpositus nucleus includes projections to the red nucleus, and the red nucleus sends 

projections to the facial and abducens nuclei. These nuclei supply the motor output 

component of the reflexive eyeblink (Gerwing et al., 2007).  

 

Experimental procedures 

Neurophysiological measurements included the study of the R2 blink reflex recovery cycle 

(BRC) and of the EBCC. 

The BRC and the EBCC were recorded in all subjects according to standard methods (Teo et al., 

2009). 

To test the BRC, square wave pulses of 200µs width at 5 times the somatosensory threshold 

(ST) were used to stimulate the right supraorbital nerve. Single or double pulses were given 

randomly at interstimulus intervals (ISI) of 200, 300, 400 and 1000 ms. A total of six trials for 

each ISI were collected. Surface electromyographic (EMG) activity was recorded from the right 

and left orbicularis oculi muscles. After the recordings, the signal was analyzed off-line and the 

recorded activity was DC-corrected, rectified, and averaged. After the measurements, the ratio 

between unconditioned and conditioned R2 area was calculated. 

In order to collect EBCC, we used conditioning stimulus (CS), a loud (70-80 dB; 2000 Hz) tone 

lasting 400 ms, which was delivered by means of binaural headphones. The CS inconsistently 

produced an acoustic startle response (“alpha blink”) occurring within 200 ms after the CS. The 

unconditioned stimulus (US) was instead a square electrical pulse of 200 µs length and of 

intensity equal to five times the ST, which was delivered over the right supraorbital nerve 400 

ms after the CS. Surface EMG was recorded bilaterally from the orbicularis oculi muscle. Pairs 

of CS and US at 400 ms ISI were delivered in 6 acquisition blocks (each consisting of 9 CS-US 

https://en.wikipedia.org/wiki/Granule_cells
https://en.wikipedia.org/wiki/Red_nucleus
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pairs, 1 US only, 1 CS only trial). A seventh block consisted of 11 CS-only trials to measure 

extinction. 

EMG bursts were considered “alpha blinks” if their amplitude exceeded 50 µV and if they 

occurred within 200 ms after the CS. In CS-US pairs, EMG bursts were considered instead 

conditioned responses (CRs) if latency was at least 200 ms after the CS but before the US. For 

trials including CS only, EMG bursts occurring 200–600 ms after the CS were considered CRs. 

 

Statistical analysis 

Clinical differences between patients with and without dystonia were assessed with several 

Mann-Whitney tests, while a one-way ANOVA was used to compare the intensity for evoking 

the R2 component of the blink reflex in all groups.  

Mixed ANOVAs with “group” (dystonia without tremor, dystonia with tremor, HS) and “ISI” 

(200, 300, 400 and 1000 ms) as factors of analysis were used to assess differences in R2 

recovery. 

Several Kruskal-Wallis tests were instead used in order to compare the number of CRs summed 

over all blocks and in each block (from 1 to 7) in the three groups. Finally, we applied Mann-

Whitney tests in order to calculate differences among groups (dystonia without tremor, 

dystonia with tremor and HS) in significant blocks. 

Possible correlations among demographic data, clinical features (disease duration, TRS and 

TWSTRS) and neurophysiological results in the two groups of patients were evaluated with the 

Spearman’s rank correlation coefficient.  

When using ANOVAs, normal distribution of data was assessed by means of Shapiro-Wilks’ test 

and Levene’s test was used to assess homogeneity of variance across groups. Greenhouse 

Geisser correction was used when necessary to correct for non-sphericity (i.e., Mauchly's test < 
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0.05). All p values < 0.05 were considered significant. Bonferroni post-hoc test was used for 

post-hoc analyses following the ANOVA. Bonferroni correction was used to correct for multiple 

comparisons. 

 

Results 

The 25 patients with isolated idiopathic CD were categorized as with tremor (n=13) and 

without tremor (n=12) depending on the results of clinical examination and on the review of 

the videotapes by two experts in movement disorders.   

Among patients with tremor, 8 had DT and 5 had both DT and TAWD.  

Statistical analysis did not disclose significant clinical differences among patients with and 

without tremor (Table 1). 

 

Table 1: Clinical features of dystonic patients. 

                        Patients with Dystonia                                                 Patients with Dystonia and Tremor 

Case Sex Age 
Disease 
duration 

TWSTRS 

 

Case Sex Age 
Disease 
duration 

TWSTRS DT TAWD TRS  

1 F 65 20 14 1 M 68 15 15 X hands 12 
2 F 68 13 16 2 F 60 14 23 X hands 9 
3 M 48 14 16 3 F 65 15 9 X  10 
4 F 36 6 9 4 M 55 15 14 X  5 
5 F 58 10 14 5 F 70 15 16 X  7 
6 M 64 12 29 6 F 74 22 22 X hands 12 
7 F 76 14 18 7 F 42 16 20 X  4 
8 F 54 6 15 8 M 52 12 18 X  6 
9 F 66 31 41 9 F 54 26 22 X hands 20 

10 F 64 11 30 10 M 68 8 40 X hands 16 
11 F 64 11 20 11 F 58 16 14 X  6 
12 M 49 16 15 12 F 69 20 21 X  5 

     13 M 72 30 22 X  5 
             

Av  59.3 13.7 19.7 Av  62.1 17.2 19.7   9.0 

SD  10.8 6.7 9.05 SD  9.45 5.89 7.41   4.86 
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Figure Legend: Age and disease duration are measured in years. Av: average; DT: dystonic 
tremor; F: female; M: male; SD: standard deviation; TAWD: tremor associated with dystonia; 
TWSTRS: Toronto western spasmodic torticollis rating scale; TRS: Fahn-Tolosa-Marin tremor 
rating scale; X: means presence of dystonic tremor. 

 

Blink reflex excitability 

Unpaired t-tests displayed comparable intensity (dystonia without tremor: 6.46±2.23 mA; 

dystonia with tremor: 6.72±3.47 mA; HS: 6.4±2.30 mA) in eliciting blink reflex in all groups. The 

mixed ANOVA disclosed a significant effect of “group” (F2,34= 12.35; 

P<0.001),“ISI”(F1.5,52.4=51.54; P<0.001) and a significant interaction of “group×ISI” 

(F3.1,52.37=2.53; P=0.025).  

Post-hoc analyses showed that patients with and without tremor did not differ in any of the ISI 

considered, while there was a significant effect at all ISI when comparing both groups of 

patients with HS (Figure 1).  

 

Figure 1 

 

Blink recovery cycle in healthy subjects and patients with dystonia (with and without tremor). 
Asterisks represent significant results (p < 0.05) when comparing blink recovery cycle curves of 

Modified from Antelmi et al, PRD 2016 
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the R2 component in patients and in healthy subjects. Error bars indicate the standard error. ISI: 
interstimulus interval. 
 

Eyeblink classical conditioning 

Kruskal-Wallis test showed a significant difference in CRs summed over all blocks among the 

three groups (H2=8.49, P=0.014). 

Mann-Whitney tests showed that HS and patients with dystonia without tremor had the same 

total number of CRs, while patients with dystonia and tremor had reduced number of CRs 

compared both with HS (Z=-2.96, P<0.05) and with patients with dystonia without tremor 

(Z=1.97, P<0.05). 

Considering the rate of CRs over different blocks, Kruskal-Wallis tests showed a significant 

difference among the three groups in Block 3 (H2=6.92, P=0.028), Block 4 (H2=9.19, P=0.007), 

Block 5 (H2=11.35, P=0.002) and Block 6 (H2=8.42, P=0.012).  

Mann-Whitney tests showed that patients without tremor and HS did not differ with regard to 

CRs in all blocks, while patients with tremor and HS differed in Block 3 (Z=-2.87, P=0.003), Block 

4 (Z=-3.27, P=0.001), Block 5 (Z=-3.32, P<0.001) and Block 6 (Z=-2.93, P=0.002).  

Regarding patients with tremor, Mann-Whitney tests did not show a significant difference in 

CRs in all blocks considered between patients with DT and patients with both DT and TAWD. 

Finally, patients without tremor and patients with tremor differed in conditioning in Block 5 

(Z=-2.36, P=0.016) and Block 6 (Z=-2.01, P=0.045). (Figure 2).  
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Figure 2 

 

Eyeblink classical conditioning in healthy subjects and patients with dystonia (with and without 
tremor). Asterisks represent significant results (p < 0.05) when comparing the number of 
conditioned eyeblink responses per block in tremulous patients and in healthy subjects (line 
above) and in patients with tremor and patients without tremor (line below).  Error bars 
indicate the standard error. CRs: conditioned responses 

 

Correlation of BRC and EBCC with clinical features 

Spearman’s rank correlation coefficient did not disclose any correlation between 

neurophysiological results and clinical data (disease duration, TRS and TWSTRS). 

 

Discussion 

In our cohort of CD patients we found that impaired cerebellum functioning, tested by means 

of EBCC paradigm, segregates with the presence of tremor in patients with CD. Indeed, results 

showed that patients with tremor had lower rates of CRs when compared to both HC and non-

tremulous patients. 

The EBCC is a well-known paradigm of associative learning, and it has been largely 

demonstrated that it is strongly cerebellar dependent (Gerwig et al., 2007). There is indeed a 

Modified from Antelmi et al, PRD 2016 



 31 

great bulk of literature on animals showing that cerebellum and its associated circuitry 

constitute the entire essential circuit for delaying classical conditioning of eyeblink and other 

discrete responses (Thompson and Steinmetz, 2009). Anatomical and neurophysiological data, 

thoroughly support the hypothesis that the essential memory trace for the learning of these 

discrete conditioned responses is formed and stored in the cerebellar interpositus nucleus 

(Thompson and Steinmetz, 2009). Neuronal/synaptic plasticity is also established in the 

cerebellar cortex, but its role is less clear as well as the role of the hippocampus (Moyer et al., 

2015). There is some evidence that EBCC may be also influenced by the brainstem reflex 

centres of the eyeblink reflex, via the red nucleus (Bacha, 2004), along with the pontine nuclei 

and the inferior olive. However, in our population of dystonic patients, it is unlikely that 

brainstem excitability accounts for the differences between dystonic patients with and without 

tremor, as both groups of patients showed a similar degree of brainstem hyperexcitability, as 

measured by means of the BRR. Therefore, abnormal brainstem inhibition cannot be claimed 

as the cause of decreased conditioned responses in the tremulous group. 

On this basis, a specific role of the cerebellum in the development of tremor in patients with 

dystonia may be supported. 

The cerebellar hypothesis in dystonia has increasingly gained huge momentum based on a 

body of clinical, neurophysiological and imaging evidence (Prudente et al., 2014). In dystonic 

patients contrasting results have been obtained with regards to the EBCC. In fact, the EBCC has 

been reported to be impaired in different types of primary focal dystonia (Teo et al., 2009), but 

not in patients with hereditary dystonia due to TOR1A or THAP1 mutations (Sadnicka et al., 

2015) or in secondary dystonia (Kojovic et al., 2013). Such a discrepancy might be due to the 

fact that different pathophysiological mechanisms might be responsible for different types of 

dystonic syndromes. Indeed,  the occurrence of tremor in early onset dystonia seems to be 

http://topics.sciencedirect.com/topics/page/Classical_conditioning
http://topics.sciencedirect.com/topics/page/Classical_conditioning
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lower, while tremor is more frequently reported in late onset idiopathic dystonia, and 

particular in segmental (craniocervical) and CD (De Fazio et al., 2015). Moreover, the 

contradictory results reported so far might also have been influenced by the the fact that the 

presence of tremor has been overlooked in previous cohorts.  

Overall, the cerebello-thalamo-cortical pathway is generally reckoned to be implicated in the 

pathophysiology of tremor and indeed decreased conditions at the EBCC paradigms have been 

reported also in other types of tremor, including ET (Kronenbuerger et al., 2007) and 

neuropathic tremor from acquired disease (Schwingenschuh et al., 2013). 

As reported above, abnormal oscillatory activity in the internal globus pallidus (GPi) (Liu et al., 

2008) has been claimed as a possible mechanism of tremor in dystonia. However, while DBS of 

the GPi ameliorates dystonic symptoms, it does not always have such a good impact on the 

tremulous component. This might suggest that other structures beyond the GPi account for the 

occurrence of tremor in dystonia. Indeed, as a further proof, thalamic DBS, particularly of the 

ventral intermediate nucleus (e.g., the main target of cerebellar projections to the thalamus) 

improves tremor in dystonic patients (Pauls et al., 2014) and stimulation applied to Vim (the 

main target of cerebellar projections to the thalamus) have been reported to improve tremor 

in dystonia (Hedera et al., 2013). In this regard, anatomopathological abnormalities involving 

the cerebellum have been found in dystonic patients with additional tremor (Ma et al., 2012) 

and,  recently, a study of functional MRI showed s discrete involvement of the cerebellum in 

patients with dystonic tremor vhen compared to dystonia (Kirke et al, 2016). Hence our results 

together with the above reported body of evidence would further suggest that the 

development of tremor in patients with dystonic syndromes involves the cerebellum. Clinical 

examination in our patient cannot disclose instead any clear cerebellar sign. This is in line with 

what has been previously reported in literature, as recently reviewed by Prudente et al. (2014). 
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The absence of clear clinical cerebellar signs in dystonic patients points toward a selective 

impairment of an isolated pattern of motor control linked to the cerebellum. Paradigms of 

non-invasive cerebellar stimulation in patients with dystonia (Hoffland et al., 2013) have been 

proved to ameliorate conditioning responses. This might suggest that cerebellar dysfunctions 

in dystonia might be dynamic, occurring at a functional rather than at a structural level. 

In keeping with the model suggesting dystonia as a network disorder, our study points towards 

a functional cerebellar impairment as major determinant for the occurrence of tremor in 

patients with dystonia. 

The results of our study give new insight into the pathophysiology of tremor in dystonia, 

claiming cerebellum as a crucial node underlying the pathophysiology of tremor in dystonia. 

Moreover, these findings might be important also for their potential treatment implications. 

Indeed, on the basis of these results, it is possible to infer that tremor might benefit from 

chemical, functional or surgical approaches targeting not only the basal ganglia, but also the 

cerebellum. 
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Chapter 3 

SECOND STUDY 

Neurophysiological correlates of abnormal somatosensory temporal 

discrimination in dystonia.* 

 

 

 

 

 

 

 

 

 

 

 

 

* Published as: Antelmi E, Erro R, Rocchi L, et al. Neurophysiological correlates of abnormal 

somatosensory temporal discrimination in dystonia. Mov Disord 2017; 32: 141-8. 
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Background 

Formerly considered a pure basal ganglia-motor disorder, dystonia is currently recognized as a 

disorder of the sensorimotor network. However, as reported in the general introduction, the 

pathophysiology of dystonia is still a puzzling issue.  

Impaired inhibition rises as the leading functional abnormality (Hallet and Rothwell, 2011), 

causing derangement of plasticity (Quartarone et al., 2011). Clinical observation (overflow 

dystonia, mirror dystonia, presence of sensory trick), behavioral and neurophysiological 

measurements (Hallet and Rothwell, 2011, Quartarone et al., 2006; Tinazzi et al., 2000) all 

point to the same direction, suggesting a derangement of homeostatic plasticity (Quartarone 

and Pisani, 2011). Abnormal inhibition has been found both in the somatosensory (S1) and in 

the motor (M1) cortex. However, the ultimate neuronal substrate underlying such 

abnormalities is still debated. Impairment of lateral inhibition within the S1 (Angel, 1967; 

Shagass and Schwartz 1964; Wiederholt, 1978) may explain the abnormalities reported when 

analyzing somato-sensory potentials by coupled stimulations (Frasson et al., 2001; Tamura et 

al., 2008) or by simultaneous stimulation of two different sites (Tinazzi et al., 2000). However, 

whether they are due to abnormal functioning of local inhibitory interneurons within the S1 

(Tamura et al., 2008) or to an abnormal modulation by the thalamo-cortical afferents (Frasson 

et al., 2001) is still debated. Sensory abnormalities in dystonia have been also reported in the 

spatial domain and abnormal sensory processing of dual inputs, such as a putative marker of 

impaired lateral surrounding inhibition, has been found in generalized dystonia (Tinazzi et al., 

2000).  

The temporal domain is affected as well and particularly somatosensory temporal 

discrimination (STDT) has been consistently reported to be abnormal in patients with different 
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types of dystonia (Molloy et al., 2003; Fiorio et al., 2003, 2008; Tamura et al., 2008; Scontrini et 

al., 2009).  

STDT is defined as the minimum interval between two pairs of tactile stimuli to be clearly 

perceived as separate. Healthy individuals usually perceive two tactile stimuli as sequential 

when the interstimulus interval (ISI) exceeds 30–50 msec (Lucruz et al., 1991), although there is 

inter-subject variability and a progressive decline of performance with age (Kimmich et al., 

2014; Ramos et al., 2016). Different brain regions have been claimed to be implicated in STDT, 

including the primary somatosensory area (S1), the pre-supplementary motor area, and the 

basal ganglia in both healthy subjects (Kimmich et al., 2014; Ramos et al., 2016) and in patients 

with focal cerebral lesions (Lacruz et al., 1991). In dystonia, impaired STDT does not correlate 

with disease severity (Molloy et al., 2003; Conte et al., 2012), it is abnormal in non-dystonic 

body regions (Fiorio et al., 2003), but also in about half of unaffected first-degree relatives of 

patients (Fiorio et al., 2008; Tamura et al., 2008). All these findings lead to consider STDT as an 

endophenotypic trait of dystonia. So far, few studies have instead focused on the 

neurophysiological substrates of abnormal STDT in dystonia. The study by Tamura et al. (2008) 

addressed this iusse by measuring paired pulse (PP) somatosensory evoked potential (SSEP) 

recovery cycle in patients with focal hand dystonia and impaired STDT. The authors reported 

reduced PP SEEP recovery cycle of the P27 component at the short interstimulus interval (ISI) 

of 5 ms, a measurement thought to be linked to altered S1 intracortical inhibition, to be linked 

with abnormal STDT in focal hand dystonia. STDT has been reported to be related to inhibitory 

mechanisms within S1 also in healthy subjects (Pastor et al., 2004). In this regard, additional 

indirect suggestions come also from studies assessing modulation of STDT by paradigms 

modulating synaptic plasticity within the S1, in both healthy subjects and patients with focal 

dystonia (Conte et al., 2014; Erro et al., 2015). Studies of neuroimaging have instead correlated 
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abnormal STDT in dystonia with other regions of the sensorimotor network, including the 

cerebellum and the basal ganglia (Tinazzi et al., 1999; Sanger et al., 2001; Scontrini et al., 

2009), suggesting an abnormal functioning of a subcortical striatal re-entrant looped pathway. 

Thus, the relative contribution of each of the nodes of the sensorimotor network to abnormal 

temporal discrimination in dystonia is not entirely clear. 

Conte and colleagues (2014) reported that in both patients with focal hand dystonia as well as 

in healthy subjects, STDT was improved by a protocol of intermittent theta burst stimulation, 

which is supposed to induce synaptic plasticity within S1 by long-term potentiation 

mechanisms. Similarly, Erro et al. (2015) found SDTD to be ameliorated in healthy subjects by 

high frequency sensory stimulation of the skin, and hence by a mechanism likely linked to 

plastic changes within the S1.  However, none of these studies evaluate measurements of 

cortical inhibition directly. 

A simple way to look at the activity of inhibitory neurons within the S1 is by studying the high 

frequency oscillations (HFOs). HFOs indeed measures the activity of inhibitory mechanism 

within the somatosensory system. Particularly, the “early” HFO burst is tought to be generated 

from action potentials of thalamocortical fibers at the time when they arrive at the primary 

somatosensory cortex, while the “late” component seems to be generated by intracortical 

inhibitory interneurons (Ozaki and Hashimoto, 2011). HFOs have been once studied in patients 

with focal dystonia and found to be abnormal (Inoue et al., 2004). 

In order to evaluate how mechanisms of sensory inhibition at different levels of the 

somatosensory system may contribute to abnormal temporal processing in dystonia, we have 

here performed an extensive neurophysiological battery in patients with isolated idiopathic 

CD.  
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We therefore tested the cortical levels by measuring PP SSEP at short inter stimulus interval, 

double SSEP by simultaneous stimulation of two different fingers nerves and late component 

of HFOs and at subcortical levels by measuring recovery cycle of SSEP at longer interval and 

early component of the HFOs, with the hypothesis that decreased inhibition at cortical level 

correlates with abnormal STDT.  

 

Materials and Methods 

 

Participants 

We prospectively recruited patients with idiopathic isolated CD, according to current criteria 

(Albanese et al., 2013) from those attending the outpatient clinic at the Sobell Department of 

Motor Neuroscience and Movement Disorder, Institute of Neurology, UCL, London, UK. All the 

patients were on treatment with botulinum toxin injection, but no additional medications. 

Patients were assessed at the wearing-off of the treatment and therefore at least 3 months 

after their last botulinum toxin injection. All underwent an extensive clinical examination, and 

clinical records were carefully reviewed in order to exclude other forms of dystonia. Disease 

severity was assessed with the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). 

We finally recruited nineteen patients. The study included also nineteen age- and sex-matched 

healthy volunteers. In all the HC we collected a clinical history and performed a neurological 

examination, finally excluding all subjects with a possible family history of any neurological 

disorders, including dystonia. Additional exclusion criteria for both patients and HC were: 1) no 

history of other neurological or psychiatric diseases; 2) no history of medications acting on the 

central nervous system and 3) no symptoms/signs suggestive of a peripheral neuropathy.  
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All experimental procedures were approved by the local institutional review board and 

conducted in accordance with the Declaration of Helsinki and according to international safety 

guidelines. 

 

Paradigms 

Somatosensory Temporal Discrimination Threshold (STDT) 

Temporal discrimination is a basic aspect of somatosensory processing, critical for a number of 

sensory functions including kinesthesia, graphesthesia, vibratory sense and stereognosis. STDT 

is the shortest time interval at which two separate stimuli are perceived as asynchronous. In 

healthy subjects, it ranges from 30 to 40 ms (Hoshiyama et al., 2004) and it increases with age. 

Strunctural and functional studies highlighted that temporal discrimination of tactile stimuli is 

a complex task requiring the involvement of several cortical and subcortical areas, such as pre-

supplmentary motor area, anterior cingulate cortex, and basal ganglia, along the primary 

sensory areas (Pastor et al., 2004). 

Sensory Evoked Potentials (SEPs) 

SEPs are electrophysiological responses (potentials) to the stimulation generated in the 

sensory pathways at several (peripheral, spinal, subcortical and cortical) levels of the nervous 

system. By means of SEPs it is possible to assess the function of the dorsal column–lemniscal 

system from the first-order neurons (dorsal root ganglia) to the fourth order neurons 

(somatosensory cortex areas). They are typically evoked by bipolar transcutaneous electrical 

stimulation applied on the skin over the selected nerve. These electrical stimuli depolarize 

nerve fibers directly by generating a potential difference in the medium adjacent to the nerve 

trunk and across the nerve fiber membrane, causing depolarization close to the site of 

cathode. Cathode should be proximal to the anode in order to prevent anode block. The 
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selected nerves are stimulated with monophasic square wave electrical pulses and stimuli are 

delivered by using either a constant voltage or a constant current stimulator. The stimulus 

intensity is set slightly above the motor threshold for mixed sensory-motor nerves and at three 

or four times the sensory threshold for stimulation of sensory nerves. A rate of 1-10 stimuli per 

second (1-10 Hz) is usually used. Signal averaging reduces noise that is random with respect to 

stimulus delivery while retaining signals that are time-locked to stimulus delivery. SEPs typically 

are recorded by using standard EEG electrodes. Recording electrode sites are identified by 

anatomical landmarks, according to the international 10-20 system, or its extension, the 10-10 

system. To minimize the electrode artifact the ground should be placed on the stimulated limb, 

between the site and the recording electrode. However, electrically isolated stimulators allow 

the use of the ground electrode on the head, which is adequate to eliminating artifact related 

to the electrical main and radiofrequency interference. The contact impedances of the 

stimulating electrodes should be kept low (Cruccu et al., 2008), below 5,000 ohms, and should 

be as uniform as possible across the electrodes to maximize common-mode rejection and 

minimize noise pickup. Most of the SEP components peak before 50 and 100 ms. 

Typical recording amplifier filter settings for SEPs are 30-3,000 Hz. SEPs are composed of both 

low and high frequencies, and filtering can be problematic.  

The number of sweeps that need to be averaged depends upon the initial signal-to-noise ratio, 

but generally, 500 to 1000 sweeps are enough. There are many factors that may influence SEP 

amplitude and latency (namely age, body height and gender, skin and core temperature, 

attention and vigilance, drugs). 

Several characteristics of SEPs can be measured, including latency, peak latencies, component 

amplitudes, and waveform morphology. SEP components typically are named by their polarity 

and typical peak latency in the normal population. Different components may be recognized. In 
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our experimental procedure we focused on brainstem and cortical component of SEPs, i.e. P14, 

which is the potential arising from the lower brainstem close to the cervico-medullary junction 

and N20 which is localized to the parietal scalp region, showing a polarity reversal across the 

central fissure. It represents the largest early negative deflection at parietal scalp region. It is 

generated from the primary somatosensory cortex in the posterior wall of the central fissure. 

High Frequency Oscillations (HFOs) 

HFOs are fast oscillations (at around 600 Hz) that have been firstly described in healthy 

subjects underlying the N20 component of SEPs (Cracco and Cracco, 1976). They have been 

claimed to represent the cortical activity of the GABAergic inhibitory interneurons 

monosinaptically receiving thalamocortical inputs (Ozaki and Hashimoto, 2011). They can be 

separated from N20 applying a digital band-pass filtering (500-1000 Hz). The early HFO burst 

has been reported to be generated from action potentials of thalamocortical fibers at the time 

when they arrive at the primary somatosensory cortex, while the late component seems to be 

generated by local inhibitory interneurons. Indeed, the later part of HFOs, has been found to 

be sensitive to stimulus rate, reflecting therefore the activity of postsynaptic neural network in 

the areas 3b and 1, whereas the early part of them may result from action of thalamocortical 

fibers, which are usually resistant to frequency stimulation (Urasaki et al., 2002). N20 and Late 

HFOs show a reciprocal relationship. Indeed, factors that modify the one have an inverse 

influence on the other. Protocols of brain manipulation showed that HFOs and SICI showed a 

parallel response to stimulation (Murakami et al., 2008a) and it has been speculated that a 

common neural mechanism is involved in the generation of SICI in the motor cortex and Late 

HFOs in the somatosensory cortex, i.e., the activity of GABAergic interneurons and their 

networks with pyramidal cells. 

Paired stimulation SSEP (PP SSEP) 
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PP SSEP might be used to study surround inhibition. Indeed, physiologically, a conditioning 

(preceding) stimulus induces a suppression of SSEP amplitudes evoked by following test 

stimulus (Angel et al., 1967) in order to preserve the temporal separation of serially 

administered stimuli.  

 

Experimental procedure 

SSEPs recording and analysis 

We evaluated P14 and N20 SSEPs amplitude and latency, SSEPs recovery cycle and spatial 

inhibition ratio (SIR) (Figure 3). SSEPs were recorded from scalp Ag–AgCl surface electrodes 

arranged according to the international 10-20 system of EEG electrode placement. To record 

N20-P25 component the active electrode was placed at CP3 and the reference electrode at Fz, 

while the P14 component was recorded with the active electrode at Fz and the reference on 

the contralateral mastoid (Cruccu et al., 2008). Digital nerves of right thumb (T) and index (I) 

fingers were stimulated with a constant current stimulator (Digitimer DS7A) through ring 

electrodes, with the cathode placed at the base of the first phalanx and the anode placed 2 cm 

distally (Tinazzi et al., 2000). Monophasic square wave pulses of 200 µsec duration were 

delivered at 250% of the sensory threshold and at a frequency of 5 Hz. Recordings were 

collected at a sampling rate of 5 KHz, beginning 20 ms before each stimulus and lasting for 100 

ms. Data were band-passed filtered from 3 Hz to 2 kHz (Cruccu et al., 2008). In the first block, 

1000 sweeps were averaged; N20 peak latency and N20-P25 peak to peak amplitude were 

measured. The recording from this block was also used to extract and measure HFO, as 

explained in the next paragraph. Three more recording blocks of 750 frames each were 

performed to measure N20-P25 recovery cycle. In each of them, 750 trials were averaged and 

paired pulses at ISI of 5, 20 and 40 ms were delivered (Meyer-Hardting et al., 1983; Vollono et 
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al., 2010). In the frames obtained using paired stimuli, the responses following the second 

stimulus were obtained by subtracting the SSEPs waveform obtained by the first stimulus from 

the waveform following each double stimulus (Meyer-Hardting et al., 1983; Vollono et al., 

2010). R5, R20 and R40 were defined as the ratio between the second and the first response 

(Meyer-Hardting et al., 1983; Vollono et al., 2010). Finally two more blocks of 750 trials each 

were recorded, the first one stimulating the right thumb only and the second one stimulating 

both the thumb and index finger concomitantly by giving two simultaneous stimuli delivered 

through two constant current stimulators. The spatial inhibition ratio (SIR) of N20-25 and P14 

was calculated as the ratio TI/(T+I)x100, where TI is the SSEP amplitude obtained by 

simultaneous stimulation of the thumb and index finger and T+I is the arithmetic sum of the 

SEP obtained by the individual stimulation of the two fingers (Tinazzi et al., 2000). In healthy 

subjects, spinal brainstem and cortical SSEPs to simultaneous dual inputs are expected to be 

smaller than the sum of each alone because of lateral inhibition between the two inputs 

(Tinazzi et al., 2000).   

When we performed all the neurophysiological tests, we tried to ensure that both patients and 

HC were seated comfortably and quietly in order to avoid the occurrence of involuntary 

movements, as it is well known that movement gates sensory access to cortex (Jones and 

Burton, 1976; Murase, 2000). 

Analysis of High Frequency Oscillations 

To extract HFO from the underlying N20, the stimulus artifact was removed manually from -10 

to + 5 ms to avoid ringing (Katayama et al., 2010). The SSEP wide-band signal was bandpass 

filtered digitally (400–800 Hz) and averaged. HFO waveform was divided into two components, 

namely early (e-HFO) and late (l-HFO), separated by the latency of the N20 peak. Onset of e-

HFO and offset of l-HFO were defined as the time point at which their amplitudes exceeded the 



 44 

averaged background noise level by 3 SDs (Murakami et al., 2008). The signal was then 

corrected for DC shift and rectified. e-HFO and l-HFO area under the curve were measured and 

analyzed. 

 

Figure 3: Somatosensory Evoked Potentials procedure 

 

 

HFO: high frequency oscillations; Hz: hertz; ms: milliseconds; µs: microseconds; SSEPs: 
somatosensory evoked potentials; SIR: surround inhibition ratio 

 

 

Statistical analysis 

Some of the gathered variables did not distribute normally and therefore non-parametric 

analyses, including the Mann-Whitney U-test and the Kruskal–Wallis test, along with the χ2 test 

were used, as appropriate, to check differences between patients and HC. Correlations 

between the variables were evaluated with Spearman’s rank correlation coefficient. Finally, a 
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logistic regression analysis with forward stepping (likelihood ratio method) was used to 

evaluate the major contributors to the variation in STDT. Thus, STDT (dependent variable) was 

dichotomized to the median value in HC. All significant variables in the bivariate analysis as 

well as those that have been demonstrated to influence the outcome (e.g., age, dystonia) were 

included in the model with forward stepping until adding any further single variable did not 

improve the model. All statistical analyses were performed using Stata (v. 11, Stata Corp, USA). 

 

Results 

Table 2 summarizes the demographic, clinical, behavioral and electrophysiological findings in 

patients and HC. 

 

Table 2. Summary of clinical and electrophysiological features in patients and healthy 

controls. Significant differences are expressed in bold. 

 Healthy Controls Patients p 

CLINICAL FEATURES 

Age 57.6±14.5 62.6±9.2 0.21 

Gender (F/M) 7/12 10/9 0.32 

Handeness (R/L) 19/0 19/0 - 

Disease duration (years) - 9.42±4.7 - 

Disease severity (TWSTRS score) - 26.5±3.7 - 

RESULTS OF THE NEUROPHYSIOLOGICAL INVESTIGATIONS  

STDT (ms): 

mean values  

range 

 

80.1±29.9 

23.3-116.7 ms 

 

100.1±25.3 

53.3-146.7 ms 

 

0.03 

SSEP latency (ms): 

- N20 thumb 

- N20 index 

- P14 thumb 

 

22.35±0.9 

22.96±0.9 

16.33±0.6 

 

22.71±1.1 

22.49±1.1 

16.41±0.6 

 

0.16 

0.12 

0.54 
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- P14 index 16.48±0.6 16.53±0.6 0.44 

SSEP amplitude (µV): 

- P14 thumb 

- P14 index 

- N20 thumb 

- N20 index 

 

0.43±0.1 

0.55±0.1 

0.71±0.1 

0.68±0.1 

 

0.41±0.1 

0.49±0.1 

0.69±0.1 

0.65±0.1 

 

0.27 

0.26 

0.31 

0.54 

SSEP P14 recovery cycle  

amplitude ratio (µV): 

- R5 

- R20 

- R40 

 

 

0.54±0.1 

0.75±0.1 

0.91±0.1 

 

 

0.63±0.1 

0.79±0.1 

0.95±0.1 

 

 

0.02 

0.17 

0.02 

SSEP N20 recovery cycle 

 amplitude ratio (µV): 

- R5 

- R20 

- R40 

 

 

0.53±0.16 

0.71±0.13 

0.91±0.05 

 

 

0.68±0.27 

0.82±0.89 

0.96±0.03 

 

 

<0.01 

<0.01 

<0.01 

Sensory lateral inhibition 

amplitude ratio (µV): 

- P14 sum 

- P14 double pair 

- P14 SIR 

- N20 sum 

- N20 double pair 

N20 SIR 

 

 

0.91±0.2 

0.69±0.1 

0.72±0.1 

1.31+0.2 

0.89±0.2 

0.73±0.1 

 

 

0.89±0.2 

0.84±0.2 

1.03±0.1 

1.29+0.3 

1.27±0.2 

1.09±0.1 

 

 

0.45 

<0.01 

<0.01 

0.18 

<0.01 

<0.01 

HFOs area  

amplitude (µV): 

- early 

- late 

 

 

3.9±1.1 

3.9±1.5 

 

 

3.2±0.9 

3.2±0.9 

 

 

0.02 

0.09 

 
 
 
F: female; M: male; R: right; L: HFO: high frequency oscillations; ms: milliseconds; µV: 
microvolts; R: recovery cycle; SSEPs: somatosensory evoked potentials; SIR: spatial inhibition 
ratio; TWSTRS: Toronto Western Spasmodic Torticollis Rating Scale. 

Modified from Antelmi et al, MDJ 2017 
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STDT was significantly higher in patients than HC (100.1±25.3 vs 80.1±29.9 respectively, 

p=0.03). Many of the sensory electrophysiological measures of temporal inhibition were also 

abnormal in the patients. Compared with the HC, paired pulse SSEP data showed reduced P14 

suppression at ISIs of 5 and 40ms, while N20 suppression was reduced at all ISIs (e.g., 5, 20 and 

40 ms). Electrophysiological measures of spatial inhibition following simultaneous stimulation 

from thumb and index finger were also reduced. In patients the P14 and N20 SSEP responses 

elicited by dual stimulation were larger than the expected sum of each alone, whereas this was 

not the case in HC (Figure 4).  

 

Figure 4 

Example of paired pulse SSEPs (upper row) and SIR (lower row) measured on the N20 wave in 

one healthy subject (panels A and B).  

 

 

 

 



 48 

and in a patient with dystonia (panels C and D).  

 

ISI: interstimulus interval; µV: microvolts; ms: milliseconds;  s: seconds; SIR: surround inhibition 
ratio  

 

Compared with the healthy subject, SSEPs recorded from the dystonic patient show less 

paired-pulse inhibition at all ISI and less suppression when the thumb and index finger were 

stimulated at the same time. The signals were bandpassed between 20 and 500 Hz for 

visualization purposes.  

E-HFO area was smaller in patients than HC, while there was a non-significant tendency for l-

HFO to be smaller in patients. 

In both HC and patients, there was a strong correlation between STDT and N20 suppression at 

an ISI of 5 ms (Spearman’s rho: 0.73, p=0.001 and 0.80, p<0.001, HC and patients, respectively) 

and between STDT and l-HFO area (Spearman’s rho: -0.73, p=0.001 and -0.78, p<0.001, HC and 

patients, respectively). In addition, N20 suppression at an ISI of 5 ms was correlated with l-HFO 

area (Spearman’s rho: -0.84 and -0.81, HC and patients, respectively, both p<0.001) (Figure 5A 

and 5B). 

Modified from Antelmi et al, MDJ 2017 
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Figure 5 A 

Correlations between STDT and SSEPs suppression at ISI of 5 ms (upper panel) and l-HFO (down 

panel) in healthy controls and patients. 
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Figure 5 B 

Merged correlations between STDT and SSEPs suppression at ISI of 5 ms (left panel) and l-HFO 

(right panel) in healthy controls (plain dots) and patients (empy dots). 

 

 

 
 
 
STDT (somatosensory temporal discrimination threshold); l-HFO (late high frequency 
oscillations); R5-N20: recovery cycle at 5 ms interstimulus interval for the N20 component 
 
 
There were no significant correlations with any of the other physiological measures. There 

were also no correlations between STDT and disease duration or severity in the patient group 

as assessed by the TWSTRS.  

Finally, the logistic regression model showed that reduced N20 suppression at an ISI of 5 ms 

(coeff.: 67.33; p<0.01), smaller l-HFO area (coeff.: -11.05; p<0.01), and (dystonia) group (coeff.: 

9.62; p<0.05), were independently associated with higher STDT, explaining a variance of 64% 

CD: empy circles 

HC: plain circles 

Modified from Antelmi et al, MDJ 2017 
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(R-squared=0.64) (Figure 5A and 5B). The Hosmer–Lemeshow goodness-of-fit test supported 

our regression model as being valid. 

 

Discussion 

In line with previous studies (Tinazzi 1999; Sanger et al., 2001; Molloy et al., 2003; Fiorio et al.; 

2003; Fiorio et al., 2008, Tamura et al., 2008; Scontrini et al., 2009; Scontrini et al., 2010; 

Kimmich et al., 2014), dystonic patients displayed higher SDTD values when compared to HC. 

Moreover, as previously reported (Fiorio et al., 2007; Scontrini et al., 2009), abnormally 

increased STDT values were found also in body regions not affected with dystonia and did not 

correlate with dystonia severity, further supporting the notion that abnormal temporal 

processing in dystonia is not simply a consequence of the overt manifestations of dystonia.  

Our mean STDT values in both HC and patients were slightly higher than those previously 

reported in literature (Hoshiyama et al., 2003; Fiorio et al., 2007; Fiorio et al., 2008). Giersch et 

al., (2009) demonstrated that TDTs obtained using different protocols/equipments are only 

comparable within each individual experimental paradigm. Different procedures have been 

indeed used in different studies (e.g., ascending or descending method; use of different 

intensity for the stimuli; assessment of uni- vs multi-modal TDT; etc) and our cohort was 

relatively older that those reported in the previous studies and therefore these factors might 

account for our results. 

As far as the study of paired pulse suppression is concerned, we found reduced suppression of 

the N20 at ISI of 5ms (that is equivalent to the P27 of Tamura et al., 2010, since we measured 

the same peak-to-peak N20-P27 SSEP component) in patients when compared with the control 

group. However, we also found reduced suppression at ISI of 20 and 40ms. Frasson et al. 

(2001) as well reported reduced suppression at ISI of 20 and 40 ms, but not at shorter ISIs, in 
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patients with segmental and generalized dystonia (Frasson et al., 2001). Differently from 

Tamura et al. (2010) we elicited SSEPs by stimulation of the digital nerves of the index finger an 

not the median nerve at the wrist and the different finding might be related to the fact that 

SSEPs obtained from digital stimulation are more sensitive to changes in cortical inhibition.  

A great body of literature supports the notion that SSEP suppression of the N20 at short 

intervals (ISI of 5ms) is mainly related to local inhibition at cortical levels (Eccles 1966; Meyer-

Hardting et al., 1983; Emori et al., 1991; Soono et al., 1997; Araki et al., 1997),  while 

suppression at longer ISIs (i.e. ISI of 20 and 40 ms) is more likely due to inhibitory post-synaptic 

interneurons within the dorsal column nuclei and the thalamus (ventral postero-lateral 

nucleus) (Eccles, 1966; Lueders et al., 1983). In our cohort, we found also reduced suppression 

of the SSEP P14 component, which is an additional proof of impaired inhibition at subcortical 

levels. Indeed, suppression of the P14 component of the SSEPs has been proved to reflect 

inhibitory activity within the dorsal column-lemniscus medialis (Lueders et al., 1983; 

Helmstaedter et al., 2009). 

When studying lateral inhibition by means of double SSEPS, we also found reduced inhibition in 

dystonic patients versus healthy subjects. In the previous study by Tinazzi and coworkers, 

(2000), authors reported somehow similar results, but in this study the statistical significance 

was not reached. The significant difference that we found between the two groups might be 

due to the different procedures used in the two studies, as we tested lateral inhibition 

stimulating the thumb and index finger rather than two non-contiguous fingers as in the study 

by Tinazzi et al., (2010). Indeed, lateral inhibition is mediated by intra-cortical connections 

within a limited range (Helmstaedter et al., 2009) and given that contiguous fingers are 

represented adjacently in S1 (Kolasinski et al., 2016), it is likely that inhibition is stronger when 
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tested in adjacent fingers. Moreover, the difference in the sample size (19 vs 7 patients) might 

also explain the different result. 

Our results of abnormal SSEPs findings in both temporal and spatial domains proved a 

pervasive deficit of sensory processing. However, the lack of correlation between spatial and 

temporal inhibition (i.e. SIR and STDT) suggested that increased STDT in dystonia is not just 

related to abnormal cortical activity and that further impairment within circuits processing the 

temporal aspects of afferent inputs are implicated in the abnormal temporal processing in 

dystonia. 

When studying the HFOs, we found that patients had significantly reduced e-HFO area when 

compared to controls, while a similar non-significant trend was observed for l-HFOs. HFOs are 

low-amplitude, high-frequency wavelets superimposed on the N20 wave, with their early 

component suggested to represent activity from thalamo-cortical fibers projecting mainly to 

area 3b and 1 within S1, while the late component represents activity of S1 inhibitory 

interneurons (Ozaki and Hashimoto, 2011). There was a single previous study testing HFOs in 

patients with cervical dystonia, reporting similar findings (Inoue et al., 2004). This further 

supports the notion that dystonic patients have decreased inhibition at different levels of the 

somatosensory system.  

Correlations’ analysis showed that only the suppression of the N20 at 5ms ISI and the l-HFO, 

i.e.  measurements more likely related to local inhibition within S1 (Jones and Burton, 1976; 

Meyer-Hardting et al., 1983; Emori et al., 1991; Soono et al., 1997; Ozaki and Hashimoto 2011), 

correlated with STDT. Both N20 suppression and l-HFO are measures of temporal inhibition 

and, therefore, it might be inferred that inhibitory circuits within the S1 act sharpening the 

distinction between the first and the second afferent inputs in STDT (Conte et al., 2014). 
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The regression analysis additionally showed that a separate factor “dystonia group” was 

predictive of higher STDT. This suggests that there is one or more additional factors over and 

above our measures of cortical somatosensory inhibition that contribute to higher STDT in 

patients.  

Previous neuroimaging studies in patients with abnormal STDT report contrasting findings, as  

structural and functional abnormalities have been found either at subcortical  (putamen) 

(Giersch et al., 2009; Kimmich et al., 2014) and cortical (middle frontal, precentral and post 

central giri) levels (Frasson et al., 2001; Kimmich et al., 2014).   

Of course, the nature of our study enables inferring whether the reduced inhibition in S1 is a 

primary/endophenotypic condition or a consequence of the pathology occurring at the level of 

the basal ganglia. Dystonia indeed should be construed as a network disorder. In line with this, 

we can conclude that higher STDT in dystonia can be largely, but not completely, explained by 

reduced cortical inhibition and the reported abnormal findings within the basal ganglia (Peller 

et al., 2006; Schneider  et al., 2010) might play a supplementary role in modulating STDT. 

As suggested (Conte et al., 2012; Conte et al., 2014), our results further advocate that 

inhibitory mechanisms within S1 might supposedly represent a therapeutic target to reverse 

abnormal STDT in dystonia. Of course it should be tested whether acting on the sensorimotor 

network with the aim to increase inhibition efficacy will in turn ameliorate overt 

manifestations/symptoms of dystonia. 
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Chapter 4 

THIRD STUDY 

Modulation of muscles’ activity during sleep in patients with cervical 

dystonia.* 

 

 

 

 

 

 

 

 

 

 

 

 

* Antelmi E, Ferri R, Provini F, et al. Modulation of the muscle activity during sleep in cervical 

dystonia. Sleep under rev 
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Background 

Recently non-motor symptoms have been emerging as important determinants of the quality 

of life in patients with movement disoders, including dystonia (Stamelou et al., 2012). Various 

domains of quality of life, such as physical and social functioning and vitality, have been 

reported to be affected in patients with dystonia and among them, sleep has been consistently 

reported as a main complaint (Hertenstein et al., 2016). However, current treatment of 

dystonia deals mainly with motor symptoms, while, even if the relevance of non-motor has 

gained attention, so far their etiology and treatment options have been barely characterized.  

Moreover, sleep complaints in dystonic patients have been reported to be poorly responsive to 

botulinum toxin treatment and to deep brain stimulation (Stamelou et al., 2012). This 

underlines that sleep problems in dystonia deserve a discrete assessment, along with an ad-

hoc treatment. In order to proprerly assess motor complaints in dystonic patients, therefore, it 

is important at first to understand their nature and pathophysiology and to compare subjective 

complaints with objective findings.  

“A priori” thoughts lead to suppose the almost disappearance of dystonia during sleep. 

Indeed, according to the latest definition,  dystonia is “a movement disorder characterized by 

sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, 

postures…..Dystonia is often initiated or worsened by voluntary action and associated with 

overflow muscle activation” (Albanese et al., 2013). The relationship between dystonia and 

movement and posture leaps out as an instristic feature of dystonia itself and indeed, posture 

typically increases while holding a position or while performing movements, as observed with 

the phenomenon of the overflow of dystonia. This is even striking in task-specific dystonia, the 

appearance of which is tightly linked to certain movements (i.e. playing an instrument, writing, 

singing, and eating) (Quartarone et al., 2013). Also the other way around is true, with the 
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improvement of dystonia while resting, for example, while lying down or while holding the 

neck over a headrest (Lobbezoo et al., 1996; Jahanshahi, 2000).  

On the other hand instead, physiologically, during sleep there should be a motor quiescence, 

with inhibition of the spinal motoneuron pool by supraspinal structures with consequent 

muscle hypotonia, until reaching an almost complete muscle atonia during REM sleep (Dement 

1957; Chase 2005), but for brief phasic activity. Therefore, one would expect the 

disappearance of dystonia during sleep stages.  

However, very few, spared and biased data have been produced on that regard (Hertenstein et 

al., 2015). Indeed, previous studies have been mainly conducted in small, non-homogeneous 

and non-controlled cohorts and there are no studies comparing objective findings (i.e. 

polysomnography - PSG) and subjective complaints. The spared data however seem to suggest 

disturbed nocturnal sleep as a non-motor feature of dystonia, frequently reported by the 

patients as affecting their quality of life (Soeder et al., 2009; Kuyper et al., 2011; Stamelou et 

al., 2012; Shukla et al., 2016). Prevalence of sleep complaints in focal dystonia has been 

reported to range between 40 and 70% (Hertenstein et al., 2015). However, so far subjective 

complaints have never been compared with objective evaluation of the architecture of sleep 

and with the presence of movement-related disorders or with the persistence of dystonia 

during sleep. Indeed, it is generally believed that all the movement disorders, but epileptic 

conditions, would disappear during sleep. However, the few polysomographic studies available 

so far reported instead the persistence, though “a minima”, of dystonia (Rondot et al., 1995; 

Sforza et al., 1991; Silvestri et al., 1990). The only exception is the study conducted at the 

Queen Square in 1996 by Lobbezoo and co-authors.  

With this study we aimed therefore at investigating sleep complaints in patients with 

idiopathic isolated CD and to compare subjective complaints with objective evaluation of sleep 
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architecture by means of PSG, which is the gold standard to assess sleep and its related 

features (i.e. quality and sleep-related phenomena).   

 

Materials and Methods 

 

Population 

We prospectively recruited twenty patients with idiopathic isolated CD, according to current 

criteria (Albanese et al., 2013), among those attending the outpatient clinics at the Institute of 

Neurological Sciences of the University of Bologna. In order to compare data, the tests have 

been also performed in twenty-two healthy subjects with similar age and gender distribution 

(and no reported family history for any neurological disorders, including dystonia). Additional 

exclusion criteria for both patients and healthy controls (HC) were: 1) no history of other 

neurological or psychiatric diseases and 2) no history of medications acting on the CNS.  

Patients were all on treatment with botulinum toxin injection and therefore investigations 

were conducted at the wearing-off of the treatment, i.e. at least 3 months after their last 

injections.  

 

Procedure (Figure 6) 

All the patients underwent a complete neurological examination including history taking, 

clinical examination, and brain MRI.  In order to identify the main pattern of CD and the key 

muscles, we observed the patients in several different positions (i.e at rest, while sitting, while 

keeping the arms outstretched and while walking). Disease severity was assessed with the 

Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). As regards sleep problems, both 

CD patients and HC underwent a thorough sleep interview excluding other sleep-related 
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problems, i.e. presence of obstructive apnea or snoring, presence of restless legs syndrome 

(RLS), according to current criteria (Allen et al., 2014).  Subjective quality of sleep was 

evaluated by means of the Pittsburg Sleep Quality Index (PSQI) (Buysse et al., 1989), while the 

presence of excessive daytime sleepiness by using the Epworth Sleepiness Scale (ESS) (Johns 

1991). Beck Depression inventory was used to investigate mood (Beck et al., 1961). 

Both CD patients and HC underwent a full-night PSG, with the following standard montage: 

conventional EEG, bilateral electrooculogram (EOG), submentalis and anterior tibialis EMG, 

respiratory parameters, and electrocardiogram, infrared video (AASM, 2014). Additional EMG 

leads were put over the neck muscles affected with dystona: i.e. sternocleidomastoideus (SCM) 

and splenius bilaterally. Moreover, EMG leads were also put on the deltoid, contralateral to 

the most affected side, which served as control muscle. Sleep signals were sampled at 200 or 

256 Hz and stored on hard disk in European data format (EDF) for further analysis. 

Subjectively perceived discomfort/pain caused by dystonia was assessed at four different 

times, by means of a visual analogue scale (VAS, values 0 to 10) four times: 1) at the beginning 

of the recording (after all the technical procedures), 2) after 20 minutes of relaxed wakefulness 

with eyes closed (with subcontinuous alpha rhythm on the EEG) before sleep, 3) on awakening, 

the following morning, and 4) after 20 minutes of relaxed wakefulness with eyes closed (with 

subcontinuous alpha rhythm on the EEG) after awakening. 

All experimental procedures were approved by the institutional ethic committee and 

conducted in accordance with the Declaration of Helsinki and according to international safety 

guidelines. Both CD patients and HC gave their signed informed consent. 

 

   Sleep Staging and Muscle Activity Analysis 
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Sleep stages were scored according to the current criteria (AASM, 2014). After the scoring, we 

considered the following parameters: sleep latency (SL; defined as the first epoch of any sleep 

stage from lights off), and stage REM latency (REML) from sleep onset, total sleep time (TST), 

sleep period (SP; time from sleep onset to lights on), wakefulness after sleep onset (WASO), 

sleep efficiency (SE), absolute time spans and percentages (of total sleep time) spent in NREM 

sleep stages N1, N2,  and N3, and in stage REM.  

An ad-hoc software (Ferri et al., 2008) was implemented in order to analyze the EMG activity of 

muscles affected with dystonia and control muscles during the whole recording. The signal 

analysis was the result of the measurements and of the averaging-out of the amplitude of the 

rectified EMG signal during 1-second long mini-epochs and excluding all periods with large 

body movements or other types of technical artifacts. 

Periodic leg movements during sleep (PLMS) were visually detected and marked and the PLMS 

index was calculated according to standard criteria (AASM, 2014). 
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Figure 6 

 

  

 

Statistical analysis 

The comparison between the CD patients and HC data was carried out by means of the non-

parametric Mann-Whitney test for independent datasets, the Friedman ANOVA for multiple 

dependent datasets, or the chi-square test for frequencies, as appropriate. 

Addittionally, a sequences of correlations were also performed by means of the multiple 

regression analysis and the calculation of the partial correlation coefficients. P value ≤ 0.05 

was considered significant.  
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The commercially available software STATISTICA v. 8.0, StatSoft Inc. (2007) was 

used for all statistical tests.  

 

Results 

Demographic features, neurophysiological data and questionnaires results of CD patients and 

HC are reported in Table 3. 

 

Table 3 

Demographic features, neurophysiological parameters and questionnaire results obtained 

from patients and HC. 

 

  CD 

(n=20) 

HC 

(n=22) 

p≤ 0.005 

Demographic data 

Age, years ± SD 50.5±9.09 48.2±6.19 ns 

Females/males, number 14/6 11/11 ns 

Questionnaries (mean scores ± SD)  

ESS  3.8±2.5 2.4±2.8 ns 

PSQI 6.8±5.6 2.3±2.1 0.0009 

BDI 10.5±6.1 9.1±2.6 ns 

Sleep Architecture  

Total Sleep Time, min ± SD 368.6±73.6 364.9±67. ns 
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6 8 

Sleep Efficiency, % ± SD 75.7±11.1 85±8.9 0.005 

Sleep Latency, min ± SD 36.9±30.1 20.6±17.1 0.038 

Sleep stage REM Latency, min ± SD 118.5±64.9 82.7±44.7 0.042 

Sleep stage N1, % ± SD 10±5.5 8.6±6.3 ns 

Sleep stage N2, % ± SD 48.2±12.5 46.7±8.5 ns 

Sleep stage N3, % ± SD 20.6±8.8 22.4±9.2 ns 

Sleep stage REM, % ± SD 20.4±5 18.2±3.9 ns 

PLMS index, number/hour ± SD 4.3±6.2 5.5±10.5 ns 

Arousal Index, number/hour 16.8±15.9 11.7±7.4 ns 

 

ESS: Epworth sleepiness scale; PSQI: Pittsburgh sleep quality index; BDI: Beck depression inventory; 

PLMS: periodic limb movements during sleep; ns = not significant. 

 

Patients had a mean disease duration (years ± standard deviation) of 7.6±5.7; mean value of 

the TWSTRS was 17.9±5.9. In 12 patients, dystonia was associated with tremor involving the 

neck. Patients and HC did not differ for age and gender distribution.  

The results of questionnaires assessing excessive daytime sleepiness and mood complaints 

were comparable between the two groups, but CD patients had significantly increased 

pathological values on the PSQI, assessing subjective complaints of impaired nocturnal sleep. 

The results of the multiple regression analysis carried out with PSQI measuring subjective sleep 

quality as the dependent variable and age, disease duration, TWSTRS, ESS, and BDI as 

independent factors, in CD patients showed only BDI to be significantly correlated with PSQI 

(partial correlation 0.682, p<0.0032). 



 64 

When analyzing sleep architecture, we found that CD patients and HC differed for SE, which 

was significantly reduced in the CD patients group (p<0.005); and SL and REML, which were 

significantly increased in the patients group (p<0.0038 and p<0.042, respectively). The multiple 

regression analysis performed considering the objective sleep parameters found to be 

abnormal in the above comparison, i.e. SE, SL and REML as dependent factors and all the 

clinical descriptors (age, disease duration, TWSTRS, ESS, PSQI, and BDI) as independent factors, 

in CD patients, disclosed only a significant negative correlation between SE and PSQI (partial 

correlation -0.533, p<0.04) and a significant positive correlation between SL and PSQI (partial 

correlation 0.524, p<0.048). 

 

Analysis of Muscle Activity 

Muscle activity during relaxed wakefulness (patients lying supine in bed) pre (Wpre) and post-

night sleep (Wpost) over the muscles affected with dystonia (both the most affected one and 

the contralateral one) was slightly, but not significantly, higher than that of HC (Figure 2). In 

Wpre, activity over the control muscle (i.e. deltoid contralateral to the most affected side) was 

significantly increased in CD patients, when compared to HC. In the different sleep stages (i.e. 

stage N1-N2, N3 and REM), activity of dystonic muscles and control muscle progressively 

decreased from Wpre to N1, reaching significantly decreased values compared to HC in N3 and 

REM sleep stages in the most affected side, in N2, N3 and stage REM in the less affected side 

and in N3 in the control muscle (Figure 7).  
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Figure 7  

Comparison between the amplitude of the EMG signal in the different pairs of corresponding 

muscles recorded in patients and controls in the different wakefulness periods and sleep 

stages considered in this study.  

 

 

 

Legend: µV: microvolts; N1, N2, N3: stage 1, 2 and 3 of NREM sleep; REM: REM sleep; SCM: 
sternocleidomastoids; WASO: wakefulness after sleep onset; Wpre: wakefulness pre-night 
sleep; Wpost: wakefulness post-night sleep. 
Values are shown as mean (squares) and standard error (whiskers). 
 

When the muscle activity amplitude values were normalized by subtracting the individual 

mean amplitude during sleep stage REM (which is considered to be the gold standard for 

muscle atonia/hypotonia),18 even if patients had a significant relative higher muscle activity 

over the neck muscles in Wpre, Wpost, WASO and N1, they finally reached the same levels of 

muscle activity of HC in N2, N3 and stage REM (Figure 8). 
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Figure 8 

Comparison between the individually normalized amplitude (difference from that of sleep 

stage REM) of the EMG signal in the different pairs of corresponding muscles recorded in 

patients and controls in the different wakefulness periods and sleep stages considered in this 

study.  

 

 

 

Legend: µV: microvolts; N1, N2, N3: stage 1, 2 and 3 of NREM sleep; REM: REM sleep; SCM: 
sternocleidomastoids; WASO: wakefulness after sleep onset; Wpre: wakefulness pre-night 
sleep; Wpost: wakefulness post-night sleep. 
Values are shown as mean (squares) and standard error (whiskers). 
 

Differently from the objective measurement of the muscle activity that soon after sleep 

returned to the values recorded before sleep, patients reported the severity of neck 

discomfort/pain to be reduced after nocturnal sleep as evident from the Friedman ANOVA 



 67 

(p<0.00001) carried out on the four VAS evaluations obtained before and after night sleep 

(Figure 9). 

 

Figure 9 

Subjective level of discomfort/pain caused by dystonia in patients evaluated by means of a 

visual analogue scale at four different times, before and after sleep.  

 

 

 

Legend:  VAS: visual analogue scale for pain/discomfort. Wpre: wakefulness before sleep onset; 
Wpost: wakefulness after nocturnal sleep. 
Values are shown as mean (squares) and standard error (whiskers). 

 

There was no statistical correlation between the different VAS evaluations and the objective 

muscle activity measurements during relaxed wakefulness before and after sleep. 

 

Discussion 

The study at issue is the first one systematically analyzing the activity on dystonic muscles 

during the different sleep stages and comparing neurophysiological data with the results of 

self-reported questionnaires assessing excessive daytime sleepiness and quality of sleep in a 

Analysis 

Friedman Anova 

P 0.0001 

Start                    Wpre               Awakening                   Wpost 
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representative cohort of patients with idiopathic isolated CD, compared to age- and sex-

matched HC. 

Results of questionnaires aimed at investigating subjective complaints showed a significantly 

reduced quality of sleep assessed by means of the PSQI in CD patients, when compared to HC. 

This finding is in line with results of previous studies (Trotti et al., 2009; Avanzino et al., 2010; 

Paus et al., 2011). The analysis of the correlation between clinical descriptors and subjective 

complaints of nocturnal sleep disclosed only a weak correlation with higher scores on the BDI, 

confirming previous findings, which reported on the mutual link between quality of sleep and 

mood in dystonia (Avanzino et al., 2010; Paus et al., 2011; Eichenseer et al., 2014) and 

generally confirming the impact of mood deflection in quality of sleep (Palagini et al., 2013). As 

reported also in previous cohorts (Trotti et al., 2009; Avanzino et al., 2010; Paus et al., 2011; 

Eichenseer  et al., 2014), severity of dystonia and disease duration did not seem to affect the 

subjective perception of sleep quality. Even if patients had a significantly affected quality of 

sleep, they did not complain of excessive daytime sleepiness, assessed by means of ESS, where 

values were in the range of normality and comparable with those reported in the control 

group.  Previous studies in cohorts with different types of focal dystonia reported as well the 

absence of EDS (Avanzino et al., 2010; Paus et al., 2011; Eichenseer  et al., 2014), while there is 

a single study (Trotti et al., 2009), which finds instead higher values of EDS at the ESS in 

dystonic patients respect to HC. 

As far as sleep architecture analysis is concerned, our study showed a significantly decreased 

SE with difficulty in falling asleep (increased SL) and in reaching REM sleep (increased REML). 

Arousal index tended to be higher in CD patients as well, but this value did not reach statistical 

significance. Previous PSG studies reported similar findings. Sforza et al. (1990) in a cohort of 

10 patients with cranial dystonia found decreased SE, slow-wave sleep (SWS) and REM sleep, 
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while increased SL and arousals. Decreased SE and increased REML were also reported in 

patients with CD (Lobbezoo et al., 1996; Randot et al., 1995). In our cohort, however, 

parameters measuring sleep architecture did not correlate with clinical descriptors, and 

particularly with disease severity or disease duration. On the contrary, instead, higher scores at 

the PSQI, which measures the level of subjective complaints of sleep impairment correlated 

with decreased SE and increased SL at the PSG recordings, showing therefore an overlap 

between subjective complaints and objective measurements of impaired sleep architecture. 

As concerns additional sleep complaints or complaints of other sleep diseases of sleep-related 

movements, there is a single study reporting on an increased incidence of RLS and bruxism in 

dystonic patients when compared to controls (Trotti et al., 2009). Our study, instead, cannot 

confirm these data as none of our patients reported symptoms suggestive of additional sleep-

related disorders and PSG as well failed to document any of these conditions, being the PLMs 

index also comparable with that of the HC.  

The analysis of EMG muscle activity during the PSG recording showed that activity over the 

muscles affected with dystonia, and even over the control muscle, progressively decreases and 

nearly disappears in SWS and REM sleep. Indeed, even if patients had (although not 

significantly) increased amplitude of muscle contraction during relaxed wakefulness, this 

amplitude reaches values which are significantly lower than those of HC, during both SWS and 

REM sleep. These data are somewhat different with what has been previously reported. To be 

honest, there are only few studies objectively evaluating muscle activity during sleep. Three of 

them reported persistence of muscle activity over the dystonic muscles both in patients with 

cranial dystonia (Sforza et al., 1991; Silvestri et al., 1990) and with CD (Rondot et al., 1995). In 

the study by Sforza et al. (1991) the number of spasms per hour of sleep in the cranial region 

(patients with blepharospasm or Meige syndrome) progressively decreased but did not 
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disappear during the night and then gradually increased, particularly prior to awakening. 

Spasms were rarely associated with an EEG arousal. Silvestri et al. (1991) reported fairly similar 

results, in a cohort of seven patients with cranial dystonia. However, previous studies have 

been conducted in small and non-controlled cohorts (Rondot et al., 1995; Sforza et al., 1991; 

Silvestri et al., 1990) and data are reported in a descriptive fashion, without performing any 

statistics (Rondot et al., 1995). There is only one controlled study, comparing findings in nine 

patients with CD versus nice HC (Lobbezoo et al., 1996) and describing an improvement of 

dystonia linked to the supine position and the virtual disappearance of muscle activity with 

sleep.  Indeed, abnormal cervical muscle activity was reported to decrease immediately when 

lying down, without the intention to go to sleep and then to be gradually abolished in all 

patients during the transition from relaxed wakefulness to light NREM sleep. Finally, during 

sleep any muscle activity could be detected on muscle affected with dystonia (Rondot et al., 

1996). 

Our study, along with confirming the virtual disappearance of dystonic activity during SWS and 

REM sleep, showed also a significant decrease in muscle activity over the dystonic muscles and 

over the control muscle, when compared to muscle activity recorded on homologous muscles 

in HC. This is of interest and it can be hypothesized that muscle affected with dystonia obey to 

the sleep-promoted homeostatic balance (Vyazovskiy et al., 2015). Indeed, it can be that 

dystonia muscles, which had been over-active throughout the day need a special and deeper 

rest at nighttime. In animal models, indeed, it has been reported that during nighttime, 

hypotonia in cervical muscles is greater if compared with cranial muscles (Lu et al., 2005; Kato 

et al., 2007). 

Unfortunately, studies reporting on modulation of EMG muscle activity at nighttime after 

exercise or training are lacking. However, indirect observations might suggest that increased 
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activity during daytime induces homeostatic recovery during nighttime (Kleitman, 1963; De 

Mello et al., 2002). Pioneering studies reported a major decrease in the EMG activity of 

antigravity skeletal muscle tone during sleep (Kleitman, 1963), except for leg muscles (Okura et 

al., 2006), suggesting somewhat a recovery function of sleep for those muscles more active 

during daytime. 

The role of sleep in synaptic plasticity has been extensively reported, as sleep seems to weak 

synapses through a process called ‘‘synaptic renormalization’’ (Tononi and Cirelli, 2012). The 

mechanisms governing renormalization are not completely known. Synaptic scaling (or 

homeostasis) is characterized by a global adjustment of synaptic weights in a neuron or 

network which is proportional to the strength at each synapse. Synaptic downscaling occurring 

during sleep therefore would offset Hebbian long-term potentiation, which if left 

unconstrained would result in continuous synaptic strengthening that would saturate a neuron 

or neuronal network’s ability to form new synapses (Turrigiano et al. 2008). Therefore, synaptic 

scaling should promote adjustment of synaptic weights that allows the network to avoid 

network instability (i.e., a saturation of synaptic strength). In respect to these arguments, sleep 

in dystonia might at least partly try to rescue the system and to prevent ‘‘synaptic overload’’. 

Of course, the nature of our study prevents any conclusions on this topic and future studies 

with a more extensive evaluation of muscle activity and of neurophysiological correlates are 

warranted in light also of the potential related therapeutic advantages. 

Another explanation might be that during sleep impaired connectivity and plasticity instristic to 

dystonia is somehow overcome. Indeed dystonia is known to be a network disorder with 

impaired inhibition being the main neurophysiological drive (Quartarone and Hallet, 2013; 

Antelmi et al., 2016). During sleep instead there is an interruption of cortical effective 

connectivity (Massimini et al., 2015) and, during REM sleep, basal ganglia seem to be bypassed 
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by the pyramidal system (De Cock et al., 2011; Mayer et al., 2015). It is possible therefore that 

sleep may somehow reset abnormal connectivity and inhibition in dystonia, and that during 

sleep the sensorimotor cortex, released from the basal ganglia influence, might function in 

another way, “getting rid of dystonia”. We cannot exclude also a contribution of the GABAergic 

inhibitory system as from one side, hypotonia during sleep is thought to be induced by 

glycinergic and GABAergic post-synaptic inhibition (Chase, 2013) and from the other side, 

abnormal the GABAergic inhibitory system within the CNS seem also to play a role in dystonia 

pathophysiology (Antelmi et al., 2016; Garibotto et al., 2011). 

Orexin system, instead, which is known to promote wakefulness and motor activity during 

daytime, and rest/hypotonia and sleep during nighttime (Hu et al., 2015) and to orchestrate 

central motor control in a homeostatic regulation manner, has never been investigated in 

patients with dystonia. 

Additionally, the finding of a statistical significant sleep benefit on cervical pain/discomfort, 

evaluated by means of VAS soon after awakenings, further supports the homeostatic function 

of sleep for dystonic muscles. 

During the relaxed wakefulness preceding sleep, while CD patient are lying down with head 

and neck in a rest position, activity on a proximal muscle contralateral to the most affected 

side was found to be higher than that of the homologous one in HC. This phenomenon might 

be interpreted as a form of overflow, related to the abnormal sensorimotor integration in 

dystonia (Quartarone and Hallet, 2013).  

To conclude, or study showed a significantly affected quality of sleep in dystonic patients, 

when compared to HC. Subjective complaints are confirmed by objective measurements of 

sleep, which showed an affected sleep architecture with reduced efficiency of sleep and 

increased of latency prior to falling asleep. Impaired nocturnal sleep did not correlate with 
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measurements of disease severity neither with the persistence of muscle activity over dystonic 

muscles, which was instead found to disappear during nighttime. Therefore, other factors, over 

and above, must be related to the subjective perception of poor sleep quality and to the 

abnormal sleep architecture. These findings are in line with what has been reported in 

previous studies, and in fact botulinum toxin injections have been reported to significantly 

improve dystonic symptoms, without having benefit on sleep (Eichenseer et al., 2014). Yet, as 

in our cohort, also previous studies could not find a correlation between sleep impairment and 

severity of dystonia (Avanzino et al., 2010; Paus et al., 2011).  

It remains to capture the mechanisms driving to the abnormalities affecting sleep 

macrostructure in patients with dystonia. This is pivotal in order to choose the appropriate 

treatment and in order to meet patients’ needs and to improve their quality of life.  Moreover, 

developing studies aiming at discovering the specific pathophysiological substrates will be 

instrumental in understanding the pathophysiology of dystonia itself and the true health 

impact of sleep disorders on dystonia. In that regard, in the future additional computerized 

analyses aiming at characterizing the microstructure of sleep might shed light on this 

mechanism. 

It remains also to be tested whether drugs known to improve self-reported sleep quality 

(Baandrup et al., 2016) or targeting sleep efficiency (like instaminergic or orexinergic 

antagonists) (Herring, 2012) might be efficacious also in dystonic patients. 
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Chapter 5 

Conclusions and general remarks 

 

Dystonia is a syndrome, with clinical and etiological heterogeneity, but with a common final 

pathway leading to “abnormal postures”. Although a great effort has been made, the complete 

understanding of its pathophysiology is still pending and this is probably related to the paucity of 

animal models for translational studies, the absence of a consistent pathological substrate and the 

highly variable phenotypes and genotypes. 

Overall, the genetic make-up along with epigenetic and environmental factors all play a role in its 

“epiphany”. 

Epidemiological studies suggested a correlation with environmental triggers (like trauma) or 

repetitive highly-skilled manual performance. Of course, environmental triggers and modifiers 

should act on a fertile ground, i.e. on a genetic predisposition. Among all the abnormalities that 

have been reported, abnormal plasticity arises as the “main” consistent one, likely related to the 

lack of inhibition (Hallet, 2011). 

Aberrant neuronal plasticity of a motor learned program by repeated practice holds important 

clue to the etiopathology of dystonia. Indeed, external triggers acting on a predisposed brain 

might induce synaptic changes generating aberrant motor engrams. The pathophysiology of this 

has been proved to be related to the lack of inhibition. Basal ganglia filter and modulate inputs to 

improve the precision of fine movements. The failure of surrounding suppression has been related 

to deficient inhibition by basal ganglia gabaergic interneurons and output (Hallet, 2011), but it is 

likely that other structures, as shown also in our (Chapter 3) and in previous study (Tamura et al., 

2008; Antelmi et al., 2017) might have additional role. The failure of inhibition clearly fits with the 
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clinical picture of dystonia. Indeed, one of the main characteristics of this disorder is its tight link 

with movement. 

Oppeheim (1911) said in its original description:  “muscle tone was hypotonic at one occasion and 

in tonic muscle spasm at another, usually, but not exclusively, elicited upon voluntary movements”, 

and similarly the last consensus on dystonia acknowledged that “Dystonia is often initiated or 

worsened by voluntary action and associated with overflow muscle activation.”  Yet, another 

important feature is the predictability and patterned nature of the muscle, showing that 

movements might trigger aberrant motor engrams. 

The system is imbalanced also at the level of the sensory system. One emerging theory is that 

sensorimotor systems have hebbian-like plasticity (Weise et al., 2009). In a dystonic 

endophenotype, the summation of abnormal sensorimotor plasticity and the inability to control 

homeostatic mechanisms may therefore result in a chaotic reorganization of sensorimotor maps. 

In this regard, STDT has been proved to be endophenotypic in dystonia. Our study (Chapter 3; 

Antelmi et al., 2017) further confirms this finding, by reporting abnormal values in both affected 

and non-affected sides, and without demonstrating a correlation with the severity of symptoms. 

Moreover, our results go further showing a link of abnormal sensory perception and 

measurements of inhibitions. Both cortical (local) inhibition within the sensory cortex and 

thalamo-cortical mediated inhibition are abnormal in our cohort of patients with CD, indicating a 

spread impairment of processes of inhibition. However, abnormal STDT correlated only with 

measurements related to local inhibition. Our model could partially explain abnormal STDT 

values, as the regression model showed that only 64% of abnormal temporal processing could be 

explained by these findings. This means that other factors, over and above, play an additional 

role in keeping with the idea that dystonia should be construed as a network disorder. 
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In keeping with this concept, lately it has been pointed out that along with the basal ganglia and 

the sensorimotor cortices, also the cerebellum might play an additional role in this disorder 

(Prudente et al., 2014). The cerebellum has been held responsible for contributing to the deficit 

of sensorimotor integration presented in dystonia, as it might process afferent proprioceptive 

information and modify the threshold of the somatosensory cortex through the cerebello-

thalamo-cortical loop (Filip et al., 2017). It could also influence the cortex plasticity (Lehéricy et 

al., 2013). The results of our study (Chapter 2), testing cerebellar function by means of EBCC 

paradigm, showed that this is abnormal in dystonia when compared to controls, but it also 

shows that abnormal cerebellar functioning segregates with the presence of tremor, rather than 

with dystonia itself. Therefore, it is possible that along with the main manifestation of dystonia, 

peculiar aspects could instead be brought by different degrees of involvement of a node of the 

networks, explaining therefore the phenotypic variability of dystonia. 

Finally, lately non-motor symptoms are emerging as important determinants of the quality of life 

in patients with movement disorder. Virtually, all the movement disorders disappear or improve 

while sleeping. Exceptions are of course sleep-related movement disorders. Nocturnal occurrence 

of movements, indeed, leads firstly to the suspicion of a parasomnia or of a seizure. The only 

exceptions seem to be dystonia due to ADCY5 mutation (Chen et al., 2015) or the wide spectrum 

of phenotypes mixing dyskinesia, ataxia and paroxysmal hypnogenic diskynesia due tu PRRT2 

mutation (Liu et al., 2016). However, in the past there have been some suggestions that dystonia 

might persist during sleep (Sforza et al., 1990; Silvestri et al., 1991). Moreover, subjective 

complaints of patients about sleep have been consistently reported (Eichenseer et al., 2014), but 

never investigated by means of objective evaluation.  Our study (Chapter 4) showed important 

clues on that regard. Interestingly, indeed we found subjective complaints to correlate with 

abnormal sleep architecture as measured with overnight PSG. However, dystonia clearly 
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disappears during sleep, until reaching values of muscle activity relatively lower when compared 

to the activity recorded from the homologous muscles in heathy controls. This leads to speculate 

on a possible homeostatic role of sleep for dystonia, as proposed for the sleep benefit in 

parkinsonian conditions. Of course, the nature of our study hampers any conclusion on that 

matter. 

Overall, what we clearly demonstrated was the presence of an impairment of objective 

measurements of sleep quality. This seemed to be independent from dystonia severity and from 

disease duration, implying that sleep abnormalities might be ascribed independently to dystonia 

network and that they deserve a discrete look and an appropriate therapeutic approach.  

To conclude, our results further show that dystonia is not merely a movement disorder and that 

abnormalities of physiology go behind the basal ganglia, and encompasses several nodes of the 

central nervous system, such as the cerebellum (Chapter 2) and the sensorimotor cortex (Chapter 

3). Overall, dystonia seems to arise from different types of defects within the sensorimotor 

network and dysfunction may involve a single node within the network, or possibily even result 

from the simultaneous dysfunction of more than one node, or abnormal communication between 

the nodes. Within this network, involvement of a node more than another may exaplain 

phenotypic variability. Yet, network embalance and aberrant inhibition might account also for the 

emergence of non-motor features (Chapter 4), while the sleep-related improvement might 

theoretically be ascribed to the different connectivity linked to the state of being of sleep 

(Massimini et al., 2015).  

Improved understanding of pathogenetic pathways will hopefully lead to the discovery of new 

therapeutic targets aiming to provide better symptomatic and, optimistically, etiological treatment 

in dystonia. 
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