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1. Breast Cancer: Clinical, Pathological and Molecular 

aspects  

Breast cancer is the most common cancer and the second leading cause of cancer 

death in women (Siegel et al., 2015) despite significant improvements in survival over the 

past 25 years. It is estimated that in 2016, close to 246.000 new cases will be diagnosed and 

over 40.000 women will die from the disease in the USA (Siegel et al., 2015).  One of the 

greatest challenges faced by clinicians and researchers in this field is that breast cancer is not 

a single entity, but rather a heterogeneous group of several subtypes displaying distinct 

differences in biological and clinical behavior (Dawson et al., 2013). This heterogeneity is 

visible at the histological, clinical, genetic and genomic level. 

 

1.1 Classification of breast cancer 

The classification of invasive breast cancer currently involves the assessment of 

histological criteria including both morphology-based and immunohistochemical (IHC) 

analysis. The vast majority of breast carcinomas (~70–80%) are described as “invasive ductal 

carcinomas not otherwise specified” (IDC-NOS) based on architectural patterns and 

cytological features. In contrast, around 15% of breast cancers are lobular (Ellis., 2003). In 

addition to histological tumor type, tumor grade is the other important intrinsic characteristic 

that can be assessed by histopathological analysis. Tumor grade is an assessment of 

differentiation (tubule formation and nuclear pleomorphism) and proliferative activity 

(mitotic index), allowing tumors to be further stratified and providing key prognostic 

information (Rakha et al., 2010). 

Traditional pathological parameters such as histological type, tumor size, histological 

grade and axillary lymph-node involvement have been shown to correlate with clinical 

outcome and provide the basis for prognostic evaluation (Elston et al., 1999). IHC markers 

such as the expression of hormone receptors (estrogen (ER) and progesterone receptors (PR)) 

and the overexpression and/or amplification of the human epidermal growth factor receptor 2 

(HER2) provide additional therapeutic predictive value and are of key importance in guiding 

treatment selection (Harris et al., 2007). Hormone receptor-positive breast cancers account for 

around 75–80% of all cases. Standardized IHC assays for the routine testing of ER and PR are 
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used to guide the selection of patients for hormonal-based therapies. HER2 represents the 

only additional predictive marker currently in routine use. Approximately 10–15% of breast 

cancers displays HER2 overexpression and/or amplification with around half of these tumors 

co-expressing hormone receptors (Konecny et al., 2003). The remaining 10–15% of breast 

cancers are defined by hormone receptor and HER2 negativity (i.e., triple negative cancers), 

which represent a key clinical entity given their lack of therapeutic options (Dawson et al., 

2009).  

While the current classification of human breast tumors has been fundamental for 

prognostic and predictive evaluation, a number of important limitations remains. First, 

considerable variation in response to therapy and clinical outcome still exists, even for tumors 

with apparent similarities in clinical and pathological characteristics. Second, this 

classification continues to provide limited insight into the complex underlying biology and 

the molecular pathways driving the disease in different subtypes. Recently, rapid progress has 

been made in understanding the genomic diversity of breast cancer. These advances led to the 

characterization of a new genome-driven integrated classification of breast cancer, which 

substantially refines the existing classification systems currently used. Genomic studies 

identified five intrinsic subtypes of breast cancer: luminal A, luminal B, basal like, HER2-

enriched and triple positive. 

Luminal tumors are the most common subtypes among breast cancer, with luminal A 

being the majority, representing the 50%-60% of all breast cancer (Yersal and Barutca, 2014). 

At the RNA and protein level, Luminal A and B subtypes are largely distinguished by the 

expression of two main biological processes: proliferation/cell cycle-related and 

luminal/hormone regulated pathways. Luminal A subtype is defined as ER-positive and/or 

PR-positive tumors with negative HER2 and low Ki67 (proliferating cell nuclear antigen) 

index by immunohistochemistry (Carey et al., 2006). Luminal B tumors comprise 15%-20% 

of breast cancers (Creighton et al., 2012). From the immunohistochemical point of view are 

defined as ER-positive, HER2-negative and Ki67 high or ER and HER-2 positive tumors 

(Yersal and Barutca, 2014). This subtype has a higher recurrence rate and lower survival rates 

after relapse compared to Luminal A subtype (Ellis et al., 2008).  

Luminal tumors respond well to hormone therapy but poorly to conventional chemotherapy 

(Brenton et al., 2005). Treatment response differs between luminal subtypes. Thus, Luminal 

A tumors could be adequately treated with endocrine therapy, while Luminal B tumors which 
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are more proliferative may benefit more from the combination of chemotherapy and 

hormonal treatment. Other targeted approaches such as anti-angiogenic strategies were 

suggested to be effective for luminal tumors as well. For example, the anti-VEGF antibody, 

bevacizumab, was shown to improve progression free survival when combined with 

neoadiuvant chemotherapy in metastatic breast cancer (Makhoul et al., 2015). 

HER2-positive cancer accounts for 15-20% of breast tumors. HER2 positivity confers 

more aggressive biological and clinical behavior. These tumors are characterized by high 

expression of the HER2 gene and other genes associated with the HER2 pathway and/or 

HER2 amplicon located in the 17q12 chromosome. Morphologically, these tumors are highly 

proliferative, 75% have a high histological and nuclear grade and more than 40% have p53 

mutations (Yersal and Barutca, 2014). Nearly half of HER2-positive breast cancers are 

positive for ER but they generally express low ER levels. In the absence of treatment, HER2-

positive tumors have a poor prognosis. They have increased sensitivity to certain cytotoxic 

agents such as doxorubicin, relative resistance to hormonal agents and a propensity to 

metastasize to the brain and visceral organs. Advances in translational science have led to the 

development of a large spectrum of HER2 directed therapies, e.g. trastuzumab (Prat et al., 

2014; Vici et al., 2015). 

Overall, ER-positive breast cancers are classified as luminal cancers, but these cancers 

are further subclassified based on their HER2 status and proliferation rate into the ER 

positive/PgR positive/HER2 positive (‘‘triple positive’’) and ER positive/PgR positive/HER2 

negative subtypes. HER2 triple positive  comprise 10% of breast cancers and have a worst 

prognosis compared to the ER positive/PgR positive/HER2 negative subtype (Dowsett et al., 

2008; De Laurentiis et al., 2005; Lipton  et al., 2002). Preclinical evidence seems to confirm 

that cross-talks between HER2 and ER signalling pathways may contribute to resistance to 

endocrine therapy (Osborne et al., 2004; Vici et al., 2015). 

The basal subtype is composed of triple negative (ER-PR-HER2-) tumors with 

expression profiles mimicking that of the basal epithelial cells of other parts of the body and 

normal breast myoepithelial cells (Perou et al., 2000). Such expression patterns include 

lacking or low expression of hormone receptors and HER2, and high expression of basal 

markers (such as keratins 5, 6, 14, 17, EGFR) and proliferation related genes (Perou et al., 

2000). These tumors are of particular interest because they follow aggressive clinical course 

and currently lack any form of standard targeted systemic therapy. Basal tumors are 
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associated with a lower disease-specific survival and a higher risk of local and regional 

relapse. The metastasis pattern also separates basal tumors from the other breast cancers, with 

a tendency towards visceral organs (excluding bone) and less likely to lymph nodes (Ho-Yen 

et al., 2012).  

 

1.2 HER2-positive breast cancer 

1.2.1 Role and function of EGFR/Erb-B receptors 

The Erbb family consists of four closely related type 1 transmembrane tyrosine kinase 

receptors: epidermal growth factor receptor (EGFR; also known as HER1), ERBB2 (HER2), 

ERBB3 (HER3) and ERBB4 (HER4) (Figure 1). Each receptor comprises an extracellular 

domain at which ligand binding occurs, an α-helical transmembrane segment and an 

intracellular protein tyrosine kinase domain (Olayioye et al. 2000). Receptor dimerization is 

an essential requirement for Erbb function and for the signalling activity of these receptors 

(Olayioye et al., 2000; Ferguson et al. 2003). Dimerization can occur between two different 

Erbb receptors (heterodimerization) or between two molecules of the same receptor 

(homodimerization) (Cho et al., 2002; Burgess et al. 2003) (Figure 1). The ERBB receptors 

are expressed in various tissues of epithelial, mesenchymal and neuronal origin. Under 

normal physiological conditions, activation of the ERBB receptors is controlled by the spatial 

and temporal expression of their ligands, which are members of the epidermal growth factor 

(EGF) family of growth factors (Hynes & Lane 2005). EGF is the prototype of a family of 

ligands that include the transforming growth factor-alpha (TGF-α), which binds to HER1, and  

heregulin (HRG), which binds to HER3 and HER4. None of the EGF family peptides bind 

HER2, which is present in a constitutive active form. Ligand binding to the extracellular 

domain initiates a conformational rearrangement, exposing the dimerization domain that 

forms the core of the dimer interface with another receptor (Figure 1) (Ogiso et al., 2002). 

After receptor dimerization, transactivation of the tyrosine kinase portion of the dimer occurs 

as each receptor activates its partner by phosphorylation. The phosphorylation event allows 

the recruitment and activation of downstream proteins and a signalling cascade is initiated 

(Mendelsohn & Baselga, 2003; Baselga & Swine, 2009). 
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Figure 1: EGFR/Erb-B receptors: a) the four members of the Erbb family with their three functional domains. b) Ligand 

binding to Erbb receptors conformational change and activation of the molecule. Image from Baselga & Swain, Nat Rev 

Cancer 2009. 

 

Activated ERBBs stimulate many intracellular signalling pathways and, despite extensive 

overlap in the molecules that are recruited to the different active receptors, different ERBBs 

preferentially modulate certain signalling pathways, owing to the ability of individual ERBBs to 

bind specific effector proteins (Hynes & Lane 2005). Two of the main pathways activated by the 

receptors are the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3-kinase 

(PI3K–AKT) pathways (Yarden & Sliwkowski, 2001, Schlessinger, 2004). Other important 

ERBB signalling effectors are the signal transducer and activator of transcription proteins (Yu & 

Jove, 2004), which, in cancer, have often been associated with EGFR activation; SRC tyrosine 

kinase, the activity of which is increased in response to EGFR and ERBB2 signalling (Ishizawar 

& Parsons, 2004); and mammalian target of rapamycin (mTOR), a serine/threonine kinase 

activated downstream of PI3K–AKT and other growth regulators (Bjornsti & Houghton, 2004) 

(Figure 2). 
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Figure 2: Active ERBB receptors and downstream signalling pathways in a tumor setting. Figure adapted from Hynes & 

Lane 2005. 

The specificity and potency of this multi-layered signalling network depend on the composition 

of ligands (at least 12) and monomers (input layer), along with the variety of intracellular 

effectors and regulators (signal-processing layers). The physiological outputs consist of cell 

division, migration, adhesion, differentiation and apoptosis. Ligand-mediated receptor 

endocytosis allows the turning off of the signalling network (Yarden and Sliwkowski, 2001). 

 

1.2.2 HER2-driven neoplastic transformation  

Deregulation of Erbb signalling pathways has been described in many cancers, including 

breast, linked to a multiplicity of molecular and epigenetic mechanisms, activating mutations of 

the receptors themselves or activation induced by autocrine/paracrine ligands (Eccles 2011).  

HER2 is a 185 kDa transmembrane receptor tyrosine kinase, codificated by the proto-oncogene 

ERBB2 located on chromosome 17q12. Although HER2 does not bind any ligand, because of the 
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constitutive exposure of its dimerization domain, it is the preferred partner for 

heterodimerization. In fact, some authors consider HER2 as an amplifier of the HER receptor 

pathway rather than a bona fide receptor (Citri and Yarden 2006).  

Overexpression of the HER2 protein, either through gene amplification or through 

transcriptional deregulation, has been reported in 15-20% of human breast cancers (Wolf et al., 

2013), as well as in subsets of patients with ovarian cancers (Marinas et al., 2012; English et al., 

2013), gastric carcinoma (Ahmadi et al., 2011) and salivary gland tumours (Cornolti et al., 2007). 

In addition, other potential mechanisms might be responsible for increased HER2 levels, e.g. the 

absence or mutation of FOXP3, an X-linked tumor suppressor gene that maintains low levels of 

HER2 (Zuo et al., 2007). HER2 might also be aberrantly activated by acquired mutations, 

similarly to EGFR, in a small proportion of non-small cell lung tumours (Cappuzzo et al. 2006; 

Wang et al. 2006, Swanton et al, 2006; Yamamoto et al, 2014). Regardless of the causative 

mechanism, HER2 overexpression in conditions in which the number of HER2 molecules 

expressed on the surface of tumor cells far exceeds that on normal cells, facilitates the formation 

of heterodimers and the spontaneous formation of HER2 homodimers (Yarden & Sliwkowsk, 

2001; Lv et al., 2016).  

Breast cancers can have up to 25-50 copies of the HER2 gene and up to 40-100 fold 

increase in HER2 protein expression resulting in up to 2 million receptors expressed at the tumor 

cell surface (Kallioniemi et al. 1992; Wolff et al., 2013); consequently, an excess of HER2-

mediated signalling occurs driving oncogenic cell survival and proliferation.  

To further complicate this signalling network, other membrane receptors, such as insulin-

like growth factor 1 receptor (IGF-1R) (Nahta et al., 2005) and MET (Maroun & Rowlands, 

2014), have been shown to dimerize with HER2 receptor and activate the phosphorylation 

cascade. In addition, ER can activate HER2 signalling when bound by estrogen (Schiff et al., 

2004). Finally, alterations in signalling molecules downstream of the receptors can activate the 

pathway, including reduced levels of the tumor suppressor genes INPP4-B (for inositol 

polyphosphate-4-phosphatase, type II) and PTEN (phosphatase and tensin homolog) which 

normally inactivate PI3K, or activating mutations in PIK3CA (for phosphatidylinositor-4,5-

bisphosphate 3-kinase), the gene that encodes the catalytic subunit of PI3K (The Cancer Genome 

Atlas Network, 2012; Berns et al., 2007).  

With four receptors, multiple ligands, several feedback loops in the MAPK and PI3K 

pathways, and multiple levels of control, the Erbb network, like a robust electronic circuit, is 
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complex, redundant, capable of fine tuning, adaptable, and difficult to block completely (Citri & 

Yarden, 2006). 

 

2. Therapies targeting HER2-positive breast cancer  

HER2 crucial role in tumor growth and progression makes HER2 a prototypic 

oncoantigen, the targeting of which may be critical for the development of effective anticancer 

therapies (Lollini et al., 2006). 

First, HER2 overexpression has been defined by immunohistochemistry as being high 

(reported as 3+) when receptor levels approach 2 million, or of medium intensity (2+) when 

receptor levels are approximately 500.000, compared to normal levels of HER2 membrane-bound 

receptor, reported to be 20.000 per cell (Ross JS et al., 2004). Second, elevated HER2 levels 

strongly correlate with the pathogenesis and prognosis of breast cancer (Slamon DJ et al., 1987; 

Slamon DJ et al., 1989) Third, the level of HER2 gene amplification in human cancer cells is 

much higher than in normal adult tissues; thus, targeting the HER2 protein with HER2-targeted 

drugs could reduce the pathogenicity caused by HER2 overexpression. Fourth, HER2 protein 

levels are relatively homogeneous between HER2-overexpressing tumor cells (Eccles, 2001). 

Tumors with high expression of HER2 (i.e. an IHC score of 3+) often show uniform and intense 

IHC staining, (Paik et al., 1990) suggesting that anti-HER2 therapy would target most cancer 

cells in a given patient. Fifth, overexpression of the HER2 protein is found both in the primary 

tumor and in metastatic sites (Niehans et al., 1993), indicating that anti-HER2 therapy could be 

effective in all disease locations (Nahta et al., 2006). 

  

2.1 Clinically approved anti-HER2 agents 

Growing understanding of the biology and complexity of the HER2 signalling network 

and of potential resistance mechanisms has guided the development of new HER2-targeted 

agents. Combination of these drugs to more completely inhibit the HER receptor layer, or 

combined HER2-targeted agents with compounds that target downstream signalling, alternative 

pathways, or component of the host immune system, are being vigorously investigated in the 

preclinical and clinical settings 
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Trastuzumab 

Trastuzumab was the first approved targeted therapy for HER2 positive breast cancer 

(Herceptin, Genetech Inc., San Francisco). It is a humanized immunoglobulin G1 antibody that 

binds to an epitope in the juxtamembrane region IV of HER2. The mechanisms by which 

trastuzumab induces regression of HER2-overexpressing tumors are incompletely defined, but 

several molecular and cellular effects have been observed in experimental in vitro and in vivo 

models (Nahta and Esteva, 2003; Nahta and Esteva, 2006).  

Diminished receptor signalling might result from trastuzumab-mediated internalization and 

degradation of HER2 (Baselga et al. 2001; Sliwkowski et al. 1999). In addition it inhibits basal 

and activated HER2 extracellular domain cleavage (Molina et al. 2001), and uncouples ligand-

independent HER2-containing dimers leading to partial inhibition of downstream signalling 

(Junttila et al., 2009). Data from in vivo experiments and clinical trials indicate that the efficacy 

of trastuzumab could be partly related to its induction of an immune response. HER2-targeted 

antibodies, including trastuzumab, have been shown to induce apoptosis in multiple breast cancer 

cell lines via antibody-dependent cellular cytotoxicity (ADCC) (Gennari et al. 2004; Carter et al. 

1992; Cooley et al. 1999; Lewis et al. 1993; Stockmeyer et al. 2003). Natural killer cells, a 

principal immune cell type involved in ADCC, express the Fc gamma receptor, to which the Fc 

domain of the trastuzumab IgG1 binds, activating natural-killer-cell-mediated lysis.  

HER2-targeted therapy using the humanized monoclonal antibody trastuzumab has 

significantly improved disease-free and overall survival (DFS and OS) in early stage HER2-

positive breast cancer (Slamon, et al., 2001). The efficacy of Trastuzumab was first studied as 

monotherapy in unselected patients with heavily pretreated metastatic breast cancer. Response 

rates were not impressive, with 10-15% of patients having a partial response and rare patients 

with a complete response. On the other hand, a later single-agent trial on untreated patient 

showed better results (26% of patients with a complete response) (Rimawi et al., 2015). The next 

generation studies of Trastuzumab in metastatic disease were based on preclinical data showing a 

synergistic or additive effect with several classes of cytotoxic chemotherapies (Pegram et al., 

1999; Pietras et al., 1998). With longer follow-up of these large adjuvant studies, adjuvant 

trastuzumab treatment continues to make statistically significant improvements in DFS and OS 

(Goldhirsch et al. 2013).  
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Pertuzumab 

Pertuzumab is a monoclonal antibody, discovered and developed by Genentech, approved 

in 2012. It can recognize an epitope in the heterodimerization domain II of HER2, thus blocking 

ligand-induced HER2-HER3 dimerization, resulting in partial inhibition of PI3K/AKT signalling 

(Agus et al., 2002). Due to the different epitopes targeted by pertuzumab and trastuzumab 

(Franklin et al., 2004), their combination showed to be effective in preclinical studies (Scheuer et 

al., 2009) and clinical trials (Baselga et al., 2012; Gianni et al., 2012) and is currently approved 

for the treatment of patients with HER2 positive breast cancer (Arteaga and Engelman, 2014). 

Indeed, pertuzumab is administered as an intravenous infusion in combination with trastuzumab 

and docetaxel as a first line treatment for HER2-positive metastatic breast cancer or as a 

neoadjuvant therapy (Giordano et al., 2014). 

 

Trastuzumab-derivative of emtansine 1 (T-DM1) 

T-DM1 is an antibody-drug conjugate consisting of the monoclonal antibody trastuzumab 

linked to the cytotoxic agent emtansine (DM1). A molecule of trastuzumab and 3.5 molecules of 

the compound are linked together by a covalent non-reducible thioether bond. T-DM1 combines 

trastuzumab mechanism of action to the cytotoxic microtubule-depolymerizing ability of DM1. 

Hence, after trastuzumab-mediated HER2 binding, the conjugate is internalized and degraded by 

lysosomes. Then, DM-1 is released in the cytoplasm, causing lysis of HER2-positive cancer cells 

(Arteaga and Engelman, 2014).  

T-DM1 was approved in 2013 specifically for treatment of HER2-positive metastatic 

breast cancer (mBC) in patients previously treated with trastuzumab and a taxane (Giordano et 

al., 2014).  

 

Lapatinib  

Lapatinib, an orally available small molecule, is a reversible dual inhibitor of EGFR and 

HER2 (Cameron et al., 2008). Lapatinib binds to the ATP-binding pocket of HER2, thus 

preventing receptor phosphorylation and subsequent activation of downstream pathways, 

including PI3K-AKT and MAPK pathways (Arteaga and Engelman, 2014). It is approved in 

combination with capecitabine for the treatment of advanced HER2 positive breast cancer. 

Lapatinib greatly improved BC prognosis in recent years after the initial introduction of 

trastuzumab. 
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Table 1: Clinically approved anti-HER-2 agents (modified from Arteaga and Engelman, 2014) 

 

 

2.2 Resistance to current anti-HER2 therapies  

HER2-targeted therapies altered the natural history of HER2-positive BC and metastatic 

BC (MBC) (Cobleigh et al., 1999; Swain et al., 2013). Despite this significant progress, up to 

62% of patients treated with neoadjuvant trastuzumab experience disease progression or de novo 

resistance (Petrelli et al., 2011). BC patients who initially respond to treatment with trastuzumab 

plus chemotherapy achieve an increase in response of 18% compared with chemotherapy alone; 

however, acquired resistance will be developed after one year (Slamon et al., 2001).  

The underlying mechanisms of resistance to anti-HER2 therapies are not entirely clear, 

but several mechanisms have been proposed, including heterodimerization between HER2 and 

other Erbb receptors (Robinson et al., 2006), increased expression of HER and non-HER receptor 

ligands (Wang et al., 2008; Straussman et al., 2012), a more active signalling through the SRC 

family kinase (Wheeler et al., 2012). Moreover, molecular heterogeneity could underlie the 

unresponsiveness to target therapies and foster the development of resistance. Changes in HER2 

interactions with trastuzumab or other HER receptor family members often result in 

(re)activation of the HER receptor layer and consequent potential intrinsic or acquired resistance 
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to trastuzumab. These changes include genetic and epigenetic alterations in HER2 receptor itself, 

which have the following results: 

1. Truncated forms of HER2 that lack the trastuzumab-binding epitope (p95-HER2 

(Arribas et al., 2011); 

2. more constitutively activated receptors, like the HER2 extracellular-domain splice 

variant Delta16 (Castiglioni et al., 2006), or activating mutations in the kinase and the 

extracellular domains of HER2 (recently described in HER2 negative tumors and in some 

primary and metastatic HER2+ breast cancers) (Herter-Sprie et al., 2013, The Cancer Genome 

Atlas Network, 2012, Bose et al., 2013; Prempree and Wongpaksa 2006); 

3. loss or increased expression of HER2 (Arteaga et al. 2012). 

In addition, increased expression of HER1 (Rimm et al., 2012; Nahta et al. 2009) and 

HER3 (Nahta et al., 2009), or excess ligands for these receptors (Rexer and Arteaga, 2012), have 

also been described in the context of trastuzumab resistance. 

Resistance to trastuzumab or other single anti-HER2 agents may commonly arise from 

incomplete inhibition of the HER receptor layer, allowing compensatory activation of the 

pathway by other Erbb members (Citri & Yarden, 2006). Indeed, a combination of two or three 

agents with different mechanisms of action that together block all HER1–3 dimers results in a 

more effective inhibition of the HER pathway and in the eradication of HER2 positive xenografts 

in mice (Arpino et al 2007; Wang et al., 2011).  

Most of these mechanisms of resistance stem from the tumor cells themselves, but studies also 

highlight a role for the host and tumor microenvironment in resistance. Multiple signalling 

molecules and pathways implicated in resistance have been thoroughly reviewed recently 

(Herter-Sprie et al., 2013). 

 

2.2.1 HER2 isoforms 

Subgroups of HER2-positive breast tumors express a series of carboxy-terminal fragments 

of HER2 collectively known as HER2 CTFs or p95HER2 (Arribas et al., 2001). They originate 

by proteolytic cleavage of the extracellular domain of full-length HER2 or by traduction of HER2 

mRNA from internal initiation codons. p95HER2 fragments are able to homodimerize on cell 

membrane, leading to a much more rapid and acute signal transduction than that driven by 

HER2-containing dimers. Compared with tumors with undetectable levels of these fragments, 



Introduction 

19 
 

p95HER2-positive tumors have a worse prognosis and tend to be resistant to the treatment with 

trastuzumab (Scaltriti et al., 2007). However, two recent studies connected CTF expression in 

human samples of HER2-positive breast cancer to a good trastuzumab response (Scaltriti et al., 

2014; Parra-Palau et al., 2014). One of the fragments, 100–115 kDa p95HER2 (also known as 

611-CTF), is a constitutively active form of HER2 because of its ability to form dimers 

maintained by intermolecular disulfide bonds (Pedersen et al., 2009). 

During the characterization of the HER2 species recognized by the anti-p95HER2 

antibodies under denaturing conditions, Morancho and colleagues observed the existence of the 

N-terminal fragment of HER2 (H2NTF), expressed at variable levels in 60% of the breast cancer 

samples analyzed. Characterization of H2NTF showed that even if it lacks the intracellular 

tyrosine kinase domain it readily interacts with full-length HER2 and other HER receptors. As a 

consequence, H2NTF acts as a dominant negative, attenuating the signalling triggered by full-

length HER receptors (Morancho et al., 2013). 

In addition to the truncated isoforms of HER2, a splice variant lacking exon Delta16 was 

identified in 1998 by Kwong and Hung in human cancer cell lines. In Delta16 isoform, the in-

frame deletion of exon 16 (48 bp) determines the lack of 16 aminoacids, including two cysteines, 

in the juxtamembrane region (Kwong and Hung, 1998). Due to the loss of these cysteine 

residues, intermolecular disulfide bonds with other monomers are promoted, triggering a stronger 

signal transduction in respect to HER2 (Castiglioni et al., 2006). Delta16 isoform is present as  8-

10% of HER2 transcript amount in half HER2-positive breast cancer patients and in 90% of 

women with locally disseminated disease (Castiglioni et al., 2006; Mitra et al., 2009). 

In vitro studies in MCF-7 and MCF-10A cells transfected with Delta16 showed an 

increased activation of PI3K-AKT and MAPK pathways, compared to cells transfected with 

HER2 full-lenght (Mitra et al., 2009; Alajati et al., 2013). Delta16 oncogenic properties are 

correlated to Src kinase activation. It can interact with Src on cell membrane, activating both 

PI3K-AKT and MAPK cascades (Mitra et al., 2009). These results obtained in vitro were 

confirmed as well in vivo; on Delta16 transgenic mouse models Marchini and colleagues showed 

that Delta16 constitutively active homodimers are able to trigger a Src-mediated signal 

transduction (Marchini et al., 2011). Castagnoli and colleagues either on a cell line derived from 

a tumor of a Delta16 transgenic mouse, or on human HER2-positive breast tumors highlighted 

the strong correlation between activated Delta16 dimers/monomers and phospho-Src. However, 

they did not observe Src-dependent activation of PI3K-AKT and MAPK pathways (Castagnoli et 
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al., 2014). Furthermore, unlike HER2 full-lenght, overexpression of Delta16 in human breast 

cells evoked mammary tumors and lung metastases when injected into the mammary gland of 

immunodeficient mice (Alajati et al., 2013). 

The expression of the Delta16 isoform was initially thought to be involved in resistance to 

HER2 targeted therapies. In vitro resistance to trastuzumab was observed in Delta16-expressing 

cells (Castiglioni et al., 2006; Mitra et al., 2009). On the contrary, other authors, demonstrated in 

vivo trastuzumab susceptibility of Delta16-expressing tumors (Alajati et al., 2013; Castagnoli et 

al., 2014). Moreover in the study conducted by Castagnoli and colleagues is shown that the 

coexpression of high levels of both Delta16 and phospho-Src decrease the risk of relapse after 

trastuzumab treatment in breast cancer patients (Castagnoli et al., 2014). 

 

2.2.2 HER2 Loss 

HER2-amplification in breast cancer is an excellent illustration of the oncogene addiction 

hypothesis, which argues that some cancers are driven by a single oncogene that harbors an 

activating mutation or is overexpressed through gene amplification (Weinstein & Joe, 2008). As a 

consequence of this single dominant driver, the activity of other survival pathways in the cell is 

down-regulated because they are not necessary for the cell to grow, and potent inhibition of the 

dominant driver should then kill the cell. If other survival pathways remain or become active, 

then resistance to the therapy evolves and the cell survives (Rimawi  et al., 2015).     

The HER2 oncogene commonly develops resistance to the humanized HER2 antibody 

trastuzumab in a slightly different fashion; in this case, the trastuzumab-binding epitope is lost 

while oncogene function is retained (Scaltriti et al., 2007). In vitro and in vivo studies have 

demonstrated that cancer can “escape” from a given state of oncogene addiction, through 

mutation in the oncogene itself or other genes and pathways, presumably because of the frequent 

genomic instability of cancers. As such, acquired resistance to HER2-, EGFR-, and ALK-targeted 

therapies includes selection for activating mutations in the APK or PI3K pathways. As with 

second-side mutation of the oncogene itself, resistance mutations in key members of an 

oncogenic signalling pathway highlights that many cancers retain dependence upon specific 

oncogenic pathways, if not always the oncogene itself.  

Cancers are inherently genetically unstable; thus alteration of HER2, ER and PgR 

expression between primary and metastatic breast cancer is theoretically sound. Numerous, 

predominantly retrospective studies report discordance rates of around 10–30% for ER and 20–
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50% for PgR, while reported HER2 discordance rates are generally lower. A study-level meta-

analysis, including 26 trials and around 2.500 patients, found a discordance rate for either HER2 

loss or gain of 5.5%. 2 Studies published subsequently have reported discordance rates of a 

similar magnitude ranging from 1% to 24%. This biological phenomenon may be due either to 

the heterogeneity inherent in cancer cells or to clonal selection promoted by targeted therapies 

against HER2 (Turner & Di Leo, 2013). However, it remains unclear what could be the clinical 

and prognostic effect of the expression of HER2 discordance between primary tumors and 

metastasis. The available evidence suggests that loss of HER2 may result in worse post relapse 

survival (PRS) and overall survival (OS), although data were not consistent across trials and were 

often confounded by lack of treatment in the setting of receptor loss. Conversely, HER2 

discordance was not associated with shorter disease free survival (DFS). Furthermore, there was 

no evidence that indicated specific clinical factors, such as previous treatment, might predict 

likelihood of HER2 discordance at breast cancer relapse (Turner and Di Leo, 2013). 

 

2.2.3 Activation of compensatory and alternative signalling and survival 

pathways 

It has come to light that cancer cells are able to become resistant to therapies by recruiting 

the use of a similar, compensatory pathway that continue downstream activation of protein 

synthesis. This mechanism is referred to as crosstalk between two pathways to allow continued 

cancer cell growth and survival. 

An important trait of the Erbb family is the activation of the PI3K and the MAPK 

pathways. HER2-mediated activation of PI3K causes the phosphorylation of the serine/threonine-

specific protein kinase, AKT, which in turn activates mTOR, able to induce protein synthesis that 

stimulates cell proliferation, migration, and metabolism (Altomare and Testa, 2005). Alterations 

in breast cancer resulting in hyperactivity of the PI3K pathway include gain-of-function 

mutations in PIK3CA (the gene encoding the PI3K catalytic subunit p110α), (Campbell et al., 

2004; Bachman et al., 2004), mutations in AKT1 (Carpten et al., 2007), amplifications of AKT2 

(Bellacosa et al., 1995), loss of the PTEN lipid phosphatase (Li et al., 1997; Saal et al., 2007) and 

loss of the tumor suppressor INPP4B (inositol polyphosphate 4-phosphatase type II) (Gewinneret 

al., 2009). Due to role of AKT in a variety of human solid tumors and hematological 

malignancies, several therapies have been developed to target components of the AKT pathway 
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to reduce tumor survival, e.g. Wortmannin and LY294002, which are reversible and non-

reversible inhibitors of PI3K respectively. 

HER2 mediated activation of the MAPK pathway induces a Ras-mediated 

phosphorylation cascade resulting in the transcription of a number of genes that promote cell 

proliferation, survival, and cell migration (Hynes and Lane, 2005). Similar to the AKT pathway, 

several components of the MAPK pathway are involved in promoting tumorigenesis making 

these two pathways central nodes where activating mutations are known to trigger tumorigenesis 

and metastasis. Several inhibitors were designed to target components of the MAPK and mTOR 

pathways, e.g. U0126 and rapamycin, which inhibit MEK/MAPKK and mTOR respectively.  

Resistance to therapies can also involve the upregulation of ligands and HER2 

heterodimerization with EGFR, HER3 and interactions with others membrane receptors such as 

IGF1R or MET. Extensive research has been done in G-Protein Coupled Receptor (GPCR) 

crosstalk with EGFR/HER2 since some GPCR agonists such as Lysophosphatidic acid (LPA), 

carbachol (muscarinic acetylcholine inhibitor), and thrombin are known to be able to increase 

HER activation (Bray, 2006). Emerging preclinical and clinical evidences indicate a complex 

molecular bidirectional crosstalk between ER and HER2 pathways (Arpino et al., 2008; Lousberg 

et al., 2016). An inverse relationship has been observed between the expression of growth factor 

receptor and ER (Massarweh and Schiff, 2007). Preclinical data support the hypothesis that 

increased growth factor signalling down-regulates ER expression and, vice versa, HER2-

overexpressing tumors, that are apparently ER negative, may actually revert to ER positivity after 

treatment with anti-HER2 therapies (Munzone et al., 2006; Xia et al., 2006).  

Mechanisms of crosstalk between the HER family and several other pathways, including 

the Wnt/β-catenin (Ayyanan et al, 2006), TNFα/IKK/NK-κB (Oswald et al., 1998; Osipo et al., 

2008), and Notch pathway (Yamaguchi et al., 2008; Osipo et al., 2008) have been under 

investigation for several years.  

Interesting findings have been made characterizing the novel mechanisms of HER2–

Notch bidirectional crosstalk via PTEN, a negative regulator of the PI3K pathway.  

Inactivation of PTEN has been shown to occur within 40% of HER2+ breast cancer patients and 

has been correlated with poor prognosis, treatment resistance, Epithelial to Mesenchymal 

Transition (EMT), as well as with the propagation and survival of Breast Cancer Stem Cells 

(BCSCs) (Bailey et al., 2011; Nagata et al., 2004; Mulholland et al., 2012; Sun et al., 2016). Sun 

and colleagues demonstrated that continued use of trastuzumab in HER2-positive cells with loss 
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of PTEN induces EMT and transform HER2-positive to a triple negative breast cancer. 

Moreover, the transformed cells exhibited loss of dependence on ERBB family signalling (such 

as HER2, HER3, HER4, BTC, HRG, EGF), reduced estrogen and progesterone receptors, 

increased frequency of cancer stem cells (CSCs) and metastasis potential (Sun et al., 2016).   

EMT is a process in which epithelial cells lose cell-cell contacts and acquire a migratory 

mesenchymal phenotype accompanied by distinct changes in gene expression (Thiery et al., 

2009). Recent evidence suggests that cells that undergo EMT acquire stem cell-like properties 

(Mani et al., 2008; Morel et al., 2008). Normal stem cells and cancer stem cells may share a 

mesenchymal phenotype that enhances their ability to preserve stemness, to retain migratory 

properties, and to respond to different stimuli during expansion and differentiation.  

EMT has been linked to both chemio- and radio-resistance and resistance to targeted agents 

(Mallini et al., 2014; Singh and Settleman, 2010). Several in vitro and in vivo studies have shown 

that resistance to lapatinib and trastuzumab is associated with induction of EMT (Creedon et al., 

2014; Kim et al., 2013; Korkaya et al., 2012; Creedon et al., 2016).  

2.3  Experimental approaches targeting HER2 

Treatment of HER2-positive breast cancer with a single anti-HER2 agent does not 

potently suppress HER2 signalling. Due to the complexity of ErbB network and the high 

incidence of resistance to current anti-HER2 agents, new therapeutic strategies targeting HER2 

are required, one it’s to overcome “bypass track resistance” by combining multiple anti-HER2 

drugs at the same time and targeting its signalling network. 

 

2.3.1 Targeting HER2 signalling network 

 

Besides combinatorial regimens, the efficacy of new drugs targeting HER2 is currently 

investigated in clinical trials. The efficacy of anti-HER2 tyrosine kinase inhibitors (TKIs) in an 

attempt to circumvent resistance to trastuzumab has already been proved with lapatinib (Geyer et 

al., 2006). Clinical trials have shown that the addition of trastuzumab and lapatinib to 

chemotherapy achieved a higher pathological complete response than either trastuzumab or 

lapatinib alone (Baselga et a., 2012; Untch et al., 2012). To further enhance HER2 inhibition, 

irreversible TKIs, such as neratinib (Puma biotechnology), have been developed. Neratinib is a 

multitargeted, irreversible tyrosine kinase inhibitor that targets the EGFR, HER2, and HER4 
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kinases (Wissner and Mansour, 2008) shown to have promising preclinical activity against 

HER2-overexpressing cell lines (Rabindran et al., 2004). Canonici and colleagues as well 

demonstrated that neratinib improve response and overcome resistance to trastuzumab in 

sensitive and resistant HER2 amplified breast cancer cells (Canonici et al., 2013). Indeed, it is 

currently undergoing several phase III clinical trials (Bottle et al., 2012; Bose et al., 2009).  

Instead of targeting HER2 receptor, new experimental molecules focus on the inhibition 

of its signalling network. Activation of signalling pathways involving the PI3K/Akt/mTOR 

pathway contribute to the development of resistance to HER2-targeted therapies, so several 

inhibitors of this pathway are under investigation in this disease setting; phase III data for 

everolimus in combination with trastuzumab and chemotherapy in trastuzumab-refractory, 

advanced disease are promising (Hurvitz et al., 2013).  

Many other PI3K-AKT inhibitors are being developed and investigated, including Buparlisib 

(Novartis) and GNE317 (Genetech). 

Buparlisib is a potent and highly specific oral pan-class I PI3K inhibitor, able to bind the ATP-

binding site of PI3K, preventing the phosphorylation of phosphorylates phosphatidylinositol 4,5-

bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3), which decreases the 

levels of phosphorylated AKT (Estevez et al., 2015). It does not significantly inhibit the related 

class III (Vps34) and class IV (mTOR) PI3K but results to be active against the most common 

somatic PI3Kα mutations (Maira et al., 2012; Saini et al., 2013). In vitro and in vivo preclinical 

studies demonstrated buparlisib ability to inhibit HER2-positive cell-derived tumor growth. 

Buparlisib, in addition, has shown in vivo antiangiogenic activity through the inhibition of PI3K 

(Maira et al., 2012). Moreover due to its ability to penetrate the blood-brain barrier it can target 

as well HER2-positive brain metastasis, as demonstrated by Nanni and colleagues (Nanni et al., 

2012). 

GNE-317 is a dual PI3K/mTOR inhibitor with excellent blood-brain barrier penetration. 

Physicochemical properties of PI3K inhibitors were optimized using in silico tools, leading to the 

identification of GNE-317; Salphati and colleagues (2012) demonstrated its effectiveness in 

inhibiting tumor growth in orthotopic xenograft models of Glioblastoma.  

Continuing on anti-signalling effector, combined anti-MEK/anti-PI3K regimens are under 

evaluation since the discovery of an association between PI3K inhibition-HER signalling 

enhancement and acquired dependency on ERK (downstream to MEK) in HER2-positive breast 

tumors (Serra et al., 2011; Saini et al., 2013, Arteaga and Engelman, 2014). 
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In addition, Mitra and co-workers showed that dasatinib, a small molecule that inhibits Src kinase 

family but also receptor tyrosine kinases, is able to suppress the growth, proliferation and 

invasion ability of HER-2 and Delta16-expressing cell lines (Mitra et al., 2009). 

 

 

Table 2. Experimental drugs targeting HER2 in HER2-positive breast cancer (modified from Yan et al., 2014; 

Arteaga and Engelman, 2014). 

Therapy Regimen 

anti-HER2 neratinib 

margetuzimab 

IJM716 

212Pb-TCMC-trastuzumab 

trastuzumab+neratinib 

trastuzumab+IJM716 

anti-signalling effectors MEK inhibitors (UO126) 

PI3K inhibitors (buparlisib) 

PI3K/mTOR inhibitors (GNE-317) 

Src inhibitors (dasatinib) 

other targets Hsp90, VEGF, matrix metalloproteinases 

inhibitors 

anti-HER2 + other biological therapies trastuzumab+erlotinib (EGFR tyrosine kinase 

inhibitor) 

trastuzumab+everolimus (mTOR inhibitor) 

lapatinib+bevacizumab (anti-VEGF-A 

monoclonal antibody) 

T-DM1+PI3K inhibitor 

trastuzumab+pertuzumab+PI3K inhibitors 

anti-HER2 + chemotherapy Anti-HER2agents 

+capecitabine/docetaxel/gemeitabine/paclitaxel 

 

 

Among other experimental drugs targeting HER2, agents inhibiting VEGF, Hsp90 and 

matrix metalloproteinases are currently investigated, as well the combination of anti-HER2 

therapies and other biological compounds or chemotherapy (Table 2) (Emde et al., 2012; Hurvitz 

et al., 2013; Yan et al., 2014; Arteaga and Engelman, 2014). 
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2.3.2 Targeting Myc 

As discussed previously, therapeutic efficacy depends on not only how effectively a drug 

inhibits its target, but also on the innate or adaptive functional redundancy of that target and its 

attendant pathway. In this regard, central transducers such as Ras, Myc, and E2F are intriguing 

therapeutic targets because they serve the unique and irreplaceable role of coordinating 

expression of the many diverse genes that, together, are required for somatic cell proliferation.  

To this end, we focused our attention on Myc, three broadly isofunctional transcription 

factors that integrate diverse upstream growth signals and coordinate them to the thousands of 

disparate target genes that, together, support somatic cell proliferation (Larsson and Henriksson 

2010). Aberrantly high and/or deregulated Myc activity is causally implicated in most cancers 

and is often associated with aggressive, poorly differentiated, and angiogenic tumors 

(http://www.myccancergene.org; Dang et al. 2010) (Figure 3). Interestingly, however, direct 

mutational activation of Myc genes is relatively uncommon in tumors, at least in their early 

stages; rather, the aberrantly high levels of expression of Myc are frequently a consequence of its 

relentless induction by upstream oncogenic signals (Larsson and Henriksson 2010). 

 

Figure 3: Myc deregulation. Figure adapted from Dang et al., 2010 
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The Myc proteins comprise three broadly isofunctional transcription factors: c-Myc, N-

Myc, and L-Myc. All share a similar HLHZip domain that mediates dimerization with their 

common obligate partner protein, Max. Such dimerization, which is essential for Myc 

proliferative and oncogenic activities, is blocked by the dominant-negative omomyc mutant.  

Omomyc is a dominant-negative Myc dimerization domain mutant comprising the basic 

helix–loop–helix zipper (HLHZip) domain of Myc with four amino acid substitutions in the Myc 

leucine zipper that confer altered dimerization specificity (Soucek et al. 1998, 2002) (Figure 4). 

Omomyc retains the ability to bind its physiological partner, Max, but also heterodimerizes with 

wild-type c-Myc, N-Myc, and L-Myc proteins. Since Myc:omomyc heterodimers can no longer 

bind to the canonical Myc E-box CACGTG DNA recognition element, omomyc overexpression 

inhibits Myc-dependent target gene transactivation (Soucek et al. 2002; 2004; Savino et al. 2011). 

Switchable genetic studies have been showed that transient systemic inhibition of Myc by the 

dominant-negative omomyc, which expression can be systemically but reversibly induced by 

administration of doxycycline to TRE-omomyc;CMVrtTA mice (Soucek et al. 2008), has a 

profound therapeutic effect on diverse tumor types yet elicits surprisingly mild and rapidly 

reversible side effects on normal tissues (Soucek et al. 2008; Sodir et al. 2011).  

  

Figure 4: Omomyc as dominant negative mutant of Myc. Figure adpted from Soucek et al., 1998. 
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The elevated and/or deregulated activity of Myc gene is associated with the majority of 

human cancers, as well to HER2-positive breast cancer. 

Nair and colleagues demonstrated that HER2 and c-Myc interaction drives mammary 

oncogenesis. They showed, in a chimeric transgenic mouse model double positive for the two 

oncogenes, that the co-expression of HER2 and c-Myc was sufficient to significantly decrease 

survival time of mice, increase self-renewal in sphere-forming assays and was associated with an 

average 20-fold increase of in vivo tumour-propagating capacity (Nair et al., 2014). 

Myc is implicated as well in HER2-targeted therapy mechanisms of resistance. 

Amplifications of MYC, EGFR, HER2, CCND1, and TOP2-A have been identified from a 

trastuzumab-resistant breast cancer cell line (B585) by comparative genomic hybridization and 

FISH analysis (Barok et al., 2010). 

Furthermore, a recent study proved that the treatment of BT474 HER2-positive cells with an 

epigenetic inhibitor suppressing c-Myc and lapatinib, synergically suppressed HER2-positive 

cancer cells in vitro and in vivo, by targeting the MLL2/FOX/c-Myc axis (Matkar et al., 2015). 

Thus this result suggests an epigenetically regulated FOXO/c-Myc axis as a potential target to 

improve HER2-positive breast cancer therapy. 

 

3. Preclinical models for the study of mammary carcinoma 

Experimental oncology research and drug development both require highly specific and 

clinically relevant in vitro and in vivo tumor models. Investigating the progression of human 

breast cancer in patients is very problematic for several reasons, including the numerous genetic 

and phenotypic alterations involved in the human disease and the intrinsic heterogeneity 

associated with breast tumors. Therefore, breast cancer disease is hard to mimic in all its 

characteristics in a single model, however existing models continue to provide priceless 

knowledge about the induction and the progression of the disease that would be impossible to 

obtain using in vitro models alone (Ottewell et al., 2005). 

3.1 Relevance and evolution of preclinical models in oncology  

The ideal preclinical model of breast cancer should recapitulate all the genetic and 

phenotypic alterations that occur in patients. Furthermore it should be easy to manipulate and 

genetically similar to human. Amongst the large repertoire of in vivo systems used to study 
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cancer, mouse models represent the most widely used system. Mice are a useful model for 

genetic manipulation and research, as their tissues and organs are similar to that of a human and 

they carry virtually all the same genes that operate in humans. Currently several mouse models 

are available, each of which is able to partially reproduce several human diseases.  

Genetically engineered mouse models (GEMMs) and transplantation models are 

extensively used in research as models of breast cancer (Ottewell et al., 2006). GEMMs are 

modified in order to express (transgenic mice) or to lack (knockout mice) a gene of interest. They 

have been widely employed to study the early stages of many cancers but, due to the low 

incidence of metastases, they seem inappropriate for advanced disease studies (Ottewell et al., 

2006; Saxena and Christofori, 2013). These models have the big advantage that the specific 

alteration that determines the tumor phenotype is known, resulting useful to investigate the 

molecular changes related to it. On the other hand the expression of the transgene in mice is 

usually induced at higher levels than those expressed physiologically in human tumors (Williams 

et al., 2013). The use of conditional and inducible systems usually are the solution to overcome 

these limitations. 

Transplantation models consist of the injection of murine (syngeneic model) or human 

(xenogeneic model) cancer cells in mice. They are useful for studies on the various cancer stages 

as well as for the evaluation of new therapeutic approaches (Saxena and Christofori, 2013).  

Patient Derived Xenograft (PDX) and co-clinical trials represent emerging applications of 

mouse modeling to the study of cancer (Prerna et al., 2014). PDX models are created when 

cancerous tissue from a patient’s primary tumor is implanted directly into an immunodeficient 

mouse. This model offers a reliable first stride towards the goal of developing an efficient 

personalized therapy against cancer. A co-clinical trial refers to trials that are conducted 

simultaneously in GEMMs and human patients as part of the phase I/II trials for drug 

development. This project aims at real-time integration of murine and human trial data in an 

attempt to improve clinical decisions and outcomes. Although conceptually different, both these 

applications emphasize the need for tailoring therapeutic regimens based on individual molecular 

profiles of tumors, to develop a bench-to-bedside transition (Malaney et al., 2014).  
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3.1.1 HER2 transgenic mice   

The first genetically modified models developed for the study of HER-2-positive breast 

cancer were transgenic for the rat homologue Neu, either the normal or the mutated form (NeuT) 

(Muller et al., 1988; Guy et al., 1992). Despite their usefulness in shedding light on HER-2/Neu 

driven transformation in breast cancer, they could not be used for the investigation of human 

HER-2-targeted therapies. Finkle and colleagues in 2004 developed the first model that 

successfully reproduces HER2 positive breast cancer (Finkle et al., 2004). In a FVB background 

20-50 copies of the transgene were integrated on murine chromosome 6, under the promotion of 

the Murine Mammary Tumor Virus (MMTV). They demonstrated in a tumor-free survival study 

conducted on transgenic female mice that, at 52 weeks, 73% of mice developed spontaneous 

mammary tumors, with a mean latency of 36 weeks of age, and in the 40% of mice were detected 

as well lung metastases (Finkle et al., 2004).  

After the identification of Delta16 deletion Marchini and colleagues generated a model 

expressing this isoform. FVBhuDelta16 mice are characterized by the expression of human 

Delta16 oncogene under the promotion of MMTV. Firefly luciferase was included as reporter 

transgene to allow the bioluminescent visualization of Delta16 expression in murine tissues. In 

this model mammary carcinogenesis was faster in respect to HER2 full-length transgenic model, 

(mean latency of 15 weeks of age), and multiple tumors developed (4-5 tumors/mouse were 

detected in animals between 12 and 19 weeks of age). Furthermore, at 25 weeks of age lung 

metastases were already present. All these findings highlighted the high transforming and 

invasive ability of Delta16 (Marchini et al., 2011).  

Nowadays these two models best recapitulate HER2 full-length and Delta16 breast 

cancers in GEMMs, and are employed in the study described in this thesis (referred to as HER2 

model and Delta16 model). 

HER2 expression can be downregulated in order to mimic HER2 loss mechanism, using 

gene-silencing methods (ribozymes, antisense oligonucleotides, small interfering RNA). 

However, these knockdown studies do not reflect what happens in clinic, since tumors maintain 

their dependence on HER2 pathway (Sergina & Moasser, 2007).  

The same regards inducible tetracycline/doxicycline systems, where in absence of HER2 

expression it is observed a regression of tumor growth, e.g. in MMTV-neuT mice (Moasser, 

2007), but not the loss of the oncogene addiction. Therefore, none HER2 loss model is currently 
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available. 

In the Laboratory of Immunology and Biology of Metastasis of Bologna it has been 

established a panel of three cell lines that exhibit one of three phenotypes: a) high and stable 

HER2 expression in vitro and in vivo, b) high but labile HER2 expression which is lost either 

during in vitro culture or after tumor growth in mice, and c) complete loss of HER2 expression 

(Nanni et al., AACR 2014, Abstract number 1820). This panel of cell lines is a useful model to 

study the dynamics of HER2 loss in advanced HER2-positive mammary carcinoma, and to 

analyze alternative therapeutic strategies. 

 

3.1.2 Transplantation models  

The most commonly used in vivo models for studying the biology of tumors are 

transplantation models. Depending on the purpose of the research syngenic or xenograft model is 

preferable. In syngeneic mice cell lines derived from spontaneous murine tumors or from 

carcinogen-, transgene- or gene knockout- induced tumors can be injected in immunocompetent 

mice (Saxena and Christofori, 2013). In the xenograft model the implanted cells or tissues are of 

human origin, and the animal host has to be immunodeficient, in order to prevent an immune 

rejection by the host (Jonkers and Derksen, 2007; Saxena and Christofori, 2013). Many mouse 

strains carrying different gene mutations and therefore exhibiting various levels of 

immunodeficiency have been developed over the years, e.g. nude and Rag-/-;Il2rg-/- mice  

(Thomsen et al., 2008). 

The syngenic model is particularly useful to study the interactions between cancer 

therapies and a functional immune system, e.g. in immunotherapy approach (Ottewell et al., 

2006). Cancer immunotherapies are designed to work in conjunction with a patient's immune 

system in order to increase native anti-tumor responses. In this field of study, conventional 

xenograft models lack relevance due to the animals’ immunocompromised status.  

Among xenograft models there are different features and, as well, advantages and 

disadvantages. Tumor cell line-based ectopic xenograft models are useful to study anti-tumor 

efficacy and overall tolerability in vivo and to screen new therapies, due to their reproducibility, 

modest cost, time-effectiveness and availability of a wide range of tumor cell types. However, 

despite these utilities, this model possesses limited pathophysiological relevance and clinical 

predictability. Most tumor cell lines have been maintained for decades in enriched grow media 
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before being injected, resulting in the artificial selection of tumor cell clones with high 

proliferative potential. Consequently, they do not represent the genetic and epigenetic 

heterogeneity of the original primary tumor (Williams et al., 2013). Patient derived xenograft 

models can be chosen in order to overcome this issue (Cassidy et al., 2015; Aparicio et al., 2015).  

Depending on the route of cancer cells delivery, either in syngeneic or xenogeneic mice, 

different aspects of tumor and metastatic processes of breast cancer can be evaluated.  

The subcutaneous injection (s.c.) is a common route of delivery choose to study and monitor 

tumor growth, due to the high vascularization and convenient anatomical location of skin. 

Moreover it is convenient in order to evaluate the response to new localized strategies (Ottewell 

et al., 2006). However, this ectopic transplantation model fails to mimic advanced breast cancer 

and the development of metastases (Saxena and Christofori, 2013).  

Orthotopic injection involves the implantation of tumor cells or tissues into the originating 

tissue site of the cancer. Compared to ectotopic s.c. tumor-implantation model, orthotopic 

implantation more closely simulates the natural environment of the original tumor (Ruggieri et 

al., 2014). However, the metastatic spread has a relative high latency, and primary tumor 

resection could be required to observe advanced disease in mice (Ottewell et al., 2006; Saxena 

and Christofori, 2013).  

Injection of tumors cells directly into the vascular blood system is useful for studies 

focused on the late phases of the metastatic process. The administration of cells in the lateral tail 

vein (intravenous injection) is the most common way to obtain induced metastases. The first 

colonized organs are the lungs, with further metastases to other organs, including the brain. 

Intracarotid and intracardiac injections allow the development of metastases in the brain 

bypassing the pulmonary circulation. Another systemic delivery that causes local invasion 

consists of the intraperitoneal injection of tumor cells (Khanna and Hunter, 2005; Ottewell et al., 

2006; Saxena and Christofori, 2013; Daphu et al., 2013). 

 

3.1.3 Patient-Derived Xenografts 

Direct transfer of human tumor fragments or cells isolated from patient tumors to 

immunodeficient mice generates PDX tumors. Even if no animal model can insure identical 

results in humans, considering that the tumor engrafted is of human origin, PDX model 

represents a very powerful tool for investigating tumor biology.  
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One of the key premises of developing PDX models for cancer research is the assumption 

that these models faithfully represent the original tumor from which they were developed and that 

this similarity is maintained across passages (Aparicio et al., 2015). Indeed, a number of studies 

have demonstrated that PDX tumors maintain the original tumor heterogeneity (Cassidy et al., 

2015). Serial passages of tumors in mice allow studying tumor biology and pharmacology 

without subjecting tumor cells to artificial in vitro cell culture conditions (Rosfjord et al., 2014). 

Furthermore subsequent passages permit to amplify the biologic material on which perform 

studies in the long term. Detailed cytogenetic analysis of PDX tumors revealed strong 

preservation of the chromosomal architecture found in patients, as well as high fidelity in 

histology, trascriptome and polymorphisms (Rosfjord et al., 2014).  

The level of concordance between the profiles of the tumor of origin and the tumor from different 

serial passages in mice is important in order to establish the degree of reliability of PDX. Another 

key observation is that PDX model maintains stromal and stem cell components of primary tumor 

in the early phases of the transplant, useful to study how the interaction between tumor cells and 

microenvironment can change (Rosfjord et al., 2014).  

Thanks to correlation with the tumor of origin and to the stability of the model, PDX is a viable 

tool for preclinical assessment of both drug response and mechanisms of resistance. 

One of the main challenges faced when developing a panel of PDX is the variable 

engraftment rate (Siolas and Hannon, 2013). Engraftment rates typically vary between 23% and 

75% depending on tumor type. Higher engraftment rates are associated with more clinically 

aggressive tumors (Zhang et al., 2012), as well as with the site of the injection (DeRose et al., 

2013) and the maintenance of appropriate steroid hormone receptor expression between patient 

tumors and PDX (Zhang et al. 2013). Moreover the origin of the tumor (primary tumor or 

metastasis) (Marangoni et al., 2007) and the treatment received by the patient before the surgery 

are involved (Moon et al., 2015). Furthermore, PDXs are often characterized by a long latency 

period after the engraftment, limiting their feasible employment (e.g. the evaluation of the 

sensitivity to a selected therapy) (Siolas & Hannon, 2013; Ledford, 2016). 

With the aim to improve the take rates of tumors, immunodeficient mice with different 

levels of immunodeficiency can be employed. Since the discovery of the nude mouse strain over 

40 years ago, investigators have attempted to model human tumor growth in immunodeficient 

mice. Nude mice carry a single homozygous base deletion on Foxn1
nu

 gene in chromosome 11 

that determines a phenotype of hairlessness, athymia and T-cell deficiency (Hirasawa et al., 
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1998). The field has advanced significantly over the years due to improvements in the murine 

recipient of human tumors. These improvements include the discovery of the “Severe Combined 

Immunodeficiency” (Scid) mutation and the development of targeted mutations in the 

Recombination Activating Genes 1 and 2 (Rag1null; Rag2null), which severely cripple the 

adaptive immune response of the murine host. The homozygous mutation of Rag2, that usually 

participates in V(D)J recombination reaction for the formation of T cells receptors and B cells 

immunoglobulins, determines the absence of mature T and B cells in mice (Oettinger et al., 1990; 

Shinkai et al., 1992). More recently, mice deficient in adaptive immunity have been crossed with 

mice bearing targeted mutations designed to weaken the innate immune system, ultimately 

leading to the development of immunodeficient mice bearing a targeted mutation in the 

Interleukin 2 Receptor Common Gamma chain gene (IL2rγnull). The IL2 gene encodes for the 

common gamma chain of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 receptors, when mutated mice 

are defective in mature T and B cells and totally deficient in NK cells (Cao et al., 1995; Kovanen 

and Leonard, 2004). The IL2rγnull mutation has been used to develop several immunodeficient 

strains of mice, including the NOD-scid IL2rγnull (NSG) strain. Using NSG mice as human 

xenograft recipients, it is now possible to grow almost all types of primary human tumors in vivo, 

including most solid tumors and hematological malignancies.  

However, these models fail to reproduce microenviroment and tumor cell interactions 

with the innate immune system, both of which are integral to tumor development, proliferation, 

methastasis and expecially have limited utility to study therapeutic compounds whose 

pharmacological activities depend mostly on the presence of an intact immune system (Siolas and 

hannon, 2013; Rosfjord et al., 2014). Additional model refinement will be required to make PDX 

feasible for the valuation of immunomodulatory compounds (Rosfjord et al., 2014). 

Reconstituing a patient-matched immune system in PDX models is a significant challenge. 

Standard methods consist in the transplantation of hematopoietic stem cells (HSC) or mature 

circulating cells (PBMCs), but as a conquence an inappropiate immune response against murine 

or human tissues respectively, can occur. Therefore, a solution to study the interaction between 

tumor and immune system could be a humanized mouse model (HM), which allow researchers to 

examine xenograft growth in the context of a human immune system and resultant tumor 

microenvironment (Cassidy et al., 2015; Morton et al., 2016).  

Finally another restriction factor of the use of PDX mice is the cost: tumor grafts can only 

be mantained in expensive immunocompromised mice and their passages require a very 
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specialized skills set (Siolas & Hannon, 2013). 

PDX are currently used in several oncologic fields and numerous tumor-specific PDX 

models have been established. Table 3 reports the results of some representative works for each 

type of tumor.  
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Table3. Comparison of the engraftments rate reported in the literature for PDX derived from tumors of different organs  

Tumor Engraftment Location of implant Mouse strain Reference 

Non small lung cancer 

35/100 35% subcutaneus Nude, SCID Illie et al., 2015 

23/88 26% subcutaneus, flank NOD-SCID Hao et al., 2015 

21/63 33% subcutaneus, retronuchal NSG Guerrera et al., 2016 

Colorectal cancer 

54/85 64% subcutaneus, interscapular or flank Nude, SCID Julien et al., 2012 

150/241 62% subcutaneus, lower back Balb C Nude Oh et al., 2015 

10/10 100% subcutaneus Nude, NOD-SCID Lee et al., 2014 

33/57 58% subcutaneus NSG Chou et al., 2013 

97/143 68% subcutaneus, lower back Balb C Nude Cho et al., 2013 

Breast Cancer 

25/200 13% subcutaneus,interscapolar Swiss Nude Marangoni et al., 2007 

6/30 20% Subcutaneus, back, pellet estradiol SCID Bergamaschi et al., 2009 

10/24 42% orthotopic (mammary fat-pad) NOD-SCID, NSG Kabos et al., 2012 

18/49 37% orthotopic (mammary fat-pad) NOD-SCID DeRose et al., 2013 

19/81 23% orthotopic (mammary fat-pad) NSG Moon et al., 2015 

Ovarian cancer 

29/34 85% subcutaneus SCID Dobbin et al., 2014 

14/22 64% fat pad SCID Dobbin et al., 2014 

4/18 22% intraperitoneal SCID Dobbin et al., 2014 

1/12 8% adrenal capsule SCID Dobbin et al., 2014 

10/12 83% subcutaneus, pellet of estradiol NSG Topp et al., 2014 

168/214 79% intraperitoneal SCID Weroha et al., 2014 

47/66 71% 
Fat pad, interscapular  

interscapular 
Nude Colombo et al., 2015 

Sarcoma (advanced stadium) 22/29 76% subcutaneus, flank Nude Stebbing et al., 2014 

Metastasis from melanoma 23/26 88% subcutaneus, flank NOD-SCID IL-2Rγnull Einarsdottir et al., 2014 
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Breast cancer PDX models in respect to other tumors have a lesser rate of 

engraftment, between 10 and 40% (Table 4) (Marangoni and Poupon, 2014; Kabos et 

al., 2012). Among all subtypes HER2-positive PDX results one of the most difficult to 

obtain (Whittle et al., 2015, Marangoni et al., 2007). Some examples of achievement are 

the two cell lines established from Marangoni and colleagues (2007), resulted to be as 

well sensitive to trastuzumab. DeRose and colleagues (2013) on a panel of 5 HER2-

positive PDX studied the stability of the model analyzing the expression of HER2 in 

subsequent passages in vivo, demonstrating the stability of their model. Moreover, 

Zhang and colleagues (2013) obtained a panel of 6 HER2-positive PDX with metastatic 

ability. 

Nowadays exist several initiatives of shared PDX models for collaborative 

research projects and multicentre preclinical trials, like the EurOPDX Consortium, an 

initiative of translational and clinical researchers across 10 European countries, with the 

common goal of creating a network of clinically relevant models of human cancer, and 

in particular PDX models. 

The aim of this project is focused on dissecting the mechanism of action by 

which HER2-loss variants and Delta16 isoform mediate HER2 oncogenic activity and 

condition the response to HER2 therapies in breast cancer. To this end, preclinical 

cancer models representative of cancer heterogeneity and able to mimic all possible 

scenarios observed in human tumors were developed and studied. 
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Table 4. Published data on breast cancer PDX models 

Paper Strain Injection Estrogen  Engraftment Metastasis 

    

First 

engraftment 

Serial 

passages  

Visonneau 

et al., 1998 

SCID + 

etoposide 
subcutaneus no 8/16 (50%) 

2/16 

(13%) 

lung (75%), 

limphnode(25%) 

Marangoni 

et al., 2007 

Swiss 

Nude 

subcutaneus, 

mammary fat 

pad, 

interscapolar 

yes 
25/200 

(13%) 

22/200 

(11%) 

polmonari 

(33%) 

Bergamaschi 

et al., 2009 
SCID subcutaneus yes 6/30 (20%) 

2/30 

(7%) 
nd 

Kabos et al., 

2012 

NOD-

SCID, 

NSG 

orthotopic  
only in 

ER+ 
10/24 (42%) 

10/24 

(42%) 
nd 

DeRose et 

al., 2013 

NOD-

SCID 
orthotopic  yes 18/49 (37%) 

13/49 

(27%) 
90% 

Zhang et al., 

2013 

SCID/Bg 

o NSG 
orthotopic 

SCID 

SCID + 

pellet 

SCID + 

pellet + 

fibroblasti 

NSG + 

pellet 

18/38 (47%)     

28/70 (40%) 

13/29 (45%) 

 

 10/32 (31%) 

1/38 

(3%) 

15/70 

(21%) 

1/29 

(3%) 

 

6/32 

(19%) 

Lung  (48%) 

Du Manoir 

et al., 2014 

Swiss 

Nude 

mammary fat 

pad, 

interscapolar 

only in 

ER+ 

39/130 

(30%) 

20/130 

(15%) 
rare lung 

Moon et al., 

2015 
NSG orthotopic no 19/81 (23%) nd nd 
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1. Mice 

For the studies on FVB-huHER2 mice (Finkle et al., 2004), here referred to as 

HER2 model, were obtained from Genentech Inc. (South San Francisco, CA, USA). 

This line carries in heterozygosis the human full-length normal HER2 gene under the 

control of the Murine Mammary Tumor Virus (MMTV) promoter on a FVB 

background. HER2 gene heterozygosis was maintained by crossing HER2
+/-

 male mice 

with non-transgenic FVB female mice (purchased from Charles River, Calco, Italy).  

Δ16-HER2-LUC mice (Marchini et al., 2011), here referred to as Delta16 

model, were kindly given by Prof. Augusto Amici (University of Camerino, Italy) and 

Dr. Serenella Pupa (Istituto Tumori, Milan). This line carries in heterozygosis the 

human splice variant Delta16 gene under the control of MMTV promoter on a FVB 

background. Delta16 gene heterozygosis was maintained as described above for HER2 

model.  

F1 HER2/Delta16 mice, transgenic for both genes, were obtained in the 

Laboratory of Immunology and Biology of Metastasis by crossing Delta16 male mice 

with HER2 female mice. 

Transgenic mice were screened by routine genotyping with PCR analysis (Finkle et al., 

2004; Marchini et al., 2011). 

For the generation of Breast cancer PDX models Balb/c Rag2
-/-

;Il2rg
-/-

 breeders 

were kindly given by Drs. T. Nomura and M. Ito of the Central Institute for 

Experimental Animals (Kawasaki, Japan). This line is double knockout for the 

Recombination Activating gene 2 (Rag2) and for the Interleukin 2 Receptor Gamma 

chain gene (Il2rg) (Goldman et al., 1998). 

NOD-SCID Il2rg
-/-  

mice (NOD SCID Gamma, NSG) were purchased from The Jackson 

Laboratories (California). Both immunodeficient strains lacking mature T cells, B cells 

and natural killer (NK) cells were kept under sterile conditions and used for the 

generation of PDX models. 

All animals were bred in the animal facility of the Laboratory of Immunology 

and Biology of Metastasis (Department of Specialistic, Diagnostic and Experimental 

Medicine, University of Bologna, Italy). Virgin female mice were used in the 

experiments. Experiments were authorized by the institutional review board of the 

University of Bologna and done according to Italian and European guidelines. 
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2. Cells 

Five mouse mammary tumor cell lines were employed in this project: MAMBO 

89
HER2stable

, MAMBO38
HER2loss

, MAMBO43
HER2lable

, 302-IVD and 156-IS. 

Mambo89
HER2stable 

cell line was established from a spontaneous mammary carcinoma of 

a huHER2 female mouse; Mambo43
HER2labile

 cell line was derived from a mammary 

carcinoma grown after the subcutaneous injection in a huHER2 female mouse of a 

HER2 cell line established from a spontaneous huHER2 mammary carcinoma; 

Mambo38
HER2loss

 line was obtained and established in vitro from tumors grown after the 

subcutaneous injection of Mambo43
HER2labile

. 302-IVD and 156-IS cell line were 

established from spontaneous primary mammary carcinomas arisen in F1 model.  

All cell lines were obtained in the Laboratory of Immunology and Biology of 

Metastasis. MAMBO 89
HER2stable

 and MAMBO43
HER2lable

 cell lines were stabilized in 

Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies) +20% FCS, 

supplemented with Bovine Pituitary Extract 30 μg/ml (BPE; BD Biosciences, USA) and 

MITO Serum Extender 1:200 (BD Biosciences). MAMBO38
HER2loss

 was stabilized in 

Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies) +20% FCS. F1 

murine cell lines were stabilized and cultured in MammoCult complete medium 

(StemCell Technologies, Canada) supplemented with 1% FCS. 

For the experiment of Myc inhibition JMT-1 human cell line was used. It is a 

cell line established from the pleural effusion of a 62-year-old woman with ductal breast 

cancer (grade 3 invasive, T2N1M0) after postoperative radiation in 2003; it was 

described to carry an amplified HER2 oncogene and to be insensitive to HER2-

inhibiting drugs, e.g. trastuzumab (Herceptin). This cell line transfected with pSlik-

omomyc vector was kindly provided by Dr. Laura Soucek (Vall d’Hebron Hospital, 

Barcelona). JMT-1 cells were routinely cultured in DMEM:F12 medium (Gibco BRL, 

Grand Island, NY, USA) medium supplemented with 10% heat-inactivated foetal 

bovine serum (FCS) (Life Technologies, Milan, Italy).  

Stable transfected cells were selected adding Hygromycin B (Invitrogen) at a final 

concentration of 100g/ml to the medium.  

As regards PDX models, a primary cell line established from a FO4 PDX tumor 

at the VII consecutive passage in vivo was employed.  FO4 primary cell line was 

stabilized in HuMEC BPE (Bovine Pituitary Extract) and HuMEC Supplement (Life 

Technologies, Milano) +20% FCS. 
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All mediums were supplemented with penicillin 100 U/ml and streptomycin 100 

µg/ml (Sigma-Aldrich, Milan, Italy). All cell lines were maintained at 37°C in a 

humidified 5% CO2 atmosphere but FO4 derived primary culture cells, maintained at 

37°C in a humidified 7% CO2 atmosphere. 

For the maintenance culture, cells were washed with Phosphate Buffer Saline (PBS; 

Life Technologies) and harvested by trypsin (0.05%)-EDTA (0.002%) treatment (Life 

Technologies). Cell number and viability was determined through erythrosine dye 

exclusion (Sigma-Aldrich) and hemocytometer count. 

2.1 Mammospheres  

In order to obtain mammospheres, cells were cultured in Ultra Low Attachment 

6-well plates (Corning, Life Technologies, USA) in Mammocult complete medium 

(StemCell Technologies) at a dose of 40000 cells per well in 4 ml. After 7 days, spheres 

were counted, and then they were collected and disaggregated to quantify total cell 

count. 

3. Immunofluorescence and cytofluorimetric analysis 

The expression of several cell surface markers was evaluated in tumors and cell 

lines from HER2, F1 and FO4 PDX models by direct or indirect immunofluorescence 

(IF) and cytofluorimetric analysis.  

Single cell suspensions of cultured cells or tumor masses were analyzed for 

specific markers expression on the membrane. In the case of tumor masses, after 

necropsy they were minced with scissors, incubated for 5 minutes with trypsin and 

passed through a 70 µm cell strainer (Becton Dickinson, Bedford, MA, USA) to obtain 

a homogeneous cell suspension. Before the incubation with the primary antibody, tumor 

suspensions were incubated with Rat anti-mouse CD16/CD32 clone 2.4G2 antibody Fc 

block (1:100 dilution; BD PharMingen, San Diego, CA).  

 

For direct IM the following antibodies were used: 

• anti-mCD24-AF (M1/69), diluted 1:10 (Bio-Legend, San Diego, CA, USA); 

• anti-mCD44-PE (IM7) diluted 1:10 (Bio-Legend, San Diego, CA, USA); 

• anti-mCD29-PE (HMß1-1) diluted 1:100 (Bio-Legend, San Diego, CA, USA); 

•anti-mSca-1-PE (E13-161.7) diluted 1:100 (Bio-Legend, San Diego, CA, USA). 

For indirect IF the following antibodies were used: 
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 anti-huHER2 (MGR-2), diluted 1:100 (Alexis, Enzo Life Science),  

 anti-huHER1 (528), diluted 1:40 (Calbiochem),  

 anti-huHER3 (SGP1), diluted 1:40 (Thermo Fischer Scientific),  

 anti-huIGFR (αIR3), diluted 1:20 (Calbiochemtumor).  

Then, samples were incubated with the secondary AlexaFluor-conjugated goat anti-

mouse IgGs antibody (IgG AlexaFluor 488, 1:100 dilution; Thermo Fisher Scientific). 

Fluorescence intensity was determined through flow cytometry (FACScan, Becton 

Dickinson); analysis was performed with FCS EXPRESS 4 (De Novo Software, 

Gledale, California, USA). 

 

4. Sensitivity to drugs in vitro 

4.1 Continuous culture 

Mambo89
HER2stable

 and Mambo43
HER2labile

 continuous culture with trastuzumab 

(Roche, Switzerland) was performed adding the drug at a final concentration of 30 

μg/ml to DMEM + 20% FCS + BPE + MITO
TM

 Serum Extender.  

FVBhuHER2 cell lines were cultured in 25 cm
2 

flasks (Falcon, BD BioSciences, USA) 

Cells were splitted once a week and cultured with Trastuzumab, kindly given by Dr. 

Serenella Pupa, for 30 days. At the end of this period, part of the cells were cultured 

without the drug for other 30 days; the other part was analyzed for HER2 expression by 

immunofluorescence (paragraph 3.). The same analysis was repeated at the end of the 

recovery period without the treatment. Cell number and viability was determined 

through erythrosine dye exclusion (Sigma-Aldrich) and hemocytometer count. 

4.2 Soft agar 3-D culture 

The sensitivity in vitro to anti HER2 drugs was evaluated in cell lines derived 

from HER2 and F1 models in 3-D culture (0.33% soft-agar containing the drug in 

MammoCult complete medium + 1% FCS). Trastuzumab, lapatinib and dasatinib were 

kindly given by Dr. Serenella Pupa, buparlisib was obtained from Novartis Institutes for 

BioMedical Research, Oncology (Basel, Switzerland). Cells were suspended in 

MammoCult + 1% FCS containing 0.33% agar (overlayer) and layered on a base of 

MammoCult + 1% FCS containing 0.5% agar (underlayer) on a Costar 24-well plate 

(Corning Life Sciences, USA). Drugs alone or in combination were added both to 
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underlayer and to overlayer. Plates were maintained at 37°C in a humidified 7% CO2 

atmosphere. Colony growth was monitored weekly and determined by counting at 

31.25X magnification with Diavert microscope (Leitz, Milan, Italy) after 2-3 weeks 

from seeding. MAMBO38
HER2loss

 was seeded at 1000 cells/well, the other cell lines at 

10.000 cells/well. Drug’s efficacy was assessed as percentage of colonies grown over 

control. Cells from grown colonies were then collected and seeded in adherent cultures 

for subsequent molecular analyses. 

 

5. Real-time PCR 

RNA was extracted using TRIzol protocol (Total RNA Isolation Reagent; Life 

Technologies). Tissue samples were first disrupted using the gentleMACS Octo 

Dissociator (Miltenyi, Germania) (program RNA_02), wuth 1ml of TriZol reagent. 

Then the protocol provided with the reagent was followed. The concentration and purity 

of RNA was determined by measuring the absorbance at 260 and 280 nm in a 

spectrophotometer (Ultrospec 1100 pro, Biochron, England) or by Qubit RNA Assay 

Kit (Life Technologies, Milano). 

1 µg of total RNA was reverse transcribed using iScript cDNA Synthesis Kit 

(Bio-Rad, CA, USA). Gene expression was analyzed by Real-Time PCR using Thermal 

Cycler CFX96 (Bio-Rad Laboratories, USA). Initially cDNA were diluted 1:20 with 

DNasi/RNasi free H2O, then 4 µl of cDNA was amplified. Real-Time PCR was 

performed using Sso Advanced SyBR Green Supermix (Bio-Rad Laboratories, USA) 

reagents. Evaluated target genes were: human HER2 and Delta16. The steps of 

amplification were: 95°C for 30 seconds and then 40 cycles including 5 seconds at 95°C 

and 15 seconds at 60°C. A default melting curve program was used to obtain the 

dissociation curve for each gene. mRNA expression levels were normalized to GAPDH 

(gliceraldeide-3-fosfato deidrogenasi) (human or mouse) or TBP (TATA binding 

protein) (human, mouse and total), as endogenous reference gene. All primers were 

used at a final concentration of 200 nM. The analysis was performed using Bio-Rad 

CFX Manager 3.1 software. For relative quantification, Ct method was used:  

 

CtHER2/Delta16= CtHER2/Delta16- Ct housekeeping. 

𝟐−𝚫𝐂𝐓 = 𝟐−(𝑪𝑻 𝒈𝒆𝒏𝒆−𝑪𝑻 𝒉𝒐𝒖𝒔𝒆𝒌𝒆𝒆𝒑𝒊𝒏𝒈)  



Material and Methods 

 

 46 

Gene Sequence (5’- 3’) 

h-HER2 full length 

(Mitra et al., 2009) 

Dir: GTGTGGACCTGGATGACAAGGG 

Rev: GCTCCACCAGCTCCGTTTCCTG 

h-HER2∆16 

(Mitra et al., 2009) 

Dir: CACCCACTCCCCTCTGAC 

Rev: GCTCCACCAGCTCCGTTTCCTG 

HumanGAPDH Dir: ATCAGCAATGCCTCCTGCAC 

Rev: TGGTCATGAGTCCTTCCACG 

MouseGAPDH Dir:GCTCACTGGCATGGCCTTC 

Rev: CCTTCTTGATGTCATCATACTTGGC 

HumanTBP 

(Bieche et al., 2014) 

Dir: AGAACAACAGCCTGCCACCTTAC 

Rev: GGGAGTCATGGCACCCTGAG 

MouseTBP 

(Bieche et al., 2014) 

Dir: CCCTTGTACCCTTCACCAATGAC 

Rev: TCACGGTAGATACAATATTTTGAAGCTG 

TotalTBP 

(Bieche et al., 2014) 

Dir: TGCACAGGAGCCAAGAGTGAA 

Rev: CACATCACAGCTCCCCACCA 
 
 

 
 

 
 

All primers purchased by Life Techologies 

 

5.1 PCR-Array 

RT
2
 Profiler PCR Array (Qiagen) takes advantage of Real-Time PCR 

performance and combines it with the ability of microarrays to detect the expression of 

many genes simultaneously. The Mouse Epithelial to Mesenchymal Transition pathway 

(PAMM-090ZA) in Mambo89
HER2stable 

and Mambo38
HER2loss

 cell lines was investigated. 

This PCR array contains a panel of 84 pathway-focused genes that either change their 

expression during EMT or regulate those gene expression changes, plus five 

housekeeping genes and three RNA and PCR quality controls.  

The RNA samples extracted by TRIzol, purified by the Rneasy Plus Micro kit 

(Qiagen, Milano) and quantified by spectrophotometer were converted into first strand 

cDNA by using the RT2 First Strand Kit (Qiagen). 1μg of total RNA was first treated 

with GE 5× buffer in order to eliminate any residual genomic DNA contamination, than 

RNAasi-free H2O was added to reach a final volume of 10 μl. RNA samples were 

incubated 5 minutes at 42° C. Then was reverse transcribed in 10ul of RT Cocktail, 
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containing: 4 μl of Buffer RT 5X (BC3), 1 μl of Primer (P2), 2 μl of Retrotranscriptase 

(RE3), 3 μl of RNAasi-free H2O. RNA was incubated at 42°C for 15 minutes and then 

the reaction was stopped by heating at 95°C for 5 minutes. 91 µl of ddH2O to each 

cDNA sample were added. 

Real-Time PCR was performed using the SyBR Green method, following the 

protocol provided with the reagents. A solution containing the RT
2
 qPCR Master Mix 

2× (Quiagene) and 102 μl of cDNA diluted in 1173 μl of ddH2O was prepared. Then 25 

μl were dispensed in each well of the PCR array. The amplification was carried out by 

using Thermal Cycler Gene Amp 5700 Detection System, Applera, as follows: 95°C for 

10 minutes to activate the HOSTstart DNA polymerase, then 40 cycles composed by 

95°C for 15 seconds and 60°C for 1 minute. A default melting curve program was used 

to obtain the dissociation curve for each well in the entire plate. 

For each well the threshold cycle (Ct) was calculated. When Ct values were greater than 

35 or genes were N/A (not detected), a value of 35 was assigned and genes were 

considered as not expressed. Data were analyzed and interpreted calculating the ΔΔCt 

value, in order to do normalization over the mean of housekeeping genes and to obtain 

the relative expression value in respect to Mambo89
HER2stable

, the internal calibrator. 

 

∆Ct=Ct gene-Ct mean of housekeeping genes 

∆∆Ct=∆Ct Mambo38-∆Ct Mambo89 

The relative quantity fold change (Qr) of mRNA expression levels for each sample was 

calculated from the following formula  

Qr= 2^(-∆∆Ct) 

A relative expression corresponding to +4/-4 was considered associated to up-regulated 

or to down-regulated genes respectively. 
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6. Western Blot analysis 

Frozen tumor tissue was completely immersed in lysis buffer consisting of 

Novagen PhosphoSafe Extraction Reagent (EMD Millipore) plus phosphatase and 

protease inhibitors (Sigma-Aldrich). Tissue was dissociated and homogenized by 

gentleMACS Octo Dissociator (Miltenyi) and then incubated for 10 minutes at room 

temperature. Nuclei were removed by centrifugation at 12.000 RCF at 4°C for 15 

minutes, and the protein concentration in the supernatants was determined by DC 

Protein Assay (Bio-Rad Laboratories) using bovine serum albumin as the standard. 

Proteins were separated on an 8% polyacrylamide gel (20 μg of total lysate) and then 

transferred to polyvinylidene difluoride membranes (Bio-Rad Laboratories). After 

blocking with PBS containing 0.1% Tween 20 plus 5% nonfat dry milk for 2 hours at 

room temperature, membranes were incubated overnight at 4°C with primary antibodies 

diluted in blocking buffer. After incubation with the respective horseradish peroxidase–

labeled secondary antibodies (Santa Cruz Biotechnology), protein presence was 

revealed by chemiluminescence reaction (LiteAblotplus chemiluminescence substrate; 

EuroClone). Densitometric analysis was performed on the scanned images using gel 

analysis software (TotalLab). Actin was employed for western blot normalization as 

internal loading control. 
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Table 6. Antibodies used in Western blot 

Primary 

antibody 
Clone Company Dilution 

Secondary 

antibody 
Dilution 

PM 

(kDa) 

α-HER2  3B5 Calbiochem, USA 1:1000 
Goat-α-mouse 

IgG-HRP 
1:10000 185 

α-pHER2 

(Tyr1248) 
policlonal 

Santa Cruz 

Biotechnology, Inc. 
1:1000 

Goat-α-rabbit 

IgG-HRP 
1:1000 185 

α-Akt  policlonal 
Cell Signaling 

Techology 
1:1000 

Goat-α-rabbit 

IgG-HRP 
1:1000 60 

α-pAkt (Ser473) D9E 
Cell Signaling 

Techology 
1:1000 

Goat-α-rabbit 

IgG-HRP 
1:1000 60 

α-MAPK  137F5 
Cell Signaling 

Techology 
1:1000 

Goat-α-rabbit 

IgG-HRP 
1:1000 42-44 

α-pMAPK Erk1/2 

(Thr202/Tyr204) 
policlonal 

Cell Signaling 

Techology 
1:500 

Goat-α-rabbit 

IgG-HRP 
1:1000 42-44 

α-actin policlonal Sigma-Aldrich 1:800 
Goat-α-rabbit 

IgG-HRP 
1:1000 42-43 

 
 

 

PM = molecular weight 

 

 

7. MYC inhibition and signaling 

The experiments on Myc inhibition were performed in the Laboratory of Dr. 

Laura Soucek (Mouse Models of Cancer Therapies Laboratory, Vall d’Hebron Hospital, 

Barcelona). Three mouse mammary tumor cell lines were employed in this project: 

MAMBO 89
HER2stable

, MAMBO38
HER2loss

, MAMBO43
HER2lable

. 

7.1 Viral vectors and infection  

 Complete lentiviral vectors (pTRIPz and/or pSLIK) harbouring both the rtTA 

and TRE elements were beforehand constructed to provide doxycycline (dox) regulated 

expression of omomyc. The Red Fluorescent Protein (RFP) gene was cloned in pTRIPz 

vector under the same promoter as a reporter gene.  

For infections, 293T cells were seeded at 70% confluence and the following morning 

25 μM chloroquinone added. Two hours later, 293 cells were transfected with pTRIPZ-

omomyc plus the lentiviral vectors pMD2G and psPAX2 by the CaPO4 method. The 

medium was changed the following day and sodium butyrate added at 5 mM. Viral 

supernatants were harvested on the subsequent 2 days, filtered and added to target cells 

with polybrene (0.8 μg ml−1). The infected cells were selected using Puromicyn dose 

antibiotic (Gibco). 
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7.2 Omomyc detection 

The expression of omomyc was detected by checking RFP expression after 4 

days of doxycycline dose subministration measured by Invitrogen™ Tali™ Image-

based Cytometer.  

Omomyc expression was analyzed as well by direct immunofluorescence on cell 

culture. Cells were seeded on coverslips in six-well plates and treated with dox 

(1ug/ml). MAMBO43
HER2labile

 was seeded at 10.000 cells/well and MAMBO38
HER2loss

 

was seeded at 1000 cells/well. At 96 h from the treatment, after removing the medium 

cells were washed with PBS, then fixed with 4% Paraformaldehyde (Sigma Aldrich). 

Cells were then permeabilized in PBS containing 0.5% Triton X-100 and blocked in 

Blocking buffer containing: 0.2 % Triton X-100, 2% BSA and 1 % goat serum.  

Omomyc was detected by using a primary rabbit polyclonal antibody affinity purified 

and selected against the MYC b-HLH-LZ epitope (omomyc IG-1325 dil 1:50 in 

blocking buffer) and a secondary anti-rabbit polyclonal antibody conjugated to 

Alexafluor (488 Invirogen, 1:500). After immunostaining, cells were mounted on 

microscope slides with DAPI-containing Vectashield mounting solution (Vector 

Laboratories). For both omomyc-expressing and control cells. Images were collected 

with an Axiovert S100 TV inverted fluorescence microscope (Zeiss) and Open Lab 

3.5.1 software. 

7.3 Omomyc antiproliferative assays in vitro 

The efficacy of omomyc expression upon dox (1μg/ml) subministration was 

evaluated in MAMBO38
HER2loss

 and MAMBO43
HER2labile

 pTRIPz-omomyc infected cell 

lines in vitro by Colony Formation Assay in 1-3 independent experiments. 

Cells were seeded at 500 cells/well in a 6 well plate, in triplicate with dox 

(1ug/ml) or without as control. After 2 weeks of treatment cells were fixed and stained 

with crystal violet. The sensivity to the treatment was measured as percentage of grown 

colonies compared to the control and quantified by ImageJ program.  
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7.4 BrdU incorporation assay 

A total of 106 cells were seeded in triplicate in 12-well plates with or without 

dox (1ug/ml). On the third day, cells were incubated for 2 h with the BrdU substrate 

(Roche), collected and fixed overnight in 70% ethanol. Staining with the BrdU antibody 

(BD Biosciences) was performed following the manufacturer’s instructions. Cells were 

then stained with propidium iodide and analysed with a FACSCalibur flow cytometer 

(BD Biosciences) for cell cycle analysis. 

 

7.5 Drug sensivity in vitro 

The therapeutic effect of omomyc alone or in combination with lapatinib was 

tested in vitro on MAMBO43
HER2labile

 and MAMBO
38HER2loss

 inducible cells lines. The 

inducible cell line JIMT-1 pSLIK-omomyc already developed in the host laboratory, 

was included as control. Cells were seeded in triplicate in 24 well plates. 

MAMBO38
HER2loss

 was seeded at 4000 cells/well, the other cell lines at 9,000 cells/well. 

Cells were treated after 24 hours from seeding. The following drugs, alone or in 

combination, were added to the medium: lapatinib (1uM) and dox (1ug/ml). As control, 

cells were grown without any treatment or with DMSO (0,01%). Plates were maintained 

at 37°C in a humidified 5% CO2 atmosphere. At 72 hours and 96 hours from treatment 

cells were trypsinized and counted by cell counter (Vi-CELL XR Cell Viability 

Analyzer Beckman Coulter). Drugs’ efficacy was assessed in 1-4 independent 

experiments. 

Cell lysates were obtained and Western blot was performed in the Laboratory of 

Biology and Immunology of Metastases as described in paraghraph 6 of this section.  
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8. Preclinical models 

8.1 Spontaneous carcinogenesis in transgenic models and 

preventive therapy 

HER2, Delta16 and F1 female mice were inspected weekly by palpation to 

investigate tumor incidence, latency and number of tumors per mouse (multiplicity). 

During inspection, diameters of the first tumors arisen in animals were measured with 

caliper to evaluate tumor dimensions (progressively growing masses ≥50 mm
3
 were 

scored as tumors). Tumor size was calculated as follows: 

π

6
(√a×b)

3
 

where a = maximal tumor diameter, b = maximal tumor diameter perpendicular to a. 

At necropsy, samples of tumor masses were collected for further analyses 

(Immunofluorescence or Real-time PCR, see paragraph 3 and 5). Samples for molecular 

analyses were frozen in liquid nitrogen and stored at  -80°C. Non-neoplastic mammary 

glands were collected from 5-week-old F1 HER2/Delta16 mice. 

Lungs were perfused with black India ink (15% in water, Rotring) to outline 

metastases and fixed in a modified-Fekete’s solution (95.7% ethanol 96%, 4.3% glacial 

acetic acid). Autochthonous lung metastases were counted using a dissection 

microscope. 

To study the prevention of primary tumor growth, HER2 mice, Delta16 mice 

and F1 HER2/Delta16 mice were treated twice weekly intraperitoneally with 

trastuzumab (4 mg/kg) starting from 17 weeks of age for HER2 mice and from 5-8 

weeks of age for Delta16 and F1 HER2/Delta16 mice. Control mice were treated with 

physiological solution.  

 

8.2 Syngeneic transplantation models and therapy 

In HER2 model, MAMBO38
HER2loss 

(10
5
 cells)

 
or MAMBO43

HER2labile
 (10

6
 cells) 

were injected subcutaneously in 10 HER2 mice per group (7-23 weeks old) in 0.2 ml of 

PBS to obtain the development of mammary tumors.  

1 day after cell injection, mice were randomized into two groups (5 mice/group) and 

treatments started. Treated mice (two groups) received daily per os 40 mg/kg of GNE-

317. Control mice received Metocell 0.5% Tween80 + 0.4% per os (vehicle of GNE-
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317 therapy). Mice were sacrificed 3 weeks (MAMBO38
HER2loss

) or 7-9 weeks 

(MAMBO43
HER2labile

) after cell injection. 

To study the inhibition of tumor growth, fragments of a pool of 4 F1 tumors, 

expressing different levels of HER2 and Delta16, were implanted in the fourth left 

mammary fatpad of 10-16-week-old FVB (non-transgenic) female mice (n=10 for each 

group). Starting 7 days after fragment implantation, mice received twice weekly the 

intraperitoneal injection of trastuzumab (4 mg/kg) for four weeks, or five times a week 

orally buparlisib (50 mg/kg) for 4 weeks; control group received the administration of 

NaCl solution 0.9%.  

For mouse-derived isograft, fragments of F1 mammary tumors were serially 

implanted in the fourth left mammary fatpad of 5-17–week–old HER2 transgenic 

female mice. Tumors grown from serial grafts of fragments from two F1 tumors (here 

referred to as HER
high

Delta16
high

 and HER
low

Delta16
high

) were harvested for molecular 

investigation and also immediately implanted into other mice. 

 

8.3 Patient Derived Xenograft 

For the PDX model generation fresh fragments of human breast tumors were 

sterilely collected during surgical procedures by S.Orsola-Malpighi Hospital, Bologna 

and Bellaria Hospital, Bologna, put in cold complete medium, stored on ice and 

immediately delivered by the animal facility. Specimens were serially implanted in the 

fourth left mammary fat pad in 5-10 week-old NOD-SCID-Il2rg−/− female mice 

(Jackson Laboratories) or BALB/cRag2−/−Il2rg−/− female mice (CIEA, Japan). 

Written informed consent was obtained from patients and all experiments were 

authorized by the institutional review board of the University of Bologna and done 

according to Italian and European laws and guidelines. 

Mice were inspected weekly by palpation to investigate tumor growth. During 

inspection, the diameter of the tumor arisen was measured with caliper to evaluate 

tumor dimensions as described in paragraph 8.1. 

Mice were sacrificed when tumoral burden was equivalent to 10% of body mass. 

At necropsy, tumor fragments were harvested for cellular and molecular investigation 

and also immediately implanted into other mice. Tumor masses collected for 

immunofluorescence were handled as described in paragraph 3.  



Material and Methods 

 

 54 

Samples collected for Western Blot or Real-time PCR (see paragraph 5 and 6) were 

frozen in liquid nitrogen and stored at  -80°C. Samples for immunohistochemistry were 

fixed in 10% neutral buffered formalin and then analyzed by the Pathology Unit of 

Bellaria Hospital of Bologna or by the Patology Unit of Sant’Orsola Hospital of 

Bologna. 

To study the sensitivity to HER2 targeted drugs in vivo, FO4 HER2-positive 

breast PDX bearing mice were treated, when tumors were palpable, with trastuzumab 

(Herceptin, Roche) 4mg/kg, 2 times a week through intraperitoneal injection (ip) or 

with neratinib (Puma Biotechnology) 40mg/kg, 5 times a week per os. Control groups 

did not receive any treatment. 

9.  Statistical analysis 

Mantel-Haenszel’s test, Student’s t test and X
2 

Fisher’s exact test were used to 

analyze and compare the data presented in this thesis. 
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1.HER2 loss  

Progression of HER2 positive breast cancer can result in the emergence of 

HER2-negative tumor variants that activate alternative mitogenic pathways, either 

spontaneously or after therapy. We found that HER2 loss occurs even in transgenic 

mouse models in which the oncogene is driven by viral promoters (MMTV), thus 

mammary carcinoma of human HER2 transgenic mice (huHER2 mice) can be used to 

study not only the early phases of HER2-driven mammary carcinogenesis, but also 

tumor progression beyond HER2 addiction.  

 

1.1 Loss of HER2 expression in FVBhuHER2 cell lines 

Cell lines grown from HER2 positive mammary carcinomas can present 

progressive loss of HER2 expression; In the Laboratory of Immunology and Biology of 

Metastasis of Bologna, it has been established a model system consisting of cell lines, 

clones and variants that exhibit one of three phenotypes: a) high and stable HER2 

expression in vitro and in vivo, b) high but labile HER2 expression which is lost either 

during in vitro culture or after tumor growth in mice, and c) complete loss of HER2 

expression (Nanni et al., AACR 2014, Abstract number 1820). This panel of cell lines is 

a useful model to study the dynamics of HER2 loss in advanced HER2-positive 

mammary carcinoma, and to analyze alternative therapeutic strategies. 

Mambo89
HER2stable 

cell line was established from a spontaneous mammary 

carcinoma of a huHER2 female mouse, it presents a high and stable expression of 

huHER2, both in vitro and in vivo. Mambo43
HER2labile

 cell line was derived from a 

mammary carcinoma grown after the subcutaneous injection in a huHER2 female 

mouse of a HER2 cell line established from a spontaneous huHER2 mammary 

carcinoma; it presents a high but unstable expression of HER2, which it is lost either 

after in vitro cloning or after in vivo growth. From tumors grown after the subcutaneous 

injection of Mambo43
HER2labile

, Mambo38
HER2loss

 line was obtained and established in 

vitro. Mambo38
HER2loss

 has completely lost the expression of HER2 and showed both an 

increased tumorigenic capacity and a higher metastatic capacity, in particular for what 

concerns the metastatic load in the lungs, as compared to Mambo89
HER2stable

.  

While Mambo89
HER2stable

 and Mambo43
HER2labile

 lines have epithelial morphologies and 

grow in monolayer, Mambo38
HER2loss

 has a fusiform morphology that resembles 
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mesenchymal cells. Therefore the correlation between HER2 expression, stem cell 

phenotype and ability to undergo the epithelial-mesenchymal transition were studied. 

 

1.1.1 Stemness of FVBhuHER2 cell lines   

The stemness of FVBhuHER2 cell lines was analyzed by studying their ability 

to growth in non-differentiating conditions forming mammospheres and characterizing 

cells by their surface phenotype in order to identify specific surface markers. 

Single-cell suspensions of FVBhuHER2 cell lines were grown under conditions that do 

not allow adherence to the substratum, as described in the Materials and Methods. 

Figure 1 shows mammospheres cultured from the three breast cancer cell lines. 

Mambo38
HER2loss 

produced a significantly higher number of mammospheres as 

compared to Mambo89
HER2stable

 and Mambo43
HER2labile

. Furthermore, Mambo38
HER2loss

 

mammospheres were larger in respect to the other cell lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

 

 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cancer stem cells have been identified by immunofluorescence using different 

surface markers: CD44
+
/CD24

-, 
associated to a subpopulation of breast cells reported to 

have stem properties (Sheridan et al., 2006); CD29 surface antigen, expressed in 

isolated fibroblastic mesenchymal stem-cell like cells (Lorenz et al., 2008); Sca-1, 

present in murine mammary stem cells (Grange et al., 2008) (Figure 5). 

 

 

 

Mambo89
HER2stable 

 

N° mammospheres 23±1
##

 

N° Cells/mammosphere 806 

Mambo43
HER2labile 

 

N° mammospheres 17±1 

N° Cells/mammosphere Non detectable 

Mambo38
HER2loss 

 

N° mammospheres 69±9** 

N°Cells/mammospheres 5100 

(B) 

(A) 

(C) 

Figure 5: Capability of FVBhuHER2 cell lines to form mammospheres. The figure represents the images of 

mammospheres obtained from FVBhuHER2 cell lines, obtained through Diavert (2.5 × objective) inverted microscope 

and shot  with Canon EOS600D Camera: (A) Mambo89HER2stable, (B) Mambo43HER2labile, (C) Mambo38HER2loss e (D) 

Mambo34 L2. The table at the right side of each image indicates the average number of mammospheres, in 4 

independent experiments; Statistical analysis: (Test t Student): Mambo38HER2loss vs all cell lines p<0,01 (**); 

Mambo34 L2 vs Mambo43HER2labile p<0,05(*); Mambo89HER2stable vs Mambo43HER2labile p<0,01 (##); and the number of 

cells contained in each mammosphere, counted in one single well.   
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Figure 6: Expression of stem cell markers in FVBhuHER2 lines. For each FVBhuHER2 cell line grown in 

continuos culture, is reported the basal expression of huHER2 and stem cell markers CD24, CD44, Sca-1 and CD29. 

The percentage of cells contained in each quadrant is shown in red. 

 

 

Mambo38
HER2loss 

showed the most expressed stem-like profile, with 96% of 

CD44+CD24− cells, 94% of Sca-1+CD24- cells and the 96% of CD29+CD24- cells. 

Mambo89
HER2stable

 was positive for Sca-1 (60% of cells), but only 5% of analyzed cells 

were CD29+CD24-. Mambo43
HER2labile 

cell line expressed the lowest amount of stem 

markers (0.7% CD44+CD24-, 1% Sca-1+CD24-, 1% CD29+CD24-) (Figure 6). 
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1.1.2 Epithelial to Mesenchymal transition  (EMT) and HER2 loss 

To determine whether EMT occurs, the genes most specifically expressed in 

each state were studied. Among 84 key genes analyzed, that either change their 

expression during this process or regulate those gene expression changes, we have 

found that 16 were overexpressed (19%) and 19 down-expressed (23%) in 

Mambo38
HER2loss

 in comparison to Mambo89
HER2stable 

(Table 5).  

The up-regulated genes included genes mediating cell adhesion, migration, 

motility, and morphogenesis: collagen genes Col3a1 and Col5a2, known to be up-

regulated by TGF-1β induction of EMT (Hosper et al, 2013); Secreted Protein Acidic 

and Rich in Cysteine (SPARC), a matricellular protein that is important for the 

regulation of cell growth and adhesion; Versican, a large extracellular matrix 

proteoglycan supposed to promote cancer metastasis by facilitating cell proliferation, 

adhesion, migration and angiogenesis; Insulin-like growth factor binding protein 4 

(Igfb4), a protein able to control the up-regulation of several factors involved in tumor 

growth, EMT and invasion such as pAkt, pErk, Vimentin, and N-cadherin and down-

regulation of E-cadherin (Praveen et al, 2014). Moreover was detected an increased 

gene-expression of proteases, such as the matrix metalloproteinases MMP2 and MMP9, 

these proteins enhance ECM protein degradation and enable invasion (Nistico P. et al, 

2012). 

Among the 19 underexpressed genes, we identified some hallmarks of EMT, e.g. 

E-cadherin, whose downregulation is important in order to reinforce the destabilization 

of adherens junctions; In addition, it was observed the repression of genes encoding 

claudins and occluding, desmoplakin and plakophilin, that respectively stabilizes the 

dissolution of apical tight junctions and desmosomes (Huang RY et al, 2012). 

Summarising HER2 loss seems associated to EMT mechanism. 
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Genes up and down expressed in 

Mambo38
HER2loss 

compared to Mambo89
HER2stable 

  

Over 

expressed 

 

Relative 

expression 

 Under 

expressed 

Relative 

expression 

Col3a1 513  Cadherin -438 

 

Col5a2 34733  Occludin -49 

 

Col 12 45  Keratin 7 -270 

 

Pdgfrb 134  Keratin 14 -19 

 

Igfbp4 275  Fgfbp1 -252 

 

Sparc 8  Il1rec. antag. -112 

 

Versican 130  Desmoplakin -1021 

 

Mmp2 15  Desmocollin2 -26 

 

Wnt5a 113  F11r -18 

 

Itg5a  21   Sox10 -309 

 

Nudt13 6  Wnt5b -37 

 

Mtap1 5  Serpine1 -19 

 

TCF4 11  Snai3 -11 

 

ZEB-1 7  Notch1 -9 

 

ZEB-2 5  Mmp9 -5 

 

TGF-β1 5  ErbB3 -16 

 

   EGFR -4 

 

   Tmeff -9 

 

   Bmp7 -4 

     
 

Table 5: Gene expression associated with HER2 loss. The left side of the table shows over-expressed genes in 

Mambo38HER2loss compared to Mambo89HER2stable line, while the right column shows those under-expressed. The 

analysis was performed by RT2 Profiler PCR Array, using the mouse Epithelial to Mesenchimal Transition Pathway. 

Genes are reported with relative expression value higher than +4 and lesser than -4. 
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1.2 Sensivity to anti-cancer therapies  

The therapeutic efficacy of clinically approved or under experimentation drugs 

targeting HER2 or its signaling was studied in vitro and in vivo. Susceptibility to the 

following drugs was analysed:  

- Trastuzumab (recombinant humanized monoclonal antibody that targets the 

extracellular domain of HER2), (Herceptin, Roche); 

- Lapatinib (reversible kinase inhibitor that blocks the catalytic domain of HER2 and 

EGFR), (Tykerb and Tyverb, GlaxoSmithKline); 

- Dasatinib (kinase inhibitor directed against Src kinase), (Sprycel, Bristol-Myers 

Squibb); 

- Buparlisib (pan-class I PI3K inhibitor that penetrates the blood-brain barrier (BBB)); 

(Novartis); 

- GNE-317 (dual PI3K/ mTOR inhibitor), (Genetech); 

- Omomyc (dominant negative inhibitor of Myc), (proprietary of Dr. Soucek’s 

laboratory).  

 

 

1.2.1 HER2 loss as mechanism of resistance to Trastuzumab in vitro 

MAMBO89
HER2stable 

and MAMBO43
HER2labile 

cell lines were grown in continuous 

culture (30 days) with trastuzumab (30μg/ml). After the treatment, cells were cultured 

without the drug for other 30 days. After 30 days of treatment and 30 days of recovery, 

the expression of HER2 was analyzed by immunofluorescence (Figure 6). 
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Figure 7: Sensivity to Trastuzumab of Mambo43HER2labile cell line. Images obtained by the observation of 

Mambo43HER2labile cells cultured in vitro in absence (A) or in presence (B) of Trastuzumab (30 g/mL). (C) 

Mambo43HER2labile cell line grown for 30 days in presence of Trastuzumab 30 mg / mL (blue profile) analyzed by 

flow cytometry to assess the expression of HER2, in comparison to Mambo43HER2labile grown in medium alone (red 

outline). On the x-axis it is indicated the fluorescence intensity in arbitrary units is indicated on a logarithmic scale, 

while the y-axis shows the number of cells.  

 

MAMBO89
HER2stable

 cell line was resistant to trastuzumab in vitro and showed a 

stable and high expression of HER2, either after the treatment or after the recovery 

period without trastuzumab. On the other hand, MAMBO43
HER2labile 

was sensitive to 

trastuzumab with approximately 60% of treated cells grown in respect to the control. 

Moreover, after the treatment this cell line changed from an epithelial shape to a 

mesencymal/fusiform-shaped phenotype, and did not express anymore HER2 even after 

the period of recovery (Figure 7). 

 

 

 

 

 

A B 

C 
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1.2.2 Targeting HER2 and downstream targets  

In vitro sensitivity to lapatinib, dasatinib and buparlisib of MAMBO89
HER2stable

 

and MAMBO38
HER2labile

 were evaluated as percentage of grown colonies compared to 

the control in 3-D culture (0.33% soft agar containing the drug at a final concentration 

of 1 μM both in the underlayer and in the overlayer) (Figure 8). HER2 loss was 

accompanied by the loss of sensitivity to HER2 kinase inhibitor and to Src inhibitor, 

whereas the PI3K inhibitor was highly effective regardless of HER2 expression. 

 

 

 

 

 

The total and phosphorylated amount of protein factors that mediate the 

intracellular signaling of huHER2 in FVBhuHER2 lines was tested by western blot, 96h 

after the treatment with trastuzumab, buparlisib or their combination (Figure 9). 

 

.  

Figure 8: In vitro sensivity to target therapies. In vitro resistance to Lapatinib, Dasatinib (kind gifts from Dr. S 

Pupa, INT, Milan) and Buparlisib (Novartis) was evaluated by analyzing the growth inhibition of cell lines in a 3-D 

culture (soft-agar + MammoCult complete medium + 1% FCS). Drugs were added at a final concentration of 1 μM 

both in the underlayer and in the overlayer. Growth quantification was performed by colony counting and growth 

inhibition percentage was calculated. 
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Figure 9: Modulation of the expression of second messengers downstream of HER2 in FVBhuHER2 cell lines 

after treatment with trastuzumab and buparlisib. The western blot images show, for each cell line, the protein 

expression of HER2, of the main downstream signal transducers of HER2, and their phosphorylated forms after 96 h 

of treatment with different concentrations of Trastuzumab (T) and Buparlisib (B) or their combinations,. Next to the 

name of each protein the molecular weight in kDa is reported. 
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In Mambo89
HER2stable

 and Mambo43
HER2labile

 cell lines pharmacological 

treatments did not significantly change the expression of HER2 and phosphoHER2. 

Notably, phospho-Akt was detectable only in the samples treated with buparlisib 1uM. 

Mambo38
HER2loss

 did not express neither HER2 nor pHER2 but the expression of Akt, 

MAPK and their phosphorylated counterparts were already higher in basal conditions 

compared to Mambo89
HER2stable

 and Mambo43
HER2labile

. The high expression of pAkt and 

pMAPK in Mambo38
HER2loss

 could represent an index of their independence from the 

pathway of the huHER2 signaling, as demonstrated by the in vitro sensivity only to 

buparlisib. 

The therapeutic effectiveness of the inhibition of the PI3K pathway was studied 

also in vivo by testing GNE-317, a dual PI3K/ mTOR inhibitor, in the HER2loss model. 

MAMBO43
HER2labile

 and MAMBO38
HER2stable

 were injected subcutaneously in FVB 

mice. The intraperitoneal (i.p) treatment with GNE-317 (40 mg/kg) compared to the 

vehicle (Metocell 0,5%+Tween80 0,4%, i.p.), significantly inhibited the growth of 

MAMBO38
HER2loss

 and MAMBO43
HER2labile

 (Student’s t test, p˂0.005 or p<0,001 

respectively) (Figure 10).    
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Figure 10: Therapy of localized HER2-positive breast cancer with GNE-317. 

Study of the efficacy of GNE-317 (40 mg / kg per os) on the local growth of (A) Mambo38HER2loss cell line (105 sc / 

0.2 ml PBS) and (B) Mambo43HER2labile cell line (106  sc / 0.2 ml PBS) in female FVBhuHER2 mice. For each cell 

line injected two groups of treatment are present, one receiving the vehicle (Metocell 0.5% Tween80 + 0.4%, n = 5), 

and the other treated with GNE-317.  (A) n = 3, starting from n=5 two animals died for drug toxicity after 10 days of 

treatment, Statistical significance (Student’s t test) : from day 16  p˂0.05 ; (B) n = 4, starting from n=5 one animal 

died after the first treatment; from day 30 p<0.001 (Student’s t test). Each point represents the mean tumor volume ± 

standard error until all mice per group are alive.  
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1.2.3 Myc inhibition 

The inhibition of Myc was studied in collaboration with the Laboratory of Dr. 

Laura Soucek (Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain).  

Our goal in this project was to validate Myc inhibition as a therapeutic strategy to 

overcome resistance to therapy in HER2-positive tumors. In order to characterize 

omomyc’s effect in vitro on MAMBO89
HER2stable

, MAMBO43
HER2labile 

and 

MAMBO38
HER2loss

 cells lines, we have generated an inducible stable system of cell 

lines using a doxycycline-switchable lentiviral vector to drive the expression of 

omomyc. 

Omomyc was cloned into the pTRIPZ lentiviral vector (Open Biosystems, 

Thermo Scientific) harbouring both the rtTA and TRE elements to provide doxycycline 

(dox) regulated expression of omomyc. The RFP gene was cloned under the same 

promoter as a reporter gene. The infected cells were selected using puromycin antibiotic 

and the expression of omomyc confirmed by checking RFP expression after 4 days of 

dox (1μg/ml) administration (Figure 11A-12A).  

 

 

Figure 11: Omomyc induced expression in MAMBO43HER2labilepTripz-omomyc infected cell line. (A) Intensity 

of RFP fluorescence measured by Invitrogen™ Tali™ Image-based Cytometer after 4 days of treatment with dox 

(1μg/ml). (B) Immunofluorescence assay showing omomyc expression in green, RFP in red, DAPI in blue; detected 

by fluorescence microscopy after 4 days of treatment with dox (1μg/ml). 
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Figure 12: Omomyc induced expression MAMBO38HER2loss pTripz-omomyc. (A) Intensity of RFP fluorescence 

measured by Invitrogen™ Tali™ Image-based Cytometer after 4 days of treatment with dox (1μg/ml). (B) 

Immunofluorescence assay, showing omomyc expression in green, RFP in red, DAPI in blue; detected by 

fluorescence microscopy after 4 days of treatment with dox (1μg/ml).  

 

Omomyc expression was analyzed by immunofluorescence as well, using an 

anti-omomyc antibody (OMOMYC IG-1325) and compared with RFP expression 

(Figure 11B-12B). Both for MAMBO43
HER2labile

 and MAMBO38
HER2loss

 nearly 100% of 

cells were expressing omomyc. The RFP signal correlated with high specificity with 

anti-omomyc alexafluor signal, confirming the reliability of the gene reporter system. 

MAMBO89
HER2stabile

 was, however, much more challenging to infect, due to its high 

sensitivity to the infection process alone. Despite all the attempts, it was not possible to 

obtain the latter cell line with high and stable levels of omomyc expression.  

The efficacy of transgenic omomyc expression upon dox addition (1μg/ml) was 

evaluated in vitro in MAMBO38
HER2loss

 and MAMBO 43
HER2labile

 infected cell lines by 

colony formation assay in 3 independent experiments (Figure 13-14). 
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Figure 13: The suppressive effect of Omomyc on proliferation of MAMBO38HER2loss infected cell line. 

Representative images of colony-formation assay of MAMBO38HER2loss pTripz-omo untreated or treated with 

doxycycline and the corresponding quantification. Data are represented as means ± SD of three independent 

experiments. Statistical analysis was done using the Student's t test:*p < 0.05 vs. control group. 

 

 

 

 

Figure 14: The suppressive effect of omomyc on proliferation of MAMBO43HER2labile infected cell line. 

Representative images of colony-formation assay of MAMBO43HER2labile  pTripz-omo untreated or treated with 

doxycycline and the corresponding quantification. Data are represented as means ± SD of three independent 

experiments. Statistical analysis was done using the Student's t test:**p < 0.001 vs. control group.   
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Both cell lines resulted to be sensitive to omomyc. The effect of Myc inhibition was 

statistically significant in the colony formation assay. After treatment, there was a 

reduction of 80% in MAMBO38
HER2loss

 cells growth compared to the control, in 

contrast with a 55% reduction of MAMBO43
HER2labile

.  

The effect of omomyc on cell proliferation was further investigated by BrdU 

Incorporation assay (Figure 11). 
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 Figure 15: Cytometric Analyses of BrdU incorporation assay. Cell proliferation was measured by BrdU 

incorporation assay MAMBO38HER2loss infected with PTripz-OMO -/+ DOX (1ug/ml) and MAMBO43HER2labile 

infected with PTRIPZ-OMO -/+ DOX (1ug/ml) 72 hours after treatment. Analysis of the subpopulations of cells in 

cell cycle phases G1, S, sub G1, Polyploid and G2. Statistical comparisons were made by Student’s t-test. 

Mambo43HER2labile: S phase untreated vs treated ***p<0.0001; G2 phase untreated vs treated *p<0.05;  Sub G1 phase 

untreated vs treated **p<0.001; Polyploid phase untreated vs treated **p<0.001; Mambo38HER2loss Polyploid phase 

untreated vs treated * p<0.05. 

 

 

After treatment, omomyc expressing MAMBO43
HER2labile

 cells were not able to 

proliferate as demonstrated by a significantly lesser percentage of cells in S phase 

compared to the control (Figure 15). A similar reduction can also be seen in sub G1 and 

in polyploid phases. Instead, there were more cells in G2 phase. This profile resembles 

that one of a cell population which does not proliferate anymore (less cells in S phase 

compared to the control), and that, perhaps, became senescent (more cells in G2 phase 

compared to the control). MAMBO38
HER2loss

 treated with omomyc upon dox 

subministration stopped proliferating, as shown by a blockage in Sub G1 phase, 

possibly meaning that cells are dying by apoptosis (Figure 15). The percentage of cells 

in G1, S and G2 phases did not change significantly after the treatment, while the 

number of treated polyploids cells was significantly lower compared to the control. 

The therapeutic efficacy of omomyc alone (dox 1μg/ml) or in combination with 

lapatinib (1μM) was tested in vitro on MAMBO43
HER2labile

 and MAMBO38
HER2loss 
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omomyc inducible cell lines. As control we used the HER2 positive cell lines JIMT-1 

pSlik-omomyc, already available in the host laboratory. Drugs’ efficacy was assessed in 

three independent experiments (Figure 16). 
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Figure 16: Sensitivity to Lapatinib alone or in combination with omomyc. In vitro (continuous culture) 

sensitivity to Lapatinib (1μM) alone or in combination with Doxycycline  (1μg/ml) after 96h of treatment. Each bar 

represents the mean ± standard error of three independent experiments. Statistical significances among cell lines 

(Student's t test.): *p<0,05; **p<0,01; ***p<0,001. 
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In MAMBO38
HER2loss

 cell growth was significantly inhibited by omomyc 

expression upon dox treatment with 57% growth over control and by the combined 

therapy (40%). MAMBO43
HER2labile

 resulted resistant to lapatinib (82%) and quite 

sensitive to dox (70%). Interestingly, the combination of the two drugs was more 

effective compared to the control with 54% of cells proliferating. JIMT-1 pSLIK-OMO 

showed a significant inhibition of cell growth when treated with dox (64%) and with the 

combination of the two compounds (53%).  

Determinated the efficacy of the treatments in vitro, we investigated their effect 

on the expression of HER2 and on the signaling pathways activated immediately 

downstream of the receptor. By western blot we tested on cells lysates, treated as 

described above, the expression of the total and phosphorylated amount of protein 

factors that mediate the intracellular signaling of huHER2 in FVBhuHER2 lines (Figure 

17). In detail, Mambo43
HER2labile

 lost HER2 and pHER2 expression after infection 

independently from treatments. The amount of total AKT and total MAPK was lower in 

omomyc expressing cells compared to the control. This decrease was more evident 

when lapatinib is combined with dox; instead the levels of expression of the 

phosphorylated form of the proteins had an opposite trend: pAKT did not change after 

any treatment, pMAPK expression was up-regulated by lapatinib and by lapatinib+dox 

but showed a slight decrease (-32%) when treated with dox alone. 

Mambo38
HER2loss

 did not express neither HER2 nor pHER2 but the expression of Akt, 

MAPK and their phosphorylated counterparts were already higher in basal conditions 

compared to Mambo43
HER2labile

, as expected.  The expression of total AKT, pAkt, total 

MAPK and pMAPK after Lapatinib treatment were increased. Omomyc expression 

upon dox treatment stimulated the level of expression of total AKT but its 

phosphorylated form was down-regulated by the treatment.  MAPK expression was up-

regulated but dox treatment didn’t significantly change the expression of pMAPK. A 

higher amount of activated Akt and MAPK was detected after combining lapatinib with 

dox at the same time. 
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Figure 17: Modulation of the expression of second messengers downstream of HER2 after treatment with 

doxycycline alone or in combination with lapatinib. The western blot images show, for each cell line, the protein 

expression of HER2, of the main transducers of the downstream signal of HER2, and their phosphorylated forms in 

MAMBO43HER2labile and MAMBO38HER2loss cell lines infected with pTRIPZ-omomycRFP 96h from treatment with 

dox, lapatinib and their combination. Next to the name of each protein is reported the molecular weight in kDa. Band 

intensity was detected by densitometric analysis, normalized first over actin then over control. The percentage of 

decrease/increase between control and each treatment is shown when ≥ +20% or ≥-20%.  
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2. Co-expression of HER2 full-length and Delta16 in F1 

mice 

Human HER2-positive breast cancer cells co-express the full-length HER2 gene 

product p185 and various shorter isoforms, resulting from alternative splicing, 

proteolytic cleavage and other modifications. Some isoforms are definitely more 

oncogenic than full-length HER2 (Scaltriti et al., 2007; Pedersen et al., 2009; Angelini 

et al., 2013), whereas others inhibit carcinogenesis (Morancho et al., 2013). The 

Delta16 splice variant, lacking exon 16, has the properties of an activated oncogene, but 

it could also play beneficial roles (Alajati et al., 2013; Turpin et al., 2016; Castagnoli et 

al., 2014).  

Full-length HER2 oncoprotein and splice variant Delta16 are co-expressed in 

human breast cancer. In order to analyze their interaction in a model that mirrors human 

co-expression, we have studied F1 hybrid transgenic mice bearing heterozygous copies 

of human HER2 and Delta16 (F1). From pre-existing analysis performed in our 

laboratory, we found that the presence of Delta16 causes the anticipation of tumor onset 

in mice. Furthermore, the simultaneous expression of Delta16 and HER2 does not 

determine any difference in F1 tumor latency compared to that of Delta16 mice, 

suggesting a dominant role of the splice variant in F1 phenotype (Lollini et al., AACR 

2014; Palladini et al., EACR 2014).  

In light of these findings, in this thesis the contribute of wild-type full-length HER2 and 

of its splice variant Delta16 to mammary HER2-positive carcinogenesis and to HER2 

target therapy efficacy was studied.                 

2.1 Expression of full-length HER2 and Delta16 in F1 HER2/Delta16 

mammary carcinomas  

In order to demonstrate if Delta16 is mainly involved in neoplastic 

transformation and in the early phases of mammary carcinogenesis rather than in 

advanced tumor progression, we have analyzed the expression levels of the two 

isoforms in preneoplastic and in neoplastic mammary glands of F1 HER2/Delta16 mice, 

compared to HER2 full-length and Delta16-driven carcinomas.  

The expression/coexistence of HER2 and Delta16 transcripts was analyzed by Real-

time PCR, using specific primers for each isoform (Figure 18). Preneoplastic mammary 

glands of F1 HER2/Delta16 mice co-expressed both isoforms at homogeneous, 
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intermediate levels in comparison to mammary carcinomas of either full-length HER2 

or Delta16 transgenic mice (Figure 18A).  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Mammary carcinomas of F1 mice exhibited three alternative patterns of expression 

(Figure 18B). The greatest part of tumors (~80%) expressed high levels of Delta16 and 

low levels of full length HER2, a few (~5%) expressed full-length HER2 and little 

Delta16, and the remainder (~15%) co-expressed at high level both isoforms. Thus, 

neoplastic progression to mammary carcinoma in F1 mice required the activation of 

both transgenes with a strong inclination toward Delta16. Moreover, individual tumors 

exhibiting different patterns of transgene expression can simultaneously develop within 

the same host. 

 

2.2 HER2/Delta16 expression tunes tumor sensivity to trastuzumab in 

prevention and therapy  

F1 HER2/Delta16 mice were treated with trastuzumab in order to study how 

HER2 full-length/Delta16 expression tunes the sensitivity of nascent and established 

tumors to HER2 targeted therapies. Trastuzumab was administrated in prevention to 

young F1 HER2/Delta16 mice and to the parental strains FVBhuHER2 and 

FVBDelta16. HER2 mice, Delta16 mice and F1 HER2/Delta16 mice were treated twice 
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weekly intraperitoneally with trastuzumab (4 mg/kg) starting from 17 weeks of age for 

HER2 mice and from 5-8 weeks of age for Delta16 and F1 HER2/Delta16 mice. Control 

mice were treated with physiological solution. 

 

 

Figure 19: Response to trastuzumab treatment in vivo. Prevention of autochthonous mammary carcinogenesis by 

trastuzumab treatment (A-C): Kaplan-Meier tumor-free survival curves of transgenic mice treated i.p. with vehicle 

(dashed line) or trastuzumab (solid line); statistical comparisons were made by Mantel-Haenszel’s test. (A) HER2 

mice (vehicle n=8, trastuzumab n=5); no significant difference. (B) Delta16 mice (vehicle n=7, trastuzumab n=8); 

p<0.001. (C) F1 HER2/Delta16 mice (vehicle n=14, trastuzumab n=15); p<0.001. (D) Therapy of F1 HER2/Delta16 

tumors implanted in the fourth left mammary fatpad of non-transgenic FVB mice treated with vehicle (dashed line) 

(n=10) or trastuzumab (solid line) (n=9); p<0.01 by the Student's t test. 

 

At one year of age more than 85% of F1 HER2/Delta16 treated mice were tumor-free, 

whereas none of the untreated mice was tumor-free by 40 weeks of age (Figure 19 C). 

The preventive effect of trastuzumab was stronger in F1 HER2/Delta16 mice than in the 

two parental strains. A long delay in mammary carcinogenesis was obtained with 

trastuzumab in Delta16 mice (Figure 19 B), however more than 50% of mice already 

developed carcinoma by the first year of age. Trastuzumab also delayed tumor onset in 

full-length HER2 transgenic mice but statistical significance was not reached  (Figure 
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19 A). The efficacy of trastuzumab was also confirmed in a therapeutical setting against 

homogeneous established tumors. Fragments of F1 HER2/Delta16 mammary tumors 

were implanted orthotopically into non-transgenic FVB mice. Intraperitoneal treatment 

(twice/week) started at positivity and lasted for one month. After the treatment with 

trastuzumab tumor growth was strongly inhibited, with more than 40% mice still tumor-

free five months after the end of the treatment (Figure 19 D). 

We further decided to compare the therapeutic effect obtained with trastuzumab 

to buparlisib treatment, in the same experimental conditions described above. After one 

month of treatment with buparlisib tumor growth was not as strongly inhibited as with 

trastuzumab, with only 20% of mice still alive five months after the end of the treatment 

(Figure 20). 

 

 

Figure 20: Response to Buparlisib treatment in vivo. Therapy of F1 HER2/Delta16 tumors implanted in the fourth 

left mammary fat pad of non-transgenic FVB mice treated with vehicle (dashed line) (n=10) or buparlisib (solid line) 

(n=10); Statistical comparisons were made by Student's t test: no significant difference. 

 

With the aim to analyze the intrinsic sensitivity of F1 HER2/Delta16 mammary 

carcinoma cells to anti-HER2 monoclonal antibodies, a system of cell lines 

representative of the three isoform ratios (F1 HER2low/Delta16high, F1 

HER2high/Delta16low, F1 HER2high/Delta16high) was previously established in the 

Laboratory of Immunology and Biology of Metastasis and exposed to trastuzumab in 

3D (agar) cultures. A strong inhibition of 3D cell growth was obtained only when cells 
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expressed high levels of Delta16 either alone or together with a low level of full-length 

HER2. In contrast, all cell lines expressing high levels of full-length HER2 alone or 

together with Delta16, were not inhibited regardless of the level of Delta16 expression. 

After the treatment with trastuzumab, in F1 HER2 high/Delta16high cell line 302-IVD 

and in F1 HER2low/Delta16high cell line 156-IS, we re-analyzed the expression of the 

two isoforms in order to detect variations in isoform ratios and in expression levels. The 

expression of HER2 and Delta16 transcripts was analyzed by Real-time PCR, using 

specific primers for each isoform.  

 

 

Figure 21: Response to trastuzumab treatment in vitro. Expression of HER2 and Delta16 transcripts in 302-IVD 
(F1HER2 high/Delta16high) (upper graph) and 156-IS (F1HER2low/Delta16high)  (lower graph) cells after 

trastuzumab treatment in 3D culture. Each bar represents the mean and SEM of 2-6 independent determinations. ΔCt 

represents the difference in PCR threshold cycle between the indicated gene and reference housekeeping gene 

GAPDH. A significant (p<0.01 by the Student's t test) inhibition of both transcripts was observed only in 302-IVD 

cells. 

 

Trastuzumab treatment did not affect the isoform ratios, either in trastuzumab-sensitive 

156-IS cells or in resistant 302-IVD cells, even though the latter showed a significant 

decrease of both isoform levels (Figure 21). 
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2.3 HER2 isoforms long-term stability 

In order to verify whether the isoform ratios were stable in vivo in the long term, 

we studied serial transplants of two F1 mouse tumors  in syngeneic immunocompetent 

hosts. Serial in vivo passages of two F1 tumors (one with a high expression of both 

isoforms, the other with a higher expression of Delta16) were analyzed for each isoform 

expression by Real-Time PCR and for the total protein level by cytofluorometric 

analysis. A primary antibody that binds both HER2 isoforms was used, because specific 

antibodies for each isoform have not been developed yet. Delta16 levels were stable 

over all passages (which took more than 11 months in vivo), whereas the levels of full-

length HER2 showed strong variations, including both increase and decrease over time 

(Figure 22). 

 

HER2highDelta16high

0 I II III IV

-10

-5

0

5

10

HER2

Delta16

In vivo passage


C

t

HER2lowDelta16high

0 I II III IV V

-10

-5

0

5

10

HER2

Delta16

In vivo passage


C

t

HER2highDelta16high

0 I II III IV
0

100

200

300

400
Total HER2

In vivo passage

F
lu

o
re

s
c

e
n

c
e

 i
n

te
n

s
it

y

(m
e

d
ia

n
)

HER2lowDelta16high

0 I II III IV V
0

100

200

300

400
Total HER2

In vivo passage

F
lu

o
re

s
c

e
n

c
e

 i
n

te
n

s
it

y

(m
e

d
ia

n
)

A B

C D

 
Figure 22: Kinetics of HER2 and Delta16 expression in serial transplants (mouse-derived isografts, MDI) of F1 

HER2/Delta16 mammary carcinomas. (A-B) Expression of HER2 and Delta16 transcripts by qPCR; ΔCt 

represents the difference in PCR threshold cycle between the indicated HER2 isoform and reference housekeeping 

gene mTBP; (C-D) total surface HER2 protein by FACS analysis.  
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3. Patient Derived Xenografts 

Despite improvements in therapies, HER2-positive breast cancer patients still 

display poor prognosis. Patient-derived tumor xenografts (PDX) are reported to better 

represent tumor heterogeneity than cell-based tumor xenografts. Here we show the 

generation of a collection of PDXs that portray the main subtypes of breast cancer, 

obtained thanks to the collaboration with Sant’Orsola-Malpighi Hospital, Bologna 

(Prof. Mario Taffurelli, Prof Donatella Santini, Dr. Claudio Ceccarelli) and Bellaria 

Hospital, Bologna (Prof. Maria Pia Foschini, Dr. Enrico Di Oto, Dr. Sofia Asioli). We 

focused on HER2-positive breast PDX models for the evaluation of molecular stability 

of selected biomarkers during prolonged in vivo transplantation. In order to select 

variants similar to those responsible for disease progression in patients, an HER2-

positive breast PDX was treated with HER2-targeted therapies. 

3.1 A panel of Breast Cancer Xenograft Models 

Fresh surgically resected patient-derived specimens were implanted 

orthotopically into immunodeficient mice (RGKO or NSG). We chose an orthotopic 

tumor xenograft implantation since it provides a more biologically relevant context, 

ideal for tumor-host interactions and development of disease-related metastases. Each 

sample was classified by its histological and clinical features. Invasive ductal 

carcinomas (IDC) were more frequent than invasive lobular carcinomas (ILC), 86% and 

9% respectively, reflecting their different frequency in the general population. More 

than the half of the specimens were classified as high grade (52%), considered to be the 

most aggressive ones. Expression of Estrogen/Progesterone receptors was very diffused, 

detected in the 85% of the tumor samples. Proliferation, evaluated as Ki67 expression, 

was high in the 40% of the tumors. HER2 overexpression and/or HER2 gene 

amplification, determined by FISH analysis, was observed in the 23% of tumors.  

We established 7 transplantable PDXs out of 65 primary breast cancer specimens 

implanted, (11% tumor take-rate). The highest rate of PDX stabilization was obtained 

from HER2-positive carcinomas (40%) followed by Triple negative (20%), Luminal B 

(14%) and Luminal A (6%) subtypes (Table 6-7). 
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Table 6. Clinical features of primary tumors implanted 

Parameter Cases (%) 

Histology   

 IDC 56 86 

 ILC 6 9 

    

Grade    

 III 34 52 

 II 20 31 

 I 10 15 

AJCC Staging    

Hormon receptors    

 ER+ and/or PR+ 55 85 

 ER- and PR- 10 15 

HER2 expression    

 

HER2 overexpression or 

amplification 15 23 

Proliferation    

 Ki67 high 26 40 

 Ki67 intermediate 15 23 

 Ki67 low 24 37 

Intrinsic subtypes    

 Luminal A 31 48 

 Luminal B 14 22 

 Triple positive 10 15 

 HER2 5 8 

 Triple negative/basal like 5 8 
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Table 7. Charateristics and in vivo passages of each established PDX model 

Tumor 

TAG 
Histology Grade  ER  PR Proliferation HER2 

Intrinsic 

subtypes 

FO4 IDC III ER− PR− High HER2+ HER2+ 

FO15 IDC III ER+ PR+ Inter HER2− Luminal A 

TA7 IDC  III mixed High HER2− Luminal B 

TA18 IDC III ER+ PR− High HER2− Luminal B 

TA38 IDC III ER+ PR+ High HER2− Luminal A 

TA45 IDC III ER− PR− High HER2+ HER2+ 

TA51 IDC  III ER− PR− High HER2− TN 
 
 

 

IDC = Invasive ductal carcinomas, ER = Estrogen Receptor, PR = progesteron Receptor, HER2 TP = HER2 triple 

positive. 

 

Tumor growth curves of engrafted PDXs at the first passage are reported in figure 23. 

Growth rate of the first passage of each tumor was representative of tumor growth in the 

later passages and was independent from the intrinsic subtype.  
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Figure 23: Kinetic of the growth of engrafted tumor at the first passage. Each point rapresents the tumor volume. 

X-axis shows the weeks after injection of patient-derived specimens. Y-axis shows tumor volume expressed in cm3. 
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3.2 HER2-positive FOT4 PDX 

Among the engrafted PDX, two were classified as HER2-positive, FO4 and 

TA45. FO4 was studied more in detail and characterized through several passages. 

FO4 tumor is an invasive ductal carcinomas of grade III, with a high rate of 

proliferation, negative for the expression of Estrogen/Progesterone receptors, positive 

for HER2 amplification (2+). The tumor has been propagated in vivo for serial 

consecutive passages, here we show the results including the first seven generations of 

FO4. The parameters for the evaluation of FO4 in vivo growth are summarized in Table 

8. 

 

Table 8. Parameters for the evaluation of PDX FO4 in vivo growth 

Passage 
% engraftment 

#
 

Latency 

(weeks from injection) 

Time to a tumor’s volume of 1 cm
3
   

(weeks from injection) 

  
Range Mean Median 

Mice at 

volume / 

mice 

injected 

Range Mean Median 

I 1/1 (100%) 5 5 5 0/1 
   

II 5/5 (100%) 1-1 1 1 3/5 14-16 15 15 

III 6/6 (100%)  1-2 1 1 6/6 10-15 12 11 

IV 10/10 (100%) 1-11 3 1 10/10 7-16 11 11 

V 13/13 (100%) 1-6 3 3 13/13 6-24 11 10 

VI 16/16 (100%) 1-7 3 3 16/16 4-17 10 9 

VII 13/13 (100%) 0-9 3 1 11/13 4-13 9 9 
 

 

# % Engraftment measured as number of positive mice/number of injected mice  

Statistical comparison, Average latency: VII vs II (p<0.05, test t di Student). Mean time to reach a volume of 1 cm3, 

VII vs II (p<0.05, test t di Student). Percentage of engraftment: no significant. test X2 Fisher’s exact test. 

 

The average latency increased slightly but significantly  in the VII passage in respect to 

the II (p <0.05, Student's t test). The average time needed by the tumor to reach a 

volume of 1 cm
3
 decreased in all steps compared to the II passage but a significant 

difference was observed only vs the VII (p <0.05, Student's t test). All comparisons 

evaluated from the III passage on were similar, since the differences were not 

statistically significant. Therefore FO4 growth characteristics were stable. The 

percentage of engraftment of subsequent in vivo passages was of 100% among all the 

passages. 

In order to validate FO4 as a preclinical model for translational research, we 

studied the molecular stability of selected biomarkers during prolonged in vivo 
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transplantation, and the expression ratio between HER2 full-length and Delta16 

isoform, which is supposed to have a role in cancer aggressiveness. We selected a 

representative sample for each passage (I-VII) of FO4 PDX model. Histologic and 

immunohistochemistry analysis showed that FO4 PDXs recapitulated the morphologic 

and structural patterns, as well as HER2 expression, of patient tumor among several 

passages in vivo (II-VII) (Figure 24). 

 

 

Figure 24: Hematoxylin and eosin staining. Staining of histological specimens from the original patient tumor (A), 

FO4 PDX model II (B), III (C), IV (D), V (E), VI (F), VII (G ) at 10 × magnification. Staining and images provided 

by Prof. Foschini. and Dr. di Oto, Department of Pathology, Bellaria Hospital, Bologna. 

 

FO4 maintained a stable gene expression of HER2 and Delta16 isoforms over time, 

analyzed by Real-time PCR, with specific primers for each isoform (Figure 25). 

 

A

B C
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F G
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Figure 25: Real-time PCR expression of HER2 full length (A) and HER2Δ16 isoform (B) in PDX FO4 tumors 

from I to VII passage. In the abscissa the in vivo passages analyzed are reported and in ordinate the 2-ΔCt.value. Each 

symbol corresponds to the average of two replicas of real-time PCR carried out for each individual tumor. The red 

line is the average value of each passage. There were no statistically significant differences between passages 

(Student t test). 

 

HER2 expression stability was also confirmed by Western blot and Flow Cytometry 

techniques (Figure 26-27). In western blot, the levels of HER2 and its phosphorylated 

form expression were high and stable, with values oscillating between 0.5 and 0.8 

without association to the propagation passage (Figure 26). 

 

 

 

Figure 26 HER2 and pHER2 expression. Western blot analysis of HER2 and pHER2 (Tyr 1248) expression in 

subsequent passages of PDX FO4 from the I to the VII. Western blots were performed on tumor lysates. Actin was 

employed as house-keeping protein.   

 

Flow cytometry data showed high levels of expression of HER2 in the membrane, with 

a slight decrease trough the subsequent in vivo passages, statistically significat between 

the IV-V-VI-VII passages compared to the II. However, overall protein expression of 

HER2 can be considered constant through passages (Figure 27). 



Results 

 

 88 

 

Figure 27 Expression of total HER-2 protein on cell membrane by Cytofluorimetry. Each point represents a FO4 

PDX tumor among consecutive passages I-VII. The x-axis shows PDX FO4 passages from I to VII, the y-axis shows 

the mean of fluorescence intensity expressed in arbitrary units, on a logarithmic scale. The red line is the mean 

fluorescence intensity of each passage. Statistical significance: Student's t test. p <0.05 between IV-V-VI-VII 

passages compared to the II passage, p <0.05  between VII and IV passages. 

 

Immunohistochemical analysis on same samples, performed at the Department of 

Pathology of Bellaria Hospital of Bologna, showed that the expression of the HER2 in 

membrane did not change by increasing the number of passages in vivo. However, a 

tendency to a progressive increase in the cytoplasmic component was observed (Figure 

28). 
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Figure 28: Representative Immunohistochemical (IHC) images of HER2 protein expression in tumor tissues. 

Analysis of HER2 of the original tumor derived from the patient (A) and the PDX FO4 passage II (B), III (C), IV 

(D), V (E), VI (F), VII (G) at 20 × magnification. Staining and images provided by Prof. Foschini. and Dr. di Oto, 

Department of Pathology, Bellaria Hospital, Bologna. 

 

To complete the characterization of FO4, we investigated the expression of two other 

members of the ERBB family, HER1 (epidermal growth factor receptor, EGFR) and 

HER3; of IGFR tyrosine kinase receptor (insulin-like growth factor 1 receptor) and of 

the epithelial marker CD24.  

Figure 29 A and 29 B show the profiles of these markers, respectively, relative to a 

representative sample of FO4 (V) and to the primary culture cells derived from a FO4 

(VII) tumor.  

FO4 was characterized by high expression of HER2 receptor, whereas the expression of 

HER1, HER3 and IGFR was very low, barely positivity. The expression of human 

CD24 on primary culture cells as well was detectable, which indicates their epithelial 

nature. This result suggests the lack of dependence from the signaling pathways 

mediated by these receptors in FO4 PDX tumor. 
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Figure 29: Flow cytometry analysis of HER1, HER2, HER3, and IGFR in FO4 tumors. Representative tumor 

sample of (A) FO4 PDX V passage in vivo and (B) primary cell culture derived from FO4 tumor at VII passage in 

vivo.  The panels represent the histograms profiles: the x-axis shows the intensity of fluorescence in a logarithmic 

scale, expressed in arbitrary units along; the y-axis shows the number of cells.  
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3.3 Sensitivity to targeted therapies 

Demonstrated FO4 molecular stability during prolonged in vivo transplantation, 

this model was therefore used to test treatments against HER2 (trastuzumab and 

neratinib). Palpable FO4 PDX bearing mice (IV-V-VI passage) were treated with 

trastuzumab 4mg/kg, twice a week by intraperitoneal injection (ip) till sacrifice, or with 

neratinib 40mg/kg, 5 times a week by oral administration (os), for 35 weeks; the control 

group did not receive any treatment. 

Both treatments were able to inhibit tumor growth compared to untreated mice (Figure 

30).  

 

Figure 30: Responsiveness to neratinib and trastuzumab treatment in vivo in serial transplants (patient-

derived xenografts, PDX) of human breast cancers FO4. Therapy of FO4 tumors (IV-V-VI passages) untreated 

(n=37), treated with neratinib (n=6) or trastuzumab  (n=6); The curve shows the first 9 weeks of treatment. The 

values of neratinib curve are statistically lower than those of the control curve at weeks 6-7-8-9, the difference is 

statistical significant as well for neratinib compared to trastuzumab at weeks 8-9. Other comparisons did not reach 

statistical significance (Student's t test, p <0.05). 

 

Neratinib inhibited tumor growth, with a statistical significant difference from the sixth 

week of treatment (p <0.05 Student's t test). Trastuzumab had also influence on growth, 

although without reaching statistical significance. The percentages of inhibition of 

tumor growth for neratinib and trastuzumab were respectively 92% and 60% at 9 weeks 

of treatment (Figure 30). The survival analysis of Kaplan-Meier curves (Figure 31) 

reflected what observed in tumor growth curves (Figure 30) (p <0.001 for neratinib and 

p <0.05 for trastuzumab, log-rank test Mantel-Haenszel’s test). 
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After 30 weeks of treatment with neratinib, for the 80% of FO4 PDX mice tumor 

growth was stopped, whereas none of the untreated mice was alive later than 15 weeks 

from positivity. The therapeutic effect of trastuzumab on tumor growth was less strong 

compared to neratinib, with only 20% of mice with a tumor volume < 1,5 cm
3
 after 15 

weeks of treatment. In order to evaluate the real effect of neratinib on tumor growth and 

survival, in 4 animals the treatment was suspended after 35 weeks. In these mice the 

tumor started to re-grow, demonstrating the crucial role of the drug in controlling tumor 

proliferation. 

We therefore investigated the effect of treatments on the expression of HER2 and on the 

signaling pathways activated immediately downstream of the receptor by real-time PCR 

and flow cytometry (Figure 32-33). All the molecular analyses were performed on 

tumor samples belonging to the IV-V-VI passage untreated or treated with trastuzumab 

or neratinib. None of the treatments altered the expression ratio of HER2 full-length and 

Delta16 isoform or led to the selection of HER2-negative variants. Figure 28 shows the 

values of 2
-ΔCt

 for the two isoforms, none of the comparisons reached statistical 

significance and, therefore, the expression of HER2 at the transcriptional level did not 

appear modified by any treatment. 
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Figure 31: Responsiveness to neratinib and trastuzumab treatment in vivo in serial transplants (patient-derived xenografts, 

PDX) of human breast cancers FO4. Kaplan-Meier curves of FO4 tumors (IV-V-VI passages) untreated (n=37), treated with 

Neratinib (n=6) or Trastuzumab  (n=6); Treatments started at positivity and continued up to sacrifice. In the graph the x-axis shows 

the weeks of treatment, the y-axis shows the percentage of animals in each group with a tumor volume lower than  1.5 cm3. The 

statistical comparisons were made by the Mantel-Haenszel’s test: Neratinib vs Control: p <0.001;  Trastuzumab vs Control: p<0.05. 

Other comparisons did not reach statistical significance. 
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Figure 32: Expression of HER2 and Delta16 transcripts in PDX FO4 mammary carcinomas. ΔCt represents the 

difference in PCR threshold cycle between the indicated HER2 isoform and reference housekeeping gene human 

TBP. Each solid point represents the average of two replicas of real-time PCR carried out for each individual tumor 

of PDX FO4 belonging to the IV-V-VI passage in vivo, treated with Trastuzumab, Neratinib or untreated.; The line 

represents the average value in each group.  Statistical significance not reached (Student's t test). 

 

Even the HER2 protein level analysis revealed no statistical significant differences in 

treated groups compared to the control (Figure 33). 

 

 

 

Figure 33: Kinetics of HER2 expression in serial transplants of FO4 PDX mammary carcinomas. Total surface 

HER2 protein by FACS analysis. Each point represents the median fluorescence intensity (MFI) of dissociated cells 

from PDX FO4 tumors belonging to the IV-V-VI serial transplants in vivo, treated with Trastuzumab, Neratinib or 

untreated; horizontal bars represent the median value of all tumors; In each graph the x-axis shows the groups of 

treatment, the y-axis shows the mean of fluorescence intensity expressed in arbitrary units, on a logarithmic scale. 

Statistical significance not reached (Student's t test). 
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Primary cultures established from a FO4 tumor sample showed aepithelial morphology 

and the ability of forming spheres (Figure 34).  

 

 

 

 

 

 

 

 

 

 

 

After 5 days from seeding, cells were treated with Neratinib (40 nM) or, as control, with 

DMSO (0.01%) (diluent of the drug). The treatment was maintained for 24 hours, then 

cells were harvested and the proteins obtained from the pellet were extracted for 

Western blot analysis (Figure 35). 

 

Figure 35: Modulation of the expression of second messengers downstream of HER2 after treatment 

Neratinib. Western blot analysis of proteins extracted from primary cultures of PDX FO4 VII passage, treated in 

vitro with Neratinib (40 nM) or with DMSO (control). The image shows the expression of total HER2, pHER2 (Tyr 

1248), total Akt, pAkt (ser473), total MAPK (ERK1/2), pMAPK (pERK1 / 2) (Thr202 / Try204). Actin was 

employed as house-keeping protein.   

 

Figure 34: Primary cultures derived from tumor tissue of PDX FO4 VII passage. The images are representative of (A) cell 

spheres adherent to the culture substrate and (B) cells with markedly stretched epithelial morphology. Images were assessed by 

phase contrast microscopy. Magnification was 125×. 
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Total HER2 and Akt levels were similar in the control and in the treated spheres, 

whereas after the treatment, a clear reduction of phosphorylated proteins was observed 

after treatment, with an inhibition of 37% and 38% respectively. Concerning MAPK 

pathway, while in the control these proteins appeared only partially activated, after 

treatment their activation was complete and the phosphorylated protein levels were 

increased compared to the control. This experiment seems to indicate that neratinib acts 

as an inhibitor of the activity of HER2 mainly through inhibiting PI3K-Akt signaling. 

The increased activation level of p-MAPK was probably due to a compensatory 

mechanism, which leads to the activation of other receptors that converge on MAPK 

pathway. 
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Overexpression of huHER2 occurs in nearly 15–20% of breast cancers, and it 

is generally associated with poor patient survival. Existing therapies such as 

trastuzumab and lapatinib are currently used in the treatment of HER2-positive 

cancers, although issues with high recurrence and acquired resistance still remain  

(Schroeder et al., 2014). 

Elucidation of the molecular mechanisms underlying resistance is leading to the 

identification of therapies and strategies to manage resistance to HER2-targeted 

therapies. In addition to intrinsic and acquired resistance associated to HER2 oncogene, 

the induction of bypass pathways that reactivate growth factor-dependent signalling 

upon oncogene inhibition is likely pervasive across cancers and should be anticipated. 

Together, these findings underscore that many resistance mechanisms fall into 

predictable and therapeutically tractable themes, and can be effectively targeted with 

rationally designed combined therapies (Pagliarini et al., 2015). It is, therefore, 

necessary to come back to dissect HER2 pathway and unravel key features contributing 

to its transforming capacity (Sasso et al., 2011).  

The present thesis, is focused on the role played by HER2-loss variants and 

Delta16 isoform in mediating HER2 oncogenic activity and in conditioning the 

response to HER2 therapies in breast cancer. These HER2 phenotypes can drive 

differential drug responses of the tumor and of distant metastases. Thus, recent 

investigations on drug resistance and on tumor biology converged to the development of 

preclinical cancer models representative of cancer heterogeneity and able to mimic all 

possible scenarios observed in human tumors.  

In the laboratory of Immunology and Biology of Metastatis several preclinical 

mice models are currently available, including transgenic mice for huHER2, for Delta16 

and a double transgenic model coexpressing both huHER2-full length and Delta16, 

obtained by crossing female FVBhuHER2 and male FVBDelta16 mice. Moreover, a 

panel of cell lines expressing different levels of HER2 was previously established, in 

order to study the mechanism of HER2 loss.  

In this project, thanks to the availability of these preclinical models, it was 

studied the contribute of HER2 and of its variants to cancer development and drug 

resistance. In addition, with the purpose of obtaining preclinical models that could best 

recapitulate human tumor heterogeneity a panel of breast cancer PDX was developed. 
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1. HER2-loss 

Besides the expression of high levels of the oncogene, cell lines grown from 

HER2-positive spontaneous mammary carcinomas can undergo to a progressive loss of 

HER2 expression. In the Laboratory of Immunology and Biology of Metastasis a panel 

of cell lines expressing a different pattern of HER2 levels was established; it represents 

the first model available to study HER2 loss mechanism. In fact, even though the down-

regulation of HER2 expression can be studied by using other approaches (e.g. siRNA 

and lysozimes), the ensuing loss of tumorigenic capability does not reflect what happens 

in patients. In our model, Mambo38
HER2loss

 completely lost the expression of HER2, but 

showed either increased tumorigenic capacity or higher metastatic ability, in particular 

for what concerns the metastatic load in the lungs, when compared to 

Mambo89
HER2stable

.  

 

1.1 Stemness of FVBHUHER2 cell lines and EMT associated 

to HER2 loss 
 

The experiments reported in this thesis underline that Mambo89
HER2stable

, 

Mambo43
HER2labile

 and Mambo38
HER2loss

 cell lines differ between each other not only for 

HER2 expression. Indeed, they showed different morphology, stemness and expression 

of genes associated to Epithelial-to-Mesenchymal Transition (EMT). 

Confirming the finding of Al-Haji and colleagues (Al-Haji et al., 2003) a connection 

between tumorigenity and stemness was observed. Mambo38
HER2loss

 showed the most 

expressed stem-like profile and the expression of stem surface markers correlated with 

their ability to form mammospheres. Moreover, it was found that Mambo38
HER2loss

 

displayed a reprogrammed gene expression of EMT genes compared to 

Mambo89
HER2stable

. In light of these findings Mambo38
HER2loss

 showed the core signature 

of EMT.  

 

1.2 Sensivity to anti-cancer therapies   

 
HER2 loss may be due either to the heterogeneity inherent in cancer cells or to 

clonal selection promoted by targeted therapies against HER2 with the consequent loss 

of oncogene addiction. Many studies assessing receptor discordance between primary 
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and metastatic breast cancers have been published. From meta-analysis studies a 

negative conversion in 13-24% metastasis was reported (Aurilio et al., 2014). However, 

it remains unclear what could be the clinical and prognostic effect of the expression of 

HER2 discordance between primary tumors and metastases. (Turner and Di Leo, 2013).  

FVBhuHER2 cell lines sensivity to HER2 targeted therapies and to small 

molecule inhibitors of related pathways was investigated. MAMBO89
HER2stable 

resulted 

to be resistant to continuous treatment with trastuzumab and showed high and stable 

levels of HER2. On the other hand, MAMBO43
HER2labile

 was sensitive to trastuzumab. 

However, after 30 days of treatment emerging resistant clones did not express anymore 

HER2, even after the recovery period, and changed morphology from a typical 

epithelial to a fusiform shape. These results confirmed what described in literature, 

where several in vitro and in vivo studies have shown that resistance to lapatinib and 

trastuzumab is associated with HER2-loss and EMT induction (Creedon et al., 2014; 

Kim et al., 2013; Korkaya et al., 2014; Creedon et al., 2016).  

As expected, HER2 loss was accompanied by resistance to HER2 targeted therapy in 3-

D culture (lapatinib). MAMBO38
HER2loss

 was resistant also to dasatinib, whereas 

buparlisib was highly effective regardless of HER2 expression, highlighting the 

importance of targeting effectors belonging to PI3K-AKT signalling cascade.  

It has been widely demonstrated that the presence of a HER2-PI3K crosstalk allows 

continued cancer cell growth and their survival (Carnero et al., 2008). In addition, these 

data are in agreement with in vitro studies that implicated the PI3K pathway in EMT 

(Xue et al., 2012; Wallin et al., 2012) and stem cell maintenance in breast cancer (Zhou 

et al., 2007; Korkaya et al., 2009; Hardt et al., 2012; Hanker et al., 2013). 

 

1.3 Molecular mechanisms regulated by HER2 targeted 

therapies 

In Mambo89
HER2stable

 and Mambo43
HER2labile

 cell lines 96h of pharmacological 

treatments did not significantly change the expression of HER2 and phosphoHER2. 

Notably, phospho-Akt was detectable only in the samples treated with buparlisib 1uM. 

Published data show that Akt maximal enzymatic activation requires the 

phosphorylation of Thr308, located in the activation loop, and the phosphorylation of 
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Ser473, located in the C-terminal hydrophobic motif (Garcia- Echeverria & Sellers, 

2008). The antibody used in this project for western blot detection is specific for Ser473 

residue. The higher pAKT-Ser473 expression observed after buparlisib treatment could 

be due to a compensatory mechanism adopted by the cells in order to balance the 

inhibition effect of buparlisib on PI3K-PDK1.  

The high expression of pAkt and pMAPK in Mambo38
HER2loss

 cells remarks their 

independence from huHER2 signalling and the induction of a bypass pathways, as 

demonstrated by the in vitro sensivity to buparlisib and confirmed as well by GNE-317 

inhibition effect in vivo. 

Hanker and colleagues generated a genetically engineered mouse model of 

mammary tumor harbouring both huHER2 and mutant PIK3CA. They showed that the 

coexpression of both oncogenes in the mouse mammary gland accelerated tumor 

formation and displayed a high metastatic propensity to lungs. Moreover, these tumors 

were histologically heterogeneous and exhibited features of EMT and stem-like cells 

and were able to form mammospheres. huHER2+PIK3CA tumors were also resistant to 

trastuzumab as a single agent and in combination with lapatinib or with pertuzumab. 

Drug resistance was partially reversed by the PI3K inhibitor buparlisib (Hanker et al., 

2013). Our model of HER2 loss resembles that one described by Hanker and colleagues, 

confirming that the aberrant activation of the PI3K pathway is the mechanism of 

resistance to anti-HER2 therapies adopted by MAMBO38
HER2loss

 cells. 

In summary, HER2 and PI3K cooperate in order to promote HER2 mammary 

tumor establishment and metastatic progression. These results suggest that combining 

anti-HER2 therapies with PI3K inhibitors may be beneficial for the clinical treatment of 

HER2-loss breast cancers. 

In light of these findings the FVBhuHER2 model could be a valuable tool to 

investigate the underlying biology of HER2-loss breast cancers and for preclinical 

testing of alternative therapeutic strategies against this subtype of breast cancer.  
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2. Myc inhibition  

The involvement of c-Myc, another key transcription factor involved in breast 

cancer, was studied in this model. 

 

2.1 Omomyc action 

Omomyc action, tested in MAMBO43
HERlabile

 and MAMBO38
HER2loss

 cell lines, 

determined a decrease in proliferation, confirming the findings of earlier studies 

developed on different types of cancers. In fact, Soucek and colleagues widely 

demonstrated the efficacy of omomyc, a dominant negative c-Myc inhibitor, in vitro 

and in vivo. They showed that c-Myc inhibition is a promising strategy for eradicating 

lung cancer (Soucek et al., 2008, Soucek et al. 2013), insulinoma (Sodir et al., 2011) 

and glioma (Annibali et al., 2014) inducing profound regression of tumours, eliciting 

only very mild side effects in normal tissues and circumventing the resistance 

mechanisms encountered with other targeted therapies.  

Here, a new preclinical model was obtained in order to extend those previous 

studies, showing that c-Myc inhibition has a similar effective therapeutic potential for 

treating HER2-positive breast cancer.  

An inducible stable system of cell lines was generated, using a doxycycline-switchable 

lentiviral vector to drive the expression of omomyc.  

MAMBO43
HERlabile

 and MAMBO38
HER2loss

 were sensitive to omomyc effect, 

demonstrating that the regulation of Myc gene, whose aberrantly elevated and/or 

deregulated activity is associated with the majority of human cancers, could offer the 

opportunity to develop more effective therapeutic approaches to be applied to HER2-

positive and HER-loss tumors that are unresponsive to current therapies. 

Moreover omomyc appears to act in different ways in the two cell lines tested.  

After treatment, omomyc expressing MAMBO43
HER2labile

 cells stopped proliferating, 

with a decrease of cells in S phase. Instead, there were more cells in G2 phase. 

Originally, cellular senescence was defined as an irreversible arrest in the G1 phase of 

the cell cycle. The idea that the senescence program can also be launched after G2 arrest 

has gained support from several recent publications, including evidence for its existence 

in vivo (Gire and Dulić, 2015). In agreement with this hypothesis, omomyc seems to 

drive MAMBO43
HER2labile

 cells through G2 exit program in senescence. 
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MAMBO38
HER2loss

 treated with omomyc upon doxycycline (dox) subministration 

arrested in Sub G1 phase, meaning that cells were dying by apoptosis.  

These results confirmed what previously observed with other Myc inhibitors. The anti-

proliferative effects of BET inhibitors (associated with a block in the transcription of 

Myc, followed by genome-wide suppression of c-Myc-dependent target genes) induced 

growth inhibition and undergo G0/G1 cell-cycle arrest, apoptosis and cellular 

senescence (Tolani et al., 2014). 

In summary, it was demonstrated that Myc inhibition reduces proliferation, 

increases apoptosis and probably senescence. The pleiotropic nature of Myc is reflected 

in the way of action of its inhibitor—in our case omomyc—that can vary with the 

context-specific role of Myc, whose function ramifies throughout all aspects of 

tumorigenesis, either at the intracellular or at the extracellular levels. 

 

2.2 Myc inhibition in combined targeted therapy of HER2-

positive breast cancer 

2.2.1 Cell proliferation 

Whereas the HER2/PI3K/AKT pathway is frequently mutated in a wide range of 

cancers, thus driving tumorigenesis, inhibitors of this pathway such as lapatinib yield 

only limited success, because the cancer cells adapt quickly. Matkar and collegues 

(Matkar et al. Cancer Cell 2015) demonstrated that the MLL2/FOXO/c-Myc axis is 

inactivated by lapatinib, reducing sensivity to the drug, and that BRD4 inhibitor and 

lapatinib synergistically suppress HER2-positive breast cancer cells in vitro and in vivo. 

Taking this into account, the purpose of this project was to test omomyc efficacy in 

combination with lapatinib, an approved HER2-targeted therapy, to demonstrate that 

inhibiting Myc is a possible strategy to overcome drug resistance. 

In MAMBO38
HER2loss

, resistant to lapatinib because of the loss of HER2, cell 

growth was significantly inhibited by omomyc expression upon dox treatment and by 

the combined therapy. Notably, MAMBO43
HER2labile

 resulted resistant to lapatinib 

(82%) and quite sensitive to dox (70%). Interestingly, the combination of the two drugs 

resulted effective compared to the control. 

These data confirmed what showed by Matkar and collegues, suggesting a 

potential role of Myc inhibition in combined targeted therapy of HER2-positive breast 

cancer and of its resistant variants, thus supporting the notion that combinatorial 
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regimens targeting different “layers” of the intracellular signaling may be more 

effective than single-agent treatments (Yarden and Pines, 2012; Arteaga and Engelman, 

2014). 

2.2.2 Cell signalling 

At the proteic level it was detected that Mambo43
HER2labile

 lost HER2 and 

pHER2 expression after the infection with omomyc, independently from treatments. 

This could explain why this cell line was resitant to lapatinib in vitro. The causes of 

HER2 loss are unknown, since it does not depend on the treatment, as previously 

discussed for trastuzumab. Probably, the lentiviral infection and the antibody selection 

process together can induce a change in the cell line already described as “labile” for 

HER2 expression; not being anymore in confluent condition thus, losing cell-to-cell 

contacts, is a condition that can affect cell phenotype. In fact, Mambo43
HER2labile

 have 

been found to exhibit the EMT-like changes found in MAMBO38
HER2loss

 when grown at 

low cell density, in the specific fusiform morphology and HER2 loss. 

These data agree with the cell density pattern described for MCF10A (Cichon et al., 

2015). MCF10A cell line are known to show differential expression of EMT marker 

genes depending on whether the cells are cultured under sparse or confluent conditions. 

This cell line showed progressively increasing mRNA levels of the epithelial marker E-

cadherin and progressively decreasing mRNA levels of the mesenchymal markers N-

cadherin and vimentin at higher cell densities throughout the density range (Cichon et 

al., 2015). 

In Mambo43
HER2labile

 the amount of total Akt and total MAPK was lower after 

omomyc expression alone or in combination with lapatinib compared to the control, 

suggesting a correlation between these pathways, c-Myc and EGFR inhibition. 

However, a lower effect was observed after the treatment with lapatinib alone too. 

Reduction of c-Myc expression in literature is closely associated with deregulated ERK, 

JNK, MAPK and AKT activity. Furthermore, lapatinib is demonstrated to effectively 

inhibit the transactivation of EGFR and HER2 by IGF-1 signalling (Nahta et al., 2007). 

Instead, in Mambo38
HER2loss 

the expression of Akt and MAPK proteins either at 

the basal or at the activated level increased after lapatinib treatment, suggesting the 

presence of a compensatory mechanism driven by EGFR inhibition. On the contrary, 

omomyc expression upon dox treatment did not clearly change the expression of the 

activated proteins, proposing that inhibiting Myc the compensatory mechanism 

switched on by lapatinib was partially inhibited. In both cell lines after the combined 
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treatment, it was observed a clear increase of MAPK phosphorylated protein levels 

compared to lapatinib alone and to the control, that could be due to the activation of a 

compensatory mechanism, which leads to the activation of other receptors of the 

convergence on MAPK pathway 

In literature many examples of negative feedback induced by small molecules 

inhibitors are available. In particular, Turke and colleagues demonstrated that the 

treatment of BT-474 with a MEK inhibitor (AZD6244) was able to activate ErbB 

receptors (including HER2) by releasing a negative feedback on ErbB dimerization. As 

a consequence, the impaired MAPK cascade was compensated by the strong activation 

of PI3K-AKT pathway (Turke et al., 2012). Similarly, two studies showed that the 

inhibition of PI3K-AKT cascade in the same cell line caused the potent activation of 

HER receptors and of MAPK pathway (Chandarlapaty et al., 2011; Serra et al., 2011).  

In conclusion these data validated Myc inhibition as a therapeutic strategy in 

HER2-positive tumors where, in combination with HER2 targeted therapies, it could be 

very helpful to overcome drug resistance. 

 

3. Co-expression of full-length HER2 and Delta16 in F1 

mice  

Most human HER2-positive breast cancers express the Delta16 splicing isoform 

(Wong 1998; Siegel 1999; Castiglioni 2006), involved in cancer aggressiveness and to 

targeted therapies responses (Mitra 2009; Marchini 2011; Alajiati 2013). Transgenic 

mice for each isoform (full-length human HER2 or Delta16) have been developed 

(Finkle 2004; Marchini 2011), but coexpressing murine models were never studied so 

far. To study mammary carcinogenesis in a mouse model that mimics the human 

situation, hybrid mice bearing heterozygous copies of both human transgenes 

(HER2/Delta16 mice) were produced and compared to parental mice (referred to as 

Delta16 and HER2 transgenic mice, respectively). 

The aim of this part of the project was to analyze the contribute of wild-type 

full-lenght HER2 and of its splice variant Delta16 to mammary HER2-positive 

carcinogenesis and to HER2 targeted therapy efficacy. 

 

 



Discussion 

 

 
 

107 

3.1 Neoplastic progression to mammary carcinoma in F1 mice  

Pre-existing analysis performed in the laboratory of Immunology and Biology of 

Metastatis confirmed the findings of Marchini and colleagues (Marchini et al., 2011) 

showing that the presence of Delta16 causes the anticipation of tumor onset in mice, and 

that the simultaneous presence of the two isoforms does not change tumor latency in 

respect to Delta16 isoform alone. Moreover, despite the enhanced transformation ability 

of Delta16, tumors in Delta16 and F1 mice grew slower than those of HER2-expressing 

mice. Thus, the expression of the splice variant seems significant for early carcinogenic 

events, but it may not be so relevant for later stages as progression and metastatic 

development. The analysis of the expression levels of the two isoforms in preneoplastic 

and neoplastic mammary glands of F1 mice, compared to HER2 full-length and 

Delta16-driven carcinomas, confirmed our hypothesis.  

Homogeneous and intermediate levels of expression of both isoforms characterized F1 

preneoplastic mammary glands, compared to either HER2 full-length or Delta16 mice, 

while F1 tumors were mostly expressing high levels of Delta16 isoform and low levels 

of full length HER2 (80%). Thus, neoplastic progression to mammary carcinoma in F1 

mice requires the activation of both transgenes with a strong bias towards Delta16 

probably due to its ability to form highly active homodimers (Castagnoli et al., 2015).  

The coexistence of HER2 and Delta16 in mammary tumors arisen in the hybrid 

model was shown by the presence of the transcripts of both isoforms. In humans, HER2 

and Delta16 transcripts coexist in nearly half HER2-positive breast cancers and in 90% 

of patients with locally advanced disease, i.e. with invasive cancer cells in the lymph 

nodes (Castiglioni et al., 2006; Mitra et al., 2009). Thus, if compared with HER2 and 

Delta16 models, F1 mice represent a further step in the attempt to mimic the human 

situation in preclinical models.  

 

3.2 HER2 /Delta16 expression and tumor sensivity to 

therapies 

The expression of the Delta16 isoform was initially thought to be involved in 

resistance to HER2 targeted therapies. However Delta16 expression in Delta16 

transgenic mice is actually associated with increased trastuzumab sensitivity and in 

breast cancer patients with decreased risk of relapse after trastuzumab treatment 

(Castagnoli et al, 2015).  
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In this thesis sensitivity to trastuzumab was studied both in preventive and in 

therapeutic setup. Trastuzumab in vivo treatment delayed tumor onset showing the 

maximal efficacy in the prevention of Delta16-expressing tumors with respect to tumors 

expressing full length HER2 isoform only. Therefore the expression of the Delta16 

isoform confers a higher sensitivity to trastuzumab even in tumor prevention.  

Anti-HER2 and -PI3K treatment did not have the same efficacy in therapeutical 

setting against F1 homogeneous established tumors. After five months of trastuzumab 

40% of mice were still tumor free, while buparlisib showed an inhibition of tumor 

growth just in 20% of mice. This result underline the sensivity of Delta16 isoform to 

only trastuzumab therapy, a very important challenge to consider in clinic. 

Previous data obtained in our laboratory already demonstrated in vitro sensivity 

of Delta16 expressing cell lines to tratuzumab. In particular, as high was the expression 

of Delta16 variant as strong was the inhibitor effect of trastuzumab on 3D cell growth.  

Taking this into account, it was studied how trastuzumab treatment can modulate the 

levels of expression of the two isoform. Two cell lines were evaluated, 302-IVD (high 

HER-2, high 16) and 156-IS (low HER-2, high 16). It was found that trastuzumab 

treatment does not affect the isoform ratios, either in trastuzumab-sensitive 156Is cells 

or in resistant 302-IVD cells, even though the latter showed a significant decrease of 

both isoform levels.  

 

3.3 HER2 isoforms long-term stability 

Although HER2 overexpression is implicated in the pathogenesis of breast 

cancer, HER2 is more commonly overexpressed in patients with ductal carcinoma in 

situ (DCIS) when compared with invasive breast cancer (Park et al., 2006; Kato et al., 

2016). Furthermore, discordance in HER2 expression and in drug susceptibility between 

primary tumors and metastases has been reported (Niikura et al., 2012), thus suggesting 

variation in HER2 expression during tumor progression.  

F1 transgenic model is a useful tool for studying the effects on HER2 isoform 

expression of long-term in vivo host-tumor interaction. However, transgenic mice are, in 

general, not the best model to study the late stages of breast cancer and the biology of 

metastasis, because of the low incidence of metastases (Ottewell et al., 2006; Saxena 

and Christofori, 2013). To overcome this issue, syngenic transplantation models were 

employed. F1 HER2/Delta16 murine tumors were serially transplanted in 
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immunocompetent mice for five consecutive passages. Serial graft evidenced the long 

stability of Delta16 isoform and the variation in HER2 expression.  

The tumors were analysed for the expression of HER2 and Delta16 transcript by quPCR 

and for the expression of total surface HER2 protein by FACS analysis.  

The results obtained suggest that Delta16 maintains a stable expression because of its 

driver role in this tumor system, whereas full-length HER2 could freely change because 

it plays a lesser role. However, it is important to realize that the evaluation of the 

expression of total plasmatic HER2 protein on cells surface was hampered by the lack 

of an antibody that specifically target each isoform.   

In conclusion, it was found that the coexpression of HER2 and Delta16 isoforms 

tunes tumor onset, growth and sensitivity to targeted therapy. 

Furthermore, the heterogeneous expression of HER2 and 16 in the F1 model, 

enhances its preclinical value as a suitable tool for investigational studies on new 

therapeutic strategies against HER2.  

 

4. PDX model 

Molecular studies have revealed underlying complexity and molecular 

heterogeneity of breast cancer. Patient derived tumor xenografts (PDX) are reported to 

better recapitulate this complexity than cell-based tumor xenografts (Cassidy et al., 

2015). With the aim to generate a collection of PDXs that represent the main subtypes 

of breast cancer, starting from 65 primary breast cancer specimens, 7 transplantable 

PDXs were established. 

 

4.1 A panel of Breast Cancer Xenograft Models 

 
Fresh surgically resected patient-derived specimens were obtained thanks to the 

collaboration with Sant’Orsola-Malpighi Hospital, Bologna (Prof. Mario Taffurelli, 

Prof. Donatella Santini, Dr. Claudio Ceccarelli) and Bellaria Hospital, Bologna (Prof. 

Maria Pia Foschini, Dr. Enrico Di Oto, Dr. Sofia Asioli).  

Orthotopic tumor xenograft implantation and severe immunodepressed mice 

(RGKO or NSG) were chosen in order to improve the engraftment rate and to reduce 

tumor latency. The histological and molecular subdivision of the specimens received 

reflected their frequency documented in clinic. 
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7 transplantable PDXs out of 65 primary breast cancer specimens implanted 

were established, reaching a tumor take-rate of 11%. This low percentage of 

engraftment underlines what is documented in literature, where the variable engrafted 

rates are reported as one of the main challenges fronted when developing a panel of 

PDX (Siolas and Hannon, 2013).  

In this panel of PDXs all the engrafted specimens were invasive ductal carcinomas, 

reflecting the clinical evidences supporting their higher rate of engraftment in respect to 

lobular carcinomas (Marangoni et al., 2007). Moreover, all of them were of histologic 

grade III and Ki67-high, confirming that higher engraftment rates are associated with 

more clinically aggressive tumors (Zhao et al., 2012, Beckhove et al., 2003; Marangoni 

et al., 2007; Kabos et al., 2012; Zhang et al., 2013; Bergamaschi et al., 2009). In 

addition, these results are as well consistent with ER-negative receptor guidelines, 

associated to a better growth of specimens in vivo, as it was observed in these PDXs. 

Considering the intrinsic subtype, De Rose and co-workers, as Kabos and co-workers, 

showed that Luminal B carcinoma can engraft better than Luminal A, thanks to its 

higher proliferative capability (De Rose et al., 2013; Kabos et al., 2012). This result was 

confirmed too. The highest rate of PDX stabilization was obtained for HER2-positive 

(40%) followed by Triple negative (20%), Luminal B (14%) and Luminal A (3%) 

subtype.  

A long latency period after the engraftment can limit PDXs feasible employment 

(Siolas & Hannon, 2013; Ledford, 2016). In our data, tumor growth curves of engrafted 

PDXs at the first passage showed a latency range of 1- 62 weeks. This variability is 

probably due to the intrinsic characteristic of the specimen. Moreover, it could be 

affected by its condition at the moment of the inoculation, e.g. correct crio-

conservation, freshness and time-efficiency from the surgery to the animal house. The 

kinetics of the growth was independent from the latency period. Each tumor was 

represented by the tumor growth in the later passages, and was independent from the 

intrinsic subtype. Furthermore, all engrafted PDXs maintained stabile features through 

the consecutive passages, regarding engraftment rate, latency period and growth fast 

rate.  
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4.2 HER2-positive FOT4 PDX 

 
Among the engrafted PDX, two were classified as HER2-positive, the FO4 and 

TA45. In this thesis, FO4 was studied in more detail. FO4 tumor histologically is 

described as an invasive ductal carcinoma of grade III, with a high rate of proliferation, 

negative for the expression of Estrogen/Progesteron receptors and positive for HER2 

proliferation. FO4 was propagated in vivo for more than XI generations. It represents a 

successful example of HER2-positive PDX, whose intrinsic characteristic resembles 

that of one of the most aggressive HER2 positive breast cancer found in clinic. FO4 in 

vivo growth was stable over all the consecutive passages, in terms of latency and growth 

fast rate. Moreover, we had 100% of the engraftment rate from the second passage on.  

One of the key premises of developing PDX models for cancer research is the 

assumption that these models faithfully represent the original tumor from which they 

were developed and that this similarity is maintained across passages (Aparicio et al., 

2015). In order to establish the degree of reliability of our PDX model, the expression 

ratio between HER2 full-length, Delta16 isoform and the molecular stability of selected 

biomarkers during prolonged vivo transplantation was investigated. 

FO4 PDX recapitulated the morphologic and structural patterns, as well as 

HER2 expression of patient tumor among several passages in vivo (II-VII), which 

maintained a stable gene expression of HER2 full-length and Delta16 isoforms over 

time, and exhibited stable patterns of protein expression. Moreover, the high levels of 

HER2 phosphorylation among passages confirmed the essential role of the receptor and 

of its signalling pathway in the maintenance of tumor aggressiveness. While the 

analysis of other markers such as HER1, HER3 and IGFR have suggested the lack of 

dependence from the signalling pathways mediated by these receptors. In light of these 

findings, FO4 showed a high level of concordance with the profile of the tumor of 

origin. Hence, confirming FO4 as a good PDX model. 

 

4.3 Sensitivity to targeted therapies  

Supporting these conclusions, in order to validate FO4 PDX as preclinical tool 

for drug discovery, the susceptibility of this model to anti-HER2 drugs was tested in 

vivo. The inhibition of HER2 was investigated on 2 different levels: the extracellular 
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inhibition mediated by trastuzumab and the intracellular inhibition of neratinib, which 

specifically recognise the tyrosine-kinasic intracellular domain of HER2. Neratinib was 

able to inhibit FO4 tumor growth in a higher extent in respect to trastuzumab. 

Data from in vivo experiments and clinical trials indicate that the efficacy of 

trastuzumab could be partly related to its induction of an immune response (Gennari et 

al. 2004; Carter et al. 1992; Cooley et al. 1999; Lewis et al. 1993; Stockmeyer et al. 

2003). Cancer immunotherapies are designed to work in conjunction with a patient's 

immune system in order to increase native anti-tumor responses. In this field of study, 

conventional xenograft models lack relevance due to the animals’ immunocompromised 

status. Indeed, trastuzumab partial efficacy could be due to the lack of an immune 

system in the mice strain used for the experiment. However, both drugs stopped tumor 

growth, confirming the HER2 driver role in the maintenance of the malignancy 

phenotype. In contrast, as observed from western blot and FACS analysis, none of the 

treatments led to alterations in the expression ratio between HER2 full-length and 

HER2 Delta16 isoform or selection of HER2-negative variants. 

To further investigate the effect of neratinib treatment on HER2 activation 

pathway, the drug effect was tested as well on primary cultures established from a FO4 

tumor sample by Western blot. After the treatment, a clear reduction of HER2 and Akt 

phosphorylation levels was observed, while MAPK phosphorylated protein levels 

increased compared to the control. This accumulation of activated MAPK could be the 

direct consequence of the decrease of phospho-HER2 and –Akt, suggesting the 

activation of a compensatory mechanism, which leads to the activation of other 

receptors of the convergence on MAPK pathway.   

In conclusion, it was established a well-characterized panel of breast cancer 

xenograft models suitable as preclinical tools for translational studies.
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In the present thesis, the functional role of HER2 and its isoforms in tumor 

progression and in drug resistance was investigated. Three breast cancer preclinical models 

representative of HER2 mammary carcinogenesis were developed and characterized. 

Cell lines derived from human HER2 transgenic mammary carcinoma faithfully 

reproduced the dynamic of HER2 expression/loss in human breast cancer.  

MAMBO38HER2loss cell line is a clear example of resistance with the consequent 

loss of oncogene addiction. This cell line escaped HER2 dependence by EMT and 

compensatory PI3K activation.  

The therapeutic efficacy of buparlisib and GNE317 on MAMBO38
HER2loss

 cell line 

is the demonstration that HER2 and PI3K cooperate in order to promote HER2 mammary 

tumor establishment and metastatic progression. These results suggest that combining anti-

HER2 therapies with PI3K inhibitors may be beneficial for the clinical treatment of HER2-

loss breast cancers. Moreover, it was suggested a potential role of Myc inhibition in 

combined targeted therapy of HER2-positive breast cancer and of its resistant variants. 

Indeed, the mouse model presented here could be a valuable tool in order to 

investigate the underlying biology of HER2-loss breast cancers and for preclinical testing 

of therapeutic strategies against this subtype of breast cancer 

The study of the natural history of tumors in F1 mice showed that, even in 

genetically identical mice, a divergent evolution could occur, leading to tumors with a 

variable expression of HER2 isoforms, which reminds the human situation.  

The coexpression of HER2 and Delta16 isoforms tunes tumor onset, growth and 

sensitivity to targeted therapy. Furthermore, the heterogeneous expression of HER2 and 

Delta16 in the F1 model enhances its preclinical value as a suitable tool for investigational 

studies on new therapeutic strategies against HER2.  

Finally, a well-characterized panel of breast cancer xenograft models was 

established. Preservation of therapeutic targets across primary tumors and their matching 

PDXs over serial passaging, and effective responses to targeted therapies, validate them as 

preclinical tools for translational studies. However the low rate of appearance of variants 

related to disease progression suggest the opportunity to integrate data from PDX models 

obtained in immunodeficient mice with data from autochthonous tumors in 

immunocompetent transgenic mice. 
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