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Summary

The frequency at which institutional and government economic agencies take deci-
sions is not necessarily the one at which data are published. The mismatch between
the “time” process which characterizes agent’s decisions and data availability is
very common in economics and finance. Even if a non negligible part of economic
information is available at low frequencies, making decisions at frequency higher
than data availability is an usual approach.
A classical example is represented by the analysis of the co-movement between
output growth, interest rate and inflation. Usually, the variable chosen as proxy
of output growth is the Gross Domestic Product (henceforth, GDP), which is offi-
cially published at quarterly frequency. On the other hand, it is usual to proxy the
interest rate and inflation with Federal Fund Rate (FFR) and the Consumer Price
Index (CPI), respectively. In this situation, the classical approach (henceforth,
naive approach) corresponds to aggregate the (high frequency) monthly variables
until all the data can be treated as quarterly variables, i.e. the data are reported
at the same low frequency. This procedure embodies some critical consequences in
term of estimation bias and interpretation of results. By this way, the econometric
literature analysed these consequences, both in the univariate and multivariate
framework. Among the others, Christiano and Eichenbaum (1987) and Marcellino
(1999) furnish a wide perspective of estimation bias due to temporal aggregation.
In particular, Christiano and Eichenbaum (1987) quantify the error due to mis-
pecification of the temporal interval at which economic agents make decisions.
Marcellino (1999) identifies and summarizes which properties of the time series
processes remain invariant and which vary after temporal aggregation. The most
intuitive example is represented by Impulse Response functions (IRFs). The struc-
tural analysis, and in particular IRFs, belong to the first category: the aggregation
of impulse responses cause naturally a bias in the aggregated results, and hence a
wrong interpretation of a variable’s reaction to a shock in another variable.
In literature, an interesting experiment about temporal aggregation bias in struc-
tural analysis, is proposed by Cunningham and Hardouvelis (1982). The authors
investigate how temporal aggregation affects the role of liquidity effect on the mech-
anisms of transmission of monetary policy effects. Cunningham and Hardouvelis
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(1982) find that the estimated responses substantially change in their magnitude
when they consider to work with variables aggregated at the same low frequency.
The loss of information and the wrong interpretation of results obtained with the
naive approach, can be seen as the consequence of a mispecification of the co-
movements between the variables in the dataset. In last years the literature pays
particular attention to develop econometric models able to investigate all the in-
formation in the mixed frequency dataset. In this direction, incisive approaches
have been proposed by Mariano and Murasawa (2003, 2010), Clements and Galvão
(2008) and Ghysels (2012). These methodologies are characterized by the idea of
exploit the high frequency information in order to reduce the mispecification of
the high frequency (real) joint process.
In Chapter 1 we consider one of the most attractive tool provided by this field
of research: Mixed Frequency Vector Autoregressive processes (MF-VARs). A
mixed frequency VAR can be defined as a VAR model that, in a mixed frequency
dataset, investigates the dynamics between (i) the highest frequency (observed)
variables and (ii) the high frequency latent processes underlying the observed
low frequency series. Nowadays, the MF-VARs literature appears as a growing
econometric framework. As shown below in Chapter 1, numerous are the con-
tributions provided by the researchers. Among the others, Camacho (2013) and
Foroni, Guerin and Marcellino (2014) specify a Markov-switching dynamics in the
MF-VAR, Marcellino, Porqueddu and Venditti (2015) introduce MF-VAR with
stochastic volatility, Marcellino and Sivec (2015) pay attention to MF-FAVAR
models.
After the introduction of MF-VAR models, some works have been provided in order
to quantify analytically and/or computationally the loss of information generated
by

• the use of mixed frequency data instead of working with high frequency
variables,

• the use of low frequencies opposite to mixed frequency variables.

Koelbl, Braumann, Felsenstein and Deistler (2016) propose to measure this loss
of information resorting either to the asymptotic variance of the estimates, or to
the one-step ahead prediction error variances. The results are obtained comparing
the solutions obtained with standard estimation methods for high frequency and
low frequency processes, and the results obtained with the Extended Yule-Walker
(XYW) equations of Chen and Zadrozny (1998) for the mixed frequency case. Dif-
ferently, Foroni and Marcellino (2014) refer to MF-VAR models with state space
representation (see Mariano and Murasawa (2003, 2010)). They assume that the
actual data generating process (henceforth, DGP) is at (high) monthly frequency,
but the econometrician can only observe the aggregated quarterly realizations for
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some variables. Foroni and Marcellino evaluate the differences among the results
obtained with the aggregated (quarterly) solution and the mixed frequency case.
Specifically, the authors consider a simplified specification of the new Keynesian
dynamic stochastic general equilibrium (DSGE) model analysed by Clarida, Gal̀ı
and Gertler (2000), and a second version obtained inserting in the dynamic In-
vestment and Saving (DIS) equation one lag of order one of the output growth,
à la Fuhrer and Rudebusch (2004). In both the examples, Foroni and Marcellino
find a mismatch and a loss of information between the naive approach and the
aggregated solution, once assumed that the real DGP is at high frequency. The
authors highlights also a loss of identification in the second DSGE model due to
high non-linearity provided by temporal aggregation.
Foroni and Marcellino demonstrate that, considering a suitable estimation pro-
cedure, the analysis of mixed frequency data alleviate the classical bias due to
temporal aggregation. The estimation procedure proposed by Mariano and Mura-
sawa (2003, 2010) and chosen by Foroni and Marcellino (2014), is nowadays one
of the most implemented approach in dealing with mixed frequency data. This
approach consists in referring to the state space representation of the MF-VAR.
In this thesis, in Chapter 1 we provide a general treatment of the MF-VAR litera-
ture. We identify two classes of empirical and economical motivations behind the
research activity about mixed frequency data: temporal aggregation/disaggregation
and nowcasting. The attention of the researchers on mixed frequency data expo-
nentially enhanced with the phenomenon of nowcasting. The classical definition
of this forecasting issue is provided by Banbura, Giannone, Modugno and Reichlin
(2013): “[. . . ]Now-casting is defined as the prediction of the present, the very near
future and the very recent past. The term is a contraction for now and forecasting
and has been used for a long-time in meteorology and recently also in economics”.
In order to model different economic phenomena, in the MF-VAR literature, many
applications and developments of MF-VAR models have been provided in the last
decade. After a briefly review of the developments provided in the literature, we
pay particular attention to the Structural analysis of MF-VARs.
In Chapter 2, we provide a novel approach for the estimation of MS-SVARs. This
technique appears particular useful in those situations in which the researcher is
interested in the analysis of the high frequency process, but the high information
in the data is limited or null. The proposed estimation approach investigate the
mapping between the high frequency process and the aggregated low frequency
counterpart. In the discussion we consider different aggregation schemes and we
generalize the estimation approach to different identification structural schemes.
We compare the results obtained with the novel approach to the state space pro-
cedure with different Monte Carlo experiments. Moreover, we propose a general-
ization to higher order VAR to the estimation of the IRFs of the high frequency



process. The procedure involves the Impulse Response Function Matching Estima-
tor proposed by Rotemberg and Woodford (1997). Following Guerron-Quintana,
Inoue and Kilian (2017), we adapt this techniques to our objective, and we ver-
ify the reliability of the results with a Monte Carlo simulation. The Empirical
illustration is implemented referring to this last proposal.
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Chapter 1

Mixed frequency VARs: a new
generation of econometric models.

1.1 Introduction

Working with economic time series sampled at different frequency, is one of the
most common situation in empirical analyses. The technologies developments and
a growing interest in the effects of the co-movements between financial markets,
national economies, and the decision processes of economic agents, provide a big
quantity of information available for empirical analyses. As widely depicted in
literature, the classical approach (henceforth, naive approach) of aggregating the
high frequency variables in a mixed frequency dataset, until all the data present the
same low frequency, can lead to different identification, estimation and interpre-
tation problems. Forty years of literature about temporal aggregation have shown
the limits and the shortfalls of this approach1. In particular, the researchers em-
phasized the unreliability of the results and their interpretation, as a consequence
of the misspecification of the co-movements between variables sampled at different
frequency, and then aggregated at the same low frequency.
To mitigate the phenomenon of aggregation bias, in the following years, the litera-
ture gradually focuses on the specification of econometric models able to consider
all the available information in the data. In the latest ’80 and ’90, Zadrozny
(1988) and Chen and Zadrozny (1998) investigate continuous-time autoregressive
models with mixed frequency variables. They consider the problem of dealing
with mixed frequency data in which the low frequency variables are generated by
an underlying latent high frequency process2. However, the attention of the re-

1Cunningham and Hardouvelis (1982), Christiano and Eichenbaum (1987), Marcellino (1999),
among others

2Chen and Zadrozny (1998) consider a classical representation of VAR processes with missing
data and propose an Extended Yule-Walker method for the estimation of the VAR parameters.

13



1.1 Introduction

searchers on mixed frequency data exponentially enhanced only fifteen years later
(approximately), with the concept of nowcasting. Nowadays, this phenomenon is
introduced in the literature as an attractive, meaningful and powerful framework.
The classical definition of this forecasting issue is provided by Banbura, Giannone,
Modugno and Reichlin (2013): “[. . . ]Now-casting is defined as the prediction of the
present, the very near future and the very recent past. The term is a contraction for
now and forecasting and has been used for a long-time in meteorology and recently
also in economics”. In particular, nowcasting is usually presented as a fast, ever-
expanding phenomenon due to the attention of national and international central
banks: from Kuzin, Marcellino and Schumacher (2013), “[. . . ] decision-makers in
policy institutions typically face such data irregularities in their everyday business
of assessing the current state of the economy”.
Tracking the swings of the economy furnishes relevant information to government
and institutional agencies, allowing those agents to reactive political and econom-
ical reactions. The last global crisis is representative of this current need for more
timely detection of certain situations of real risk for the economic equilibrium.
Within the set of econometric instruments provided by the researchers in the
nowcasting framework, Banbura, Giannone, Modugno and Reichlin (2013) distin-
guish between: (i) models with temporal aggregation (for a survey, see Marcellino
(1999)); (ii) joint models in state space representation (factor models and mixed
frequency VARs) as in Mariano and Murasawa (2003, 2010), Giannone, Reichlin
and Small (2008), Schorfheide and Song (2015); (iii) updating frameworks (see for
example Banbura and Modugno (2014) and Banbura and Rünstler (2011)); (iv)
partial models (bridge and MIDAS-type equations) as in Baffigi, Golinelli and Pa-
rigi (2004), Ghysels, Sinko and Valkanov (2006) and Clements and Galvão (2008,
2009). In the following years, these strands of the literature are not infrequently
encountered and merged, furnishing a wide range of approaches to nowcasting ex-
ercises.
Generally, within the classes identified above, the choice on the specification of an
econometric model for mixed frequency data, moves between (1) the specification
of a joint model for the variable of interest and for the predictors (full system
approaches, i.e. MF-VARs)3, or (2) a model uniquely specified to model the low
frequency variable of interest as dependent on mixed frequency variables (partial
models, i.e. MIDAS equations)4.

The result is an optimal three-step (linear) instrumental variables procedure.
3Next to the strand of the literature of MF-VAR, another important direction is represented

by the general idea of summarizing a large dataset of mixed frequency variables, in a small
number of factors or coincident indicators, which are obtained for a unique frequency (for all,
see Stock and Watson (2002)).

4Kuzin, Marcellino and Schumacher (2011) provide a theoretical and empirical comparison,
based also on the nowcasting performances, between MIDAS equations and MF-VARs. The
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1. Mixed frequency VARs: a new generation of econometric models.

In the class of full system methods, the most incisive approach is presented
by Mariano and Murasawa (2003, 2010). In their seminal papers, the authors are
driven by the idea of alleviating two shortcomings in the definition of coincident
indexes of the business cycle: the loss of information due to the non-inclusion of
quarterly variables, and the shortfall of an economic interpretation. Mariano and
Murasawa consider the state space representation with the aim of treating low fre-
quency data (quarterly) as related to a latent process, representative of the high
(monthly) levels5.
If with a MF-VARs the researcher models the latent high frequency process that
define the co-movements between the variables of the analyses, Ghysels (2016) in-
troduces a new perspective of the problem, more in line with the MIDAS literature.
The author defines a stacked MF-VAR in which the referring time interval of the
econometric model is the lowest frequency in the data. The general idea consists
of stack the high and the low observations referring to the same low frequency
period. By this way, the author investigates different scenarios for the formulation
of the stacked endogenous vector, the structural analysis of the new specification,
and highlights the major differences between the mixed frequency VAR with a
state space representation and his proposal.
In the next sections we consider both the specifications and we analyse the main
aspects of each approach. In particular, in Section 1.2, we describe the methods
used in the literature to specify and estimate a VAR for mixed frequency data. In
Section 1.4, we consider the literature of MF-VARs, related empirical applications
and extensions, paying particular attention, in Section 1.5, to mixed frequency
Structural Vector Autoregressive processes. In Section 1.6 we report our consider-
ations and conclusions.

1.2 MF-VAR models

A mixed frequency vector autoregressive model (hereafter, MF-VAR), is a vector
autoregressive process specified to deal with data sampled at different frequencies.
Let y1,t, t = 1, . . . , T , be the N1-variate processes of quarterly (low frequency) vari-
ables, observed only in the third month of the reference quarter. By the same way,
let y2,t, t = 1, . . . , T , be the N2-variate monthly (high frequency) process sampled
m = 3 times during each reference quarter. Consider the vector yt = (y′1,t, y

′
2,t)
′,

of dimension N1 + N2 = N . The MF-VAR investigates the dynamic interaction

authors find that the two approaches could be seen as complementary tools, instead of substitutes.
Aastveit, Gerdrup, Jore and Thorsrud (2014) present a combination approach of 224 models
obtained from bridge equations, factor models and mixed-frequency VARs.

5Similar approaches have been provided by Schorfheide and Song (2015) and Giannone, Re-
ichlin and Small (2008).
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1.2 MF-VAR models

between the highest frequency (observed) variables y2,t and the high frequency
latent processes y∗1,t underlying the observed low frequency series y1,t.
The most implemented MF-VAR specification is provided by Mariano and Mura-
sawa (2003, 2010). It requires the state space representation of the model as a tool
for the joint investigation of (i) the latent processes y∗1,t underlying the observed
low frequency series y1,t and (ii) the monthly Data Generating Process (hereafter,
DGP) y∗t = (y∗

′
1,t, y

′
2,t)
′ of yt = (y′1,t, y

′
2,t)
′. The MF-VAR(p) is defined as

y∗t = Φ1y
∗
t−1 + Φ2y

∗
t−2 + · · ·+ Φpy

∗
t−p + εt, εt ∼ iid(0,Σ), t = 1, . . . , T,

where y∗1,t is the latent monthly variables underlying the quarterly variables y1,t

and Φj, j = 1, . . . , p is the (monthly - high frequency) coefficient matrix for the
jth lag. Once identified the latent high frequency variables underlying the ob-
served quarterly variables y1,t, the MF-VAR is a standard VAR process for the
monthly frequency, with classical specification of the coefficient matrices and with
error covariance matrix Σ. As described in the next sections, this specification
requires filtering procedures, in particular a state space representation and the use
of the Kalman filter. The crucial point in MF-VAR is represented by the technical
treatment of the unobservable values of the latent monthly series underlying the
quarterly data. Different solutions have been provided.
In the following discussion we investigate different specifications of MF-VARs. We
identify the alternative specifications presented by the literature, different estima-
tion procedures and the developments provided in fifteen years of research.

1.2.1 Mariano and Murasawa’s specification

The idea of Mariano and Murasawa (2003, 2010) is modelling MF-VARs by refer-
ring to a state space representation. Considering monthly and quarterly variables,
the authors are interested in the analyses of the monthly dynamics between the
observed monthly variables and the latent monthly processes underlying the quar-
terly variables.
Let y1,t, t = 1, . . . , T , be the N1-variate processes of quarterly (low frequency)
variables (observed only in the third month of the reference quarter), and let
y2,t, t = 1, . . . , T , be the N2-variate monthly (high frequency) process, sampled
m = 3 times during each reference quarter. Consider the vector yt = (y′1,t, y

′
2,t)
′,

of dimension N1 + N2 = N . The MF-VAR investigates the dynamics between (i)
the highest frequency (observed) variables y2,t and (ii) the high frequency latent
processes y∗1,t underlying the observed low frequency series y1,t. The specification
of the model can be decomposed in two part: first, we have specify the autore-
gressive nature of the high frequency, not completely observable, autoregressive
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1. Mixed frequency VARs: a new generation of econometric models.

process, and second, we have to define the relationship between the low frequency
variables and the related unobservable high frequency counterpart.
Starting from this second aspect of the specification, the relationship between the
vectors

yt =

(
y1,t

y2,t

)
and y∗t =

(
y∗1,t
y2,t

)
,

can be generally written as

yt − µ = H(L)(y∗t − µ∗),

where L is the lag operator, E(yt) = µ, E(y∗t ) = µ∗ and H(L) is a polynomial
of order k of weight matrices that link the quarterly observation of the subvector
y1,t to k realizations of the monthly unobserved variables y∗1,t. In the literature,
the classical choices for temporal aggregation schemes move between point-in-time
sampling and average sampling. The point-in-time sampling is considered for stock
variables, for which the low frequency (quarterly) observation is obtained sampling
the mth observation of the high frequency (monthly) process, for each reference
low frequency period. On the other hand, considering y1,t as a flow variable we re-
fer to the average sampling. In this case, the realizations of the quarterly variable
are obtained as the average of the three monthly values of the underlying latent
process, related to the reference quarter. Each temporal aggregation scheme de-
termines the structure of the polynomial H(L).
For sake of simplicity, assume that µ = µ∗ = 0, then

yt = H(L)y∗t . (1.1)

Following the scheme of decomposition of the specification, now we have specify
the autoregressive nature of the high frequency, not completely observable, autore-
gressive process y∗t . Assume that y∗t follows a VAR(p) process, defined by

y∗t = Φ1y
∗
t−1 + Φ2y

∗
t−2 + · · ·+ Φpy

∗
t−p + wt (1.2)

Φ(L)y∗t = wt,

with wt ∼ WN(0,Σ), and Φ(L) = (I − Φ1L− Φ2L
2 − · · · − ΦpL

p).
The MF-VAR is obtained considering a state space system, in which the measure-
ment equation quantifies the relationship between the observable vector yt and the
underlying monthly process y∗t , as defined in Eq. (1.1), and the specification of the
state equation refers to the VAR process in Eq. (1.2). The state space model is
given by the equations

yt =Cst (1.3)

st+1 =Ast +Bεt, (1.4)
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1.2 MF-VAR models

with wt = Bεt and where Eq. (1.3) is the measurement equation and Eq. (1.4) is
the state equation with εt ∼ (0, I).
To define the matrix elements of the state space representation, we first pay at-
tention to the measurement equation. The relationship quantified in Eq. (1.1) is
rewritten in the form of Eq. (1.3) considering the state vector st and the input
matrix C given by

st =


y∗t − µ∗
y∗t−1 − µ∗

...
y∗t−k−1 − µ∗

 =


y∗t
y∗t−1

...
y∗t−k−1


︸ ︷︷ ︸
N(k+1)×1

, C = (H0 H1 . . . Hk)︸ ︷︷ ︸
N×N(k+1)

(1.5)

where k is the order of the polynomial H(L), and Hi, i = 0, . . . , k, is the weighting
matrix related to the variable y∗t−i in the definition of yt (see Eq. (1.1)).
As mentioned above, the VAR(p) dynamic for y∗t is considered in the state equa-
tion. In particular, we can rewrite the VAR(p) in Eq. (1.2) in the companion form
as st = Ast−1 +Bεt, with

st =


y∗t
y∗t−1

...
y∗t−p+1


︸ ︷︷ ︸

Np×1

, A =


Φ1 Φ2 · · · Φp

IN 0N×N · · · 0N×N

0N×N
. . . · · · ...

... · · · IN 0N×N


︸ ︷︷ ︸

Np×Np

, B =


Σ

1
2

0N×N
...

0N×N


︸ ︷︷ ︸

Np×N

. (1.6)

and the disturbances of the state equation εt ∼ N(0, IN).
As we can notice from the definition of the dimensions of the state vector in
Eq. (1.5) and Eq. (1.6), the specification of the matrices in the state space system,
and in particular, of the state vector st, is related to two non-negligible aspects:
(i) how many lags of the latent process (in st) are involved in the analytical speci-
fication of the quarterly observation of y1,t (from the measurement equation), and
(ii) the order of lags of the monthly VAR specified for st (from the transition equa-
tion). As illustrative case, assume that the order of the VAR is p = 2 and that
the quarterly observations are given by the average sampling, i.e.

y1,t =
1

3
(y∗1,t + y∗1,t−1 + y∗1,t−2).
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1. Mixed frequency VARs: a new generation of econometric models.

Analytically, y1,t involves k + 1 = 3 realizations of y∗1,t, i.e. from Eq. (1.5) st is of
dimension 3N × 1 with the polynomial H(L) given by6:

H(L) =

[
1
3
IN1 0
0 IN2

]
+

[
1
3
IN1 0
0 0

]
L+

[
1
3
IN1 0
0 0

]
L2,

whit N1 is the number of low frequency variables, N2 is the number of high fre-
quency series, N = N1 +N2, and INi with i = 1, 2 is the Ni ×Ni identity matrix.
Considering

C =
(
H0 H1 H2

)
=

(
1
3
IN1 0N1×N2

... 1
3
IN1 0N1×N2

... 1
3
IN1 0N1×N2

0N2×N1 IN2

... 0N2×N1 0N2×N2

... 0N2×N1 0N2×N2

)
,

the measurement equation of the state space model is given by:

yt = Cst

=
(
H0 H1 H2

) y∗t
y∗t−1

y∗t−2

 , (1.7)

with µ∗ = 0, as above.
Considering Eq (1.6) and the order p = 2 of the VAR model, st is a 2N ×1 vector,
with transition equation given by:

st = Ast−1 +Bε(
y∗t
y∗t−1

)
=

(
Φ1 Φ2

IN 0N×N

)(
y∗t−1

y∗t−2

)
+

(
Σ

1
2

0N×N

)
εt. (1.8)

The dimensions of the state vector st in Eq. (1.7) and in Eq. (1.8) are different.
In order to encompass the mismatch in the specification of the state vector, we
identify two cases: the first for p ≤ (k + 1) and the second case for p > (k + 1).

CASE 1: p ≤ (k+1). The number of elements in the state vector is defined
by the order k of the polynomial H(L), as in Eq. (1.5). In particular we consider

st =


y∗t − µ∗
y∗t−1 − µ∗

...
y∗t−k − µ∗


︸ ︷︷ ︸

N(k+1)×1

6See Mariano and Murasawa (2010) for the specification of the aggregation scheme in the
relationship yt−µ = H(L)(y∗t −µ∗), working with low frequency variables integrated of order 1.

19



1.2 MF-VAR models

with related matrices defined as:

A =

(
Φ1 . . . Φp 0N×N(k+1−p)

INk 0Nk×N

)
︸ ︷︷ ︸

N(k+1)×N(k+1)

, (1.9)

B =

(
Σ

1
2

0Nk×N

)
︸ ︷︷ ︸
N(k+1)×N

, C =
(
H0 H1 . . . Hk

)︸ ︷︷ ︸
N×N(k+1)

.

CASE 2: p > (k+1). The dimensions of the state vector st and (hence)
of the matrices in the state space system, is determined by the lag order p of the
VAR. Specifically,

st =


y∗t − µ∗
y∗t−1 − µ∗

...
y∗t−p+1 − µ∗


︸ ︷︷ ︸

Np×1

,

A =

(
Φ1 . . . Φp

IN(p−1) 0N(p−1)×N

)
︸ ︷︷ ︸

Np×Np

, (1.10)

B =

(
Σ

1
2

0N(p−1)×N

)
︸ ︷︷ ︸

Np×N

, C =
(
H0 . . . Hk 0N×N(p−k+1)

)︸ ︷︷ ︸
N×Np

.

At this point, we have introduced two components of the specification of a MF-
VAR: (a.) an autoregressive behaviour for the unobservable monthly variables, and
(b.) a relationship between the observed and the unobserved vectors. The next
step refers to the treatment of the unobserved value of the low frequency series: if
we consider that the quarterly variables are observed in the third months of each
quarter, how can we treat the values of y1,t related to the first and second month
of the quarters in the measurement vector? The general idea is to refer to these
values as missing observations. To do this, we have to define a specific (periodical
time-varying) structure. Hence, we specify the measurement equation such that:

y+
1,t =

{
y1,t if y1,t is observable

νt otherwise
.

with {νt} ∼ N (0, IN1) and all realizations equal to zero. The result is a mea-
surement vector rewritten as if the missing observations of y1,t were drawn from
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1. Mixed frequency VARs: a new generation of econometric models.

a standard Normal, independent of the model parameters. Then, in the general
form, the (periodical time-varying) state space model is given by:

y+
t = µt + Ctst +Dtνt

st = Ast−1 +Bεt

where, for all t = 1, . . . , T ,(
y+

1,t

y2,t

)
=

(
µ1,t

µ2

)
+

(
C1,t

C2

)
st +

(
D1,t

0

)
νt,

εt ∼ N(0, IN), νt ∼ N(0, IN1).

The (periodical time-varying) structure is defined by

µ1,t =

{
µ1 if y1,t is observable

0 otherwise
, (1.11a)

C1,t =

{
C1 if y1,t is observable

0 otherwise
, (1.11b)

D1,t =

{
0 if y1,t is observable

IN1 otherwise
. (1.11c)

For the specified state space representation there’s no further complication in ap-
plying Kalman filter and smoother, i.e. the (periodical time-varying) structure
allows the filter to skip the missing observation. In particular, let F and G be two
selection matrices, with dimensions defined by the two cases, identified in Eq. (1.9)
and Eq. (1.10)F =

(
IN 0N×Nk

)
, G =

(
IpN 0Np×(k−p)N

)
, if p ≤ k (CASE 1)

F =
(
IN 0N×(p−1)N

)
, G =

(
INp

)
, if p > k (CASE 2).

With the introduction of F and G, the VAR(p) process y∗t , i.e. Φ(L)(y∗t −µ∗) = wt,
with wt ∼ N(0,Σ), can be rewritten as

Fst = y∗t
= Φ1y

∗
t−1 + · · ·+ Φpy

∗
t−p + wt

= ΦGst−1 + wt

= (IN ⊗ s′t−1G
′)vec(Φ) + wt

Fst − ΦGst−1 = wt,
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1.2 MF-VAR models

where Φ = (Φ1,Φ2, . . . ,Φp). Then, given the joint probability density function
of the measurement and the state variables, i.e. Y ∗t = (y∗1, . . . , y

∗
t ) and St =

(s0, . . . , st), with Y ∗0 = 0, the log-likelihood function of the parameter vector θ =
(vec(Φ)′, vech(Σ)′)′ is defined by

l(θ;Y ∗T , ST ) = −NT
2
ln2π − T

2
ln|Σ| − 1

2

T∑
t=1

(Fst − ΦGst−1)′Σ−1(Fst − ΦGst−1).

The first step for obtaining EM estimates is running the Kalman filter. In partic-
ular, for s0 = 0 (hence, s1|0 = 0 and P1|0 = BB′), and t = 0, 1, . . . , T , we run the
updating and the prediction steps, respectively given by

updating steps st|t = st|t−1 +Ktet

Pt|t = (IN −KtHt)Pt|t−1,

where Kt = Pt|t−1H
′(HPt|t−1H

′+DD′)−1 is the Kalman gain, and et = yt−Ast|t−1.

forecasting steps st+1|t = Ast|t

Pt+1|t = APt|tA
′ +BB′.

Once obtained st|t−1 and Pt|t−1, we choose a starting value for the parameter vector
θ, i.e. θ0 = (vec(Φ0)′, vech(Σ0)′)′. The expectation step of the EM algorithm is
obtained (with y+

0 = 0) calculating, for t = 1, . . . T , the smoothed estimates

st|T = E(st|(y+
1 , . . . y

+
t ))

= st|t−1 + Pt|t−1rt

Pt|T = V ar(st|(y+
1 , . . . y

+
t ))

= Pt|t−1 − Pt|t−1RtPt|t−1

Pt+1,t|T = Cov(st+1, st|(y+
1 , . . . y

+
t ))

= (IN − Pt+1|tRt+1)(A(IN −KtH)Pt|t−1

where, for t = T, T − 1, . . . , 1,

rt =H ′(HPt|t−1H
′ +DD′)−1et + (A(I −KtH))′rt+1),

Rt =H ′(HPt|t−1H
′ +DD′)−1H + (A(IN −KtH))′Rt+1(A(IN −KtH))),

with rT+1 = 0, RT+1 = 0.
The maximization step consists in taking the conditional expectation of the score
functions of the log-likelihood. In particular, from

∂l(θ;Y ∗T , ST )

∂vec(Φ)′
= Σ−1

T∑
t=1

vec(Gst−1s
′
tF
′ −Gst−1s

′
t−1G

′Φ′) = 0,
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1. Mixed frequency VARs: a new generation of econometric models.

we calculate

E

{
Σ−1

T∑
j=1

vec(Gst−1s
′
tF
′ −Gst−1s

′
t−1G

′Φ′)

}
= 0. (1.13)

In order to solve the expectation in Eq. (1.13), we assume that, for all k, j = 0, 1,

Mt−k,t−j =

{
1

T

T∑
t=1

E(st−k, s
′
t−j|(y+

1 , . . . y
+
t ))

}
.

Then, the conditional expectation can be rewritten as

GMt,t−1F
′ −GMt,tG

′Φ′ = 0,

obtaining the estimated coefficient matrix Φ̂ = (Φ̂1, . . . Φ̂p)

Φ̂ = (GMt,tG
′)
−1
GMt,t−1F

′.

Likewise, consider the score function obtained w.r.t. Σ−1, and given by

∂l(θ;Y ∗T , ST )

∂Σ−1
=

=
T

2
Σ− 1

2

T∑
t=1

(Fsts
′
tF
′ − Fsts′t−1G

′Φ′ − ΦGst−1s
′
tF
′ + ΦGst−1s

′
t−1G

′Φ′) = 0.

(1.14)

Taking the expectation for the score function in Eq. (1.14), we obtain

Σ− (FMt−1,t−1F
′ + FMt−1,tG

′Φ′ − ΦGMt,t−1F
′ + ΦGMt,tG

′Φ′) = 0,

hence

Σ̂ = FMt−1,t−1F
′ − FMt−1,tG

′(GMt,tG
′)−1GMt,t−1F

′.

After some iterations of the EM algorithm, the idea is to switch to a quasi-Newton
method, i.e. use θ̂EM = (vec(Φ̂)′, vech(Σ̂)′)′ as initial value for the quasi-Newton
estimation. Mariano and Murasawa motivate this choice, pointing out that “[. . . ]
the EM algorithm slows down significantly near the maximum”.
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1.2 MF-VAR models

1.2.2 Alternative Approaches

In this section we present the main alternative approaches proposed in the liter-
ature. The first three procedures consider state space representation. In particu-
lar, the crucial point (and the main difference between the three alternatives) is
represented by the treatment of the missing data which arise considering mixed
frequencies. The fourth alternative doesn’t consider state space representation,
but an extension of the Yule-Walker estimation approach.

Giannone, Reichlin and Small (2008)

In the framework of full-system methods, and in particular in the analyses of
factor models, Giannone, Reichlin and Small (2008) focus on the evaluation of the
effects of intra-monthly variables on the nowcasts of the GDP. Their idea is to
update the nowcast of the GDP, each time a new information becomes available.
The specification of Giannone, Reichlin and Small (2008) involves three crucial
aspects of the nowcasting framework: the use of a large dataset of variables, which
are available at high frequencies but with different time-delays in the publication,
the requirement of a procedure that (i) summarizes the information of the initial
dataset and (ii) maps the dynamics within the extracted factors and between the
factors and the GDP.
The state space model considered by the authors extracts the common factors
(obtained from a large dataset) in the measurement equation, and specifies a vector
autoregressive process for the factors in the transition equation, i.e.

yt = µ+ ΛFt + ξt, WN(0,Ψ)

Ft = AFt−1 +But, ut ∼ WN(0, Iq)

where yt is a N × 1 vector of quarterly variables obtained from monthly series
through point-in-time sampling, Ft = (f1,t, . . . , fr,t)

′ is a r × 1 vector of the r
extracted factors from yt, ξt = (ξ1,t, . . . , ξ1,N)′ is the vector of idiosyncratic com-
ponents, Λ is the N × r factor loading matrix and Ψ is a N ×N diagonal matrix
with entries ψi, i = 1, . . . , N . The main difference with Mariano and Murasawa
(2003, 2010)’s strategy refers to the treatment of the missing observation: we don’t
need to replace missing values with zeros, but we set the variance of the measure-
ment error to infinity. With a simple example, when a new information for the
jth series of the initial dataset is considered, the other variables present missing
observations. In this case the variances ψi, with i = 1, . . . , N , i 6= j of the mea-
surement error (idiosyncratic component of the factor model, summarized in the
measurement equation) are set to infinity (missing observations). By this way, the
Kalman filter provides the same result of Mariano and Murasawa (2003, 2010)’s
procedure, i.e. the filter skips the missing observations.

24



1. Mixed frequency VARs: a new generation of econometric models.

The main advantage provided by this procedure regards the possibility of up-
date the nowcast of the GDP each time a new observation (for each variable in
the dataset) becomes available. From the estimated state vector F̂t, the nowcast
of the GDP can be easily computed with the linear regression model given by

ˆGDP t = α + β′F̂t, with α and β obtained from OLS estimation.

Schorfheide and Song (2015)

Durbin and Koopman (2012) consider the general problem of state space models
with missing observations. The authors link the dimension of the observed vector
to time, treating such a vector as a function of t. Schorfheide and Song (2015)
refer to this last approach and deal with a mixed frequency vector of endogenous
variables, with time-varying dimension.
Consider a simple case and specify a measurement vector containing variables
sampled at two frequencies: N1 quarterly series, i.e. y1,t, appearing in the third
month of the quarter, and N2 monthly series, i.e. y2,t, as described above. When
the quarterly and the monthly instant coincide, the measurement vector is of
dimension (N2 + N1) × 1, i.e yt = (y′2,t y′1,t)

′, otherwise the procedure requires
dealing with a N2 × 1 vector of monthly variables7, i.e. yt = (y2,t)
As in the previous sections, assume that y∗t is the monthly VAR(p) process at
which the economy evolves. Consider

st =


y∗t
y∗t−1

...
y∗t−p+1

 , (1.15)

where y∗t , t = 1, . . . , T , is driven by the VAR(p) process

y∗t = Φ1y
∗
t−1 + · · ·+ Φpy

∗
t−p + wt, wt ∼ iidN(0,Σ).

Assuming Φ = (Φ1, . . . ,Φp)
′, the related companion form of the model is given by

st = A1(Φ)st−1 + εt, ε ∼ iidN(0,Ω(Σ)). (1.16)

The quarterly variables in yt can be rewritten as a “[. . . ] three-month average [. . . ]
only observed for every third month”, i.e.

ỹ1,t =
1

3
(y∗1,t + y∗1,t−1 + y∗1,t−2)

= Λ1st,

7In accordance with Schorfheide and Song (2015), in this section we consider a state vector
with the first elements represented by the observed monthly variables.
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1.2 MF-VAR models

where Λ1 is a block of the weighting matrix Λ = (Λ2,Λ1)′, with dimensions of the
blocks related to N2 and N1, respectively, and ỹ1,t is a monthly vector of observed
and missing observations: the observed values refer to the third month of each
quarter, and the missing observations are obtained in every t corresponding to the
first and second months of the quarters.
The time-varying structure of yt = (y′2,t, y

′
1,t)
′ is achieved introducing a sequence

Mt of selection matrices. Identify M1,t as the matrices, in the sequence Mt, that
are related to the quarterly variables in st. In the first and second month of
each quarter M1,t is empty; therefore, at the third month, M1,t equals the identity
matrix. By this way, M1,t allows to work with

dim(y1,t) =

{
N1 if ỹ1,t is observable

0 otherwise

and y1,t = M1,tỹ1,t = M1,tΛ1st. Likewise, we can consider to include in Mt furthers
selection matrices, in order to model different situations, as the time delay in pub-
lication, or the inclusion of additional monthly variables to the starting dataset8.
In general, the result is a vector yt with time-varying dimension, that allows to
handle with the following measurement equation:

yt = MtΛst

=

(
M2,t 0

0 M1,t

)
︸ ︷︷ ︸

N×N

(
Λ2

Λ1

)
︸ ︷︷ ︸

N×N(p−1)


y∗t
y∗t−1

...
y∗t−p+1


︸ ︷︷ ︸
N(p−1)×1

with t = 1, . . . , T , and transition equation defined in Eq. (1.16). The dimension
of the weighting matrix Λ and the vector st are related to the VAR order p, as in
Section 1.2.1. The state space described above is considered for p ≥ (k + 1).
From the specified state space representation, Schorfheide and Song (2015) provide
a Bayesian estimation procedure. Furthermore, in their empirical nowcasting prob-
lem, the authors highlight the improvement in the accuracy of the performances of
short-horizons forecasts w.r.t. the results obtained with classical benchmark mod-
els (standard quarterly VAR) and with specific nowcasting tools, as MIDAS-type
regressions.

8The procedure of the authors allows to include a wide range of situations, arising when the
econometrician considers to deal with a real flow of mixed frequency variables. For instance, Mt

could include a matrix Mj,t for the introduction of further monthly variables, after a specific
period Tb. The matrix Mj,t will be empty for t = 1, . . . , Tb, and equal the identity matrix for
t = Tb + 1, . . . , T .
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Schorfheide and Song (2015) consider a Bayesian estimation procedure with proper
Minnesota-style priors, for the treatment of their state space representation. The
priors chosen by the authors are referable to the family of Multi-Normal Inverse-
Wishart distributions9. Schorfheide and Song (2015) describe the conditional pos-
terior densities of the VAR parameters and the state variables, these last intro-
duced for achieving the mixed frequency characterization of the VAR. The choice
of proper priors allows the authors to evaluate the posterior densities via a Gibbs
sampling algorithm. For further details on Bayesian estimation of a state space
model see Del Negro and Schorfheide (2011) and Giordani, Pitt and Kohn (2011).

Chen and Zadrozny (1998)

Another important contribution in the estimation of MF-VARs is furnished
in Chen and Zadrozny (1998) and Koelbl, Braumanny, Felsensteinz and Deistler
(2015). The authors consider extended Yule Walker (XYW) and maximum likeli-
hood estimators of the parameters of a high frequency VAR model, obtained from
mixed-frequency data.
Consider the vector yt = (y′∗1,t, y

′
2,t)
′, of dimension N1 + N2 = N , where y∗1,t is

the latent monthly variables underlying the quarterly variables y1,t and y2,t is the
subvector of (completely observable) N2 high frequency variables. We define the
high frequency VAR(p) process as

y∗t = Φ1y
∗
t−1 + Φ2y

∗
t−2 + · · ·+ Φpy

∗
t−p + εt, εt ∼ iid(0,Σ), t = 1, . . . , T,

where Φj, j = 1, . . . , p is the (monthly - high frequency) coefficient matrix for
the jth lag. Under regularity conditions, the (population) extended Yule Walker
equations is given by

E
[
(yt)(y

′
2,t−1 . . . y

′
2,t−1)

]
= (Φ1, . . . ,Φp)E


yt−1

...
yt−p

 (y′2,t−1 . . . y
′
2,t−1)


Z1 = ΦZ0.

The solution

(Φ1, . . . , Φ̂p) = Z1Z
†
0

= Z1Z
′
0(Z0Z

′
0)−1

9For further details about Minnesota priors see Del Negro and Schorfheide (2011).
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is obtained by replacing Z1 and Z0 with their sample estimates:

γ̂2,2,T (h) =E(y2,t+hy
′
2,t) =

1

T

T−h∑
t=1

y2,t+hy
′
2,t h ≥ 0

γ̂1,2,T (h) =E(y1,t+hy
′
2,t) =

1

T/N

t2∑
t1=1

y1,Nty
′
2,Nt−h

with γ̂2,2,T (h) = γ̂2,2,T (−h)′ and

t1 =

{
1 if N > h

b h
N
c if N ≤ h

, t2 =

{
b T
N
c if h ≥ 0

bT+h
N
c if h < 0

.

From the XYW estimator Φ̂ = (Φ̂1, Φ̂2, . . . Φ̂p) = Ẑ1Ẑ
†
0, we can easily derive the

GMM estimator

vec(Φ̂) = ((Ẑ0 ⊗ IN)RT (Ẑ ′0 ⊗ IN))−1(Ẑ ′0 ⊗ IN)RTvec(Ẑ1).

The relationship with the XYW estimator is given by RT = IN2pN2
.

The estimator of the error covariance matrix can be obtained assuming

G =
(
IN 0 . . . 0

)
and calculating

vec(Σ) =
[
(G⊗G)(I(Np)2 − (Â⊗ Â))−1(G′ ⊗G′)

]−1

vec(γ̂(0)),

where

Â =


Φ̂1 Φ̂2 · · · Φ̂p

I 0 · · · 0
... · · · . . .

...
0 · · · I 0

 .

Koelbl, Braumanny, Felsensteinz and Deistler (2015) consider both the cases
of stock and flow low frequency variables, furnishing a generalization of the sim-
plest case described above. They provide some properties of the XYW and GMM
estimators, and identify the loss of information related to the analysis of “high
frequency” and “mixed frequency” and between “mixed frequency” and “low fre-
quency”.
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1.3 Mixed sampling frequency VAR models

Ghysels (2016) presents a new perspective for the analyses of mixed frequency
data. The author considers the idea of specify the mixed frequency model re-
ferring to all the observations of the series during each reference low frequency
period, without model the latent process underlying the observable realizations of
the low frequency variables. We present below the main aspects of Mixed sampling
frequency VAR models. Further details are presented in Ghysels (2016).

Consider the simple case of working with a quarterly variable (N1 = 1), which
appears at the end of the reference quarter, and a monthly variable (N2 = 1)
sampled m = 3 times during each low frequency period. In particular, we define
τ the low frequency timely index, y1,τ the low frequency variable, and y2,τ the
vector of the stacked m high frequency observations obtained during each low
frequency period. Specifically we consider y2,τ = (y

(1)
2,τ , y

(2)
2,τ , y

(3)
2,τ )
′10. For example, if

we consider the first quarter of the year, the vector of high frequency observations
will be given by

y2,τ =

y
(1)
2,τ

y
(2)
2,τ

y
(3)
2,τ

 January
February
March

The general idea is to specify a low frequency VAR model for the endogenous
vector yτ obtained stacking (i) the m observations of the high frequency variables
(available m times during the low frequency period), and (ii) the observation of
the low frequency series. The resulting yτ will be of dimension NS × 1, with
NS = mN2 +N1.
Coming back on the initial example, assuming that the observation of the quarterly
variable appears only at the end of the reference quarter, the vector of endogenous
variables will be given by the 4× 1 vector defined by

yτ =

(
y2,τ

y1,τ

)
=


y

(1)
2,τ

y
(2)
2,τ

y
(3)
2,τ

y1,τ

 .

10The general specification of the high frequency sub-vector y2,τ , can be obtained considering

y2,τ = (y
(1)
2,τ , . . . , y

(k)
2,τ , . . . , y

(m)
2,τ )′

with apex (j) = 1, . . . ,m, denoting the observation of the high frequency variable realized in the
jth intra-quarter period: j = 1 if we refer to the first high frequency observation collected during
the low frequency period, j = 2 if we refer to the second realization, and so on)

29
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The stacked skip-sampled VAR(p) process, i.e. yτ = A0 +
∑p

j=1Ajyτ−1 + ετ , can
be specified as 

y
(1)
2,τ

y
(2)
2,τ
...

y
(m)
2,τ

y1,τ

 = A0 +

p∑
j=1

Aj


y

(1)
2,τ−j

y
(2)
2,τ−j

...

y
(m)
2,τ−j
y1,τ−j

+ ετ , (1.17)

where Aj, with j = 1, . . . , p, are the (mN2 +N1)× (mN2 +N1) coefficient matrices
of the VAR(p). By this way we don’t refer to some latent high frequency process,
underlying the low frequency variables, but we investigate the direct relationships
between the endogenous variables of mixed frequency data at the lowest frequency.
The generic matrix Aj of Eq. (1.17) can be explicitly written as

A1,1
j · · · A1,m

j A1,L
j

... · · · ...
...

Am,1j . . . Am,mj Am,Lj

AL,1j . . . AL,mj AL,Lj


Ghysels (2016) discusses different ways to estimate the stacked MF-VAR, and

quantifies the misspecification due to the estimation of a single (low) frequency
VAR. The author formulates the maximum likelihood estimators of the parameters,
the related spectral counterparts and a Bayesian estimation method, expanding
the results obtained by Rodriguez and Puggioni (2010) and Ghysels and Owyang
(2011), for Bayesian MIDAS-regression estimation11.

Linear and non-Linear Systems

Similarly to the approach developed by Ghysels (2016), in the engineer litera-
ture of linear and non-linear systems some contributions to the analyses of mixed
frequency data have been provided. Starting from the works of Bittanti (1986) and
Bittanti and Colaneri (1991) about periodic systems, Chen, Anderson, Deistler and
Filler (2012) investigate the relationships between blocked and unblocked repre-
sentation of periodic linear systems, especially motivated by the use of the blocking
techniques in generalized dynamic factor models with mixed frequency data.

11A similar approach has been provided by Blasques, Koopman and Malle (2015) for the
specification of a dynamic factor model with mixed frequency data. In partial models, the
counterparts of Ghysels (2016)’ approach is represented by Carriero, Clark and Marcellino (2015),
which propose a partial (Bayesian) model with stochastic volatility, with the aim of producing
current quarter forecasts of GDP.
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1. Mixed frequency VARs: a new generation of econometric models.

The blocking technique (as well known as lifting) has been applied in linear sys-
tems to transform linear discrete-time periodic systems to linear time-invariant
systems. Consider the discrete (unblocked) system defined by

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),

where t ∈ Z, x(t) ∈ Rn, y(t) ∈ RN and u(t) ∈ Rh, with N ≥ h. Let be
y(t) = (y1(t)′, y2(t)′)′, where y2(t) is the N2 variables sampled at the highest fre-
quency, specifically m times during each low frequency period, and y1(t) are the
N1 low frequency variables (as above, N1 + N2 = N), appearing only at the end
of the period. In blocked systems with mixed frequency data, we assume that the
measurement vector is of dimension mN2 +N1 and is given by

Y (t) =


y2(t)

y2(t+ 1)
...

y2(t+m− 1)
y1(t)

 , t = 0,m, 2m, . . . T

with T multiple of m. Consider C = (C ′2, C
′
1)′ and D = (D′2, D

′
1)′, where C2 and

D2 are of dimensions mN2 × n and mN2 ×mh, respectively, and C1 and D1 are
of dimensions N1 × n and N1 × hm. The blocked system, provided to deal with
mixed frequency data, is given by:

x(t+m) = Acx(t) +BcU(t)

Y (t) = Ccx(t) +DcU(t),

where Ac = Am, Bc = [Am−1B,Am−2B, . . . , B], Cc = [C ′2, A
′C ′2, . . . A

′m−1C ′2, C
′
1]′,

U(t) = (u(t)′, u(t+ 1)′, . . . , u(t+m− 1)′), and

Dc =


D2 0 · · · 0
C2B D2 · · · 0

...
...

. . .
...

C2A
m−2B C2A

m−3B · · · D2

D1 0 · · · 0

 .

The result is an explicit relationship between the blocked and unblocked systems,
allowing to extend the knowledges about linear time-invariant systems to the anal-
ysis of linear discrete-time periodic systems.
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Chen, Anderson, Deistler and Filler (2012) compare blocked and unblocked sys-
tems, analysing the classical properties of observability, controllability and min-
imality of linear systems. Furthermore, they consider the relationship between
finite zeros12 of the transfer functions of blocked and unblocked systems, high-
lighting some sufficient and necessary conditions for the presence of the zeros in
blocked systems.

1.4 The Literature of MF-VAR models

In this section we present some contributions to the literature about the numerous
developments of MF-VARs provided by researchers.

Markov-switching MF-VAR

Camacho (2013) introduces a Markov-switching dynamics in the MF-VAR model
of Mariano and Murasawa (2003), in order to detect busyness cycle signals and
probabilities of recession. The author allows the state space matrices to change
over time, w.r.t. the (periodical) time-varying structure, specified by Mariano
and Murasawa (2003) and reported in Eq. (1.11), and to evolve by a transition
probability, determined by an irreducible 2-state Markov-switching chain.
The mixed frequency Markov Switching VAR (hereafter, MS-MF-VAR) can be
represented by the equations

yt = Cgtst + vt vt ∼ iN(0, R),

st = µgt + Agtst−1 +Bεt εt ∼ iN(0, Qgt),

with transition probability, associated to the two-state unobservable variable gt,
defined by

p(gt = j/gt−1 = i) = pij.

The (periodical) structure specified to deal with missing observations in Eq. (1.11)
for MF-VAR, is expanded in the MS-MF-VAR, and specifically regards yt, Cgt , vt,

12The notion of zeros in linear system is related to the rank of the system matrix

M(Z) =

(
ZI −Ac −Bc
Cc Dc

)
,

with transfer function defined by W (z) = Cc(ZI−Ac)−1Bc+Dc. The finite zeros of W (z), with
minimal realization of {Ac, Bc, Cc, Dc}, are the finite values of Z for which the rank of the system
matrix M(Z) decreases w.r.t. its normal rank. For further details about finite and infinite zeros
see Grasselli and Longhi (1988) and Zamani, Chen, Anderson, Deistler and Filler (2011).
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1. Mixed frequency VARs: a new generation of econometric models.

R and µgt . The estimation of the transition probabilities can be obtained applying
the nonlinear filter proposed by Hamilton (1989).

Foroni, Guerin and Marcellino (2014) extend the work of Camacho (2013) in-
creasing the number of possible states and considering a Markov-switching struc-
ture for three classes of models: the MF-VAR specified by Mariano and Mura-
sawa (2003), i.e MSMF-VAR (KF), the stacked MF-VAR of Ghysels (2012), i.e.
MSMF-VAR (SV), and the MIDAS-type equations, i.e. MS-MIDAS. The au-
thors emphasize the improvement in the accuracy of depicting turning points with
MSMF-VAR (KF) models. They also consider a classical nowcasting exercise for:
the models described above, the linear counterparts, i.e. MF-VAR (KF), MF-VAR
(SV), MIDAS, Augmented Distributed Lags MIDAS (ADL-MIDAS), and for some
benchmark models (as AR and VAR models). Furthermore, the authors combine
the forecasts previously obtained for different macroeconomic indicators, finding
that, in their specific exercise, the MSMF-VAR (KF) outperforms the other ap-
proaches, especially in terms of density forecasts.

MF-VAR with stochastic volatility

The inclusion of the stochastic volatility in a full system model is considered by
Marcellino, Porqueddu and Venditti (2015). Specifically, they provide a dynamic
factor model, with mixed frequency data, estimated with Bayesian methods. The
proposed model is based on the specification of Mariano and Murasawa (2003).

The introduction of stochastic volatility corresponds to add a further equation
to the starting state space system reported in Eq. (1.3) and Eq. (1.4). In particular,
the new system is given by

yt =Cst +Dεt

st+1 =Ast + εt, εt ∼ N(0, Qt)

εt =R−1Λ
1
2
t ut, ut ∼ N(0, I)

vec(Λt) =vec(Λt−1) + ζt, ζt ∼ N(0,Θ)

where Qt is the (diagonal) error covariance matrix13 defined by

Qt = E(R−1Λ
1
2
t utu

′
tΛ
′ 1
2
t R

′−1) = R−1ΛtR
′−1.

By this way, Λt = RQtR
′ is a matrix of drifting volatilities, and Θ is a diagonal

covariance matrix. The diagonal entries of Qt are considered as functions of the

13The MF-VAR specified in Section 1.2 presents a time-invariant covariance matrix of the error
of the measurement equation.
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elements of Λt.

The Mariano and Murasawa (2003)’s specification can be considered as nested
in the Marcellino, Porqueddu and Venditti (2015)’s model: the dynamic factor
model is (intuitively) a MF-VAR in state space representation, with state vari-
ables given by the factors extracted from a large dataset. Marcellino, Porqueddu
and Venditti (2015) consider a Bayesian estimation procedure, with informative
priors on steady state means. In their forecasting exercises they find results which
are consistent with the mixed frequency data literature: the use of a mixed fre-
quency set-up provides some non-negligible improvements in the accuracy of the
forecasts; significant enhancements are especially obtained considering short hori-
zons.

Factor augmented MF-VAR

Marcellino and Sivec (2015) consider FAVAR models and structural FAVARs, with
mixed frequency data. The work is presented as extensions of: (i) Mariano and
Murasawa (2010)’s specification and (ii) Doz, Giannone and Reichlin (2006)’s es-
timation procedure.
The mixed frequency FAVAR model corresponds to the state space system

yt =Cst + νt

st+1 =Ast +Bεt

where, differently from Eq. (1.3) and Eq. (1.4), st contains the factors extracted
from a large dataset, C = (HΛ, 0, . . . , 0) contains the product of the temporal-
aggregation matrix H and the factor loadings matrix Λ of dimension N ×k, where
k equals the number of extracted factors and νt is a compound error term, i.e.
νt = Het + Dvt. In particular, νt is the sum of the temporal aggregation of the
idiosyncratic components of the extracted factors, i.e. Het, and a second compo-
nent, i.e. Dvt.
The most important source of indeterminacy is related to the extraction of the
factors. This procedure, in fact is as well known affected by some identification
problems. In the literature different restricting procedures have been applied.
One of the most classical choice is considering a block of the factor loadings ma-
trix equals the identity matrix.
In the MF-FAVAR a structural dynamic can be inserted considering some shocks
in the observable factors. The idea is associating the shocks to those factors for
which the sub-matrix of factor loadings is restricted.
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Marcellino and Sivec (2015) compare the estimates and the impulse responses
obtained with their specification with those obtained with previous empirical anal-
ysis of the VAR and FAVAR literature, i.e. Bernanke, Boivin and Eliasz (2005),
Bernanke, Gertler, Watson, Sims and Friedman (1997) and Ramey (2011). The
authors find some interesting differences with the existing results. Furthermore,
Marcellino and Sivec (2015) study the effects of credit shocks on quarterly GDP
in their specific application. They emphasize the ability of the MF-SFAVAR to
overcome some limitations of more parsimonious methodologies, highlighting both
differences and similarities w.r.t. the models presented in the literature.

Time-varying MF-VAR

In the literature of MF-VAR some contributions have been proposed to allow the
model dynamics to vary over-time, with continuously time varying parameters. In
particular, Cimadomo and D’Agostino (2015) consider a time-varying structure
for the Mariano and Murasawa (2003)’s specification and Götz and Hauzenberger
(2015) present a time-varying MF-VAR (hereafter, TV-MF-VAR) starting from
the Schorfheide and Song (2015)’s model.
In general, a TV-MF-VAR model can be expressed by

yt =Cst + vt, vt ∼ N(0, Rt)

st+1 =A0,t + Atst + εt, εt ∼ N(0,Σt)

Σt =FtDtF
′
t ,

where A0,t is the vector of time-varying intercepts, Rt is a diagonal matrix, Ft
is lower triangular, with ones on the main diagonal and Dt is a diagonal matrix.
The motions of the time-varying components of the system are summarized by the
following equations

θt =θt−1 + ωt, ωt ∼ N(0,Ω)

log σt = log σt−1 + ζt, ζt ∼ N(0,Ξ)

φt =φt−1 + ψt, ψt ∼ N(0,Ψ),

where θt = (vec(A0t)
′vec(At)

′)′, σt is the vector of diagonal entries of D
1/2
t and φt

is the vector of the non-zeros off-diagonal elements of F−1
t , related to the contem-

poraneous relationships among each equation.

Both Cimadomo and D’Agostino (2015) and Götz and Hauzenberger (2015),
consider a Bayesian estimation procedure. The latter allow only for a time-varying
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structure in the intercepts and in the error variances; however they provide an ap-
proximate estimation procedure, suggested by the online predictions in engineering
literature, in order to alleviate the computational effort due to non-small scale TV-
MF-VAR.

VECM and cointegration for mixed frequency data

For the analysis of cointegrated MF-VAR and MF-Vector Error Correction Models,
several papers have been proposed.
Starting from a N -variate monthly VAR(p) ∼ I(1), i.e. y∗t = Φ1 + y∗t−1 + · · · +
Φpy

∗
t−p+εt, for t = 1, . . . , T and with cointegration rank r, 0 < r < N , we consider

the related Error Correction form given by

y∗t − y∗t−1 = 4y∗t =Π∗y∗t−1 +

p−1∑
j=1

Ψ∗j 4 y∗t−j + εt (1.19)

=α∗β′∗y∗t−1 +

p−1∑
j=1

Ψ∗j 4 y∗t−j + εt

where Π∗ = −(Φ) = −(I −Φ1− · · · −Φp), Ψ∗i =
∑p

i=j+1 Φi and εt ∼ N(0,Ω). The
identification of the model is guaranteed ordering y∗t such that the no-cointegrated
variables are all in the last n− r position of the vector. This arrangement allows
to consider the normalization β∗ = (Ir, β̃

′∗)′, with β̃∗ of dimension (n− r)× r.
In order to consider a mixed frequency data framework in the specified VECM,
we introduce the permutation matrix P , such that the vector of mixed frequency
observed variables yt = Py∗t . Then multiplying both side of Eq. (1.19) by P , we
obtain a MF-VECM defined by

4 yt = αβ′yt−1 +

p−1∑
j=1

Ψj 4 yt−j + εt (1.20)

where α = Pα∗, β = β′∗P , Π = PΠ∗, Ψ = PΨ∗ and εt = Pεt ∼ N(0, PΩP ′).
Casting the solution in state space form, we obtain

yt =Cst + vt

st+1 =Ast +Bεt
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where

st =


y∗t
y∗t−1

...
y∗t−p+1

 , A =


(I + αβ′ + Ψ1) (Ψ2 −Ψ1) · · · (Ψp−1 −Ψp−2) −Ψp

In 0 · · · · · · 0
0 In · · · · · · 0
...

...
. . .

...
...

0 · · · · · · In 0

 ,

and B = (In, 0)′. The estimation of the MF-VECM with the EM algorithm is
described in Seong, Ahn and Zadrozny (2013).

Seong, Ahn and Zadrozny (2013) provide a Monte Carlo analysis and an empir-
ical application of their proposed estimation procedure via EM algorithm. Götz,
Hecq and Ubrain (2013) consider common cycles in the MF-VAR version of Ghysels
(2012), described below. The authors extend the stacked MF-VAR to work with
I(1) variables, and consider an alternative model, in order to provide a Likelihood-
Ratio-based test for the presence of common cyclical features. Ghysels and Miller
(2015) consider the MF-VAR of Mariano and Murasawa (2003, 2010), and pro-
vide a test to detect cointegration, both with temporally aggregated and mixed
frequency data.

1.5 Structural MF-VARs

A structural MF-VAR (hereafter, MF-SVAR) is a mixed frequency VAR, adapted
for the analyses of structural dynamics. Starting from classical VAR representa-
tion, we can write an exemplifying trivariate MF-SVAR(1) model as y∗1,t

y21,t

y22,t

 =

α11 α12 α13

α21 α22 α23

α31 α32 α33


︸ ︷︷ ︸

A

 y∗1,t−1

y21,t−1

y22,t−1

+

b11 0 0
b12 b22 0
b13 b23 b33


︸ ︷︷ ︸

B

 ε1,t
ε21,t

ε22,t

 , (1.21)

where y21,t and y22,t are two monthly endogenous variables, y∗1,t is the latent
monthly process underlying a quarterly variable y1,t, εt = (ε1,t, ε21,t, ε22,t)

′ ∼ N(0, I3)
is the vector of structural shocks, and B is a lower triangular matrices, obtained
from the Choleski decomposition of the error covariance matrix Σu of ut = Bεt.
Classical identification framework can be investigated considering some aspects
of the problem. As mentioned before, we can assume different relationships be-
tween quarterly variables and the related underlying monthly latent process. For
instance, consider y1,t as the result from a point-in-time sampling procedure of
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y∗1,t; assuming the same approach for the monthly variables, we can obtain the
quarterly realization of the monthly series, obtained with point-in-time sampling.
By this way, we can estimate a (completely observable) quarterly VAR process.
This specification is analytically related to the unobservable monthly process of
Eq. (1.21). In particular, starting from a generic monthly SVAR(1)

Y ∗t = AY ∗t−1 +Bεt, εt ∼ (0, I3), (1.22)

we introduce the polynomial Γ(L) = (I + AL + A2L2). Multiplying both sides of
Eq. (2.2) for the polynomial Γ(L), we obtain the expression

(I + AL+ A2L2)(I − AL)Y ∗t = (I + AL+ A2L2)Bεt

(I − A3L3)Y ∗t = (I + AL+ A2L2)Bεt

Yτ = A3Yτ−1 + ξτ (1.23)

with τ = 3t (quarters) and

ξτ ∼ (0,Ω), Ω = BB′ + ABB′A′ + A2BB′A′2.

The polynomial Γ(L) ensures a quarterly solution in which the endogenous vari-
ables are related only to their third (observable) lags.
Eq. (1.23) represents the (completely observable quarterly) VAR process14, gener-
ated with point-in-time sampling of the monthly variables in the VAR of Eq. (2.2).

Foroni and Marcellino (2014, 2016) treat structural MF-VAR and identification
issues. The authors computationally investigate a SVAR(1) process, and explicit
the consideration just proposed in Marcellino (1999), about some consequences
of aggregation procedures. Foroni and Marcellino (2016) find that, considering
a MF-VAR for one quarterly series and two monthly variables, we can obtain a
full identified monthly specification of the model. Foroni and Marcellino (2014)
proposed the same approach for a small scale DSGE model.
The specific issue of identification of structural MF-VAR was also addressed by
Kim (2010). He investigates the problems rising from frequency misspecification.
In particular, he refers to a data augmentation approach in a Bayesian framework
for the treatment of mixed frequencies.

A different specification of the problem has been provided by Ghysels (2016),
from the starting specification of mixed sampling frequency VARs presented in
Section 1.3

14In the case of mixed frequency data, the standard approach consists of transform, through
aggregation or point-in-time sampling, the high frequency series in a unique frequency (the lowest
frequency).
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1.6 Conclusions

In the last fifteen years, many contributions have been provided by the literature
to deal with mixed frequency data. Banbura, Giannone, Modugno and Reichlin
(2013) provide an exhaustive survey of the econometric tools furnished in the last
decade. An important role in the analyses of the relationships between mixed-
frequency data, is played by mixed-frequency autoregressive processes (MF-VAR).
Considering a set of data collected at two frequencies, a MF-VAR is a standard
(but, unobservable) VAR process for all the variables treated at the high frequency.
In particular, for the low frequency series, we assume that exists an underlying
(latent) high frequency process, which can be investigated with state space models
and filtering procedures.
Motivated by different aspects of classical empirical problems, especially by the
overwhelming framework of nowcasting, the researchers investigate different as-
pects of the MF-VAR models, as the inclusion of stochastic volatility, the analyses
of Markov switching MF-VARs, cointegration and structural relationships. The
result is an ever-expanded wide range of powerful, econometric tools, increasingly
employees in the most varied empirical applications.
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Chapter 2

A moment-based approach for
identification and estimation of
mixed frequency Structural
VARs.

2.1 Introduction

In the analysis of the co-movements between economic series, working with vari-
ables sampled at different frequency is a common situation. The classical approach
is represented by the estimation of the model at the lowest frequency in the data.
In other words, the high frequency variables are aggregated until all series present
the same low frequency. After that, the model is classically estimated (naive
approach). However, as pointed out by Marcellino (1999)1, temporal aggregation
can lead to different problems of identification, estimation and interpretation of the
results due to the misspecification of the co-movements between mixed frequency
variables2 (aggregation bias). In particular, the author sums up the characteristics
of a time series process that appear to be either unaffected or affected by temporal
aggregation. The structural analysis, and specifically the Impulse Response func-
tions (IRFs) belong to the second category, i.e. the set of time series “properties”
that vary after aggregation. For example, consider to work with two variables, one
available at monthly frequency and a second one available only every three months
(quarterly). We consider to estimate a structural VAR model (SVAR), with a re-
cursive identification scheme, in order to analyse the response of the first variable

1See also Wei (1981), Weiss (1984), Rossana and Seater (1992), Pierse and Snell (1995), Kim
(2010).

2See Ghysels (2016).
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to an orthogonal shock in the second. With the classical approach, the econo-
metrician aggregates the monthly variable, and estimates a quarterly SVAR, with
related quarterly IRFs. Now assume that we can deal also with the monthly real-
izations of the quarterly variable. We estimate the monthly SVAR, and then the
monthly IRFs. In order to compare the results obtained with the two approaches,
we aggregate the monthly responses, and we plot both the quarterly solutions: the
IRFs for the quarterly process (naive approach), reported in Figure 2.1 with the
black solid line, and the aggregated high frequency impulse responses, shown with
the red dotted line.
As shown in Figure 2.1 the responses are quite different. In particular, the magni-
tude of the instantaneous response obtained with the aggregated solution is higher
then that obtained with the naive approach.

Figure 2.1: Comparison between low frequency Impulse Responses, calculated with the
naive approach (black solid line), and the responses obtained aggregating the estimated
high frequency IRFs (red dotted line).

In the last decade, the researchers try to implement different econometric solutions
to use all the information in mixed frequency datasets and, therefore, to mitigate
the effects of temporal aggregation. One of the proposed approaches considers the
general idea of extend the VAR methodology to mixed frequency data. Mixed
frequency VAR models (MF-VARs) have been introduced more than twenty years
ago by Harvey and Pierse (1984) and Zadrozny (1988). The methodology has
been finally refined and developed by Mariano and Murasawa (2003, 2010). A
MF-VAR can be defined as a high frequency VAR process, through which we
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analyse the co-movements between the (available) high frequency data and the
latent high frequency processes underlying the low frequency variables. As widely
analysed in Chapter 1, the general idea of MF-VAR consists in referring to a VAR
process in which the endogenous vector is not completely observable. State space
representation handles both the latent and the autoregressive characteristic of the
MF-VAR. In particular, we can write a MF-VAR process as

y∗t = Φ1y
∗
t−1 + Φ2y

∗
t−2 + · · ·+ Φpy

∗
t−p + εt, εt ∼ iid(0,Σ), t = 1, . . . , T, (2.1)

where y∗t = (y∗
′

1,t, y
′
2,t)
′ is the N × 1 vector of high frequency endogenous variables:

y2,t is the subvector of N2 variables observed each high frequency instant, and y∗1,t
is the subvector of N1 high frequency latent variables underlying the quarterly
variables y1,t; Φj, j = 1, . . . , p is the (monthly - high frequency) coefficient matrix
for the jth lag, and Σ the error covariance matrix. Reparametrizing Eq. (2.1) with
state space representation, in the state equation we refer to the high frequency au-
toregressive nature of the process, while in the measurement equation we specify
the relationships between the latent high frequency process (i.e. y∗1,t) underlying
the observable variables, and the only available low frequency realizations (i.e.
y1,t).
If in MF-VARs the frequency investigated by the researchers is the highest fre-
quency in the data, a different approach is presented by Ghysels (2016). The
author proposes a novel specification of VAR processes with mixed-data sampling.
The idea of Ghysels is strongly inspired by the MIDAS literature3. MIDAS re-
gressions aggregate data sampled at different frequencies in order to analyse the
relationships between the low frequency variable (of interest) and some regressors
sampled at different frequency. The aggregation is done through a parsimonious
weighting function, which depend on a low dimensional parameter vector, and
links the low frequency variable to the high frequency observations of the regres-
sors. By this way, Ghysels (2016) consider the idea of modelling a VAR process in
which the endogenous vector is obtained stacking both the high and the low fre-
quency observations in the same vector, in order to study the impact of high/low
frequency data on low/high frequency variables.

Among the developments provided about MF-VARs4, only a small field of the
literature considers the structural analysis. After Foroni and Marcellino (2014)
for the estimation of dynamic stochastic general equilibrium models (DSGE) with
mixed frequency data, a more general investigation of the MF-Structural VAR

3Mixed-Data Sampling equation (MIDAS) represents one of the latest tool provided in the
framework of nowcasting; see Ghysels, Santa-Clara and Valkanov (2006), Ghysels, Sinko and
Valkanov (2006), Clements and Galvão (2008)), among others.

4See section 1.4.
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(MF-SVAR) is presented by Foroni and Marcellino (2016). The authors consider
the simple cases of a VAR(1) models, and analyse the relationships from the high
and the low frequency representation of the problem. They refer to two different
aggregation schemes: the point-in-time sampling and the aggregation sampling.
Foroni and Marcellino demonstrate that, considering a suitable estimation pro-
cedure, the analysis of mixed frequency data alleviates the classical bias due to
temporal aggregation.
In this discussion we present a novel approach that doesn’t belong completely to
one of the classes of MF-VAR identified before, and represented by Mariano and
Murasawa (2003, 2010)’s approach and Ghysels (2016)’s specification. The pro-
posed approach allows to recover high frequency parameters from low frequency
estimates, considering the mapping between the matrices. Specifically, starting
with a general high frequency SVAR(1) process, aggregated in different ways, we
demonstrate that we can recover the high frequency parameters, starting from the
estimated low frequency counterpart, through a Minimum Distance estimation ap-
proach. Referring to a VAR of order one could be seems to involve only a small
part of the multivariate time series literature. However, in the macroeconomic
framework an important field of research, represented by Liner Expectation mod-
els and Dynamic Stochastic General Equilibrium (DSGE) models, usually refer to
VAR(1) processes.
Motivated by this strand of the literature, in Section 2.2 we introduce the gen-
eral specification of the problem, the aggregation schemes which we refer, and
the generalization proposed in this discussion. Section 2.3 states the first results
obtained from the point-in-time sampling technique. The estimation procedure
is introduced, pointing out some critical point about identification and high non-
linearity of the relationships. We propose some Monte Carlo experiments, and a
comparison with the state space methodology. The second aggregation scheme,
i.e. the sum-over-the quarter sampling, is introduced in Section 2.4. As in Sec-
tion 2.3, we propose two different Monte Carlo experiments, and a comparison
with the results obtained with the state space approach. Section 2.5 asses a pos-
sible generalization of the procedure to higher order high frequency VARs. We
introduce the Impulse Response Function Matching estimator. The general pro-
cedure is described, and we propose a further Monte Carlo experiment to evaluate
the generalization approach. In Section 2.6 we report the results of some empiri-
cal exercises of structural analysis, with different specification of the problem. In
Section 2.7 we provide some final considerations and conclusions.
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2.2 Identification of the high frequency struc-

tural VAR(1)

In this section we introduce the general MF-SVAR(1), considered by Foroni and
Marcellino (2014, 2016), and the estimation procedure suggested by Giannone,
Monti and Reichlin (2014) to solve the identification problem. We focus on the
following monthly trivariate (n = 3) structural VAR:

Y ∗t = AY ∗t−1 +Bεt, εt ∼ (0, I3), (2.2)

where Y ∗t = (y′∗1,t, y
′
2,t, y

′
3,t)
′, and y∗1,t is the variable observed only at quarterly

frequency, B is a n × n matrix related to the n × 1 vector of structural shocks
εt, and ut = Bεt is the residual component. In the discussion of Foroni and
Marcellino (2016), B is obtained from a Cholesky decomposition of the covariance
matrix Σu of the residual component. In particular, the matrix B governs the
relationships between the disturbances and the structural shocks. The analysis
can be generalized to SVARs with generic n and, in particular cases, to non-
recursive structural identification schemes.
We introduce:

• the filter Γ(L) = (I + AL + A2L2), such that, multiplying both sides of
Eq. (2.2) by Γ(L), we obtain only power of degree m = 3 of the lag operator
L (with m equal to the number of high frequency observations obtained in
each reference low frequency period), L3Yt = Yt−3. By this way we refer only
to observations corresponding to the third-monthly values available at each
quarter;

• ω(L) the weighting matrix, that governs the sampling (aggregation) ap-
proach5. Throughout this paper, we consider two cases of interest:

point-in-time sampling ω(L) = I,

sum (-over-the low frequency) sampling ω(L) = (I + L+ L2).

The choice of the aggregation scheme is substantially connected to the nature of
the variables. In particular, if we have to deal with stock variables we will refer
to the point-in-time sampling; on the other hand, in the case of flow variables
we aggregate the data with the sum-over the low frequency technique6. The two
sampling procedures provide distinct solutions. For this reason, and to make our
presentation as simple as possible, we divide the problem in two parts: in the first

5Examples of sampling procedure have been provided in Chapter 1.
6Directly linked to the “sum” approach, is the (most common) average sampling.
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2.3 Point-in-time sampling

one we consider “point-in-time” sampling, and in the second the “sum-over-the
quarter” case. For brevity, we refer to this technique as “sum” sampling.
After the choice of the aggregation scheme, the general idea of the proposed ap-
proach is to recover the parameters of the (unobservable) high frequency process,
investigating the mapping between the available low frequency (quarterly) param-
eters and the high frequency (monthly) counterparts.

2.3 Point-in-time sampling

Assume that the monthly DGP is described by the SVAR(1) in Eq. (2.2). In
the point-in-time case the quarterly values of y∗1,t correspond to the third-period
observations of the monthly process, in each reference quarter.
In order to obtain the aggregated solution, we multiply both sides of Eq. (2.2)
by the weighting matrix ω(L) and the filter Γ(L)7. The resultant low frequency
process is given by

Γ(L)(I − AL)ω(L)Y ∗t = Γ(L)Bω(L)εt

(I + AL+ A2L2)(I − AL)(I)Y ∗t = (I + AL+ A2L2)B(I)εt

(I − A3L3)Y ∗t = (I + AL+ A2L2)Bεt

Yt = A3Yt−3 +Bεt + ABεt−1 + A2Bεt−2

Yτ = CYτ−1 + ξτ (2.3)

where τ = 3t and ξτ = Bεt + ABεt−1 + A2Bεt−2. Furthermore, since εt ∼ (0, I),
ξτ ∼ (0,Ω) with

Ω = BB′ + ABB′A′ + A2BB′A′2. (2.4)

and ξτ is uncorrelated in τ (quarterly frequency), i.e.

Cov(ξτ , ξτ−l) = 0, l = ±1,±2, . . . .

In general, the researcher estimates the econometric model at the frequency at
which all data are available, which in this case is quarterly. As mentioned above,

7We can obtain the same results by repeated substitutions, i.e.

Y ∗t = AY ∗t−1 +Bεt

Y ∗t = A(AY ∗t−2 +Bεt−1) +Bεt

Y ∗t = A(A(AY ∗t−3 +Bεt−2) +Bεt−1) +Bεt

Y ∗t = A3Y ∗t−3 + (I +AL+A2L2)Bεt

Yτ = A3Yτ−1 + ξτ .
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2. A moment-based approach for identification and estimation of MF-SVARs.

in a dataset composed by variables sampled at different frequency, the typical ap-
proach is represented by the aggregation of the high frequency variables, until all
the data presents the same (low) frequency. This strategy corresponds to assume
that the Data Generating Process belongs to the model at the lowest data fre-
quency. On the other hand, if we assume that the DGP belongs to the highest
frequency, the estimate of the aggregated model could lead to relevant estimation
bias8.
In this discussion we assume that the DGP is at monthly (highest) frequency. We
propose a two step procedure to obtain the estimates of Â and B̂ of Eq. (2.2),
given the estimated matrices Ĉ and Ω̂ in Eq. (2.3) and Eq. (2.4), based on quar-
terly data.
The presented case refers to a structural matrix B lower triangular. However, in
some situations, triangular SVARs offer a misspecified representation of the re-
ality. Castelnuovo and Surico (2010), and Bacchiocchi, Castelnuovo and Fanelli
(2016) present different examples for which a Cholesky decomposition of the resid-
ual covariance matrix leads to non-consistent estimation of the parameters and
to unreliable responses of the variables after a policy monetary shock. To gen-
eralize the procedure described above, we evaluate the aggregation of SVAR(1)
processes also for non-recursive structural schemes and we exploit how to achieve
identification in those cases in which we observe identification problems.

2.3.1 Estimation approach

Imagine that the DGP belongs to the model at highest frequency t (monthly),
but we can deal only with variables at the lowest frequency τ (quarterly). Our
objective is to identify the monthly parameters in A and B, with the knowledge
of the quarterly parameter matrices C and Ω. The monthly model specification is
given by:

Y ∗t = AY ∗t−1 +Bεt, εt ∼ (0, I3), t = 1, . . . T

with quarterly correspondent process:

Yτ = CYτ−1 + ξτ , ξτ ∼ (0,Ω), τ = 3, 6, . . . T (2.5)

where Ω = BB′ + ABB′A′ + A2BB′A′2. We consider the following moment con-
ditions:

C = A3, (2.6)

Ω = BB′ + ABB′A′ + A2BB′A′2 (2.7)

8Foroni and Marcellino (2014) evaluate analytically the mismatch between the results with
the naive approach and aggregation techniques. They demonstrate that standard strategy and
aggregated technique provides different relations between the structural parameters and the
estimated coefficient matrix.
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which represent the mapping between the matrices of the high frequency (struc-
tural form) and the low frequency model (reduced form).

With B lower triangular, the model is exactly identified: the estimated pa-
rameters at quarterly frequency are n2 + n(n + 1)/2, where n2 is the number of
distinct elements of C and n(n + 1)/2 is the number of distinct entries of Ω. In
particular, the number of estimated parameters at quarterly frequency are equal
to the number of free parameters in the monthly process.
If we need to consider non-recursive structural schemes, at quarterly frequency
the number of free parameters is always n2 + n(n + 1)/2. However, at monthly
frequency the number of parameters which has to be estimated strictly depends
on the structure of B, and in particular on the number of free parameters in B.
In this discussion we consider the more general situation, specifying B to be full.
In this case, the number of high frequency parameters which has to be estimated
is 2n2 > n2 + n(n + 1)/2, where n2 are the distinct parameters in A and also in
B. Hence, considering the most general case of the non-recursive schemes, the
monthly SVAR(1) is not identified.
In recent years, many authors have proposed to use specific characteristics of the
data, with the aim of providing further moment conditions to identify and esti-
mate the structural parameters. Lanne and Lutkepohl (2008) consider the idea of
matching and testing conventional linear restrictions (especially, of non-recursive
identification schemes) and statistical information in order to consider time varying
structures in the error covariance matrix9. In the situation of possible structural
break(s) in the data, we can recover to the solution proposed by Lanne and Lutke-
pohl (2008).
Assume that we observe a singular structural change in the volatility at time Tb,
with 1 < Tb < T . Then the (“reduced”) high frequency model is defined by

Y ∗t = AY ∗t−1 + ut, ut ∼

{
(0,Σ1), 1 ≥ t ≥ Tb

(0,Σ2), Tb + 1 ≥ t ≥ T.
(2.8)

Given Σ1 6= Σ2, we can rewrite the covariance matrix Σ1 as BB′ and Σ2 = BV B′,
with V 6= I is a n × n diagonal matrix. By this way we can easily estimate
n2 + n(n + 1)/2 parameters for each equation (n2 free parameters in A, and
n(n + 1)/2 distinct elements - due to symmetry - in the covariance matrix Σi,
i = 1, 2); then the total number of estimated parameters in Eq. (2.8) is n2+n(n+1).
On the other hand, the total number of free parameters in the structural form is
n2 + n2 + n (n2 free parameters in A, n2 structural coefficients in B and n dis-
tinct elements in the diagonal covariance matrix V ), i.e. equal to the number

9Lanne and Lutkepohl (2008) adapt the approach of Klein and Vella (2006) and Rigobon
(2003) who shown that identification can be obtained using the additional information of the
heteroscedasticity found in the data.
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2. A moment-based approach for identification and estimation of MF-SVARs.

of estimated coefficients in the reduced form. Introducing heteroscedasticity, also
the monthly process with non-recursive structural scheme is (exactly) identified.
Specifically, we consider to have just detected a singular structural break in the
volatility at time Tb, where 1 < Tb < T . For sake of simplicity, we consider the
following assumptions:

ASSUMPTION 1: the high frequency instant in which we observe a struc-
tural break in the volatility Tb coincides with the third month of the reference
quarter.

ASSUMPTION 2: the change in the error covariance matrix Σ is detectable
also with quarterly data.

The second assumption stems from the idea that, even if the heteroscedastic
behaviour of the data can be reduced by temporal aggregation, the empirical
evidence of change through distinct regimes can not be excluded10.
After the detection of (two) distinct volatility regimes, at the low frequency we
estimate n2 + n(n + 1) parameters, that coincides with the number of the high
frequency free parameters (n2 +n2 +n = n2 +n(n+ 1)). In this case, the monthly
model specification is given by

Y ∗t = AY ∗t−1 +Bεt, εt ∼

{
(0, I3), if t = 1, . . . Tb

(0, V ), if t = Tb + 1, . . . , T
(2.9)

where V = diag(v1, v2, v3), with quarterly correspondent processes:

Yτ = CYτ−1 + ξτ , ξτ ∼

{
(0,Ω1), if τ = 3, 6, . . . Tb

(0,Ω2), if τ = Tb + 3, . . . , T
(2.10)

where Ω1 = BB′+ABB′A′+A2BB′A′2 and Ω2 = BV B′+ABV B′A′+A2BV B′A′2.
In this case the mapping between the monthly and the quarterly matrices is given
by:

C = A3, (2.11)

Ω1 = BB′ + ABB′A′ + A2BB′A′2, (2.12)

Ω2 = BV B′ + ABV B′A′ + A2BV B′A′2. (2.13)

Our idea is to obtain the high frequency parameters using the mapping reported
above. Specifically we recover a preliminary estimate of the monthly coefficient

10The classical example of empirical applications in macroeconomic framework that has been
investigated is represented by the transition from the ’Great Inflation’ to the ’Great Moderation’
period. See e.g. Boivin and Giannoni (2006) and Bacchiocchi and Fanelli (2015).
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matrix A, i.e. Ã, solving the (real) cube root of Ĉ (indirect estimate); we use Ã
as starting values for the minimum distance estimation of Â, B̂ (and V̂ ), given
Eq. (2.11)-(2.13).

The real cube of C

The high nonlinearity of the relation C = A3 can be solved using the Jordan
canonical form. Higham (2008) summarizes three approaches to evaluate matrix
functions: Jordan canonical form, polynomial interpolation and Cauchy integral.
From this starting point a wide range of the literature concentrates the attention
on pth roots of matrices. In this specific case, the cube root of a square matrix
in Rn×n, with no repeated eigenvalues (i.e. non-derogatory matrix), appears as a
very specific situation of a more general framework. In the case of VAR coefficient
matrix estimation we focus only on solving this specific problem. See APPENDIX
A1 for further details on matrix functions, Jordan canonical form and for a more
general treatment of this specific problem.
We consider the Jordan decomposition C = MJM−1, where M is an n × n non-
singular matrix, and J is the n × n block diagonal Jordan matrix. The function
C1/3 ∈ Rn×n, is defined by

C1/3 = (MJM−1)1/3

= MJ1/3M−1

= Mdiag(J1(λ1)1/3, . . . , Jn(λn)1/3)M−1,

where λi, i = 1, . . . , n, are the (non-repeated) eigenvalues of C and the diagonal
(Jordan) blocks Ji(λi) of the Jordan matrix J are scalars, Ji = λi, i = 1, . . . , n.

The problem in the estimation of the monthly coefficient matrix A, is that
A = C1/3 not always has a unique solution, also in the specific case of C1/3 ∈ Rn×n.
Starting with the definition of the Jordan decomposition, and considering the
example with n = 3, we have to evaluate two different cases11: (i) the cube root of
a matrix C with 3 real distinct eigenvalues, (ii) the cube root of a matrix C with
one real eigenvalue and a pair of complex conjugate eigenvalues. In the first case,
the solution C1/3 = A ∈ R3×3 is unique. In the second case, what we obtain are
three distinct solutions, C1/3 = {A1, A2, A3} ∈ R3×3. In this case, the general idea

11In a SVAR with n > 3, the number of possible pair of complex conjugate eigenvalues has
to be an even-number (or equal to zero). The number h of possible distinct solutions in R of
the cube root of a n × n matrix is related to the amount k of complex conjugates pairs and,
in particular h = 3k. For example, in a VAR(1) with n = 5 endogenous variables, where the
coefficient matrix C has one real eigenvalue and two pairs of complex conjugates eigenvalues, the
number of equivalent solutions of C1/3 is 32 = 9.
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2. A moment-based approach for identification and estimation of MF-SVARs.

is to use the estimation of the structural coefficient matrices obtained for each Ai,
i = 1, 2, 3, in order to identify the “true” set of monthly parameters.

Minimum Distance estimation

Suppose that θ0 is the nθ × 1 vector of (high frequency) parameters of interest,
which is known to be function of the nφ × 1 (low frequency) parameter vector φ0,
with nφ ≥ nθ. In particular, for a known continuously differentiable function h,

f(φ0, θ0) = φ0 − h(θ0) = 0.

Let φ̂ be a consistent estimator of φ, with asymptotic covariance matrix Ψ.
The minimum distance estimator θ̂ solves the minimization problem:

min
θ∈T

Q(θ) = min
θ∈T
{φ̂− h(θ)}′S{φ̂− h(θ)}, (2.14)

where S is any positive semi-definite symmetric matrix.
In the case of B obtained from a Cholesky decomposition the high frequency
parameter vector is given by θ = (vec(A)′, vech(B)′)′. As described above, we know
that the n2 +n(n+ 1)/2× 1 (quarterly) parameter vector φ̂ = (vec(Ĉ)′, vech(Ω̂)′)′

is function of θ. The relationship between the number of monthly and quarterly
parameters can be summarized by

dim(φ̂) = n2 + n(n+ 1)/2 = n2 + n(n+ 1)/2 = dim(θ).

The mapping of Eq. (2.6) and Eq. (2.7) represents the known continuously function
h shown in Eq (2.14). As described by Newey and McFadden (1994) the optimal
choice of the weighting matrix S is represented by the inverse of the asymptotic
covariance matrix estimator Ψ̂ of the quarterly estimated vector φ̂12.
Since S = Ψ̂−1, the asymptotic distribution of the classical minimum distance
estimator θ̂ is given by

√
T (θ̂ − θ0) ∼ (0,Θ), with

Θ̂ =

((
∂h(θ)

∂θ̂′

)′
Ψ̂−1

(
∂h(θ)

∂θ̂′

))−1

,

where

Ψ̂ =

(
(Ξ̂−1 ⊗ Ω̂) 0n2×n(n+1)/2

0n(n+1)/2×n2 2D+
n (Ω̂⊗ Ω̂)(D+

n )′

)
,

and D+
n = (D′nDn)−1D′n is the (n2 × n(n + 1)/2) Moore-Penrose inverse of the

duplication matrix Dn and Ξ̂ = Yt−1Y
′
t−1/T .

12The definition of the optimal weighting matrix is discussed in detail in APPENDIX A3

51



2.3 Point-in-time sampling

With B non-recursive, we consider the quarterly n2 + n(n + 1) × 1 vector of
parameters φ̂ = (vec(Ĉ)′, vech(Ω̂1)′, vech(Ω̂2)′)′, and evaluate the relationships
between φ̂ and the monthly vector given by θ = (vec(A)′, vec(B)′, diag(V )′)′ of
dimension 2n2 + n× 1. What we observe is

dim(φ̂) = n2 + n(n+ 1) = 2n2 + n = dim(θ)

that is, the monthly process is exactly identified. In particular, for the known
continuously differentiable function h, defined by the relationships in Eq. (2.11),
(2.12) and (2.13), the minimization problem is represented by Eq. (2.14), with op-
timal weighting matrix S given by the inverse of the estimator Ψ̂ of the asymptotic
covariance matrix of the estimated Ĉ, Ω̂1 and Ω̂2. In particular, the block diagonal
matrix Ψ̂ is defined by

Ψ̂ =

Ψ̂00 0 0

0 Ψ̂11 0

0 0 Ψ̂22

 ,

where Ψ̂00 = (Ξ̂−1⊗ Ω̂) is the estimated covariance matrix of vec(Ĉ) calculated
on the entire period, and Ψ̂11 = 2D+

n (Ω̂1⊗Ω̂1)(D+
n )′ and Ψ̂22 = 2D+

n (Ω̂2⊗Ω̂2)(D+
n )′

are the estimated covariance matrix of the quarterly estimates of the covari-
ance matrices of the residuals, respectively calculated for τ = 3, . . . , Tb and τ =
Tb + 3, . . . , T .

Coming back to the initial values in the computation of the real cube root of
Ĉ, when the eigenvalues of the estimated quarterly coefficient matrix C are all
(distinct) in the real plane, the solution Ĉ1/3 = Â ∈ R3×3 is unique, hence also
B̂ (and V̂ , in the case of B non-recursive). Otherwise, if Ĉ1/3 = {Ã1, Ã2, Ã3} ∈
R3×3, with the minimum distance estimation we obtain {Â1, B̂1}, {Â2, B̂2} and
{Â3, B̂3} (or {Â1, B̂1, V̂1}, {Â2, B̂2, V̂2} and {Â3, B̂3, V̂3}), respectively associated
to {Ã1, Ã2, Ã3}.
Then, the procedure follows with the identification of the “true” set of matrices
among the three sets previously obtained and summarized as follows:

B lower triangular


θ̂1 = {Â1, B̂1}
θ̂2 = {Â2, B̂2}
θ̂3 = {Â3, B̂3}

or

B non-recursive


θ̂1 = {Â1, B̂1, V̂1}
θ̂2 = {Â2, B̂2, V̂2}
θ̂3 = {Â3, B̂3, V̂3}

.

52



2. A moment-based approach for identification and estimation of MF-SVARs.

The proposed approach considers to chose the set of estimated matrices that pro-
vides the minimum value of the minimization function calculated for each of the
three cases, i.e. {Q(θ̂1), Q(θ̂2), Q(θ̂3)}.
Even if the order condition guarantees the identifiability of the monthly param-
eters, in the estimation of the model some problems could arise, due to the high
nonlinearity of the relationships described above in Eq. (2.6) and Eq. (2.7), and in
Eq. (2.11), (2.12) and (2.13). The solution considered is to solve the minimization
problems, given the relationships:

• B lower triangular

C = A3, (2.15a)

Ω = Σ + AΣA′ + A2ΣA′2, (2.15b)

with Σ = BB′, and then obtain B with the Cholesky decomposition;

• B non-recursive

C = A3, (2.16a)

Ω1 = Σ1 + AΣ1A
′ + A2Σ1A

′2, (2.16b)

Ω2 = Σ2 + AΣ2A
′ + A2Σ2A

′2, (2.16c)

with Σ1 = BB′, Σ2 = BV B′, and B (and V ) estimated with a final Minimum
Distance estimation step, based on the explicit relationships

Σ1 = BB′, (2.17a)

Σ2 = BV B′, (2.17b)

and weighting matrix S given by the inverse of the asymptotic covariance matrix13

Θ̂(1,2) of the estimated θ̂(1,2) = (vech(Σ̂1)′, vech(Σ̂2)′)′ and obtained at the previous
step as

Θ̂(1,2) =

((
∂h(θ(1,2))

∂θ̂(1,2)′

)′(
Ψ̂11 0

0 Ψ̂22

)−1(
∂h(θ(1,2))

∂θ̂(1,2)′

))−1

.

The proposed decomposition of the problem simplifies the estimation procedure
and removes any possible failure of identification due to high nonlinearity of the
relationships.

13See APPENDIX A3 for further details about Minimum Distance and Classical Minimum
Distance estimation.

53



2.3 Point-in-time sampling

2.3.2 Monte Carlo experiments

We consider two different Monte Carlo experiments, with different sample sizes,
to evaluate the solutions proposed above either for B lower triangular, or for B
nontriangular.
For M = 1000 replications, we generate the monthly trivariate SVAR(1) process
defined in Eq. (2.2), where Y ∗t , t = 1 . . . , T , is the n × 1 vector of the n monthly
series, Y0 is set to 0n×1, A is the n×n coefficient matrix, B is the n×n matrix of co-
efficients of instantaneous shocks. We consider different sample sizes, in particular
T = {600, 1200, 3600} (months, corresponding to 200, 400 and 1200 quarters)14.
For each replication, we apply the filters ω(L) = I and Γ(L) = (I + AL + A2L2),
to the monthly series Y ∗t . The result is the quarterly variable Yτ , aggregated via
point-in-time sampling.
In the case of B lower triangular, the estimation procedure, proposed above, cor-
responds to:

• obtain the quarterly least squares estimates of Ĉ and Ω̂, from the quarterly
VAR(1) of Eq. (2.5);

• solve the (real) cube root Ĉ1/3 = Ã;

• use Ã as starting values for the Minimum distance estimation of A and
Σ = BB′, given the mapping of Eq. (2.15);

• use the Cholesky decomposition of Σ̂ to obtain B̂.

Similarly, for the case of B non recursive, we refer to the monthly process
in Eq. (2.9), where V = diag(v1, v2, v3), Tb is the break in the process and, for
simplicity, we assume that (i) Tb coincides with the third month of the reference
quarter, and (ii) Tb = T/2. In this case the estimation approach can be summarized
by the following steps:

• estimate the quarterly matrices Ĉ, Ω̂i, with i = 1, 2;

• solve the cube root Ã = Ĉ1/3;

• estimate the monthly vector of parameters (vec(Â)′, vech(Σ̂1)′, vech(Σ̂2)′)′,
solving the minimization problem in Eq. (2.14), with the mapping described
by the system in Eq. (2.16);

• we consider a further Minimum distance step in which we estimate B̂ and V̂
from the relationships in Eq. (2.17).

14Even if the seconds sample sizes seem to be unreasonable, we shown these results to highlight
how the accuracy of the estimates improves working with large samples.
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We report below two representative examples. Referring to B recursive, we
consider the monthly DGP

Y ∗t =

0.500 0.320 0.100
0.200 0.250 0.050
0.100 0.400 0.800


︸ ︷︷ ︸

A

Y ∗t−1+

0.500 0 0
0.300 0.400 0
0.100 0.250 0.600


︸ ︷︷ ︸

B

εt, εt ∼ (0, I)

(2.18)

The monthly SVAR(1) process in Eq. (2.18) generates the quarterly point-in-
time VAR(1) process defined by:

Yτ =

0.233 0.232 0.163
0.114 0.115 0.081
0.263 0.448 0.579


︸ ︷︷ ︸

C

Yτ−1+ξτ , ξτ ∼


0

0
0

 ,

0.501 0.282 0.390
0.282 0.320 0.314
0.390 0.314 1.23


︸ ︷︷ ︸

Ω

 .

(2.19)

The representative design of Eq. (2.18) and the DGP matrices of the case of B
non-recursive, are reported in the first columns of Table 2.1 and Table 2.2 respec-
tively, with the related Monte Carlo results. We report also the impulse response
function for both the Monte Carlo experiments, with T = 3600, in Figure 2.2 and
Figure 2.3 - 2.4. We depict the response of the i-th variable to a shock on the j-th
variable as (j → i) i.e. (impulse → response). The biases of the estimates are
measured referring to two quantities: first, the sum of the differences, in absolute
value, of the DGP values and the Monte Carlo estimates (in the Tables as bias(1)),
and bias(2), calculated as bias(1)/(number of estimated elements).

In Table 2.1 and Table 2.2 we report the true value of the parameters in the
first column, and for each T = {600, 1200, 3600} we show the estimates of the
high frequency parameters, the Monte Carlo and the empirical standard errors
(as “MCs.e.” and “s.e.” respectively), these last obtained from the square root of
the diagonal entries of the estimated covariance matrix of the minimum distance
estimates15. An enhancement in the performances of the proposed approach have
been observed increasing the sample size. Also the standard errors of the estimates
get better and gradually decreases, passing from T = 600 high frequency periods
to T = 3600.
However, the results assess the difficulty of the Minimum Distance estimation pro-
cedure to treat the high nonlinearity of the examined relationships. In the next

15A possible alternative, which we don’t consider in the Monte Carlo experiments, is repre-
sented by the bootstrap procedure.
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2.3 Point-in-time sampling

section we reduce the sample size and we compare the Minimum Distance esti-
mation and the state space methodology, in order to evaluate both the mixed
frequency estimation techniques in term of structural analysis.

Tm=600 Tm=1200 Tm=3600

vec(A) vec(Â) MCs.e. s.e. vec(Â) MCs.e s.e. vec(Â) MCs.e. s.e.
0.500 0.466 0.04 0.03 0.486 0.04 0.02 0.490 0.03 0.02
0.200 0.304 0.09 0.06 0.258 0.06 0.04 0.233 0.03 0.03
0.100 0.082 0.07 0.05 0.075 0.05 0.03 0.082 0.04 0.02
0.320 0.332 0.06 0.03 0.322 0.06 0.02 0.328 0.03 0.03
0.250 0.120 0.09 0.05 0.172 0.07 0.04 0.204 0.04 0.04
0.400 0.450 0.06 0.05 0.441 0.03 0.03 0.428 0.03 0.02
0.100 0.110 0.04 0.01 0.104 0.03 0.01 0.102 0.02 0.00
0.050 0.037 0.07 0.02 0.045 0.06 0.01 0.047 0.04 0.01
0.800 0.794 0.06 0.01 0.799 0.03 0.01 0.800 0.03 0.00

bias(1) 0.377 - - 0.229 - - 0.149 - -
bias(2) 0.042 - - 0.025 - - 0.017 - -

vech(B) vech(B) MCs.e. s.e. vech(B) MCs.e. s.e. vech(B) MCs.e. s.e
0.500 0.492 0.06 0.01 0.494 0.04 0.01 0.496 0.03 0.01
0.300 0.307 0.06 0.02 0.314 0.06 0.01 0.299 0.05 0.01
0.100 0.123 0.09 0.03 0.106 0.07 0.02 0.088 0.06 0.02
0.400 0.361 0.04 0.01 0.368 0.03 0.01 0.386 0.02 0.01
0.250 0.278 0.14 0.02 0.297 0.14 0.02 0.272 0.13 0.02
0.600 0.554 0.13 0.02 0.574 0.14 0.01 0.589 0.13 0.01

bias(1) 0.152 - - 0.129 - - 0.063 - -
bias(2) 0.025 - - 0.022 - - 0.010 - -

Table 2.1: Monte Carlo results obtained for point-in-time sampling of a SVAR(1) with B
’Cholesky based’. In the first column we report the elements of the population matrices
A and B defined in Eq. (2.18). We consider T = 300, 600, 1200, and we evaluate the
results with two measures of bias: bias(1) is calculated as the sum of the differences
in absolute value of the ”true” value of the elements and the Monte Carlo estimates;
bias(2) is calculated as bias(1)/(number of elements).
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2. A moment-based approach for identification and estimation of MF-SVARs.

Figure 2.2: Impulse responses from Monte Carlo experiment reported in Table 2.1, with
sample size T = 3600. The red-dotted line corresponds to the population responses,
the blue-dashed lines refer to the confidence bounds (calculated as two-standar error
bounds) of the IRFs calculated with the proposed Minimum distance approach (black
line)

.
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Tm=600 Tm=1200 Tm=3600

vec(A) vec(Â) MCs.e. s.e. vec(Â) MCs.e s.e. vec(Â) MCs.e. s.e.
0.500 0.520 0.05 0.08 0.517 0.05 0.07 0.512 0.04 0.06
0.100 0.081 0.06 0.10 0.076 0.05 0.08 0.078 0.04 0.07
0.050 0.062 0.05 0.08 0.068 0.04 0.07 0.068 0.04 0.06
0.200 0.129 0.09 0.18 0.141 0.08 0.16 0.153 0.08 0.15
0.350 0.434 0.13 0.21 0.428 0.11 0.20 0.421 0.11 0.19
0.400 0.347 0.11 0.16 0.347 0.09 0.15 0.347 0.09 0.15
-0.100 -0.069 0.05 0.09 -0.073 0.04 0.08 -0.079 0.04 0.07
0.250 0.210 0.06 0.10 0.215 0.05 0.10 0.218 0.05 0.08
0.700 0.727 0.05 0.08 0.724 0.05 0.08 0.723 0.04 0.07

bias(1) 0.367 - - 0.279 - - 0.220 - -
bias(2) 0.041 - - 0.031 - - 0.024 - -

vec(B) vec(B̂) MCs.e. s.e. vec(B̂) MCs.e. s.e. vec(B̂) MCs.e. s.e
0.250 0.233 0.17 0.35 0.237 0.16 0.27 0.245 0.13 0.14
0.150 0.154 0.10 0.29 0.149 0.10 0.24 0.127 0.08 0.14
0.100 0.170 0.11 0.36 0.163 0.10 0.30 0.160 0.08 0.17
0.500 0.450 0.14 0.27 0.459 0.14 0.21 0.491 0.11 0.09
0.300 0.249 0.08 0.18 0.259 0.08 0.14 0.282 0.06 0.06
-0.230 -0.199 0.07 0.15 -0.209 0.05 0.08 -0.210 0.04 0.03
0.200 0.179 0.10 0.17 0.191 0.08 0.10 0.196 0.05 0.04
-0.250 -0.241 0.07 0.11 -0.244 0.05 0.05 -0.249 0.03 0.02
0.430 0.364 0.10 0.24 0.381 0.07 0.14 0.392 0.04 0.08

bias(1) 0.304 - - 0.235 - - 0.208 - -
bias(2) 0.034 - - 0.026 - - 0.023 - -

diag(V ) diag(V̂ ) MCs.e. s.e. diag(V̂ ) MCs.e. s.e. diag(V̂ ) MCs.e. s.e
1.600 1.438 0.68 1.27 1.463 0.58 0.80 1.472 0.45 0.52
2.400 2.391 0.62 0.95 2.380 0.50 0.59 2.384 0.34 0.31
0.500 0.487 0.17 0.45 0.491 0.14 0.27 0.513 0.13 0.15

bias(1) 0.185 - - 0.166 - - 0.157 - -
bias(2) 0.062 - - 0.055 - - 0.052 - -

Table 2.2: Monte Carlo results obtained for point-in-time sampling of a SVAR(1) with
B non-recursive. In the first column we report the elements of the population matrices
A, B and V . We consider T = 300, 600, 1200, and we evaluate the results with two
measures of bias: bias(1) is calculated as the sum of the differences in absolute value of
the ”true” value of the elements and the Monte Carlo estimates; bias(2) is calculated as
bias(1)/(number of elements).
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Figure 2.3: Impulse responses from Monte Carlo experiment reported in Table 2.2,
with sample size T = 3600 and t = 1, . . . , Tb. The red-dotted line corresponds to the
population responses, the blue-dashed lines refer to the confidence bounds (calculated as
two-standar error bounds) of the IRFs calculated with the proposed Minimum distance
approach (black line)

.

Figure 2.4: Impulse responses from Monte Carlo experiment reported in Table 2.2, with
sample size T = 3600 and t = Tb + 1, . . . , T . The red-dotted line corresponds to the
population responses, the blue-dashed lines refer to the confidence bounds (calculated as
two-standar error bounds) of the IRFs calculated with the proposed Minimum distance
approach (black line)
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2.3 Point-in-time sampling

2.3.3 Comparison with state space estimation method

In this section we consider four different Monte Carlo experiments to compare the
approach proposed in this discussion with results obtained with the state space
approach, both in term of parameters estimation and impulse responses. In order
to reduce the computational burden, in the following Monte Carlo exercises we
refer only to bivariate DGPs.
Specifically, the general design corresponds to a high frequency bivariate SVAR(1),
defined by(

yt
xt

)
=

(
ρ1 δ1,2

δ2,1 ρ2

)
︸ ︷︷ ︸

A

(
yt−1

xt−1

)
+

(
b1 b1,2

b2,1 b2

)
︸ ︷︷ ︸

B

(
uy,t
ux,t

)
, t = 1, . . . , T, (2.20)

where yt is the variable observed only in the third month of the reference quarter,
xt is the high frequency variable and(

b1 b1,2

b2,1 b2

)
︸ ︷︷ ︸

B

(
uy,t
ux,t

)
=

(
ey,t
ex,t

)
∼ N2(0,Σ). (2.21)

The vector (u′y,t, u
′
x,t)
′ is sampled from a standard normal distribution, and t =

1, . . . , T is the (monthly) time index, and T = 300 months (corresponding to 100
quarters, 25 years). In the firsts two experiments, B = I2, leading Σ = I2; in the
other Monte Carlo designs we refer to B lower triangular matrix, obtained from
the Cholesky decomposition of Σ (i.e. b1,2 = 0). In particular, the population
matrix A is taken from {(

0.75 0.1
0.2 0.7

)
,

(
0.85 0.1
0.2 0.8

)}
and B from {(

1.0 0.0
0.0 1.0

)
,

(
0.6 0.0
0.3 0.4

)}
.

Since the proposed approach works on the eigenvalues of A, we don’t pay attention
to the similarity of the entries of two matrices in first sample, but we consider their
eigenvalues: in the first case the eigenvalues are (0.8686, 0.5814), while the second
choice of A allows us to evaluate those cases in which the larger eigenvalue is close
to the unity, i.e. (0.9686, 0.6814).
In the first part of the experiments, we evaluate the performances with both the
mixed frequency estimation techniques, after 1000 replications, with the measure
bias(1), considered above. In the second part of the experiment, we pay attention
to the IRFs. We estimate:
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2. A moment-based approach for identification and estimation of MF-SVARs.

• the high frequency VAR(1) parameters with ordinary least squares (bench-
mark), since the simulation allows us to know the latent high frequency
process underlying the quarterly variable yt;

• the mixed frequency model, using the state space approach;

• the mixed frequency model, estimating the high frequency parameters with
the Minimum Distance technique.

To make shocks orthogonal, we consider the Cholesky decomposition of the residual
covariance matrices, in each approach. The forecast horizons are set to one year
after the period of the impact of the shock. Following Foroni and Marcellino
(2016), for M = 1000 replication, we computed the squared error between the
impulse responses obtained for each estimation approach (monthly, state space and
minimum distance), and the true impulse responses (available, since the knowledge
of the population matrices). For each horizon, we calculate the means across
replications of the squared errors (MSE) and we calculate the ratios

RMSEMF,SS

RMSEMon

and
RMSEMF,MD

RMSEMon

,

where RMSEMF,SS is the root mean square error (RMSE) referred to the IRFs ob-
tained with the state space approach, RMSEMF,MD is obtained with the minimum
distance estimation, and RMSEMon is the RMSE calculated with the monthly es-
timates. By this way, we are able to compare the mixed frequency procedures with
the monthly (benchmark) estimation. The RMSE ratios can be seen as a simple
(non-exhaustive) indication of the loss of information that we obtain using mixed
frequency instead of the high frequency data16.
What we expect to see are ratios greater then one (i.e. the monthly frequency
allows estimation biases smaller then those obtained with the mixed frequency
techniques). The higher then one the ratio, the less unreliable the mixed fre-
quency responses are.
Following the considerations of Foroni and Marcellino (2016), in this discussion
we are also interested in showing how the mixed frequency estimation procedures
alleviate the temporal aggregation bias. Hence, we compare the aggregated mixed
frequency responses and low frequency IRFs.

Results

In the first part of the comparison we focus on the estimated parameters. Both
the two approaches provide Monte Carlo estimates with associated small biases

16See Koelbl, Braumann, Felsenstein and Deistler (2016).
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2.3 Point-in-time sampling

and moderated standard errors. Therefore, we don’t observe a unique response on
the goodness of one of the estimation methodology over the other.

In the second kind of comparison, referring to the IRFs, the results support
the considerations available in the literature: the use of the monthly information
in the estimation of the parameters and in the analyses of the impulse responses,
guarantees a reduction of the estimation bias. Hence, since the minimum distance
is a parameter-driven estimation approach, and it doesn’t involve the high fre-
quency information, the state space procedure yields more reliable results than
those obtained with the proposed approach. All the ratios calculated for the im-
pulse responses obtained from the state space approach are (as expected) greater
then one, but in most of the cases, smaller then the ratios of Minimum Distance
estimation.
On the other hand, if Foroni and Marcellino (2016) highlight the hardness of cap-
turing (correctly) the responses of the low frequency variable to shock to the same
variable17, the use of the minimum distance estimation approach can lead some
interesting results: in both the experiments with B 6= I (the second half part
of Table 2.4 and Table 2.5), we obtain some enhancements of the estimates. In
particular, “minimum distance-RMSE-ratios” smaller then the state space coun-
terparts, can be observed for the responses of the low frequency and the high
frequency variables, to a shock on the low frequency (in Tables 2.4 and 2.5, “y to
y” and “y to x”).
A further aspect of the problem can be evaluated if we are interested in assessing
the bias due to temporal aggregation. As pointed out before, when we assume that
the DGP is at monthly frequency, the naive estimation approach lead to incorrect
responses, and unreliable interpretations. In this case the aggregation bias is easily
denoted the last part of both Table 2.6 and Table 2.7: the RMSE ratios calculated
comparing the quarterly and the aggregated monthly responses are quite higher
then the ratios calculated with both the mixed frequency approaches.

17Even if Foroni and Marcellino (2016) consider the comparison of IRFs only after the aggre-
gation, for the point-in-time these considerations are evaluable equivalently.
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Design: vec(A)’=(0.75 , 0.20 , 0.10, 0.70)
vech(B)’=(1.00 , 0.00 , 1.00) vech(B)’=(0.60 , 0.30 , 0.40)

TRUE St.Sp. Min.Dist. TRUE St.Sp Min.Dist.

vec(A) vec(Â) vec(Â) vec(A) vec(Â) vec(Â)
0.75 0.74 0.74 0.75 0.70 0.73

(0.06) (0.06) (0.12) (0.08)
0.20 0.21 0.22 0.20 0.21 0.23

(0.05) (0.07) (0.07) (0.07)
0.10 0.1 0.11 0.10 0.14 0.12

(0.06) (0.05) (0.11) (0.07)
0.70 0.69 0.67 0.70 0.69 0.67

(0.04) (0.06) (0.07) (0.07)
bias(1) 0.03 0.08 bias(1) 0.12 0.09

vech(BB′) vech(B̂B̂′) vech(B̂B̂′) vech(BB) vech(B̂B̂′) vech(B̂B̂′)
1.00 1.01 1.02 0.36 0.37 0.37

(0.14) (0.12) (0.06) (0.04)
0.00 0.00 -0.01 0.18 0.18 0.18

(0.11) (0.08) (0.03) (0.02)
1.00 0.99 0.99 0.25 0.25 0.25

(0.09) (0.12) (0.02) (0.03)
bias(1) 0.02 0.04 bias(1) 0.01 0.01

Design: vec(A)’=(0.85 , 0.20 , 0.10, 0.80)
vech(B)’=(1.00 , 0.00 , 1.00) vech(B)’=(0.60 , 0.30 , 0.40)

vec(A) vec(Â) vec(Â) vec(A) vec(Â) vec(Â)
0.85 0.84 0.84 0.85 0.82 0.84

(0.05) (0.03) (0.08) (0.05)
0.2 0.21 0.21 0.20 0.21 0.21

(0.04) (0.03) (0.06) (0.04)
0.1 0.1 0.11 0.10 0.12 0.10

(0.04) (0.03) (0.07) (0.04)
0.8 0.79 0.79 0.80 0.79 0.79

(0.03) (0.03) (0.05) (0.04)
bias(1) 0.03 0.05 bias(1) 0.06 0.04

vech(BB′) vech(B̂B̂′) vech(B̂B̂′) vech(BB′) vech(B̂B̂′) vech(B̂B̂′)
1.00 1.01 1.02 0.36 0.37 0.36

(0.17) (0.10) (0.06) (0.03)
0.00 0.00 -0.01 0.18 0.18 0.18

(0.11) (0.07) (0.03) (0.03)
1.00 0.99 1.00 0.25 0.25 0.25

(0.08) (0.09) (0.02) (0.02)
bias(1) 0.02 0.03 bias(1) 0.01 0.01

Table 2.3: Estimates from two bivariate SVAR(1) data generating processes, with T =
300 high frequency instants. We report the DGP values in the first column, the estimates
obtained with state space approach, and the minimum distance estimates (both with
related empirical standard errors). In both the experiments of the first half part of the
table vec(A) = (0.75, 0.20, 0.10, 0.70)′: on the left B = I and on the right part vech(B) =
(0.60, 0.30, 0.40)′. In the second half part of the table vec(A) = (0.85, 0.20, 0.10, 0.80)′,
with B = I on the left and vech(B) = (0.60, 0.30, 0.40)′ on the right.
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Design: vec(A) = (0.75, 0.20, 0.10, 0.70)′, vech(B) = (1.0, 0.0, 1.0)

St.Sp vs monthly Min.Dis vs monthly

h (months) y to y x to y y to x x to x y to y x to y y to x x to x

0 2.10 1.98 NaN 1.11 2.22 2.18 NaN 2.34
1 1.26 1.44 1.40 1.13 1.85 2.20 2.12 2.28
2 1.25 1.24 1.34 1.09 1.35 1.48 1.53 1.57
3 1.24 1.16 1.30 1.09 1.29 1.36 1.44 1.44
4 1.20 1.12 1.27 1.10 1.23 1.27 1.37 1.35
5 1.17 1.10 1.25 1.12 1.19 1.22 1.34 1.31
6 1.15 1.09 1.23 1.13 1.16 1.19 1.31 1.28
7 1.13 1.08 1.21 1.14 1.14 1.17 1.29 1.27
8 1.12 1.07 1.20 1.15 1.13 1.16 1.27 1.25
9 1.11 1.06 1.19 1.15 1.12 1.14 1.25 1.24
10 1.10 1.06 1.18 1.15 1.11 1.13 1.24 1.23
11 1.09 1.06 1.17 1.15 1.10 1.13 1.23 1.22
12 1.09 1.06 1.16 1.15 1.10 1.12 1.22 1.22

Design: vec(A) = (0.75, 0.20, 0.10, 0.70)′, vech(B) = (0.6, 0.3, 0.4)

St.Sp vs monthly Min.Dis vs monthly

h (months) y to y x to y y to x x to x y to y x to y y to x x to x

0 2.29 1.62 NaN 1.58 2.05 2.01 NaN 2.45
1 2.18 1.32 2.71 1.34 1.41 1.82 1.67 2.17
2 1.39 1.12 1.63 1.18 1.13 1.23 1.29 1.45
3 1.24 1.08 1.43 1.16 1.09 1.12 1.23 1.32
4 1.15 1.07 1.33 1.16 1.07 1.08 1.20 1.23
5 1.11 1.07 1.27 1.16 1.06 1.06 1.18 1.19
6 1.08 1.06 1.24 1.16 1.06 1.06 1.17 1.17
7 1.07 1.05 1.22 1.16 1.06 1.06 1.17 1.16
8 1.06 1.04 1.20 1.15 1.06 1.07 1.16 1.15
9 1.05 1.04 1.19 1.15 1.06 1.07 1.16 1.15
10 1.05 1.04 1.18 1.15 1.06 1.07 1.15 1.14
11 1.04 1.03 1.17 1.14 1.07 1.07 1.15 1.14
12 1.04 1.03 1.16 1.14 1.07 1.08 1.15 1.14

Table 2.4: In the Table we show the RMSE ratios calculated for the evaluation of
the Impulse Response Functions for the two mixed frequency procedures. We compare
(i) the RMSE for the high frequency IRFs obtained from state space and minimum
distance estimation, with (ii) the (benchmark) RMSEs obtained from the estimates the
high frequency parameters, once we assume that all the variables can be observed: values
near to one, indicate that the mixed frequency impulse responses are close to the monthly
impulse responses. In both the fourth and the eighth column, the value “NaN” is due to
the Cholesky decomposition (i.e. b1,2 = 0): the denominator of the ratios is (correctly)
equal to 0 at h = 0.
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Design: vec(A) = (0.85, 0.20, 0.10, 0.80)′, vech(B) = (1.0, 0.0, 1.0)

St.Sp vs monthly Min.Dis vs monthly

h y to y x to y y to x x to x y to y x to y y to x x to x

0 1.98 1.89 NaN 1.09 2.03 2.04 NaN 1.92
1 1.23 1.48 1.33 1.16 1.39 1.53 1.66 1.52
2 1.17 1.27 1.30 1.14 1.27 1.37 1.45 1.36
3 1.17 1.19 1.27 1.13 1.25 1.30 1.38 1.31
4 1.17 1.15 1.25 1.13 1.22 1.25 1.34 1.27
5 1.16 1.13 1.23 1.13 1.20 1.22 1.31 1.26
6 1.15 1.11 1.22 1.14 1.18 1.19 1.29 1.24
7 1.13 1.10 1.20 1.15 1.16 1.17 1.27 1.23
8 1.12 1.09 1.19 1.15 1.15 1.16 1.25 1.22
9 1.11 1.09 1.18 1.15 1.13 1.14 1.24 1.21
10 1.10 1.08 1.17 1.15 1.12 1.13 1.23 1.20
11 1.09 1.07 1.16 1.14 1.11 1.12 1.21 1.20
12 1.08 1.07 1.15 1.14 1.10 1.11 1.20 1.19

Design: vec(A) = (0.85, 0.20, 0.10, 0.80)′, vech(B) = (0.6, 0.3, 0.4)

St.Sp vs monthly Min.Dis vs monthly

h y to y x to y y to x x to x y to y x to y y to x x to x

0 2.18 1.57 NaN 1.55 1.89 1.89 NaN 1.95
1 1.71 1.26 2.26 1.30 1.29 1.46 1.35 1.44
2 1.29 1.09 1.52 1.19 1.16 1.27 1.30 1.29
3 1.19 1.06 1.37 1.17 1.12 1.17 1.26 1.24
4 1.14 1.06 1.30 1.17 1.10 1.12 1.24 1.22
5 1.11 1.05 1.26 1.17 1.08 1.09 1.23 1.21
6 1.08 1.05 1.24 1.17 1.07 1.07 1.22 1.20
7 1.07 1.05 1.22 1.17 1.06 1.06 1.21 1.19
8 1.06 1.05 1.21 1.17 1.05 1.05 1.21 1.19
9 1.05 1.05 1.20 1.17 1.04 1.05 1.20 1.19
10 1.04 1.04 1.19 1.17 1.04 1.04 1.20 1.19
11 1.04 1.04 1.19 1.17 1.04 1.04 1.19 1.18
12 1.03 1.04 1.18 1.17 1.03 1.04 1.19 1.18

Table 2.5: In the Table we show the RMSE ratios calculated for the evaluation of
the Impulse Response Functions for the two mixed frequency procedures. We compare
(i) the RMSE for the high frequency IRFs obtained from state space and minimum
distance estimation, with (ii) the (benchmark) RMSEs obtained from the estimates the
high frequency parameters, once we assume that all the variables can be observed: values
near to one, indicate that the mixed frequency impulse responses are close to the monthly
impulse responses. In both the fourth and the eighth column, the value “NaN” is due
to the Cholesky restriction. 65
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vec(A) = (0.75, 0.20, 0.10, 0.70)′, vec(A) = (0.75, 0.20, 0.10, 0.70)′,
vech(B) = (1.00, 0.00, 1.00)′ vech(B = (0.60, 0.30, 0.40)′

State Space vs monthly

h (quarters) y to y x to y y to x x to x y to y x to y y to x x to x

0 2.10 1.98 NaN 1.11 2.29 1.62 NaN 1.58
1 1.24 1.16 1.30 1.09 1.24 1.08 1.43 1.16
2 1.15 1.09 1.23 1.13 1.08 1.06 1.24 1.16
3 1.11 1.06 1.19 1.15 1.05 1.04 1.19 1.15
4 1.09 1.06 1.16 1.15 1.04 1.03 1.16 1.14
5 1.08 1.05 1.15 1.40 1.03 1.02 1.16 1.14
6 1.08 1.04 1.14 1.15 1.03 1.02 1.15 1.12
7 1.06 1.04 1.13 1.13 1.03 1.01 1.15 1.11
8 1.05 1.02 1.14 1.13 1.02 1.01 1.14 1.11

Minimum Distance vs monthly
0 2.22 2.18 NaN 2.34 2.05 2.01 NaN 2.45
1 1.29 1.36 1.44 1.44 1.09 1.12 1.23 1.32
2 1.16 1.19 1.31 1.28 1.06 1.06 1.17 1.17
3 1.12 1.14 1.25 1.24 1.06 1.07 1.16 1.15
4 1.10 1.12 1.22 1.22 1.07 1.08 1.15 1.14
5 1.08 1.11 1.23 1.21 1.07 1.07 1.15 1.13
6 1.09 1.11 1.22 1.19 1.07 1.05 1.13 1.12
7 1.80 1.09 1.20 1.17 1.06 1.04 1.12 1.13
8 1.60 1.07 1.18 1.15 1.06 1.02 1.11 1.10

quarterly vs monthly
0 9.74 6.22 NaN 7.84 11.04 10.59 NaN 6.98
1 3.81 4.27 2.14 2.81 4.30 5.29 1.61 2.10
2 2.95 3.11 1.92 2.20 3.03 3.36 1.54 1.69
3 2.56 2.64 1.84 1.98 2.54 2.70 1.54 1.60
4 2.36 2.41 1.80 1.87 2.32 2.41 1.55 1.58
5 2.25 2.29 1.77 1.83 2.21 2.26 1.56 1.58
6 2.19 2.22 1.76 1.80 2.15 2.19 1.57 1.59
7 2.16 2.18 1.75 1.79 2.11 2.14 1.58 1.59
8 2.14 2.16 1.75 1.79 2.09 2.11 1.59 1.61

Table 2.6: In the Table we report the RMSE ratios for the evaluation of the aggregated
IRFs, with poin-in-time-aggregation scheme. We refer to the Monte Carlo designs: (1)
vec(A) = (0.75, 0.20, 0.10, 0.70)′, vech(B) = (1.00, 0.00, 1.00)′ (on the left), and (2)
vec(A) = (0.75, 0.20, 0.10, 0.70)′, vech(B) = (0.60, 0.30, 0.40)′ (on the right). For each
(quarterly) horizon, we compare (i) the aggregated Impulse Response Functions of both
the mixed frequency procedures, and (ii) the quarterly IRFs (naive approach), relative
to the monthly IRFs. Values near to one, indicate that the mixed frequency (or the quar-
terly frequency) impulse responses are close to the monthly impulse responses. In both
the fourth and the eighth column, the value “NaN” is due to the Cholesky restriction.66
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vec(A) = (0.85, 0.20, 0.10, 0.80)′, vec(A) = (0.85, 0.20, 0.10, 0.80)′,
vech(B) = (1.00, 0.00, 1.00)′ vech(B = (0.60, 0.30, 0.40)′

State Space vs monthly

h (quarters) y to y x to y y to x x to x y to y x to y y to x x to x

0 1.98 1.89 NaN 1.09 2.18 1.57 NaN 1.55
1 1.17 1.19 1.27 1.13 1.19 1.06 1.37 1.17
2 1.15 1.11 1.22 1.14 1.08 1.05 1.24 1.17
3 1.11 1.09 1.18 1.15 1.05 1.05 1.20 1.17
4 1.08 1.07 1.15 1.14 1.03 1.04 1.18 1.17
5 1.07 1.07 1.15 1.15 1.04 1.04 1.17 1.17
6 1.06 1.06 1.15 1.14 1.03 1.03 1.19 1.17
7 1.05 1.05 1.11 1.13 1.02 1.02 1.18 1.16
8 1.04 1.04 1.11 1.12 1.02 1.02 1.16 1.16

Minimum Distance vs monthly
0 2.03 2.04 NaN 1.92 1.89 1.89 NaN 1.95
1 1.25 1.30 1.38 1.31 1.12 1.17 1.26 1.24
2 1.18 1.19 1.29 1.24 1.07 1.07 1.22 1.20
3 1.13 1.14 1.24 1.21 1.04 1.05 1.20 1.19
4 1.10 1.11 1.20 1.19 1.03 1.04 1.19 1.18
5 1.06 1.06 1.19 1.18 1.03 1.03 1.19 1.18
6 1.05 1.05 1.16 1.17 1.03 1.03 1.19 1.17
7 1.04 1.04 1.15 1.17 1.02 1.03 1.18 1.18
8 1.04 1.03 1.12 1.15 1.02 1.02 1.16 1.17

quarterly vs monthly
0 12.88 7.25 NaN 10.43 14.99 13.25 NaN 9.45
1 5.83 6.29 2.40 4.03 6.88 8.31 1.93 2.85
2 4.50 4.95 2.20 2.80 4.85 5.56 1.82 2.03
3 3.83 4.07 2.07 2.33 3.82 4.23 1.76 1.84
4 3.35 3.51 1.96 2.09 3.19 3.45 1.72 1.76
5 3.00 3.13 1.88 1.95 2.78 2.96 1.68 1.71
6 2.76 2.86 1.82 1.86 2.52 2.64 1.66 1.67
7 2.58 2.66 1.77 1.79 2.34 2.42 1.63 1.65
8 2.46 2.51 1.74 1.75 2.22 2.27 1.61 1.63

Table 2.7: In the Table we report the RMSE ratios for the evaluation of the aggregated
IRFs, with poin-in-time-aggregation scheme. We refer to the Monte Carlo designs: (1)
vec(A) = (0.85, 0.20, 0.10, 0.80)′, vech(B) = (1.00, 0.00, 1.00)′ (on the left), and (2)
vec(A) = (0.85, 0.20, 0.10, 0.80)′, vech(B) = (0.60, 0.30, 0.40)′ (on the right). For each
(quarterly) horizon, we compare (i) the aggregated Impulse Response Functions of both
the mixed frequency procedures, and (ii) the quarterly IRFs (naive approach), relative
to the monthly IRFs. Values near to one, indicate that the mixed frequency (or the quar-
terly frequency) impulse responses are close to the monthly impulse responses. In both
the fourth and the eighth column, the value “NaN” is due to the Cholesky restriction.67
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2.4 Sum sampling

Considering the sum-over-the low frequency period sampling of the high frequency
process in Eq. (2.2), we obtain a quite different low frequency solution w.r.t. that
obtained in the point-in-time case. In particular, in the case of sum sampling, we
multiply both sides of Eq. (2.2) by ω(L) = (I+L+L2) and Γ(L) = (I+AL+A2L2).
The low frequency result is given by

Γ(L)(I − AL)ω(L)Y ∗t =Γ(L)Bω(L)εt

(I + AL+ A2L2)(I − AL)(I + L+ L2)Y ∗t =(I + AL+ A2L2)B(I + L+ L2)εt

(I + L+ L2 − A3L3 − A3L4 − A3L5)Y ∗t =[I + (I + A)L+ (I + A+ A2)L2+

+ (A2 + A)L3 + A2L4]Bεt

hence,

Y ∗t + Y ∗t−1 + Y ∗t−2 = A3(Y ∗t−3 + Y ∗t−4 + Y ∗t−5)+

+Bεt + (I + A)Bεt−1 + (I + A+ A2)Bεt−2+

+ (A+ A2)Bεt−3 + A2Bεt−4. (2.22)

Since Y ∗t +Y ∗t−1 +Y ∗t−2 = Yτ and Y ∗t−3 +Y ∗t−4 +Y ∗t−5 = Yτ−1, the quarterly aggregated
solution is defined by

Yτ = CYτ−1 + ητ ,

with ητ the residual term of the quarterly process and C = A3. However, summing
the monthly values during each reference quarter, we can note that the residual
component ητ can be decomposed into the sum of two distinct elements:

λ{t,t−1,t−2} = Bεt + (I + A)Bεt−1 + (I + A+ A2)Bεt−2,

and

λ{t−3,t−4,t−5} = (A+ A2)Bεt−3 + A2Bεt−4.

At quarterly frequency, λ{t,t−1,t−2} corresponds to the residual component obtained
at time τ , and λ{t−3,t−4,t−5} to the sum of the residuals related to τ − 1. Then,
since ητ = (λ{t,t−1,t−2} + λ{t−3,t−4,t−5}), we can note that

E(ητη
′
τ−l) =


Ω l = 0

Φ(l) ≡ Φ l = ±1

0n |l| ≥ 2

,

where Ω,Φ 6= 0n, are respectively the covariance matrix and the first order au-
tocovariance matrix of the residual ητ . Specifically, ητ represents the VMA(1)
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component of the aggregated solution. Rewriting ητ as a VMA(1) process, i.e.
ητ = ξτ +Qξτ−1, with

ξτ = λ{t,t−1,t−2} = Bεt + (I + A)Bεt−1 + (I + A+ A2)Bεt−2,

Qξτ−1 = λ{t−3,t−4,t−5} = (A+ A2)Bεt−3 + A2Bεt−4,

the aggregated solution can be finally rewritten as the VARMA(1,1) process de-
fined by

Yτ = CYτ−1 + ξτ +Qξτ−1, ξτ ∼ (0,Π) (2.23)

with

Π =E(ξτξ
′
τ ) =

=BB′ + (I + A)BB′(I + A)′ + (I + A+ A2)BB′(I + A+ A2)′,

Ω =E(ητη
′
τ ) = E((ξτ +Qξτ−1)(ξτ +Qξτ−1)′)

=BB′ + (I + A)BB′(I + A)′ + (I + A+ A2)BB′(I + A+ A2)′+

+ (A+ A2)BB′(A+ A2)′ + A2BB′A′2 (2.24)

=Π +QΠQ′ (2.25)

Φ =E[(ητ )(ητ−1)′] = E[(ξτ +Qξτ−1)(ξτ−1 +Qξτ−2)′] =

=E[Qξτ−1ξ
′
τ−1]

=E
{

[(A+ A2)Bεt−3 + A2Bεt−4][Bεt−3 + (I + A)Bεt−4 + (I + A+ A2)Bεt−5)]′
}

=E[(A+ A2)Bεt−3ε
′
t−3B

′] + E[A2Bεt−4ε
′
t−4B

′(I + A)′]

=(A+ A2)BB′ + A2BB′(I + A)′ (2.26)

=QΠ (2.27)

and Φ(j) = 0,∀j ≥ 2.

2.4.1 Estimation approach

The two step procedure introduced in subsection 2.3.1 can be easily generalized
to obtain the estimates of Â and B̂ of the monthly SVAR(1) process, from the
estimated quarterly matrices Ĉ, Ω̂ of Eq. (2.23), (2.24). Since the residual term
ητ ∼ VMA(1), in this discussion we can’t consider least square estimation of
C and Ω. By this way we introduce the Instrumental variable estimator of the
quarterly matrices.
In the general case, consider the model

Yτ = CXτ + ητ ,
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with Xτ = Yτ−1, and C the k × 1 parameter vector. Assume that exists a l-
dimensional process {zt} of instruments with matrix T × l of observations Zτ =
(z′τ , z

′
τ−1, . . . , z

′
τ−l)

′, with l greater then the number of parameters in C, i.e. l ≥ k.
The process {zt} verify the following conditions:

E(ητ ) = 0,

E(ητ , ητ−1) = c1,

E(ητ |zτ , zτ−1, . . . , ητ−2, ητ−3, . . . ) = 0,

W = lim
T→∞

(1/T )E(Z ′ητη
′
τZ) exists and it is of full rank.

Then, given the compact form Y = XC ′+η, the Instrumental Variables estimator
is given by

ĈIV = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y ). (2.28)

In this discussion we consider the instrumental variable estimator of the VAR
coefficients matrix C and of the residual covariance matrix Ω. In particular, fol-
lowing Friedlander, Stoica and Söderström (1985) and Andrews (1991), we define
the optimal choice of the matrix of instruments Z, represented by two lagged val-
ues of Yτ , i.e. Zτ = (Y ′τ−2, Y

′
τ−3)′, we estimate the matrix of the VAR coefficients

Ĉ as in equation Eq. (2.28) and, given the instrumental residuals

η̂IV = Y −XĈ ′IV ,

we calculate the residual sample covariance matrix Ω. As in the case of the point-
in-time solution, the idea is to obtain Ã from the real cube root of Ĉ, and then
obtain Â and B̂ through the minimum distance approach, with starting values
given by Ã. The “low frequency - high frequency” mapping is defined by

C = A3

Ω = BB′ + (I + A)BB′(I + A)′ + (I + A+ A2)BB′(I + A+ A2)′+

+ (A+ A2)BB′(A+ A2)′ + A2BB′A′2.

As in Section 2.2, considering B non-recursive, the monthly SVAR(1) is not iden-
tified. We can summarize the correspondences between the number of free param-
eters of the quarterly and the monthly process by the following table:
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quarterly monthly monthly
B triangular B non-triangular

C n2 n2 A n2 A

Ω n(n+ 1)/2 n(n+ 1)/2 B n2 B

n2 + n(n+1)
2

= n2 + n(n+1)
2

< 2n2

Assuming B withN2 parameters, in those cases in which we observe a structural
change in Ω, we can solve the occurred identification problem as in Lanne and
Lutkepohl (2008)18: (i) we estimate the VAR coefficient matrix C, (ii) we calculate
the covariance matrices E(ητ , ητ ) = Ω1, τ = 3, . . . , Tb and E(ητ , ητ ) = Ω2, τ =
Tb + 3, . . . , T , with V 6= I, diagonal matrix. In these cases, the “low frequency -
high frequency” mapping is represented by

C = A3,

Ω1 = BB′ + (I + A)BB′(I + A)′ + (I + A+ A2)BB′(I + A+ A2)′+

+ (A+ A2)BB′(A+ A2)′ + A2BB′A′2,

Ω2 = BV B′ + (I + A)BV B′(I + A)′ + (I + A+ A2)BV B′(I + A+ A2)′+

+ (A+ A2)BV B′(A+ A2)′ + A2BV B′A′2,

implying exact identification, i.e.

quarterly monthly
B non-triangular

C n2 n2 A

Ω1 n(n+ 1)/2 n2 B

Ω2 n(n+ 1)/2 n V

n2 + n(n+ 1) = n2 + n2 + n

An interesting consideration concerns the estimation of the aggregated solution.
With VARMA models the econometrician classically requires to impose some set
of conditions to achieve uniqueness of the VARMA representation, i.e. echelon

18An alternative solution could be obtained by involving the estimated autocovariance matrix
Φ(1).
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form or final equation form19. In the specific case of aggregation sampling, after
the estimation of the high frequency parameter matrices A and B, we are also able
to identify all the quarterly parameters. In particular, once Â and B̂ are obtained,
we can estimate indirectly the covariance matrix of ξτ , defined by

Π̂ = B̂B̂′ + (I + Â)B̂B̂′(I + Â)′ + (I + Â+ Â2)B̂B̂′(I + Â+ Â2)′.

Since Π is invertible and the autocovariance matrix Φ of the residual component
ητ can be rewritten as in Eq. (2.27), the VMA coefficient matrix Q can be obtained
as

Q̂ = Φ̂Π̂−1, (2.29)

with Φ obtainable either with indirect estimation (given the relation in Eq. (2.26))
or with the Instrumental Variable approach (see Cumby and Huizinga (1992) and
Hall (1995)). In APPENDIX A4 we explain and provide further details about the
indirect estimation of VMA matrix Q.

Minimum Distance estimation

In the case of sum sampling, the monthly unknown parameter vector θ = (vec(A)′, vech(B)′)′

is function of the quarterly n2 + n(n + 1)/2 × 1 vector φ̂ = (vec(Ĉ)′, vech(Ω̂)′)′.
Without the inclusion of further restrictions, the order conditions are guaranteed,
i.e.

dim(φ̂) = n2 + n(n+ 1)/2 = n2 + n(n+ 1)/2 = (vec(A)′, vech(B)′)′ = dim(θ).

The function h of Eq. (2.14), is summarized by the mapping

C = A3,

Ω = BB′ + (I + A)BB′(I + A)′ + (I + A+ A2)BB′(I + A+ A2)′+

+ (A+ A2)BB′(A+ A2)′ + A2BB′A′2,

with weighting matrix S = Ψ̂−1 and Ψ̂ built as the block-diagonal matrix given by

Ψ̂ =

(
Ψ̂Ĉ 0

0 Ψ̂Ω̂

)
.

In particular, Ψ̂Ĉ is the asymptotic covariance matrices of the quarterly estimates

Ĉ, and Ψ̂Ω̂ is the asymptotic covariance matrix of the quarterly estimates Ω̂. Fol-
lowing Cumby and Huizinga (1992), Newey and West (1994) and Hall (1995), we

19See Lutkepohl(2012).
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obtain the expressions of asymptotic covariance matrices Ψ̂Ĉ and Ψ̂Ω̂ with the In-
strumental Variables estimation approach20.
In particular, given X = (Y0, Y1, . . . , YT−1), Y = (Y1, Y2, . . . , YT ) and the h × T
matrix of instruments Z, we introduce the Instrumental Variables estimator Ĉ =
(XZ ′(Z ′Z)−1ZX ′)−1XZ ′(Z ′Z)−1Y .

Likewise, considering B nontriangular, the monthly unknown parameter vector
θ = (vec(A)′, vec(B)′, diag(V )′)′ is function of the quarterly n2 + n(n + 1) × 1
vector φ̂ = (vec(Ĉ)′, vech(Ω̂1)′, vech(Ω̂2)′)′. The validity of order conditions can
be summarized as

dim(φ̂) = n2 + n(n+ 1) < 2n2 + n = (vec(A)′, vec(B)′, diag(V )′)′ = dim(θ).

The function h of Eq. (2.14), is summarized by the mapping

C = A3,

Ω1 = BB′ + (I + A)BB′(I + A)′ + (I + A+ A2)BB′(I + A+ A2)′+

+ (A+ A2)BB′(A+ A2)′ + A2BB′A′2,

Ω2 = BV B′ + (I + A)BV B′(I + A)′ + (I + A+ A2)BV B′(I + A+ A2)′+

+ (A+ A2)BV B′(A+ A2)′ + A2BV B′A′2,

with weighting matrix S = Ψ̂−1 and Ψ̂ built as the block-diagonal matrix given by

Ψ̂ =

Ψ̂Ĉ 0 0

0 Ψ̂Ω̂1 0

0 0 Ψ̂Ω̂2

 ,

with Ψ̂Ω̂1 and Ψ̂Ω̂2 the asymptotic covariance matrices of the quarterly estimates

Ω̂1, Ω̂2.

2.4.2 Monte Carlo experiments

We consider two different Monte Carlo experiments, with different sample sizes,
to evaluate the solutions proposed above either for B lower triangular, or for B
nontriangular, for the “sum” scheme.
For M = 1000 replications, we generate the monthly trivariate SVAR(1) process
defined in Eq. (2.2), where Y ∗t , t = 1 . . . , T , is the n × 1 vector of the n monthly
series, Y0 is set to 0n×1, A is the n× n coefficient matrix, B is the n× n matrix of

20The alternative approach for the estimation of the asymptotic covariance matrices of the
estimates is represented by the bootstrap techniques.
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coefficients of instantaneous shocks. We consider different sample sizes, in partic-
ular T = {600, 1200, 3600} (months, corresponding to 200, 400 and 1200 quarters).
For each replication, we apply the filters ω(L) = (I + L + L2) and Γ(L) =
(I+AL+A2L2), to the monthly series Y ∗t . Hence we sum the monthly observations
appearing during each reference quarter, obtaining the quarterly variable Yτ , ag-
gregated via sum sampling. The quarterly aggregated process is the VARMA(1,1)
reported in Eq. (2.23).
In the case of B lower triangular, the estimation procedure, corresponds to:

• obtain the quarterly Instrumental Variables estimates of Ĉ and Ω̂, with the
vector of instruments given by Zτ = (Y ′τ−2, Y

′
τ−3)′21;

• solve the (real) cube root Ĉ1/3 = Ã;

• use Ã as starting values for the Minimum distance estimation of A and
Σ = BB′, given the mapping of Eq. (2.16);

• use the Cholesky decomposition of Σ̂ to obtain B̂.

For the case of B non recursive, we refer to the monthly process in Eq. (2.9),
where V = diag(v1, v2, v3), Tb is the break in the process and, for simplicity, we
assume that (i) Tb coincides with the third month of the reference quarter, and
(ii) Tb = T/2. In this case the estimation approach can be summarized by the
following steps:

• estimate the quarterly matrices Ĉ, Ω̂i, with i = 1, 2;

• solve the cube root Ã = Ĉ1/3;

• estimate the monthly vector of parameters (vec(Â)′, vech(Ω̂1)′, vech(Ω̂2)′)′,
solving the minimization problem in Eq. (2.14), with the mapping described
by the system in Eq. (2.16);

• we consider a further Minimum distance step in which we estimate B̂ and V̂
from the relationships in Eq. (2.17).

As pointed out before, for the quarterly VARMA(1,1) process, we can also recover
the quarterly parameters of Q. In particular, with Â and B̂, we can obtain an
estimates of var(ξτ ) = Π̂ and cov(ητ , ητ−1) = Φ. Hence, since Π is non-singular,
following the relationship in Eq. (2.29), we can obtain

Q̂ = Φ̂Π̂−1.

21See Amemiya (1974, 1977) and Friedlander, Stoica and Söderström (1985).
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We report below two representative examples: a first design in which we con-
sider B lower triangular (’Cholesky based’), and a second experiments with the
structural matrix B leading for non-recursive schemes.
Referring to the first simulation design, we consider the monthly DGP

Y ∗t =

0.650 0.250 0.150
0.200 0.325 0.125
0.250 0.225 0.550


︸ ︷︷ ︸

A

Y ∗t−1 +

0.850 0 0
0.012 0.750 0
0.050 0.17 0.950


︸ ︷︷ ︸

B

εt, (2.30)

with εt ∼ (0, I). The monthly SVAR(1) process in Eq. (2.30) generates the quar-
terly VARMA(1,1) process defined by:

Yτ =

0.439 0.265 0.227
0.219 0.148 0.134
0.368 0.253 0.287


︸ ︷︷ ︸

C

Yτ−1 + ξτ +

0.203 0.081 0.030
0.055 0.113 0.032
0.059 0.075 0.176


︸ ︷︷ ︸

Q

ξτ−1,

with

ξτ ∼


0

0
0

 ,

6.573 1.871 2.829
1.871 3.246 2.306
2.829 2.306 7.539


︸ ︷︷ ︸

Σ

 ,

ξτ +Qξτ−1 = ητ ∼


0

0
0

 ,

8.220 2.694 4.202
2.694 3.721 3.110
4.202 3.110 9.168


︸ ︷︷ ︸

Ω

 ,

and

E(ητ , ητ−1) =

1.572 0.712 0.986
0.662 0.543 0.654
1.023 0.759 1.663


︸ ︷︷ ︸

Φ

.

The representative design of Eq. (2.30), the related Monte Carlo results and
the Impulse Response Functions for the sample size T=3600, are reported in Ta-
ble 2.8, Table 2.9 and Figure 2.5.
As in the case of the point-in-time sampling, we evaluate the proposed estima-
tion procedure referring to two measures of bias, in particular bias(1), obtained as
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the sum of the differences, in absolute value, of the population parameters and the
Monte Carlo estimates, and bias(2), calculated as bias(1)/(number of estimated elements).
As measures of variability we report the mean across replications of the standard
errors (in the Tables as “s.e.”) obtained as the square root of the diagonal entries
of the estimated asymptotic covariance matrices of the Minimum distance esti-
mates (see APPENDIX 3), and the Monte Carlo standard errors (in the Tables as
“MCs.e.”).
The results shown in Table 2.8 and Table 2.9 confirm the conclusions reported
for the point-in-time solutions: increasing the sample size we can observe an en-
hancement in the performances of the proposed approach and a strong reduction
of the standard errors of the estimates. The reliability of the Minimum distance
IRFs with respect to the DGP counterpart can be noted in Figure 2.5. We depict
the response of the i-th variable to a shock on the j-th variable as (j → i) i.e.
(impulse → response). Graphically we can note that the responses obtained with
the proposed approach (black-solid line) approximate the true IRFs (red-dotted
line) in an accurate way.
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Tm=600 Tm=1200 Tm=3600

vec(A) vec(Â) MCs.e. s.e. vec(Â) MCs.e s.e. vec(Â) MCs.e. s.e.
0.650 0.624 0.12 0.13 0.621 0.10 0.09 0.638 0.07 0.04
0.200 0.220 0.11 0.10 0.215 0.10 0.08 0.211 0.07 0.03
0.250 0.271 0.15 0.12 0.278 0.14 0.12 0.262 0.09 0.05
0.250 0.285 0.13 0.09 0.282 0.10 0.06 0.269 0.08 0.06
0.325 0.249 0.14 0.12 0.282 0.13 0.10 0.294 0.10 0.08
0.225 0.264 0.09 0.08 0.237 0.07 0.05 0.251 0.09 0.06
0.150 0.157 0.11 0.08 0.164 0.10 0.08 0.153 0.06 0.04
0.125 0.146 0.07 0.07 0.132 0.07 0.06 0.131 0.05 0.05
0.550 0.507 0.20 0.13 0.515 0.19 0.12 0.524 0.13 0.09

bias(1) 0.288 - - 0.215 - - 0.146 - -
bias(2) 0.032 - - 0.024 - - 0.016 - -

vech(B) vech(B̂) MCs.e. s.e. vech(B̂) MCs.e. s.e vech(B̂) MCs.e. s.e
0.850 0.883 0.18 0.15 0.886 0.13 0.12 0.874 0.08 0.07
0.012 -0.009 0.04 0.03 -0.004 0.03 0.02 0.001 0.01 0.00
0.050 0.013 0.03 0.02 0.001 0.04 0.02 0.031 0.02 0.02
0.750 0.750 0.16 0.15 0.740 0.16 0.14 0.749 0.15 0.10
0.170 0.157 0.13 0.09 0.191 0.08 0.06 0.174 0.05 0.05
0.950 0.882 0.31 0.30 0.887 0.20 0.19 0.905 0.18 0.16

bias(1) 0.430 - - 0.196 - - 0.101 - -
bias(2) 0.072 - - 0.033 - - 0.017 - -

Table 2.8: Monte Carlo results obtained for sum-over-the quater sampling of a SVAR(1)
with B Cholesky-based. In the first column we report the elements of the DGP matrices
A and B (of Eq. (2.30)). We consider T = 600, 1200, 3600, and we evaluate the results
with two measures of bias: bias(1) is calculated as the sum of the differences in absolute
value of the ”true” value of the elements and the Monte Carlo estimates; bias(2) is
calculated as bias(1)/(number of elements).
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Figure 2.5: Impulse responses from Monte Carlo experiment reported in Table 2.8, with
sample size T = 3600. The red-dotted line corresponds to the population responses,
the blue-dashed lines refer to the confidence bounds (calculated as two-standar error
bounds) of the IRFs calculated with the proposed Minimum distance approach (black
line)

.
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Tm=600 Tm=1200 Tm=3600

vec(Q) vec(Q̂) MCs.e. vec(Q̂) MCs.e vec(Q̂) MCs.e.
0.203 0.188 0.082 0.186 0.082 0.194 0.063
0.055 0.060 0.066 0.058 0.061 0.056 0.056
0.059 0.065 0.082 0.069 0.082 0.067 0.069
0.081 0.091 0.132 0.090 0.129 0.086 0.109
0.113 0.090 0.136 0.103 0.127 0.109 0.114
0.075 0.090 0.156 0.084 0.153 0.085 0.136
0.030 0.031 0.071 0.036 0.070 0.034 0.057
0.032 0.039 0.065 0.035 0.064 0.033 0.051
0.176 0.152 0.098 0.154 0.098 0.158 0.084

bias(1) 0.080 - 0.058 - 0.042 -
bias(2) 0.009 - 0.006 - 0.005 -

Table 2.9: Monte Carlo results for the estimation of the VMA coefficient matrix Q. The
VARMA(1,1) is obtained from sum-over-the quater sampling of the SVAR(1) with B
Cholesky-based, reported in Eq. (2.30). In the first column we report the DGP elements
of Q. We consider T = 600, 1200, 3600, and we evaluate the results with two measures
of bias: bias(1) is calculated as the sum of the differences in absolute value of the
”true” value of the elements and the Monte Carlo estimates; bias(2) is calculated as
bias(1)/(number of elements).
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A second exercise is considered with B non-recursive. In particular we specify
the monthly Monte Carlo design given by

Y ∗t =

 0.850 −0.100 0.200
−0.100 0.400 0.650
0.150 0.500 0.300


︸ ︷︷ ︸

A

Y ∗t−1 +

 0.750 0.400 0.300
0.500 0.850 −0.100
−0.500 −0.150 0.500


︸ ︷︷ ︸

B

εt, (2.31)

with εt ∼ (0, I) for t = 1, . . . , Tb and εt ∼ (0, V ) for t = Tb + 1, . . . , T and
V = diag(0.50, 1.40, 2.20).
The monthly SVAR(1) process in Eq. (2.31) generates the quarterly VARMA(1,1)
process defined by:

Yτ =

 0.676 −0.004 0.186
−0.076 0.418 0.447
0.137 0.344 0.376


︸ ︷︷ ︸

C

Yτ−1 + ξτ +Qiξτ−1,

with

Q1 =

 0.216 0.137 −0.172
−0.028 0.163 0.136
0.009 0.229 −0.018

 , Q2 =

−0.096 0.228 0.245
−0.167 0.251 0.219
−0.171 0.313 0.154

 ,

For the first part of the sample (τ = 3, . . . , Tb) we consider

ξτ ∼


0

0
0

 ,

7.855 3.891 0.884
3.891 4.351 0.866
0.884 0.866 2.237


︸ ︷︷ ︸

Σ

 ,

ξτ+Qξτ−1 = ητ ∼


0

0
0

 ,

9.873 4.397 1.876
4.397 5.003 1.488
1.876 1.488 3.059


︸ ︷︷ ︸

Ω

 , Φ =

2.081 1.290 −0.075
0.533 0.718 0.421
0.944 1.016 0.167


︸ ︷︷ ︸

Φ

.

With τ = Tb + 3, . . . , T , the quarterly matrices Σ, Ω and Φ are defined as

Σ =

7.659 4.603 3.427
4.603 5.805 1.844
3.427 1.844 3.915

 ,
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Ω =

9.891 5.738 4.842
5.738 6.843 2.908
4.842 2.908 5.161

 , Φ =

1.155 1.334 1.051
0.626 1.092 0.747
0.664 1.318 0.597

 .

The representative design of Eq. (2.31), the related Monte Carlo results and
the Impulse Responses Functions for the sample size T = 3600, are respectively
reported in Table 2.10, Table 2.11 and Figure 2.6 and Figure 2.7.
From the results in Table 2.10 we can note a non-negligible enhancement in the
estimates of Â and B̂, increasing the sample size. In particular, both the measures
of estimation bias and the standard errors of the estimates significantly diminish:
since the estimates of the quarterly coefficients are more close to the DGP values
when T becomes large, more accurate are the monthly estimates and then the
impulse responses.
In Table 2.11 we show the estimates of the VMA(1) coefficients matrix, for the
two periods, Q1 for τ = 3, 6, . . . , Tb and Q2 for τ = Tb + 3, Tb + 6, . . . , T . The
measures of distortion associated to the indirect estimates of Q̂, seems to confirm
the results obtained at the first step, likewise the impulse responses in Figure 2.6
and Figure 2.7.
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Tm=600 Tm=1200 Tm=3600

vec(A) vec(Â) MCs.e. s.e. vec(Â) MCs.e s.e. vec(Â) MCs.e. s.e.
0.850 0.893 0.15 0.14 0.887 0.14 0.11 0.872 0.12 0.09
-0.100 -0.099 0.07 0.06 -0.098 0.06 0.04 -0.098 0.05 0.05
0.150 0.169 0.07 0.06 0.168 0.06 0.04 0.157 0.05 0.04
-0.100 -0.002 0.11 0.12 -0.019 0.11 0.12 -0.041 0.09 0.06
0.400 0.434 0.17 0.15 0.424 0.15 0.13 0.423 0.11 0.11
0.500 0.561 0.19 0.14 0.564 0.18 0.11 0.523 0.17 0.15
0.200 0.063 0.14 0.15 0.085 0.14 0.16 0.120 0.13 0.18
0.650 0.618 0.21 0.19 0.629 0.19 0.16 0.627 0.15 0.13
0.300 0.227 0.23 0.18 0.223 0.22 0.14 0.272 0.17 0.14

bias(1) 0.498 - - 0.440 - - 0.267 - -
bias(2) 0.055 - - 0.049 - - 0.030 - -

vec(B) vec(B̂) MCs.e. s.e. vec(B̂) MCs.e. s.e vec(B̂) MCs.e. s.e
0.750 0.751 0.05 0.07 0.753 0.02 0.04 0.750 0.01 0.02
0.500 0.486 0.13 0.13 0.495 0.08 0.06 0.498 0.04 0.04
-0.500 -0.500 0.14 0.10 -0.505 0.09 0.06 -0.499 0.05 0.03
0.400 0.408 0.05 0.12 0.403 0.02 0.07 0.400 0.01 0.04
0.850 0.820 0.11 0.09 0.830 0.10 0.05 0.845 0.09 0.03
-0.150 -0.141 0.06 0.19 -0.145 0.06 0.12 -0.148 0.05 0.07
0.300 0.295 0.04 0.07 0.299 0.01 0.05 0.300 0.01 0.03
-0.100 -0.096 0.07 0.16 -0.094 0.05 0.10 -0.100 0.04 0.06
0.500 0.482 0.11 0.06 0.493 0.10 0.04 0.499 0.08 0.02

bias(1) 0.090 - - 0.054 - - 0.011 - -
bias(2) 0.010 - - 0.006 - - 0.001 - -

diag(V ) diag(V̂ ) MCs.e. s.e. diag(V̂ ) MCs.e. s.e diag(V̂ ) MCs.e. s.e
0.500 0.495 0.06 0.08 0.495 0.04 0.04 0.500 0.02 0.02
1.400 1.401 0.10 0.23 1.395 0.05 0.13 1.399 0.02 0.08
2.200 2.198 0.03 0.53 2.199 0.02 0.32 2.200 0.01 0.17

bias(1) 0.007 - - 0.012 - - 0.001 - -
bias(2) 0.002 - - 0.004 - - 0.000 - -

Table 2.10: Monte Carlo results obtained for sum-over-the quater sampling of a SVAR(1)
with B non-recursive. In the first column we report the elements of the DGP matrices A
and B (of Eq. (2.31)). We consider T = 600, 1200, 3600, and we evaluate the results with
two measures of bias: bias(1) is calculated as the sum of the differences in absolute value
of the ”true” value of the elements and the Monte Carlo estimates; bias(2) is calculated
as bias(1)/(number of elements).
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Figure 2.6: Impulse responses from Monte Carlo experiment reported in Table 2.10,
with sample size T = 3600 and t = 1, . . . , Tb. The red-dotted line corresponds to the
population responses, the blue-dashed lines refer to the confidence bounds (calculated as
two-standar error bounds) of the IRFs calculated with the proposed Minimum distance
approach (black line)

.

Figure 2.7: Impulse responses from Monte Carlo experiment reported in Table 2.10, with
sample size T = 3600 and t = Tb + 1, . . . , T . The red-dotted line corresponds to the
population responses, the blue-dashed lines refer to the confidence bounds (calculated as
two-standar error bounds) of the IRFs calculated with the proposed Minimum distance
approach (black line).
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Tm=600 Tm=1200 Tm=3600

vec(Q1) vec(Q̂1) MCs.e. vec(Q̂1) MCs.e vec(Q̂1) MCs.e.
0.216 0.180 0.08 0.193 0.05 0.203 0.04
-0.028 -0.023 0.03 -0.021 0.02 -0.021 0.02
0.009 -0.016 0.05 -0.010 0.03 0.001 0.02
0.137 0.280 0.17 0.254 0.14 0.207 0.13
0.163 0.204 0.08 0.201 0.06 0.190 0.07
0.229 0.278 0.12 0.270 0.11 0.234 0.10
-0.172 -0.361 0.24 -0.322 0.16 -0.257 0.15
0.136 0.070 0.18 0.080 0.09 0.093 0.09
-0.018 -0.086 0.15 -0.078 0.14 -0.036 0.14
bias(1) 0.623 - 0.510 - 0.274 -
bias(2) 0.069 - 0.057 - 0.030 -

vec(Q2) vec(Q̂2) MCs.e. vec(Q̂2) MCs.e vec(Q̂2) MCs.e.
-0.096 -0.077 0.13 -0.065 0.05 -0.068 0.04
-0.167 -0.109 0.07 -0.108 0.05 -0.110 0.04
-0.171 -0.220 0.17 -0.203 0.07 -0.196 0.05
0.228 0.344 0.17 0.312 0.10 0.277 0.09
0.251 0.269 0.07 0.264 0.06 0.253 0.05
0.313 0.393 0.17 0.371 0.10 0.338 0.07
0.245 0.113 0.28 0.123 0.12 0.164 0.11
0.219 0.138 0.09 0.148 0.06 0.159 0.07
0.154 0.101 0.17 0.105 0.10 0.138 0.10

bias(1) 0.608 - 0.519 - 0.342 -
bias(2) 0.068 - 0.058 - 0.038 -

Table 2.11: Monte Carlo results for the estimation of the VMA coefficient matrix Q1 and
Q2. The VARMA(1,1) is obtained from sum-over-the quater sampling of the SVAR(1)
with B non-recursive, reported in Eq. (2.31). In the first column we report the DGP
elements of Qi, i = 1, 2. We consider T = 600, 1200, 3600, and we evaluate the results
with two measures of bias: bias(1) is calculated as the sum of the differences in absolute
value of the ”true” value of the elements and the Monte Carlo estimates; bias(2) is
calculated as bias(1)/(number of elements).
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2.4.3 Comparison with state space estimation

In this section we consider the four Monte Carlo experiments examined in sec-
tion 2.3.3 for the point-in-time case. Also for the sum aggregation, we compare
the results obtained with state space estimation and the proposed approach in term
of parameters estimation and impulse responses. The general design corresponds
to the high frequency bivariate VAR(1) DGP of Eq. (2.20) and Eq. (2.21).

Results

To make results as comparable as possible, we refer to the same DGPs matrices
considered in section 2.3.3 and we maintain the same measures of evaluation of
the results: we compare the estimates with the measure bias(1), considered above,
and we evaluate the impulse responses with the ratio of (i) the root of the mean
across replications of the squared error calculated for the mixed frequency IRFs
(either with state space, or minimum distance) and (ii) root of the mean across
replications of the RMSEs of the monthly IRFs, calculated with ordinary least
squares.
The results obtained from the Monte Carlo experiments in the case of the sum
sampling scheme confirm the considerations proposed above for the point-in-time
sampling: the ratios related to the Minimum Distance estimation are a little bit
bigger then the ratios calculated with state space methodology. In the case of
B 6= I, the enhancement highlighted in the previous sections for the responses
after a shock of the low frequency variable, appears slightly reduced, in particular
for case “y to y”, the responses of the low frequency variable (the first column of
Tables 2.13 and 2.14): specifically, most of the ratios calculated with the minimum
distance estimates become bigger then the state space counterparts.
As in the point-in-time comparison, we report also the ratios obtained with the
aggregated mixed frequency IRFs and the low frequency results calculated through
the naive approach. Specifically, we calculate the impulse responses for the monthly,
the mixed frequency (with both approaches) and the quarterly data. To make IRFs
comparable, we aggregate the monthly and the mixed frequency results through
the aggregation scheme of sum sampling. The ratios reported in Table 2.15 and
Table 2.16 confirm the consideration about temporal aggregation: the ratios re-
lated to the quarterly impulses are very far from the unit, especially at the instant
related to the impact of the shock (h = 0). In other words, in those cases in
which we assume that the DGP is at high frequency, both the mixed frequency
approaches alleviate the effects of temporal aggregation.
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Design: vec(A)’=(0.75 , 0.20 , 0.10, 0.70)
vech(B)’=(1.00 , 0.00 , 1.00) vech(B)’=(0.60 , 0.30 , 0.40)

TRUE St.Sp. Min.Dist. TRUE St.Sp Min.Dist.

vec(A) vec(Â) vec(Â) vec(A) vec(Â) vec(Â)
0.75 0.74 0.76 0.75 0.73 0.76

(0.06) (0.03) (0.10) (0.05)
0.20 0.21 0.19 0.20 0.20 0.21

(0.05) (0.03) (0.07) (0.06)
0.10 0.11 0.09 0.10 0.12 0.09

(0.06) (0.04) (0.09) (0.07)
0.70 0.69 0.71 0.70 0.70 0.70

(0.04) (0.05) (0.06) (0.08)
bias(1) 0.03 0.04 bias(1) 0.01 0.03

vech(BB′) vech(B̂B̂′) vech(B̂B̂′) vech(BB) vech(B̂B̂′) vech(B̂B̂′)
1.00 1.02 0.97 0.36 0.37 0.35

(0.19) (0.17) (0.07) (0.07)
0.00 -0.01 0.01 0.18 0.18 0.17

(0.12) (0.05) (0.04) (0.03)
1.00 0.99 0.97 0.25 0.25 0.24

(0.09) (0.11) (0.02) (0.09)
bias(1) 0.04 0.07 bias(1) 0.01 0.03

Design: vec(A)’=(0.85 , 0.20 , 0.10, 0.80)
vech(B)’=(1.00 , 0.00 , 1.00) vech(B)’=(0.60 , 0.30 , 0.40)

vec(A) vec(Â) vec(Â) vec(A) vec(Â) vec(Â)
0.85 0.84 0.86 0.85 0.84 0.86

(0.05) (0.04) (0.08) (0.07)
0.20 0.20 0.19 0.20 0.20 0.20

(0.04) (0.05) (0.06) (0.09)
0.10 0.10 0.08 0.10 0.10 0.08

(0.04) (0.06) (0.07) (0.11)
0.80 0.79 0.81 0.80 0.79 0.80

(0.03) (0.08) (0.03) (0.03)
bias(1) 0.02 0.05 bias(1) 0.03 0.04

vech(BB′) vech(B̂B̂′) vech(B̂B̂′) vech(BB′) vech(B̂B̂′) vech(B̂B̂′)
1.00 1.00 0.96 0.36 0.36 0.35

(0.17) (0.16) (0.06) (0.11)
0.00 -0.01 0.03 0.18 0.18 0.18

(0.11) (0.07) (0.03) (0.04)
1.00 0.99 0.97 0.25 0.25 0.25

(0.08) (0.17) (0.02) (0.13)
bias(1) 0.02 0.10 bias(1) 0.01 0.02

Table 2.12: Estimates from two bivariate SVAR(1) data generating processes, with T =
300 high frequency instants. We report the DGP values in the first column, the estimates
obtained with state space approach, and the minimum distance estimates (both with
related empirical standard errors). In both the experiments of the first half part of the
table B = I: on the left vec(A) = (0.75, 0.20, 0.10, 0.70)′ and on the right part vec(A) =
(0.85, 0.20, 0.10, 0.80)′. In the second half part of the table vech(B) = (0.60, 0.30, 0.40)′,
with vec(A) = (0.75, 0.20, 0.10, 0.70)′ on the left and vec(A) = (0.85, 0.20, 0.10, 0.80)′ on
the right.
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Design: vec(A) = (0.75, 0.20, 0.10, 0.70)′, vech(B) = (1.0, 0.0, 1.0)

St.Sp vs monthly Min.Dis vs monthly

h (months) y to y x to y y to x x to x y to y x to y y to x x to x

0 2.27 2.13 NaN 1.14 2.73 2.68 NaN 2.64
1 1.25 1.39 1.35 1.11 1.48 1.63 1.65 1.28
2 1.19 1.16 1.30 1.05 1.05 1.22 1.44 1.10
3 1.15 1.09 1.26 1.04 1.07 1.17 1.40 1.10
4 1.12 1.07 1.24 1.05 1.09 1.13 1.38 1.07
5 1.08 1.05 1.21 1.07 1.11 1.11 1.38 1.10
6 1.06 1.03 1.20 1.09 1.13 1.10 1.37 1.15
7 1.04 1.02 1.18 1.10 1.16 1.11 1.36 1.19
8 1.03 1.02 1.17 1.11 1.18 1.13 1.37 1.23
9 1.02 1.01 1.16 1.12 1.22 1.15 1.39 1.27
10 1.02 1.01 1.15 1.12 1.24 1.18 1.40 1.30
11 1.02 1.01 1.14 1.12 1.27 1.25 1.42 1.35
12 1.02 1.00 1.14 1.11 1.30 1.27 1.45 1.39

Design: vec(A) = (0.75, 0.20, 0.10, 0.70)′, vech(B) = (0.6, 0.3, 0.4)

St.Sp vs monthly Min.Dis vs monthly

h (months) y to y x to y y to x x to x y to y x to y y to x x to x

0 2.44 2.00 NaN 1.71 2.98 3.68 NaN 3.45
1 1.37 1.24 1.73 1.18 2.07 2.34 2.23 1.95
2 1.21 1.08 1.52 1.20 1.05 1.20 1.31 1.11
3 1.16 1.05 1.43 1.23 1.13 1.12 1.31 1.09
4 1.12 1.05 1.38 1.25 1.14 1.10 1.26 1.10
5 1.10 1.04 1.35 1.26 1.20 1.12 1.26 1.11
6 1.09 1.03 1.33 1.26 1.24 1.16 1.26 1.14
7 1.08 1.02 1.31 1.26 1.28 1.20 1.27 1.16
8 1.07 1.02 1.30 1.26 1.31 1.25 1.28 1.19
9 1.06 1.02 1.28 1.25 1.35 1.30 1.30 1.21
10 1.06 1.02 1.27 1.24 1.38 1.34 1.31 1.24
11 1.06 1.02 1.25 1.24 1.42 1.39 1.33 1.27
12 1.06 1.02 1.24 1.23 1.45 1.43 1.35 1.30

Table 2.13: In the Table we show the RMSE ratios calculated for the evaluation of
the Impulse Response Functions for the two mixed frequency procedure. We compare
(i) the RMSE for the high frequency IRFs obtained from state space and minimum
distance estimation, with (ii) the (benchmark) RMSEs obtained from the estimates the
high frequency parameters, once we assume that all the variables can be observed: more
the rates are near to one, more the mixed frequency impulse responses are close to the
monthly impulse responses. In both the fourth and the eighth column, the value “NaN”
is due to the Cholesky restriction. 88
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Design: vec(A) = (0.85, 0.20, 0.10, 0.80)′, vech(B) = (1.0, 0.0, 1.0)

St.Sp vs monthly Min.Dis vs monthly

h (months) y to y x to y y to x x to x y to y x to y y to x x to x

0 2.14 1.98 NaN 1.10 2.31 2.41 NaN 2.20
1 1.29 1.46 1.34 1.14 1.33 1.55 1.51 1.34
2 1.17 1.22 1.31 1.11 1.14 1.27 1.49 1.14
3 1.15 1.13 1.28 1.09 1.12 1.20 1.48 1.10
4 1.14 1.10 1.26 1.09 1.12 1.18 1.47 1.09
5 1.12 1.08 1.24 1.10 1.11 1.16 1.44 1.07
6 1.11 1.07 1.23 1.11 1.10 1.13 1.42 1.07
7 1.09 1.06 1.21 1.12 1.10 1.11 1.40 1.08
8 1.08 1.06 1.20 1.13 1.08 1.09 1.37 1.09
9 1.07 1.05 1.18 1.13 1.07 1.09 1.35 1.11
10 1.06 1.05 1.17 1.13 1.06 1.07 1.32 1.12
11 1.05 1.04 1.16 1.13 1.05 1.07 1.30 1.13
12 1.04 1.04 1.15 1.13 1.04 1.06 1.27 1.14

Design: vec(A) = (0.85, 0.20, 0.10, 0.80)′, vech(B) = (0.6, 0.3, 0.4)

St.Sp vs monthly Min.Dis vs monthly

h (months) y to y x to y y to x x to x y to y x to y y to x x to x

0 2.14 1.81 NaN 1.66 2.20 2.25 NaN 2.47
1 1.35 1.29 1.47 1.19 1.43 1.54 1.19 1.31
2 1.18 1.12 1.40 1.15 1.14 1.26 1.15 1.09
3 1.13 1.07 1.35 1.16 1.13 1.14 1.13 1.05
4 1.10 1.05 1.32 1.18 1.04 1.07 1.11 1.05
5 1.07 1.05 1.30 1.19 1.01 1.03 1.11 1.06
6 1.06 1.04 1.28 1.20 1.00 1.01 1.10 1.07
7 1.04 1.04 1.27 1.21 1.00 1.00 1.09 1.09
8 1.03 1.03 1.26 1.21 1.00 0.99 1.08 1.10
9 1.03 1.03 1.25 1.21 1.00 0.99 1.08 1.12
10 1.02 1.02 1.24 1.21 1.00 0.99 1.07 1.13
11 1.02 1.02 1.23 1.21 0.99 0.99 1.07 1.15
12 1.01 1.02 1.22 1.21 0.98 0.99 1.06 1.16

Table 2.14: In the Table we show the RMSE ratios calculated for the evaluation of
the Impulse Response Functions for the two mixed frequency procedure. We compare
(i) the RMSE for the high frequency IRFs obtained from state space and minimum
distance estimation, with (ii) the (benchmark) RMSEs obtained from the estimates the
high frequency parameters, once we assume that all the variables can be observed: more
the rates are near to one, more the mixed frequency impulse responses are close to the
monthly impulse responses. In both the fourth and the eighth column, the value “NaN”
is due to the Cholesky restriction. 89
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vec(A) = (0.75, 0.20, 0.10, 0.70)′, vec(A) = (0.75, 0.20, 0.10, 0.70)′,
vech(B) = (1.00, 0.00, 1.00)′ vech(B = (0.60, 0.30, 0.40)′

State Space vs monthly

h (quarters) y to y x to y y to x x to x y to y x to y y to x x to x

0 1.26 1.54 NaN 1.10 1.29 1.35 NaN 1.26
1 1.13 1.05 1.27 1.06 1.11 1.05 1.39 1.25
2 1.06 1.04 1.21 1.13 1.06 1.03 1.32 1.26
3 1.04 1.03 1.17 1.15 1.05 1.03 1.26 1.25
4 1.05 1.03 1.15 1.15 1.05 1.03 1.22 1.22
5 1.06 1.04 1.14 1.14 1.06 1.04 1.18 1.19
6 1.07 1.05 1.15 1.15 1.06 1.05 1.16 1.16
7 1.09 1.07 1.16 1.15 1.07 1.06 1.14 1.14
8 1.11 1.09 1.17 1.16 1.08 1.07 1.12 1.12

Minimum Distance vs monthly
0 1.30 1.62 NaN 1.33 1.35 1.61 NaN 1.47
1 1.08 1.15 1.40 1.15 1.16 1.10 1.27 1.06
2 1.16 1.15 1.38 1.25 1.27 1.18 1.27 1.13
3 1.26 1.23 1.43 1.34 1.37 1.32 1.32 1.22
4 1.37 1.34 1.51 1.44 1.46 1.44 1.39 1.32
5 1.50 1.47 1.62 1.56 1.57 1.56 1.48 1.42
6 1.63 1.60 1.74 1.69 1.67 1.68 1.57 1.52
7 1.77 1.74 1.87 1.81 1.78 1.79 1.67 1.62
8 1.82 1.87 1.90 1.84 1.90 1.91 1.77 1.73

quarterly vs monthly
0 7.75 3.67 NaN 7.54 8.39 6.47 NaN 5.63
1 3.66 3.12 1.46 2.74 3.95 3.76 1.24 1.80
2 3.05 2.90 1.60 2.05 3.16 3.08 1.31 1.46
3 2.86 2.83 1.74 1.91 2.88 2.88 1.42 1.44
4 2.84 2.84 1.87 1.94 2.81 2.85 1.52 1.52
5 2.92 2.91 2.01 2.04 2.83 2.88 1.62 1.61
6 3.05 3.02 2.15 2.16 2.91 2.96 1.72 1.71
7 3.20 3.16 2.29 2.29 3.00 3.05 1.82 1.81
8 3.37 3.31 2.43 2.42 3.12 3.16 1.92 1.91

Table 2.15: In the Table we report the RMSE ratios for the evaluation of the aggre-
gated IRFs, with sum-aggregation scheme. We refer to the Monte Carlo designs: (1)
vec(A) = (0.75, 0.20, 0.10, 0.70)′, vech(B) = (1.00, 0.00, 1.00)′ (on the left), and (2)
vec(A) = (0.75, 0.20, 0.10, 0.70)′, vech(B) = (0.60, 0.30, 0.40)′ (on the right). For each
(quarterly) horizon, we compare (i) the aggregated Impulse Response Functions of both
the mixed frequency procedures, and (ii) the quarterly IRFs (naive approach), relative
to the monthly IRFs. Values near to one, indicate that the mixed frequency (or the quar-
terly frequency) impulse responses are close to the monthly impulse responses. In both
the fourth and the eighth column, the value “NaN” is due to the Cholesky restriction.90
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vec(A) = (0.85, 0.20, 0.10, 0.80)′, vec(A) = (0.85, 0.20, 0.10, 0.80)′,
vech(B) = (1.00, 0.00, 1.00)′ vech(B = (0.60, 0.30, 0.40)′

State Space vs monthly

h (quarters) y to y x to y y to x x to x y to y x to y y to x x to x

0 1.38 1.56 NaN 1.12 1.47 1.36 NaN 1.24
1 1.12 1.09 1.25 1.07 1.09 1.06 1.31 1.17
2 1.07 1.05 1.20 1.10 1.04 1.04 1.25 1.19
3 1.04 1.04 1.16 1.12 1.02 1.02 1.22 1.19
4 1.02 1.03 1.13 1.11 1.00 1.01 1.20 1.18
5 1.01 1.02 1.10 1.10 1.00 1.00 1.18 1.17
6 1.01 1.01 1.09 1.09 1.00 1.00 1.16 1.16
7 1.01 1.01 1.07 1.08 0.99 0.99 1.14 1.15
8 1.00 1.00 1.06 1.07 0.99 0.99 1.13 1.13

Minimum Distance vs monthly
0 1.42 1.70 NaN 1.47 1.52 1.62 NaN 1.44
1 1.11 1.18 1.46 1.05 1.00 1.07 1.12 0.98
2 1.09 1.11 1.40 1.09 0.97 0.99 1.09 0.99
3 1.06 1.07 1.32 1.13 0.98 0.97 1.07 0.99
4 1.04 1.06 1.26 1.14 0.98 0.98 1.06 1.00
5 1.03 1.05 1.21 1.14 0.99 0.98 1.05 1.00
6 1.03 1.04 1.18 1.13 1.00 0.99 1.05 1.02
7 1.04 1.05 1.15 1.12 1.01 1.00 1.05 1.03
8 1.04 1.05 1.14 1.11 1.02 1.01 1.05 1.03

quarterly vs monthly
0 8.37 3.95 NaN 7.91 9.04 6.86 NaN 6.17
1 4.33 3.54 1.49 2.91 4.54 4.54 1.11 1.73
2 3.43 3.20 1.49 1.83 3.34 3.45 1.11 1.15
3 2.92 2.88 1.46 1.50 2.72 2.84 1.11 1.06
4 2.59 2.64 1.43 1.40 2.35 2.47 1.12 1.07
5 2.37 2.45 1.40 1.36 2.13 2.23 1.13 1.09
6 2.23 2.31 1.38 1.34 2.00 2.07 1.14 1.11
7 2.14 2.21 1.36 1.33 1.92 1.97 1.14 1.13
8 2.08 2.14 1.35 1.33 1.87 1.91 1.15 1.14

Table 2.16: In the Table we report the RMSE ratios for the evaluation of the aggre-
gated IRFs, with sum-aggregation scheme. We refer to the Monte Carlo designs: (1)
vec(A) = (0.85, 0.20, 0.10, 0.80)′, vech(B) = (1.00, 0.00, 1.00)′ (on the left), and (2)
vec(A) = (0.85, 0.20, 0.10, 0.80)′, vech(B) = (0.60, 0.30, 0.40)′ (on the right). For each
(quarterly) horizon, we compare (i) the aggregated Impulse Response Functions of both
the mixed frequency procedures, and (ii) the quarterly IRFs (naive approach), relative
to the monthly IRFs. Values near to one, indicate that the mixed frequency (or the quar-
terly frequency) impulse responses are close to the monthly impulse responses. In both
the fourth and the eighth column, the value “NaN” is due to the Cholesky restriction.91
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2.5 Generalization to higher lags: sketch of the

idea

In the previous sections we have analysed the mapping between high frequency
VAR(1) matrices and their low frequency counterparts, obtained either through
point-in-time, or through sum-over the low frequency aggregation scheme. By ex-
ploiting the analytical relationships found above, we have demonstrated how we
can recover the high frequency (unobservable) estimates and then the IRFs using
the Classical Minimum Distance estimation method.
In the presence of higher-order VARs the mapping between high and low frequency
parameters becomes cumbersome. This can be seen by considering a simple ex-
ample.
Assume that we know that the high frequency DGP is a monthly structural VAR
with two lags, defined by

Y ∗t = A1Y
∗
t−1 + A2Y

∗
t−2 +Bεt, εt ∼ WN(0, I) (2.32)

with B lower triangular. We assume that the quarterly data are obtained through
the point-in-time aggregation scheme. Substituting recursively Y ∗t in Eq. (2.32),
we obtain the following expression:

Y ∗t = A1Y
∗
t−1 + A2Y

∗
t−2 +Bεt

= A3
1Y
∗
t−3 + A2

1A2Y
∗
t−4 + A1A2Y

∗
t−3 + A2A1Y

∗
t−3 + A2

2Y
∗
t−4+

+ A2
1Bεt−2 + A2Bεt−2 + A1Bεt−1 +Bεt,

rewritable as

Y ∗t = (A3
1 + A1A2 + A2A1)Y ∗t−3 + (A2

1A2 + A2
2)Y ∗t−4+

+ (A2
1 + A2)Bεt−2 + A1Bεt−1 +Bεt. (2.33)

It is seen that the presence of the term (A2
1A2 + A2

2)Y ∗t−4 makes it impossible the
estimation of Eq. (2.33) on quarterly (skip sampled) data. If we consider to iterate
the recursive substitution until the low frequency VAR has the same order of the
high frequency VAR, i.e. 2, the solution obtained presents the same problem of
Eq. (2.33). Specifically, given

Y ∗t = (A3
1 + A1A2 + A2A1)Y ∗t−3 + (A2

1A2A
2
1 + A2

2A
2
1 + A3

2 + A2
1A

2
2)Y ∗t−6+

+ (A2
1A2A1A2 + A2

2A1A2)Y ∗t−7+

+ (A2
1A2A1 + A2

2A1)Bεt−5 + (A2
1A2 + A2

2)Bεt−4 + (A2
1 + A2)Bεt−2 + A1Bεt−1 +Bεt,

(2.34)
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we can note that Eq. (2.34) includes the term (A2
1A2A1A2 + A2

2A1A2)Y ∗t−7: the
instant t− 7 doesn’t coincide to any the quarterly instants τ = 3, 6, 9, . . . .

Assuming that the objects of interest are the IRFs of the high frequency pro-
cess, a possible solution can be designed as follow. Imagine to know that the high
frequency DGP is a VAR(pm), with pm > 1 representing the order of the high fre-
quency VAR. However, we can deal only with data sampled at quarterly frequency.
Since we can’t define a mapping between the high and the low frequency VAR, the
first step in the estimation procedure corresponds to the identification of the order
of the (observable) low frequency VAR. Using standard information criteria (e.g.
Bayesian Information Criterion (BIC), or Akaike Information Criterion (AIC)), we
define the order pq of the low frequency VAR. Then, we estimate the related pa-
rameters from the aggregated data and we derive the impulse response functions.
In those cases in which pq is greater then one, the idea is to approximate the IRFs
of the estimated VAR(pq), with IRFs of a quarterly VAR(1). Hence, once obtained
the estimates of the VAR(1) which minimize the distance between the related IRFs
and the IRFs of the VAR(pq), the idea is to recover the high frequency impulse
responses from the estimates of the quarterly VAR(1). A possible solution to the
approximation of the IRFs of the VAR(pq) can be obtained by referring to the Im-
pulse Response Function Matching estimators22. In the literature of DSGE models
the idea of the impulse response matching technique is to estimate the structural
parameters of a DSGE by minimizing the distance between its impulse responses
and the impulse responses obtained with a SVAR(p) model, with p = 1, 2, . . . .
In the framework of mixed frequency VARs, focusing on structural analyse, the
general idea is to anchor the IRFs obtained from a generic quarterly VAR(pq) (es-
timated from the aggregated data and in which the lag pq is chosen with standard
information criteria) to a (misspecified) quarterly VAR(1). By this way, the low
frequency estimates obtained from the impulse response matching of the quarterly
VAR(1) are merely auxiliary to recover the high frequency IRFs using the pro-
posed approach.
We present below the Impulse Response Function Matching estimation procedure,
referring to the classical example provided by the literature, i.e. structural DSGE
model estimation. Furthermore, we describe the new approach for the generaliza-
tion of the proposed procedure and we evaluate the entire estimation technique
with a Monte Carlo experiment.

22Christiano, Eichenbaum and Evans (2005), Boivin and Giannoni (2006), Fève, Matheron
and Sahuc (2009), Hall, Inoue, Nason and Rossi (2012), and Guerron-Quintana, Inoue and
Kilian (2017) among others.

93



2.5 Generalization to higher lags: sketch of the idea

2.5.1 Impulse Response Matching Estimation

One of the main aspect in modelling VAR processes is represented by Impulse
Response functions. The IRFs and the structural analyses play a strategical role
in macroeconomics. Working with a DSGE model, one possible solution to the es-
timation of its structural parameters has been proposed by Rotemberg and Wood-
ford (1997). Their idea corresponds to obtain the estimates of DSGE structural
parameters which lead to IRFs much close as possible to the impulse responses of a
SVAR model estimated from the data. The Impulse Response Function Matching
Estimator (henceforth, IRFME) proposed by the authors, corresponds practically
to a Minimum Distance estimator that minimize the distance between the impulse
responses derived from a SVAR(p) model and the impulse responses of a DSGE
model.
Consider the generic N -variate VAR(p) process defined by

Yτ = C1Yτ−1 + C2Yτ−2 + · · ·+ CpYτ−p +Rντ , ντ ∼ WN(0, I) (2.35)

where Yτ is a vector of N endogenous variables, R is assumed lower triangular,
Rντ = ξτ and Σξ = RR′ is the covariance matrix of the residual component ξτ .
We collect the empirical impulse responses for the horizons h = 0, 1, . . . hmax of the
estimated VAR(p) process in the q× 1 vector γ̂ = (γ̂′0, γ̂

′
1, . . . , γ̂

′
hmax

)′. The idea is
to recover the structural parameter vector ψ of a DSGE model that guarantees the
vector of impulse responses δ = h(ψ) as close as possible to the empirical impulse
responses collected in γ̂. The impulse response function matching estimator is
defined by

min
θ∈Θ

Q(θ) = min
ψ∈Θψ
{γ̂ − δ}′S{γ̂ − δ}

= min
ψ∈Θψ
{γ̂ − h(ψ}′S{γ̂ − h(ψ)}, (2.36)

where the weighting matrix S is a definite positive weighting matrix. The optimal
choice of S is represented by the inverse of the asymptotic covariace matrix of γ̂
(see Fevè, Matheron, Sahuc (2009)). Guerron-Quintanta, Inoue and Kilian (2017)
consider the inverse of the bootstrap covariance matrix estimator of the impulse
responses23 collected in γ̂, i.e. S = Σ−1

γ∗ . In particular, consider the bootstrap

23Guerron-Quintanta, Inoue and Kilian (2017) discuss also the use of a non optimal positive
definite diagonal weighting matrix, with entries represented by the reciprocals of the diagonal
elements of the bootstrap covariance matrix estimator of the impulse responses Σγ∗ . Further-
more, the authors asses that optimal weighting matrix Σγ∗ has a nonstandard convergence rate,
and a nonstandard asymptotic distribution when the number of parameters in γ̂ is higher than
the number of the VAR(p) parameters. The solution considered is to mimic the convergence rate
and the asymptotic distribution with the bootstrap.
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estimator γ̂∗b , with b = 1, . . . , B, and ¯̂γ∗ = 1/B
∑B

b=1 γ̂
∗
b . The bootstrap covariance

matrix estimator of the impulse responses is given by

Σ̂γ∗ =
B∑
b=0

(γ̂∗b − ¯̂γ∗)′(γ̂∗b − ¯̂γ∗).

By this way we obtain DSGE structural parameters vector ψ̂ that leads to impulse
responses (i.e. δ = h(ψ̂)) as close as possible to the impulse responses γ̂ obtained
with a VAR(p) model. Standard inference is guaranteed by the order condition
q ≤ k, whit q the number of elements in γ̂ and k the number of free parameters in
the VAR(p) (i.e. Np+N(N + 1)/2). The optimal choice about the length of γ̂ is
discussed by Hall, Inoue, Nason and Rossi (2012). The authors provide information
criteria for the choice of the horizon ĥmax of the IRFs in γ̂. Fevè, Matheron, Sahuc
(2009) consider the Redundant Impulse Response Selection Criterion (RIRSC)
presented by the working paper of Hall, Inoue, Nason and Rossi (2008). The
criterion is a measure of both the numbers k and q, and, in particular, is given by

hmax = arg min
hmax∈H

=

{
log(|Σψ|) +

q log(T )

T

}
,

with Σψ the covariance matrix of the estimated parameter vector ψ̂. The estimate

of Σ̂ψ, can be recovered either with bootstrap techniques (see Fevè, Matheron,
Sahuc (2009) and Guerron-Quintanta, Inoue and Kilian (2017)), either referring
to the asymptotic distribution of Classical Minimum Distance Estimator. This
last alternative can be considered only in the case of q ≤ k.

For the purposes of this discussion, the IRFME provides the quarterly esti-
mates of the matrices C and Ω of Eq. (2.5) from a generic quarterly VAR(pq)
estimated from the data. This result is only auxiliary, and it is used in the map-
pings identified above for the derivation of the monthly impulse responses. In
particular, the idea is to estimate a VAR(pq) from the aggregated data, with pq
chosen with the BIC information criterion. We derive the impulse responses from
the estimates of the VAR(pq), considering a Cholesky decomposition of the es-
timated residual covariance matrix. We collect these impulse responses in the
vector γ̂ = (γ̂′0, γ̂

′
1, . . . , γ̂

′
hmax

)′, with hmax = 2, in accordance with the order con-
dition q ≤ k defined by Guerron-Quintana, Inoue and Kilian (2017). The vector
of quarterly IRF is given by

γ̂ =

γ̂0

γ̂1

γ̂2

 ,

with bootstrap covariance matrix estimator of impulse responses Σ̂γ∗ obtained
following Guerron-Quintana, Inoue and Kilian (2017) as described above (with
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1000 bootstrap replications). Assume that the vector of parameters of inter-
est is ψ = (vec(C)′, vech(D)′)′, with D the lower triangular matrix obtained
from Cholesky decomposition of the residual covariance matrix Ω of the quarterly
VAR(1). The mapping between γ̂ and ψ is given by

γ̂0 = vech(D)

γ̂1 = vec(CD)

γ̂1 = vec(C2D)

Once obtained the estimates of the impulse response matching estimator ψ̂, as
defined in Eq. (2.36), the proposed Classical Minimum distance procedure of sec-
tion 2.3.1 can be applied24. In this case the optimal weighting matrix S is given
by the inverse of the covariance matrix of the estimated vector θ̂, i.e.

Σ̂ψ =

((
∂h(ψ)

∂ψ̂′

)′
Σ̂−1
γ∗

(
∂h(ψ)

∂ψ̂′

))−1

.

Below we investigate the proposed approach for the generalization to higher order
high frequency VARs, with a Monte Carlo experiment.

2.5.2 Monte Carlo experiment

In the description of the Monte Carlo exercise we use the apex (†) to distinguish
between the parameters/error terms of the DGP or the parameters/error terms
obtained from the data, and the estimates of the auxiliary processes (the quar-
terly and the monthly VAR(1)).

Assume that the DGP is given by a monthly trivariate (n = 3) SVAR(5) process
(pm=5), defined by

Y ∗t = A
(†)
1 Y ∗t−1+A

(†)
2 Y ∗t−2+A

(†)
3 Y ∗t−3+A

(†)
4 Y ∗t−4+A

(†)
5 Y ∗t−5B

(†)ε
(†)
t , ε

(†)
t ∼ WN(0, I),

(2.37)

where Y ∗t , t = 1 . . . , T , is the n×1 vector of the n monthly series, A
(†)
i , i = 1, . . . , 5,

is n × n coefficient matrix of the i-th lag of the VAR, u
(†)
t = B(†)ε

(†)
t is the n × 1

vector of the residuals with covariance matrix Σ(†) = B(†)B(†)′ . ε
(†)
t is the n × 1

24The IRFME procedure could be used also for the case presented in section 2.4. With a
quarterly VARMA(1,1) solution, under regularity conditions (in particular, stable AR coefficient
matrix and invertible MA parameter matrix), we could think to obtain the estimates of the
VARMA process referring to a quarterly VAR(∞) with appropriate truncation, VAR(pq). The
following steps coincide with the steps described in this section.
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vector of the shocks, and B(†) is the lower triangular coefficient matrix of instan-
taneous shocks obtained by Cholesky decomposition of Σ(†).
For R = 1000 replications, we generate the monthly trivariate SVAR(5) process
defined in Eq. (2.37) with Y0 set to 0n×1 and sample size T = 600 (months). We as-
sume that at least one of the n = 3 variables is sampled at quarterly frequency. By
this way, we aggregate the monthly series with point-in-time aggregation scheme.
We define the order of the quarterly VAR(pq) from the aggregated data, i.e.

Yτ = C
(†)
1 Yτ−1 + · · ·+ C(†)

pq Yτ−1 + ξ(†)
τ , ξ(†)

τ ∼ (0,Ω(†))

and we estimate its parameters with least square estimation. C
(†)
j , with j =

1, . . . , pq is the j-th coefficient matrix of the quarterly VAR, Ω(†) is covariance

matrix of the quarterly residuals in ξ
(†)
τ = Dζ(†), and D(†) is the lower triangu-

lar matrix of the coefficients of quarterly instantaneous shocks collected in ζ(†).
Specifically, D is obtained with the Cholesky decomposition of Ω(†). The related
IRFs are obtained and then the responses for the horizons h = 0, 1, 2 are collected
in a vector γ̂. For the estimation of the covariance matrix of the estimated γ̂,
we consider the bootstrap technique25 described by Guerron-Quintana, Inoue and
Kilian (2017). In particular, the bootstrap covariance matrix estimator of the
impulse responses is given by

Σ̂γ∗ =
B∑
b=0

(γ̂∗b − ¯̂γ∗)′(γ̂∗b − ¯̂γ∗),

where B = 1000 is the number of bootstrap replications, γ̂∗b , with b = 1, . . . , B, is
the b-th bootstrap estimator of impulse responses and ¯̂γ∗ = 1/B

∑B
b=1 γ̂

∗
b . We fix

S = Σ̂−1
γ∗ , and we obtain the quarterly parameter vector θ̂ of a VAR(1) with the

impulse response matching technique. Specifically we obtain the estimates of the
misspecified quarterly process

Yτ = CYτ−1 + ξτ , ξτ ∼ (0,Ω).

With the impulse response matching estimator Ĉ and Ω̂ we obtain the estimates
of a quarterly VAR(1) which are as close as possible to the IRF obtained from
the data. Even if the application of the Classical Minimum Distance estimation
approach described in section 2.3.1, doesn’t lead to obtain the estimates of the high
frequency VAR(5), the results obtained allows the researcher to derive the estimate
of the impulse responses of the DGP. Specifically from the Classical Minimum
Distance estimators Â and B̂, defined by

Y ∗t = AY ∗t +Bεt, εt ∼ (0,Σ),

25A possible alternative solution is proposed by Lutkepohl (1990).
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we calculate the high frequency IRFs and we compare the results with the DGP
impulse responses.

Results

Since we are not interested in the auxiliary estimates of the quarterly and monthly
VAR(1), we evaluate graphically the estimated impulse responses, over 4 years (16
quarters, 48 months). In particular we can consider to divide the analyses of the
results in two part:

• the evaluation of the impulse responses obtained with the IRFME;

• the comparison of the high frequency IRFs with the impulse responses ob-
tained with the DGP matrices.

Specifically, in the first evaluation we compare the mean across replications of the
IRFs estimated with the quarterly VAR(pq) with the mean across replication of
the IRFs of the VAR(1) obtained after the IRFME. In the proposed exercise, we
consider to choose the order of the VAR(pq) referring to the BIC criterion: over
the R = 1000 replications of the Monte Carlo simulation, we have estimated (from
the data) 559 times a VAR(1), 415 VAR(2) models and 26 VAR(3). In the first
case (i.e. the replications in which we select a VAR(1)) we don’t need to consider
the IRFME: we directly apply the procedure described in section 2.3.1. For the
remaining replications we need to involve the impulse response matching approach.
In Figure 2.8 we plot the mean across replications of the impulse responses used
for the final step of the Classical Minimum Distance procedure. Specifically, we
compare the IRFs of the VARs estimated from the data (including the cases in
which the information criterion allows us to select the VAR(1)), reported in the
figure with the black solid line, and the IRFs obtained from the VAR(1) parame-
ters used for the high frequency IRFs estimation (red solid line). The confidence
bounds (red dashed lines) are obtained as two-standar error bounds, with standard
errors obtained considering the square root of the diagonal entries of the asymp-
totic covariance matrix of the IRFs, derived after IRFME.
For the evaluation of these first results we consider also to verify the reliability
of the impulse response matching estimates plotting the results obtained for the
441 replications in which the BIC doesn’t select the VAR(1) from the aggregated
data. In particular, in Figure 2.9 we plot the mean across replications of the
impulse responses obtained with a VAR(2) with the related VAR(1) impulse re-
sponses derived after IRFME estimation. As in Figure 2.8, we report the IRFs of
the (441) VAR(2) and VAR(3) models estimated from the data (black solid line)
and the correspondent (441) IRFs obtained with the VAR(1) IRFME estimates
(red solid line). The related confidence bounds (red dashed lines) are calculated as
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two-standar error bounds, with standard errors obtained as the square root of the
diagonal entries of the estimated asymptotic covariance matrix of the estimated
IRFs of the VAR(1) solutions. In both the figures, we depict the response of the
i-th variable to a shock on the j-th variable as (j → i) i.e. (impulse → response).
As we can note from both the figures, and in particular in Figure 2.8, the impulse
responses obtained from the auxiliary quarterly VAR(1) IRFME estimates seem
to be quite accurate and allow us to consider the final minimum distance step for
the estimation of the IRFs of the high frequency VAR.

The second kind of the evaluation of the Monte Carlo experiment, consists in
comparing the high frequency IRFs (final result of the exercise) with the impulse
responses obtained with the DGP matrices.
The first consideration refers to the matrix of the quarterly VAR(1): differently
from the previous Monte Carlo experiments (in which only in few replications we
had to evaluate the cube root of the quarterly matrix Ĉ with one real eigenvalue
and a pair of complex conjugate eigenvalues) for each replication we estimate the
(auxiliary) high frequency parameter matrices Â and B̂ evaluating the three dis-
tinct solution of C1/3 ∈ R, and defined by {A1, A2, A3} (see section 2.3.1).
In Figure 2.10 we plot the mean across replications of the high frequency im-
pulse responses obtained after the Classical Minimum Distance estimation of Â
and B̂ (red solid line) and the IRFs calculated with the DGP matrices of the
VAR(5) (black solid line). The confidence bounds (red dashed lines), related to
the Minimum Distance estimation, are calculated as two-standar error bounds,
with standard errors obtained as the square root of the diagonal entries of the es-
timated asymptotic covariance matrix of the estimated IRFs of the high frequency
VAR(1) solution.
Figure 2.10 shows the ability of the generalized procedure to the estimation of the
impulse responses of a high frequency VAR(pm) process, over 48 (monthly) hori-
zons (4 years). Only in the case of the response of the first variable to an impulse
in the second, we highlight some differences in the firsts responses with respect to
the true values, in particular in the response of the first variable at the horizon
h = 0.
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2.5 Generalization to higher lags: sketch of the idea

Figure 2.8: In the figure we report IRFs obtained from the data (black solid line) and
IRFs obtained after IRFME (red solid line). Both the quantities are obtained as the
mean across (R=1000) replications, i.e. the plotted impulse responses are calculated
without refer to the different choice of the lag order of the quarterly VAR estimated from
the data. The confidence bounds (red dashed lines) are calculated as two-standar error
bounds. The standard errors are obtained as the square root of the diagonal entries of the
estimated asymptotic covariance matrix of the estimated IRF of the VAR(1) solutions.
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Figure 2.9: In the figure we report IRFs obtained from the data (black solid line) and
IRFs obtained after IRFME (red solid line). Both the quantities are obtained as the
mean across 441 replications in which the BIC criterion doesn’t select the VAR(1) from
the aggregated data. The confidence bounds (red dashed lines) are calculated as two-
standar error bounds. The standard errors are obtained as the square root of the diagonal
entries of the estimated asymptotic covariance matrix of the estimated IRF of the VAR(1)
solutions.
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2.5 Generalization to higher lags: sketch of the idea

Figure 2.10: In the figure we report IRFs obtained from the DGP matrices of the VAR(5)
in Eq. (2.37) (black solid line) and IRFs obtained with the whole procedure (red solid
line). The confidence bounds (red dashed lines) are calculated as two-standar error
bounds. The standard errors are obtained as the square root of the diagonal entries of
the estimated asymptotic covariance matrix of the estimated IRF of the high frequency
VAR(1) solutions.
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2.6 Empirical Illustration

In empirical macroeconomic applications, referring to datasets composed by vari-
ables sampled at different frequency is an usual situation. To evaluate the pro-
posed Minimum Distance estimation procedure we refer to a classical dataset of
macroeconomic U.S. variables: the GDP growth rate, as low frequency variable,
the Federal Reserve Fund rate (FFR) and the Consumer Price Index growth rate
(CPI). FFR and CPI are monthly variables representative of interest and inflation
rate respectively, while the GDP growth rate is considered to mimic the output
growth. This simple and very classical exercise allows us to evaluate our estima-
tion approach and the standard Kalman filter-based estimation procedure, just
considered in the literature.
The comparison of the results consist of two different exercises. In particular,
the first part of the empirical application focuses on the comparison of the aggre-
gated IRFs resulting from both the mixed frequency estimation approaches with
the quarterly estimates. The objective of this part is to show how the proposed
approach could alleviate the aggregation bias.
In the second exercise the mixed frequency results, obtained with each estimation
approach, are compared also with a monthly SVAR, in which we consider the In-
dustrial Production growth (IP) as proxy of the output. In this second part of the
empirical application we are able to evaluate the the reliability of IRFs obtained
with the proposed approach.
The dataset refers to the temporal interval January 1968 - December 2007. As
in Foroni and Marcellino (2016) we intentionally exclude the period of the crisis,
in order to refer to a stable period. In both the exercises we consider a recursive
structural identification scheme.

2.6.1 Results of Exercise 1: mixed frequency vs low fre-
quency

In this empirical exercise we consider the comparison of the solutions obtained
with a quarterly dataset and the mixed frequency dataset, from January 1968 to
December 2007. In the first step we define and estimate the quarterly VAR(pq)
process from the aggregated data. Considering the naive approach, we aggregate
the monthly variables, until the dataset is at the same low frequency. The aggre-
gation scheme chosen is the sum-over-the quarter aggregation scheme. Then, the
quarterly vector of endogenous variable is defined by Yτ = (yτ , πτ , rτ )

′, where yτ
is the GDP growth rate (as measure of the output growth), πτ is the CPI growth
rate (as inflation rate) and rτ represents the Federal Fund Rate (as measure of
interest rate).
We apply the Cholesky decomposition to make shocks orthogonal, and we trace
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out the effects of impulses up to 16 quarters, corresponding to four years. The
monthly responses, obtained from the mixed frequency solutions, are computed
for 48 periods ahead, to span the the same period of the quarterly process. We
depict the response of the i-th variable to a shock on the j-th variable as (j → i)
i.e. (impulse → response).
The monthly results obtained from the mixed frequency approaches are aggregated
considering that the shocks are observed in the first month of the quarter, i.e. we
aggregate the first, the second and the third monthly responses, in order to com-
pare the high and the low frequency solutions26.
The aggregated mixed frequency IRFs from the MF-SVAR(5) are reported in Fig-
ure 2.11. with the blue and the red solid line. In particular the blue lines represent
the aggregated responses obtained after the estimation approach described in sec-
tion 2.5, and with the red line we show the aggregated responses obtained with
the state space approach. The mixed frequency IRFs derived by applying the two
approaches are compared with the impulse responses of a quarterly VAR(2). The
order of the low frequency VAR is defined referring the Akaike information crite-
rion.
The aggregated solutions and the pure quarterly VAR responses are in line with the
literature of temporal aggregation bias (see Marcellino (1999) and Foroni and Mar-
cellino (2016)): in many cases, the magnitude of the effects in the first responses
of the quarterly VAR appear greater and more persistent then those obtained with
the mixed-frequency approaches.

2.6.2 Results of Exercise 2: mixed frequency vs monthly
frequency

In this second exercise, following Foroni and Marcellino (2016), we replace the
(quarterly) GDP with the Industrial Production growth rate, available at monthly
frequency. Even if the authors, referring only to the analysis of monetary policy
shocks, highlight some differences in the responses of the system using either GDP
or IP, they conclude that the curves of the responses are sufficiently similar.
In Figure 2.12 we compare monthly IRFs. Specifically, we plot the impulse re-
sponses obtained with a monthly SVAR(5) (obtained substituting the GDP growth
rate with the Industrial Production growth rate), and the IRFs calculated after the

26A different result could be obtained if we imagine that the shocks (the impulses) are observed
in the third month of the reference quarter. Specifically, thinking about this situation, even if
for the quarterly estimation approach we don’t care about the month of the reference quarter in
which we observe the shock, for the mixed frequency this aspect becomes quite important: the
month in which we observe the impulse provides a different aggregated initial response. This
consideration is easily noticeable in three of the responses of our experiment, specifically in the
upper-right side of Figure 2.11.
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2. A moment-based approach for identification and estimation of MF-SVARs.

estimation of the MF-SVAR(5), through both the state space approach (red solid
line) and the minimum distance procedure (blue solid line). As in section 2.6.1,
we apply the Cholesky decomposition to make shocks orthogonal, and we trace
out the effects of impulses up four years (48 months).
The Exercise 2 confirms the result obtained in Exercise 1: the responses derived by
Minimum Distance estimation are similar to those obtained with the state space
procedure, and in line with the monthly results.
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2.6 Empirical Illustration

Figure 2.11: Impulse responses obtained from quarterly data (with GDP growth rate
as proxy of output growth) in black solid line and the aggregated IRFs from mixed
frequency datasets: the low frequency IRFs obtained with the state space approach (red
solid line), and aggregated IRFs obtained with Minimum Distance estimation (blue solid
line). For each of the three specifications we consider a Cholesky identification scheme.
The dataset covers the period 1968q1 - 2007q4.
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Figure 2.12: Impulse responses at monthly frequency, obtained with the Industrial Pro-
duction growth rate as proxy of output growth (in black line), IRFs from mixed frequency
datasets, obtained with state space approach in red line, and aggregated IRFs obtained
with Minimum Distance estimation in blue line. For each of the three specifications
we consider a Cholesky identification scheme. The dataset covers the period 1968q1 -
2007q4.
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2.7 Conclusion

2.7 Conclusion

The recent attention to mixed frequency data, led researcher to provide models
able to deal with dataset composed by variables sampled at different frequency.
One of this econometric tool is represented by MF-VAR. In this framework the
general idea is to use all the information contained in the data, in particular re-
ferring to the state space representation. In order to model different economic
phenomena, the literature of MF-VAR appears as a growing field of research. One
of the aspects less investigated, is represented by the Structural analysis of MF-
VAR (MF-SVAR). In particular, this issue is analysed and investigated by Foroni
and Marcellino (2014, 2016). The authors asses the usefulness of mixed frequency
data to mitigate the problem of aggregation bias and distortions of interpretation
in the structural analysis results.
In this discussion we provide a novel estimation procedure that investigates the
mapping between the high frequency process (that the research has in mind), and
the aggregated low-frequency counterpart. Following the temporal aggregation lit-
erature, we consider the most known aggregation schemes: point-in-time sampling
and sum sampling, this last as generalization of the average sampling scheme.
Motivated by the recent literature of Linear Rational Expectation models and
DSGE models, we start the analyses considering a monthly frequency SVAR(1)
process. The schemes identified above lead to different aggregated quarterly re-
sults: in the case of point-in-time sampling the low frequency model is a VAR(1),
while with the sum sampling, the aggregated result is a VARMA(1,1). From these
solutions, we identify the mapping between the monthly and the quarterly pa-
rameter matrices and we estimate the high frequency parameters with Minimum
distance estimation.
In the discussion, we provide different Monte Carlo experiments to evaluate the
capability of the proposed approach and reliability of the results. For both the ag-
gregation schemes, we compare the minimum distance results with the estimates
obtained with the state space procedure. Moreover, if the attention of the re-
searcher is focused merely on the estimation of the impulse response functions,
we propose a possible generalization of the procedure to higher order (high fre-
quency) VARs referring to the Impulse Response Functions Matching Estimation.
The limit of this approach is represented by the impossibility to recover the esti-
mates of the high frequency VAR(p) that we have in mind.
In general, even if, the state space procedure seems to work a little bit better then
minimum distance, especially in term of variability of the estimates, the results of
the two approaches can be considered comparable.

108



APPENDIX

A1. The Cube Root of a Matrix

In this Appendix we consider the problem of computing the cube root of a square
matrix C, i.e. C = A3, where C is known and the problem is computing A.
In general, a function f : Cn×n → Cn×n of a matrix C can be searched by dif-
ferent procedures. Higham (2008) summarizes the most useful ones: the Jordan
canonical form, the polynomial interpolation and the Cauchy integral. We focus
on the method based on the Jordan Canonical form, since it will be used in the
paper. Before addressing the specific problem of finding a cube root of a matrix,
we introduce some definitions.

Definition 1. Matrix functions defined by Jordan canonical form: Let C ∈
Cn×n an n× n matrix. Its Jordan canonical form is given by

M−1CM = J =


Jk1(λ1) 0 · · · 0

0 Jk2(λ2)
. . . 0

...
. . . . . .

...
0 · · · · · · Jkr(λr)


where M is an n × n nonsingular matrix, λi, with i = 1, . . . , r, r ≤ n, are the
eigenvalues of C, Ji(λi) ≡ Ji ∈ Cki×ki is the ith Jordan block, given by:

Jki(λi) ≡ Ji =


λi 1 0 · · · 0

0 λi 1
. . . 0

...
. . . . . . . . .

...
...

. . . . . . . . . 1
0 · · · · · · · · · λi

 ∈ Cki×ki ,

where ki is the number of repeated eigenvalue λi and k1 + k2 + · · ·+ kr = n.
Then the matrix function f(C), with f : Cn×n → Cn×n, is defined by

f(C) = f(MJM−1) = Mf(J)M−1 = Mdiag(f(J1), . . . , f(Jr))M
−1. (A1.1)
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In Eq. (A1.1), given f0 ≡ f : C→ C, f(Ji) is given by:

f(Ji) =


f0(λi) f

(1)
0 (λi) · · · f

(ki−1)
0 (λi)

(ki−1)!

0 f0(λi)
. . .

...
...

. . . . . . f
(1)
0 (λi)

0 · · · 0 f0(λi)

 ,

where f
(d)
0 represents the dth derivative of f0.

The problem we focus on, is only a particular case of a wide branch of the
mathematical literature. Considering f multivalued27, we have to evaluate several
aspects of the problem: first of all, the derogatory - nonderogatory nature of the
matrix C. When the Jordan matrix presents repeated eigenvalues (i.e. C is a
derogatory matrix), we can consider the same branch28 for f and its derivatives,
or different branches for each repeated eigenvalues. In the first case we evaluate
the primary matrix function, and in the second case we consider the non primary
solution.
The function f we are interested in is the cube root of a matrix C ∈ R3×3, with
distinct eigenvalues (i.e. C is a non derogatory matrix)29. In this case, f is a
multivalued function and consider f : Rn×n → Rn×n with n = 3.
Depending on the eigenvalues of C, we identify two cases, denoted Case 1 and
Case 2, respectively:

• Case 1. C has three distinct eigenvalues in R;

• Case 2. C has one eigenvalue in R and a pair of complex conjugate eigen-
values (in C).

From Definition 1 it follows that our problem amounts to finding the cube roots
of each eigenvalue.

27For one point in its domain, a multivalued functions assumes at least two distinct values in
its range. In this specific case, the cube root of a number is a multivalued function: for one point
in its domain, the cube root (f0) assumes three distinct values in its range.

28The term branch is related to multivalued functions. In the complex domain, a branch (also
called, sheets) is a portion of the range of a multivalued function over which the function is
single-valued. In particular, combining all the branches gives the full structure of the function.
A principal branch is obtained when a particular branch of a function is chosen to work with.

29In this case, the Jordan blocks are scalars, implying all the elements of the superdiagonals
of J are equal to zero.
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2. A moment-based approach for identification and estimation of MF-SVARs.

Case 1: Unique Real Solution of the Cube Root of C

In Case 1, we observe three distinct eigenvalues in R. In this case exists a unique
solution A ∈ R3×3, which solves C1/3 = A. Consider the eigenvalues of C,
{λ1, λ2, λ3} ∈ R. For each λi, i = 1, 2, 3, the number of cube roots is three:
one in the real plane, defined as r, and two in the complex plane, specifically, a
conjugate pair {c, c}, where c is the complex conjugate of c.
For instance, the cube roots of λi = −8 are:

3
√
−8 =


−2.0000

1.0000 + 1.7321i

1.0000− 1.7321i

,

where i =
√
−1 is the imaginary unit.

Then, from the 3 × 3 Jordan matrix J , with eigenvalues (λ1, λ2, λ3) ∈ R, we can
calculate

λ
1/3
1 = {r1, c1, c1}, (A1.2a)

λ
1/3
2 = {r2, c2, c2}, (A1.2b)

λ
1/3
3 = {r3, c3, c3}. (A1.2c)

The unique solution A = C1/3 ∈ R3×3 is given by:

A = C1/3 = MJ1/3M−1 = M

r1 0 0
0 r2 0
0 0 r3

M−1.

Any other combination of the roots of the eigenvalues in Eq. (A1.2), produces
cube roots of C, MJ1/3M−1 outside the real plane, i.e. with complex entries.

Case 2: Indeterminacy of the Real Solution of the Cube Root of C

In Case 2, does not exist a unique A which solves C1/3 = A ∈ R3×3. Consider
the eigenvalues of C, {λ1, λ2, λ3}, where λ1 ∈ R and {λ2, λ3} ∈ C are conjugates,
λ3 ≡ λ2. From the diagonal of the Jordan matrix, we observe:

λ
1/3
1 = {r1, c1, c1}, (A1.3a)

λ
1/3
2 = {c12, c22, c32}, (A1.3b)

λ
1/3
3 ≡ λ

1/3

2 = {c12, c22, c32}. (A1.3c)

111



Appendix A2

The only (distinct) cube roots of C ∈ R3×3 are obtained through the Jordan
matrices

J
1/3
1 =

r1 0 0
0 c12 0
0 0 c12

 , J1/3
2 =

r1 0 0
0 c22 0
0 0 c22

 , J1/3
3 =

r1 0 0
0 c32 0
0 0 c32

 .
Any other combination of the roots of the eigenvalues in Eq. (A1.3), produces cube
roots of C, MJ1/3M−1, outside the real plane, i.e. with complex entries.

A2. Estimate of the unique monthly matrix Â

In this Appendix, we consider the estimation of A, given the relationship C = A3.
Assume that vec(Ĉ) is any consistent, asymptotically Gaussian estimate of vec(C),
with covariance matrix Ω̂. In order to estimate Â = Ĉ1/3, we consider the two
cases discussed in APPENDIX A1.
Case 1 does not pose any problem in searching the (unique) solution Â = Ĉ1/3 ∈
R3×3. Case 2, instead, requires finding a method to select the Âi, i = 1, 2, 3, from
the three real equivalent solutions of Ĉ1/3 = {Â1, Â2, Â3}.

Case 1

• Ĉ is decomposed in its Jordan canonical form, obtaining the matrix M̂ and
Ĵ from the decomposition:

Ĉ = M̂ĴM̂−1;

• the real cube roots of the (real) entries of Ĵ is calculated, obtaining Ĵ1/3;

• the resultant diagonal matrix Ĵ1/3 is then pre-multiplied by M̂ and post-
multiplied by M̂−1, obtaining Â = M̂Ĵ1/3M̂−1 = Ĉ1/3 ∈ R3×3.

Case 2

• Ĉ is decomposed in its Jordan canonical form, obtaining the matrix M̂ and
Ĵ from the decomposition:

Ĉ = M̂ĴM̂−1;

• we calculate the cube roots of the three Jordan matrices, as illustrated in
the APPENDIX A1 - Case 2, Ĵ

1/3
i , with i = 1, 2, 3; in particular, we consider

the three combinations of
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2. A moment-based approach for identification and estimation of MF-SVARs.

– the real cube root (from Eq. (A1.3), r1) of the only real entry of Ĵ , with

– the three pair of complex cube roots of the conjugate pairs (specifically,
from Eq. (A1.3), {c12, c12}, {c22, c22}, {c32, c32});

• each resultant diagonal matrix, Ĵ
1/3
i , with i = 1, 2, 3, is pre-multiplied by M̂

and post-multiplied by M̂−1, obtaining three distinct real matrices: Â1, Â2, Â3;

In order to select one among the three matrices, we present two selection meth-
ods. These procedures guarantee that the selected Â minimizes the distance be-
tween the observations, according to some criteria.

Case 2 - Procedure 1

• For each Âi, with i = 1, 2, 3, calculate the minimum distance estimates of B
and V , i.e. B̂i and V̂i, with i = 1, 2, 3;

• from the estimated {Â1, B̂1, V̂1}, {Â2, B̂2, V̂2} and {Â3, B̂3, V̂3} generate the
fitted monthly series Y ??

t = (y??1,t, y
??
2,t, y

??
3,t)
′, with observations obtained as:

Y ??
i,t =

{
ÂiY

∗
i,t−1, εi,t ∼ (03, I3) if t 6= τ, t = 1, . . . Tb

ÂiY
∗
i,t−1, εi,t ∼ (03, V̂i) if t 6= τ, t = Tb + 1, . . . T

with i = 1, 2, 3 and where εi,t ∼ (03, I3) and εi,t ∼ (03, Vi) are obtained from
S = 100 draws from a multivariate Normal distribution with mean 03 and
covariance matrices: (i) I3 until Tb, and (ii) Vi for t = Tb + 1, . . . , T ;

• we calculate the adjusted R2 for the monthly fitted variables generated by
each set of matrices;

• the chosen matrix Â∗, (hence, {Â∗, B̂∗, V̂ ∗}), will be the one which provides
the maximum value of the index.

Case 2 - Procedure 2

• For each estimation we observe the value of the minimization function of the
minimum distance estimators;

• the chosen matrix Â∗, (hence, {Â∗, B̂∗, V̂ ∗}), will be the one which provides
the minimum value of the function.

113



Appendix A3

A3. Classical Minimum Distance Estimator

In general, the extremum estimation method could be described as a class of es-
timation methods. The Maximum Likelihood, least squares, Method of Moments
and Classical minimum distance estimation are only a few of methods belong to
this general class. In particular, in this work, we concentrate our attention on the
Classical minimum distance estimation method30.

Suppose that θ0 is a k × 1 vector of parameters of interest, which is known to
be function of the h × 1 parameter vector φ0, with h > k. In particular, for a
known continuously differentiable function h,

h(θ0, φ0) = 0. (A3.1)

Let φ̂ be a consistent and asymptotically Normal estimator of φ0, with asymptotic
covariance matrix Ψ∞, specifically

√
T (φ̂− φ0) ∼ N (0,Ψ∞).

The minimum distance estimator θ̂ solves the minimization problem:

min
θ∈Θ

Q(θ) = min
θ∈Θ
{h(θ0, φ̂}′S{h(θ0, φ̂)}, (A3.2)

where S is any positive semi-definite symmetric matrix.
Malinvaud (1970) demonstrates that, since there are no restrictions on the covari-
ance matrix of φ̂, the minimum distance estimator θ̂ is asymptotically efficient in
the class of minimum distance estimators when S is equal to the inverse of the
asymptotic variance of h(θ̂, φ̂).
In particular, the covariance matrix can be calculated applying the Delta method31.

30Malinvaud (1970) introduced this class of method, first, as non-linear estimation procedure,
starting from Gauss-Markov theory of linear estimation and trying to see what seems different
in a non linear structure.

31In general, consider any consistent estimator G of the true parameter Γ. By the central limit

theorem:
√
n(G − Γ)

d−→ N (0,Σ). Suppose we are interested in estimate the covariance matrix
of a function h of G. Considering Taylor series expansion of the second order:

h(G) ≈ h(Γ) +H(Γ)′(G− Γ)

where H(Γ) is the gradient of h(Γ). Then, the covariance of h(G) is, approximately, given by:

V ar(h(G)) ≈ V ar(h(Γ) +H(Γ)′(G− Γ)) =

= V ar(h(Γ) +H(Γ)′G−H(Γ)′Γ) =

= V ar(H(Γ)′G) =

= H(Γ)′V ar(G)H(Γ),

implying
√
n(h(G)− h(Γ))

d−→ N (0, H(Γ)′ΣH(Γ)).
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Let

Hφ =
∂h(θ, φ)

∂φ′
, Hθ =

∂h(θ, φ)

∂θ′
,

the Jacobian matrices32 of the function h(θ, φ). Assume that Ψ̂ is any consis-
tent estimator of Ψ∞. By the application of the Delta method, the asymptotic
covariance matrix of h(θ, φ̂), is given by

Wφ̂,θ = (H ′θSHθ)
−1
[
H ′θS(H ′φΨ̂Hφ)S ′Hθ

]
(H ′θSHθ)

−1.

If S = (H ′φΨ̂Hφ)−1, the minimum distance estimator θ̂ is asymptotically efficient
in the class of minimum distance estimators, and Wφ̂,θ̂

Wφ̂,θ̂ = (H ′θ(H
′
φΨ̂Hφ)−1Hθ)

−1.

The minimization function Q(θ) can be defined as:

Q(θ) = h(θ, φ̂)′Ŝφ,θh(θ, φ̂),

where Ŝφ,θ = (H ′φΨ̂Hφ)−1.

As we can note from the Jacobian, the weighting matrix S = Ŝφ,θ, is function of θ.
A classical approach in minimum distance estimation is a two-step procedure. In
the first step we obtain θ∗ as the minimum distance estimator of θ0 with S = I.
Then Ŝφ̂,θ is obtained as a function of θ∗, in particular, from the Jacobian matrix

H∗φ =
∂h(θ∗, φ̂)

∂φ̂′
.

Then, the criterion function Q(θ) is given by:

Q(θ) = h(θ, φ̂)′Ŝφ̂,θ∗h(θ, φ̂) = h(θ, φ̂)′(H∗
′

φ Ψ̂H∗φ)−1h(θ, φ̂).

The procedure described above corresponds to the two-step classical minimum dis-
tance estimation.
A particular case of the minimization problem described above is obtained con-
sidering the explicit formulation of the restrictions in Eq. (A3.1). For a known
continuously differentiable function f : Rk → Rh, we observe:

φ0 = f(θ0).

32As pointed out in Newey and McFadden (1994), standard inference is guaranteed by the full
rank of the Jacobian matrices.
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In this case, the minimum distance estimator θ̂ is given by:

min
θ∈Θ

Q(θ) = min
θ∈Θ
{φ̂− f(θ)}′S{φ̂− f(θ)}.

with optimal weighting matrix S equals the inverse of the estimator of the asymp-
totic covariance matrix Ψ0, i.e. S = Ψ̂−1.

In the literature, many different choices of S have been proposed. Brown (1960)
and Nakamura (1960), respectively, proposed and demonstrated the convergence
of the minimum distance estimator with S = I, where I is the identity matrix. In
recent years, Rotemberg and Woodford (1997) and Amato and Laubach (2003),
use S = I in minimum distance estimation of structural VAR models. Boivin
and Giannoni (2006) and Christiano, Eichenbaum and Evans (2005) estimated the
VAR structural parameters considering a diagonal matrix with entries equal the
inverse of the Impulse Response Function’s variances (i.e. CEE-type weighting
matrix). Several are also the minimum distance estimation methods implying two
step procedures. In addition to the two-step classical minimum distance described
above (see Newey and McFadden (1994), for further details), we can refer to S as
a function of θ and solve the minimization function w.r.t. the parameter vector θ.
The estimated Ŝ is, then, used in solving the minimization problem summarized in
Eq. (A3.2). If S and θ are estimated simultaneously, we refer to the Continuously
Updating (CU) GMM estimator of Hansen, Heaton and Yaron (1996).

A4. VARMA identification through mixed frequency data

Consider the results obtained in Section 2.2. The aggregation of a monthly
SVAR(1) process, defined as

Y ∗t = AY ∗t−1 +Bεt, εt ∼ (0, I3).

provides the quarterly VARMA(1,1) process:

Y ∗t + Y ∗t−1 + Y ∗t−2 =A3(Y ∗t−3 + Y ∗t−4 + Y ∗t−5)+

+Bεt + (I + A)Bεt−1 + (I + A+ A2)Bεt−2+

+ (A2 + A)Bεt−3 + A2Bεt−4

Yτ =CYτ−1 + ξτ +Qξτ−1, ξτ ∼ (0,Π) (A4.1)

with
ξτ = Bεt + (I + A)Bεt−1 + (I + A+ A2)Bεt−2,

Qξτ−1 = (A+ A2)Bεt−3 + A2Bεt−4
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and

Π = BB′ + (I + A)BB′(I + A)′ + (I + A+ A2)BB′(I + A+ A2)′.

Assume ητ = ξτ +Qξτ−1 and

E(ητητ−h) =


Ω = Π +QΠQ′ if h = 0,

Φ = QΠ if h = 1,

0 if h ≥ 2.

(A4.2)

With the aim of deriving the high frequency parameters, we have to estimate
the quarterly counterpart. However, as pointed out in the literature, the esti-
mation of a VARMA(p,q) process presents identification problems. In particular,
the uniqueness of the VARMA representation is guarantees by the introduction of
some restrictions. Classical choice of identification schemes for VARMA processes
are represented by the echelon form and the final equation form: in both the cases
we reduce the number of estimated parameters, achieving identification. For fur-
ther details see Lutkepohl (2012).
For the problem introduced in Eq. (A4.1), we propose a procedure in order to iden-
tify and recover the VARMA coefficient matrix from the estimated high frequency
parameters Â and B̂.
First, we consider a consistent estimator of the coefficient matrix C, for instance,
the Instrumental Variables (IV) estimator ĈIV . Then, the estimator of the monthly
matrix Â is calculated as the cube root of ĈIV , i.e.

Â = (ĈIV )
1
3 .

Given the quarterly residual component η̂τ = Yτ − ĈIV Yτ−1, we can obtain an
estimate of the covariance matrix Ω̂ and of the first order autocovariance matrix
Φ̂(1) ≡ Φ̂, respectively as

Ω̂ =
1

T
η̂τ η̂

′
τ , Φ̂ =

1

T
η̂τ η̂

′
τ−1.

Given Ω̂ and Φ̂ we can obtain the monthly structural coefficient matrix B̂, by
Minimum Distance estimation, with recursive and non-recursive structure. Hence,
once obtained B̂, we can also estimate indirectly the remaining component of the
quarterly process, i.e. Π̂, as a function of the monthly estimates Â and B̂,

Π̂ = B̂B̂′ + (I + Â)B̂B̂′(I + Â)′ + (I + Â+ Â2)B̂B̂′(I + Â+ Â2)′.

Furthermore, from the relation in Eq. (A4.2) we are also able to recover the quar-
terly parameter of the coefficient matrix Q. In particular

Q̂ = Φ̂Π̂−1 =

= [(A+ A2)BB′ + A2BB′(I + A)′]

[B̂B̂′ + (I + Â)B̂B̂′(I + Â)′ + (I + Â+ Â2)B̂B̂′(I + Â+ Â2)′]−1.
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