

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Mahmoud Badri

COMPARISON OF TWO APPROACHES FOR

WEB-BASED 3D VISUALIZATION OF SMART

BUILDING SENSOR DATA

Master’s Thesis

Degree Programme in Computer Science and Engineering

May 2017

Badri M. (2017) Comparison of two approaches for web-based 3D visualization

of smart building sensor data. University of Oulu, Degree Programme in Computer

Science and Engineering. Master’s Thesis, 54 p.

ABSTRACT

This thesis presents a comparative study on two different approaches for

visualizing sensor data collected from smart buildings on the web using 3D

virtual environments. The sensor data is provided by sensors that are deployed

in real buildings to measure several environmental parameters including

temperature, humidity, air quality and air pressure. The first approach uses the

three.js WebGL framework to create the 3D model of a smart apartment where

sensor data is illustrated with point and wall visualizations. Point visualizations

show sensor values at the real locations of the sensors using text, icons or a

mixture of the two. Wall visualizations display sensor values inside panels

placed on the interior walls of the apartment. The second approach uses the

Unity game engine to create the 3D model of a 4-floored hospice where sensor

data is illustrated with aforementioned point visualizations and floor

visualizations, where the sensor values are shown on the floor around the

location of the sensors in form of color or other effects. The two approaches are

compared with respect to their technical performance in terms of rendering

speed, model size and request size, and with respect to the relative advantages

and disadvantages of the two development environments as experienced in this

thesis.

Keywords: 3D visualization, smart buildings, sensor visualization

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

ABBREVIATIONS

1. INTRODUCTION .. 7
1.1. Background .. 7
1.2. Thesis overview .. 8
1.3. Research objective .. 8

1.4. Contribution.. 8

1.5. Thesis structure... 8

2. LITERATURE SURVEY .. 9
2.1. Urban sensing ... 9
2.2. Smart buildings... 10
2.3. Data visualization ... 14

2.4. Information visualization ... 17
2.5. Technologies for 3D modeling of buildings... 20

2.5.1. BIM, IFC and BIM server ... 20

2.5.2. Revit .. 20
2.5.3. 3ds Max ... 21

2.5.4. three.js ... 21
2.5.5. Unity .. 22

3. DESIGN AND IMPLEMENTATION ... 23

3.1. Design and implementation process ... 23

3.2. Requirements .. 24
3.3. Design ... 24
3.4. System architecture .. 27

3.5. Visualizations ... 31
3.6. User interface ... 38

4. COMPARATIVE PERFORMANCE EVALUATION...................................... 40
4.1. Rendering performance .. 40
4.2. Model format and size .. 40

4.3. Request format and load time ... 41
4.4. Development SDK ... 41

5. DISCUSSION .. 43
5.1. BIM models .. 43

5.2. SOAP web service .. 43
5.3. Unity vs Three.js .. 44

6. CONCLUSION .. 45
7. REFERENCES ... 46
8. APPENDICES .. 52

FOREWORD

This thesis was done at the Center for Ubiquitous computer at the University of Oulu

in the VIRPA-A project funded by the Finnish Funding Agency for Technology and

Innovation (TEKES). I would like to thank my supervisors Dr. Matti Pouke and Prof.

Timo Ojala for their continuous support during my studies and thesis. On a wider

perspective, I would like to express my gratitude to the Center for Ubiquitous

Computer for granting me the opportunity to study and work. I learnt a lot while

working there, and it will always be remembered as an important milestone in my

professional career. I would like to thank my wife for her support, my friends

Mounib Mazouzi and San Günes for being great team members, study mates and

supporters during our joint two years master’s journey. Finally, I am grateful to

Finland for giving me the opportunity to pursue my master’s degree.

Oulu, 26.5.2017,

Mahmoud Badri

ABBREVIATIONS

API Application programming interface

AR Augmented reality

ART Renderer Autodesk Raytracer Renderer

BAS Building automation system

BIM Building information modeling

CGI Common gateway interface

CMYK Cian magenta yellow key

CSS Cascading style sheets

CPU Central processing unit

DOM Document object model

FPS First person shooter

fps Frames per second

GDDR Graphics double data rate

GIS Geographic information system

GLSL OpenGL Shading Language

GPS Global positioning system

GPU Graphics processing unit

HEX Hexadecimal

HTML Hypertext Markup Language

HTTP Hypertext transfer protocol

HSV Hue saturation value

HVAC Heating, ventilation and cooling

ICT Internet communication technology

IDE Integrated development environment

IFC Industry foundation classes

IK Inverse kinematics

infovis Information visualization

IoT Internet of things

IP Internet protocol

JSON JavaScript object notation

Lab Lab color space (lightness, a and b are color opponents)

MIB Management information base

NURBS Non-Uniform Rational B-Splines

OWA Ordered weighted averaging

pH potential of hydrogen

RGB Red green blue

SDK Software development kit

SH Smart home

SNMP Simple network management protocol

SOAP Simple Object Success Protocol

TCP Transmission control protocol

UI User interface

VE Virtual environment

VR Virtual reality

VS-CaSP visualization system of context-aware application scenario planning

WiFi Wireless fidelity

WSANs Wireless sensor and actuator networks

WSDL Web Services Description Language

WSN Wireless sensor network

WWW World wide web

WYSIWYG What you see is what you get

XML Extensible markup language

1. INTRODUCTION

1.1. Background

Internet of things (IoT) refers to the networked interconnection of everyday objects,

which are often equipped with ubiquitous intelligence. IoT will increase the ubiquity

of the Internet by integrating every object for interaction via embedded systems,

which leads to a highly distributed network of devices communicating with human

beings as well as other devices [36]. IoT is becoming increasingly more popular

recently. This is made possible due to several factors like the widely spread high-

speed internet we witness today. The cost of using the internet is dropping constantly

also. Additionally, more and more internet-enabled devices are being manufactured

as time goes by. Technology costs are going down constantly, and at the same time,

the use of smart internet-enabled devices is increasing at a very high rate. These

factors besides others, created a perfect atmosphere for the flourishment of IoT era.

Although IoT is a hot topic recently, the idea is not actually new. Considered the first

IoT implementation, John Romkey created a toaster that could be turned on and off

over the Internet in 1990 [44]. The toaster device was connected to a computer with

TCP/IP networking. It then used an information base (SNMP MIB) to switch the

power on and off. Internet enabled devices became popular at the beginning of the

millennium due to the aforementioned factors. IoT has many applications in smart

homes (SH), wearables, smart cities, smart grids, industrial internet, connected cars,

and many more. We are concerned here in the applications of IoT for smart

buildings.

In this context, we refer to the deployment of a wireless sensor network (WSN) in a

building with the goal of sensing some environmental parameters such as

temperature, humidity, air quality, air pressure, lighting, and more. Smart home

sensor networks pose new challenges compared to regular sensor. A smart home

sensor must consume low energy, be relatively cheap and most importantly achieve

high levels of security and privacy for apparent reasons. Deploying and enabling the

sensor network is one side of the process. The other side is how to visualize the

values collected by the sensor network and present them to the user in a user-friendly

manner, which is the topic of this work. Typically, user interface (UI) for graphical

visualization applications is implemented using common user interface elements like

panels, icons, menus, and images. Standard user interface elements work fine is most

of the cases to deliver the intended function of the visualization. Yet, many studies

suggested that the use of 3D interfaces provide users with faster and more usable

experience [45]. We believe that visualizing the sensors data in a 3D virtual

environment (VE) will provide an intuitive interface for the end user and thus it is

greatly more usability compared to the standard visualization techniques. The 3D

virtual interface also provides a sense of presence to the user improving the

situational awareness allowing the user better control and giving him an immersive

experience [50].

8

1.2. Thesis overview

This thesis compares two different approaches dubbed as project A and project B for

visualizing sensor data in 3D virtual environments. Each project visualizes sensor

data in a specific smart building and is built using a specific technology and model

format. Project A visualizes data in a small smart apartment located inside VTT

research center in Oulu, Finland. Project A visualizes temperature, humidity, air

quality, and air pressure values measured by sensors installed in the research smart

apartment. Project A was developed using standard web technologies, JavaScript,

HTML5 and CSS. The smart apartment model was built in Autodesk Revit using the

BIM format [37]. More explanations on this in the design chapter. In project B the

3D model of a large 4-floored hospice was built using the Unity engine. We exported

a web application build so that both projects run in a web browser. In the rest of this

section, we present definitions for the software and formats used in the two projects.

1.3. Research objective

In this thesis, we study visualization techniques for graphical representation of sensor

values in a 3D virtual environment. More specifically, our intention is to investigate

various visualization techniques and categories, and compare them in terms of

usability and look. In addition, we seek to compare Project A and Project B in terms

of performance, ease of development, and visualizations quality. We also highlight

the benefits and shortcomings of each project settings. Moreover, we compare BIM

and mesh models and their suitability for this sort of visualization applications.

1.4. Contribution

This work contributes to the field of data and information visualization in 3D virtual

environments. More specifically, it contributes to the smart home sensor

visualization research domain. We create and test numerous visualization techniques

and compare them. We also use two independent technologies: Unity and three.js,

two model formats: standard mesh and BIM. Results from this work provide a

constructive knowledge highlighting the benefits and drawbacks of different

techniques for creating sensor visualizations in 3D virtual environments.

1.5. Thesis structure

The rest of the thesis is structured as follows: Chapter 2 provides a comprehensive

look at the background of IoT and sensors visualization. This includes surveying four

areas relevant to our study: urban sensing, smart buildings, data visualization and

information visualization. Chpater 3 presents detailed information about the design

and implementation of the two projects (Project A and project B). Chapter 4 presents

the evaluation of the two projects and the comparison between them. It shows also

the lessons learnt, pros and cons of different approaches and draws recommendations

for 3D visualizations based on our research. Chapter 5 provides a discussion of the

findings from the evaluation chapter and our recommendations based on the it.

Chapter 6 lists suggested future work to extend the current projects work, provides a

summary of the work done and draws a conclusion.

9

2. LITERATURE SURVEY

This section provides a thorough look at the previous research work done in four

relevant fields to this research work: urban sensing, smart houses, data visualization,

and information visualization. We order and survey the four research areas based on

relevance to our study starting from the broader topic of urban sensring. We finish by

the tightly related topic of information visualization.

2.1. Urban sensing

Urban Sensing is the research area investigating the use of environmental wireless

sensors in urban environments for measuring various environmental variables. Urban

Sensing uses many of the ubiquitous computing paradigms by deploying a multitude

of data collection devices to collect data about the environment and use it to

contribute to improving the urban life. We discuss in this subsection some of the

work done in this research domain. Dutta et al. [2] presented ‘Common sense’, a

mobile participatory sensing system that allows individuals and groups to measure

air quality. The system works by using handheld sensor-enabled devices to capture,

process, and disseminate sensor data. The visualization of the sensor data is

implemented in a browser-accessible web portal. A similar work by Campbell et al.

[4] proposed a people-centric urban sensing application ‘MetroSense’ which collect

large scale data. The main quest this work tried to answer is how to move urban

sensing from small-scale application-specific network, into largescale sensing system

serving people’s everyday lives. The main challenge for such systems is how to build

such generic urban sensing system for the public on a largescale and allowing it to fit

a large set of applications in urban environments. MetroSense used opportunistic

sensor networking approach to allow the system to scale to very large areas. Another

related work by Resch et al. [6] is the Common Scents project. A flexible,

interoperable and portable real-time data integration and analysis system for air

quality assessment. The system aims to establish an open and modular infrastructure.

The paper demonstrated common issues for bringing out pervasive urban sensor

networks and associated concerns to fine-grained information provision. The system

was deployed on top of a sensor network called CitySense in the City of Cambridge,

MA US.

Voogt et al. [5] presented a review of the use of thermal remote sensing over an

urban environment in the study of urban climates, with main focus on the urban heat

island effect. The review revealed that the progress in thermal remote sensing of

urban areas has been slow due to some factors like the tendency to use qualitatively

based land use data to describe the urban surface rather than the use of more

fundamental surface descriptors. In addition, advances in the development of new

satellite based sensors would contribute to improving the sensing process. The

review suggests advancing three research areas to improve thermal remote sensing:

(1) determining appropriate surface properties, (2) Join canopy radiative transfer

models with sensor view and surface energy balance models, (3) doing more

observational studies to get better knowledge of surface properties.

10

Ono et al. [8] explained an urban sensing system built as part of an experiment in

downtown Tokyo. The study also evaluated the effective placement of sensors within

the city and the relation between the trend of temperature and the environment.

While Ono evaluated the effective placement of sensors within the city, the roles of

people in a sensors network was discussed by Lane et al. [7]. Lane defined two

important factors of human involvement with sensor networks: participatory and

opportunistic sensing. Those two factors are on two end points of a scale. At one end,

people are actively interacting with the system (participatory) while on the other

endpoint people are providing the data to the system unconsciously (opportunistic).

The authors argue, based on the evaluation results that opportunistic sensing can

scale up to bigger applications easily compared to participatory sensing. Coming to

the security and privacy of urban sensing system, De Cristofaro et al. [1] investigated

the privacy of urban sensing systems in details. They illustrated that privacy issues

appear due to the presence of multiple actors, such as infrastructure operators, device

owners, queriers, and so on. They addressed the problem of protecting secrecy of

reported data and confidentiality of query interests from malicious entities. They

proposed two adversarial approaches: resident and non-resident, and two strategies

available to malicious attackers depending on whether the attacker is randomly

distributed or local to a specific region of the network. For each setting, a security

technique was developed that trades off between privacy level and potential

communication overhead.

2.2. Smart buildings

A smart building or home (both refer to the same concept) is any structure that uses

automated processes to automatically control the building’s operations including

heating, ventilation, air conditioning, lighting, security and other systems [61]. A

smart building uses sensors and actuators in order to collect data and manage it

accordingly to provide its intended function. The controls that work together to bring

the smart building to life are called building automation system (BAS). BAS core

functionality keeps building temperature within a specified range, provides light to

rooms based on an occupancy patterns, monitors various home systems performance

and failures, and sends automatic alarms in case of systems malfunctions or other

faults. Depending on the fault, alarms could be sent to the homeowner, building

maintenance staff, or other parties. Smart building infrastructure leads to improved

occupant comfort, efficient operation of building systems, saving in energy use,

optimizes how space is used, and minimizes the environmental impact of buildings.

We discuss in this subsection some of the research work done pertaining to smart

buildings. Figure 1 shows a sample design for a smart building.

Farias et al. [9] presented a decentralized control and decision-making system for

smart building applications called ‘CONDE’. Farias claims that the use of

decentralized wireless sensor and actuator network (WSAN) saves energy compared

to using the common centralized WSAN. Experiments on CONDE showed that it has

advantages compared to its peers in response time, overall system efficiency and

energy saving for both the building and the WSAN. CONDE promotes the

integration of different applications within the WSAN in order to achieve the energy

efficiency.

11

Figure 1. Example smart building design [62]

Meyer et al. [10] claims that wireless networks and ubiquitous devices powered by

intelligent computation will blend into people’s life in the near future. Meyer

provided a multitude of futuristic scenarios for the context-aware home vision and

demonstrated how context-aware home will allow its occupants to live a safe,

supportive, convenient, pleasant, enjoyable, entertaining, and relaxing life.

Figure 2. Basic components of a context-aware system

12

Robles et al. [11] presented a review of the context-aware tools for smart home

development. Robles defined Context awareness as the idea that computers can both

sense, and react based on their environment. He also defined a smart home as a home

that is equipped with special structured wiring to enable occupants to remotely

control or program an array of automated home electronic devices. Additionally, he

gave some examples of smart home products and their functions like cameras, lamps,

door phones, motion sensors and more. Likewise, he highlighted some benefits of a

smart home like making life easier, peace of mind, security, energy efficiency and

the promise of tremendous benefits for elderly people living alone, for example:

notifications of medicine time, automatic hospital alert in case of resident fall,

tracking food and water intake, and many more. The paper concluded by listing some

challenges of installing smart home systems like balancing the system complexity

versus usability. Some factors to consider are the system size, system components,

how intuitive the system will be, number of system users, system administrators, and

feasibility of making changes to the system interface.

Kleissl et al. [12] carried out a study on smart buildings with the main goal of

optimizing energy consumption. The study treated a modern building as a cyber-

physical energy system and examined opportunities presented by optimizing energy

use by its owners and information processing equipment. The paper provided a

classification of different types of buildings and their energy consumption. It also

pointed out some opportunities available to improve energy efficiency through

applying various strategies from lighting to computing. A similar work aiming for

energy savings in smart buildings was done by Lu et al. [18]. They presented “Smart

thermostat”, an approach to save energy by sensing occupancy and sleep patterns in a

home and automatically turning off the home’s heating, ventilation and cooling

systems (HVAC) when occupants are sleeping or away. The study stated that

heating, ventilation and cooling are the largest contributors to a home’s electricity

bill. Smart thermostat system used cheap and simple motion and door sensors

installed throughout the home. Evaluation results indicated that the smart thermostat

could provide large energy savings. On average, it was demonstrated that using smart

thermostat could save about 28% of residential HVAC energy consumption. The low

cost of this system which is estimated to be 25$ per home, makes it potential for a

large impact on nations’ improvements in the energy efficiency sector.

Morvaj et al. [13] studied smart buildings as a basic building block for the wider

vision of a smart city. The paper presented an overview of the features of a smart city

with focus on energy efficiency. Morvaj demonstrated the basic features of smart

buildings and built a draft model using system dynamics in ‘Anylogic’ to highlight

those features. Morvaj stated that the core infrastructure of smart city are its citizens,

water and energy, communication, business, transport and city services. Morvaj

provided another definition of a smart building as a building that uses subsystems for

managing and controlling renewable energy sources, house appliances and energy

consumption using most often a wireless communication technology. According to

Morvaj, a smart building consists of sensors, actuators, controllers, central unit,

interface, network and smart meter.

13

Wang et al. [14] proposed a building indoor energy and comfort management model

based on information fusion using ordered weighted averaging (OWA) aggregation.

As the main advantages, a smart building include high-level comfort and high power

efficiency, Wang built a multi-agent control system with heuristic intelligent

optimization to achieve those two essential requirements. As the name implies, the

multi-agent system is made up of multiple agents. Each agent has a specific function

but all the agents share some common characteristics. Wang stated that thermal

comfort, visual comfort and air quality are the main comfort factors in a smart

building. The temperature, illumination level and the CO2 concentration are used to

indicate these three main comfort factors. The study presented several case studies

and simulation results indicating the effectiveness of the control system in achieving

the control goal in different operating scenarios.

Främling et al. [16] described a distributed information architecture that makes it

possible to implement smart environments on a large scale by integrating information

access to and control of different building automation systems. Främling used the

term “smart space” to signify a geographical space where information is available

about the space itself, the devices and services available in it, the people present in it

and about other potentially useful information or services. The implementation

involved the deployment of an experimental building automation facility connecting

together various building automation protocols.

Stefanov et al. [17] provided an analysis of the building blocks of smart houses, with

focus on elderly and disabled people. Stefanov highlighted two approaches for

realizing intelligent houses for the people with physical limitations: Special

architecture solutions and Particular technological innovations. According to

Stefanov, smart houses have a strong, positive, and emotional impact on persons with

physical disabilities and elderly. Stefanov classified smart houses for elderly and

disabled to five groups according to the type of disability: people with movement

disabilities, elderly, people with low vision, hearing impaired people and cognitively

impaired people. Each group has a primary focus when designing a smart house for

it. Smart home-installed technology performs movement-independence of the user,

health monitoring, entertainment, security, and physical rehabilitation. Stefanov

presented a thorough survey of recent work on the smart homes for elderly and

highlighted important issues for futuristic intelligent house models.

A similar yet more general concept to smart buildings is intelligent buildings, a

concept that goes beyond smart buildings. Martins et al. [15] stated that there are

many definitions for an intelligent building. One definition by the institute of the

United States defines an intelligent building as “a building that provides a productive

and cost-effective environment through optimization of its four basic elements

including structures, systems, services and management and the interrelationships

between them”. The European Intelligent Building Group provided a similar yet

slightly modified definition: “Intelligent buildings provides a productive and cost-

effective environment through optimization of its four basic elements including

structures, systems, services and management and the interrelationships between

them”. The three main features that an intelligent building must have are automatic

control, learning abilities and occupancy trends incorporation. A relevant concept

discussed by Martins et al. is “smart grids”. A smart grid is an electrical grid where

14

all parties (suppliers and consumers) are digitally connected. Smart grids have two

characteristics that are important from the intelligent building perspective. Those are

consumer’s active involvement and distinct generation and storage technologies.

2.3. Data visualization

Generally, visualization can be defined as the ability to make images within the

mind's eye. Visualization is a natural function of the human brain. It is something

that we are doing all the time effortlessly. Today when we refer to visualization, we

usually mean a graphical representation of data or concepts with the purpose of

getting useful insights from the data. We first look at the history of data

visualization. Friendly [19] presented a comprehensive survey of the history of data

visualization. He divided data visualization history into epochs, each of which is

describable by coherent themes and labels. The earliest seeds of visualization arose

in geometric diagrams, tables of the positions of stars, and navigation maps. Ancient

Egyptians used coordinate system at least by 200 BC.

Figure 3. Pie-circle-line chart drawn in 1801 comparing population and taxes in

several nations

The 17th century witnessed the rise of analytic geometry, coordinate systems,

probability theory, demographic statistics and “political arithmetic”, the study of

population, land, taxes, value of goods, etc. The idea of graphic representation

somewhat established in the 18th century. Maps started to show more data than just

the geographical location, like contours and isolines. Several technological

innovations of the 18th century like the three-color printer invented in 1710 helped

the production and dissemination of graphic works. Furthermore, common modern

graph types like line graph, bar chart, pie chart, and circle graph were first introduced

in the 18th century by Willian Playfair. Figure 3 shows a redrawn graph by Playfair

combining multiple graphing elements: circles, pies and lines.

15

Modern graphics started in the 19th century with a massive rise in statistical graphics

and thematic mapping. New graph type were invented, for example the continuous

shadings graph type. Graphs started to be used in economic and state planning. The

late 1800s were considered the “golden age” of statistical graphics and thematic

cartography with significant advances in inventions and usage of data visualization

techniques. On the contrary, the early 1900s can be labeled the “modern dark ages”

of visualization according to Friendly. This is due to few new graphical inventions,

and less motivation towards graphical visualizations during this historical era. From

1950 to 1975, data visualization usage started to rise again. From 1975 until present,

data visualization has blossomed into a mature, vibrant and multi-disciplinary

research area. With the massive technological advances, advanced interactive and

dynamic data visualization became possible.

Fan et al. [20] presented an approach to process and interpret the data gathered by

sensor networks. The built system is a sensor networks consisting of a group of

sensors and communication units deployed to monitor rare plants or other

endangered species. The environmental data are collected and sent by the wireless

sensor networks to an internet-enabled base station. Collected data is then visualized

on a map created by a GPS system. Voronoi Diagrams are then used to partition the

map into areas holding different weather attributes based on the data collected by the

sensor network. Each partition is colored with a different color so that it is easy to

visually distinguish between the different partitions. Generated visualization maps

are made accessible on the web using a CGI program. The project has several

visualization tools; one of them emphasizes the spatial distribution using. Another

one shows the chronological charting of the data. In addition, many images were

taken by cameras embedded in the sensor network to track the growth of the studied

plants.

The choice of colors play an important role in making data visualization easier to

understand. An interesting technique for choosing multiple effective colors for use

during data visualization was described by Healey [22]. Literature suggests that we

need to consider three separate effects during color selection: color distance, linear

separation, and color category. The proposed method is a simple approach for

measuring and controlling those three effects. Experimental results showed how it is

possible to control color distance, linear separation, and color category to pick seven

isoluminant colors that satisfy user requirements. Another work aiming to help

designers in the color selection process is ColorBrewer.org, built by Harrower et al.

[53]. ColorBrewer.org is an Online Tool for selecting effective color schemes for

maps. The most prominent features of ColorBrewer include: (1) multi-hued

perceptually ordered color schemes; (2) ‘learn more’ features that advise designers

on some of the theory behind color usage and map making; (3) the ability to check

how well different colors schemes match when additional map information is

present; (4) the ability to check how well different colors schemes will perform when

the mapped patterns are both ordered and complex; and (5) supporting color output

specifications in five commonly used color systems (CMYK, RGB, HEX, Lab and

HSV).

Su et al. [21] carried out a study that focuses on the application-layer simulation to

propose a visualization system of context-aware application scenario planning (VS-

16

CaSP) for assisting non-technical developers in easily designing the application

scenario of smart buildings and in performing the acceptable and predictable

simulation and evaluation. The goal is to verify, and modify the desired context-

aware application scenario in created virtual smart buildings before actual

deployment processes start. To evaluate this approach, a complete case, including six

scenarios, thirteen rule classes, and twenty-eight rules, to support the smart home

services was created and evaluated by non-technical users. Three criteria were

established for evaluation: Ease-of-Use, Professionalism, and Supportability. Results

revealed a high Ease-of-Use and satisfied Supportability degrees indicating that the

VS-CaSP is easy to use for the support of quickly design smart building applications,

but not professional enough for developments of 3D modeling, animation, and rule

expression due to the low degree of Professionalism. Thus, the system is more suited

for non-technical users.

Buschmann et al. [23] presented a modular and extensible visualization framework

for wireless sensor networks named “SpyGlass”. SpyGlass follows the typical

sensor network data flow architecture (Figure 4) which consists of three major

functional entities: The sensor network, the gateway nodes located in the sensor

network and the visualization software. Visualization of SpyGlass consists of three

main layers: background layer, relations layer where relations between the sensor

networks are visualized by connecting nodes together, and the nodes layer where

each sensor node is visualized. The system was tested for scalability and the results

showed that it scales to thousands of nodes without problems.

Figure 4. Typical sensor visualization architecture

A similar work was done by Hu et al. [24] to visualize a sensor network that

monitors wetland. The sensor network collects environmental data, such as

temperature, humidity, illumination intensity and pH around the wetland and sends it

to the base station. The base station is connected to the visualization application on a

computer. Network monitoring and visualization happens in real time. The system

also visualizes the network topology, which can provide users with more direct view

of the environmental and routing data around the studied wetland.

Another sensor visualization project is the smart condo [25]. The project aims to

provide a comprehensive affordable high-quality healthcare to the elderly by

17

recording important events and environmental parameters and sending them to a

web-based system for analysis and visualization. The system provides both a 2D as

well as a 3D visualization interfaces. The 2D visualization relies on a GIS

component to visualize sensor network nodes in the form of markers on a map. The

2D visualization also displays the sensors readings over time. System users can filter

the sensor network nodes and only view a subset of them. It is also possible to view a

comparison between nodes of choice. The 3D visualization displays the subject in a

3D virtual model of the building. The system allows users to create the 3D

environment and add walls and furniture. In addition, users can add their avatars to

the 3D environment and then the avatar’s location is updated according to the user’s

sensed location in reality.

Saito et al. [26] studied a two-tone pseudo coloring technique for effective

visualization of big one-dimensional dataset. By painting with two colors at each

scalar value in the pseudo coloring process, it is possible to visualize precise details

within overview display without distortion. This technique provides several

advantages. Firstly, it requires very small screen space for drawing the visualization.

In addition, it allows the overview and details of the dataset to be present in one

image simultaneously without distortion. Implementation of this technique is also

straightforward. The presented technique proved to be effective in several

applications, such as meteorological observation data and train convenience

evaluation data.

2.4. Information visualization

Information visualization is defined as: the use of computer-supported, interactive

visual representations of data to amplify cognition [27]. In this context, Information

refers to abstract items, entities, things that do not have a direct physical

correspondence. For example, baseball statistics, stock trends, connections between

criminals, query results, text of books, etc. Figure 5 shows the relation between

information and data visualization. Information visualization is a sub-set of data

visualization. Information visualization process involves gathering relevant

information and giving it a visual representation that is useful for analysis, decision-

making, gaining insight, and more.

Figure 5. Relation between data and information visualizations

18

A relevant newer topic is knowledge visualization, which is defined by Burkhard and

Meier (2004) as the use of visual representations to transfer knowledge between at

least two persons. Chen et al. [29] conducted a meta-analysis study on information

visualization aiming to find invariant underlying relations suggested collectively by

the empirical findings in order to form an overview of the design and practices of

information visualization. The study focused on three aspects of information

visualization: users, tasks and tools. The study concluded the following results: (1) it

is challenging to apply meta-analysis methods to information visualization studies,

(2) individual differences should be investigated systematically in the future, (3)

users tend to perform better with simpler user interfaces, (4) to extract conclusive

results, larger study sample should be used. The study also recommended the use of

standardized testing information, task taxonomies, and cognitive ability tests in order

to improve the quality of similar future studies.

Cañas et al. [28] presented “CmapTools” software as an example of how concept

maps, a knowledge visualization tool, can be combined with recent technology to

provide integration between knowledge and information visualizations. Concept map

is an effective way to represent a person’s understanding of a topic visually. Cmap

Tools is a software that allows its users to represent their knowledge using concept

maps domain of knowledge. The software was deployed on public servers to allow

people from everywhere to access and use it on the internet. The user interface of

CmapTools was designed to be very simple and easy to use by everyone even

children. CmapTools provides another type of integration between knowledge and

information representations by allowing users to search the internet from within a

concept map. The concept map generated by the user can be used by CmapTools to

search the web and retrieve results related to the concept map.

Kapler et al. [30] developed a novel visualization technique named “GeoTime” with

the goal of displaying and tracking events, objects and activities within a combined

temporal and geospatial display. The system capabilities include descriptive events

and relationships, association analysis, event aggregation methods and geo-located

linked charting. The study highlighted two useful use cases for GeoTime as follows.

It can be used as a visual history tool for the ‘information consumer’ to get an instant

view of activity at any time/space coordinate. The ‘information producer’ can also

use it as a criminal analysis tool, for example, a police officer can use it as an

interactive log of events gathered during the course of long-term investigations. The

system was evaluated with four subject matter experts and the results showed that the

following information could be easily extracted from the system: significant events

happened in a certain area in a specific time, people involved, history of involved

people, people connections, activity hot spots, and similar events occurrence.

Heer et al. [32] built a software framework for creating dynamic visualizations of

both structured and unstructured data named “prefuse”. The motivation behind

prefuse is to create an abstract information visualization framework that fits a wide

range of data applications. Prefuse provides a set of building blocks for constructing

customized visualizations. It includes a multitude of layout algorithms, navigation

and interaction techniques, integrated search, and more. Applications with prefuse

interactive visualizations maintained real-time interaction and animation rates with

thousands of on-screen items and over a million data elements. To evaluate prefuse,

19

the study run an observatory evaluation on eight participants of varying background

and expertise while they are using the prefuse API. Results showed that all

participants succeeded to build visualization with prefuse.

Keim [31] proposed a classification of information visualization and visual data

mining techniques based on the data type, visualization technique and the interaction

and distortion technique. Keim classified data types into the following categories:

one-dimensional like in the case of temporal data, two-dimensional like x-y plots,

multi-dimensional like relational database tables, textual data and hypertext,

hierarchies and graphs, and finally algorithms and software. In addition to standard

graphing techniques like bar charts, line graphs, etc., Keim suggested more advanced

graph types suitable to complex data type as follows. Geometrically transformed

display technique aims at finding suitable transformations of multidimensional data

sets. Iconic display technique maps values of a multi-dimensional data item to the

features of an icon. Dense pixel technique maps each dimension to a colored pixel

and group the pixels belonging to each dimension together. Stacked display

technique is used to present data partitioned hierarchically. Keim also introduced

several interaction and distortion techniques like dynamic projections, interactive

zooming, interactive distortion, and interactive linking and brushing.

Plaisant [33] presented a summary of current information visualization evaluation

practices and a review of challenges in this field. As for the current information

visualization evaluate practices, Plaisant identified four common thematic areas of

evaluation: (1) Controlled experiments comparing design elements, (2) Usability

evaluation of a tool. (3) Controlled experiments comparing two or more tools, (4)

Case studies of tools in realistic settings. Matching tools with users, tasks and real

problems is an important challenge for information visualization. Additionally,

characteristics of information visualization makes it hard to evaluate, and thus user

testing needs improvement. Another challenge to study is making visualization tools

accessible to diverse users irrespective of their backgrounds. Yi et al. [34] studied the

role of interaction in information visualization. His study has two main contributions.

Firstly, he calls for the importance of interaction in information visualization

research and highlight its associated complexity. Secondly, Yi proposed seven

general categories of interaction techniques widely used in infovis as follows: select,

explore, reconfigure, encode, abstract/elaborate, filter, and connect. The seven

categories are ordered according to the typical user progressive thinking while

interacting with an interactive information visualization application. While the

categories look holistic, they are not collectively exhaustive. Some complex

technique could be hard to classify into one of the seven proposed categories.

Gleicher et al [35] proposed a general taxonomy of visual designs for comparison

that works with all application domains and data types. The taxonomy works by

classifying the design space based on three general categories, based on how the

relationships between the related parts of different objects are encoded. The three

categories are juxtaposition (showing different objects separately), superposition

(overlaying objects in the same space) and explicit encoding of relationships. The

benefit of this taxonomy is that it is independent on the design or data type. It

generally works for all designs although some drawbacks exist. The study also

surveyed a multitude of representative systems from the information visualization

20

literature related to comparison. The survey goal is to show the diversity of

application domains and data types. The survey also showed that all designs are built

from the basic building blocks of juxtaposition, superposition, and explicit

encodings.

2.5. Technologies for 3D modeling of buildings

2.5.1. BIM, IFC and BIM server

The US National Building Information Model Standard Project Committee defined

BIM as: “a digital representation of physical and functional characteristics of a

facility”. Beyond geometry, BIM also provides additional information like the spatial

relationships, light analysis, geographic information, and quantities and properties of

building components. Autodesk characterized BIM with three core characteristics

[42]:

(1) They create and operate on digital databases for collaboration.

(2) They manage change throughout those databases so that a change to any part

of the database is coordinated in all other parts.

(3) They capture and preserve information for reuse by additional industry-

specific applications.

BIM models usage has become popular in 2002 when Autodesk started contributing

to it and published a white paper about it. BIM models are made up of smart models

that when updated maintain the state of the BIM file up to date throughout the

design no matter who is working with it. BIM has important applications in

construction management, facility operation, land administration, and more.

BIM server is an open-source software used to start a server that serve BIM files.

BIM server works with IFC data as IFC is the most widely used and most mature

open standard for BIM models. Typically, IFC data are uploaded to the server,

usually in the form of IFC files. The software analyses the data in the files and places

them in an underlying database. BIM server has many features for working with BIM

files. Essentially, it enables a project to be divided into subprojects. Each part of the

model can then have its own project with its own users and authorizations. All

underlying subprojects are always neatly converged into the master project.

2.5.2. Revit

Revit [38] is a software by Autodesk for building information modeling (BIM).

Beyond modeling, Revit allows users to annotate the model with 2D drafting

elements, and access building information from the building model's database. Revit

is equipped with tools to help planning and tracking different building's lifecycle

stages. Revit can be used as a very powerful collaboration tool between different

parties in the project. Each party in the project development lifecycle approach the

21

project from a different perspective. Revit contains a big number of pre-made solid

objects including walls, windows, furniture and many more. As for rendering, Revit

comes with a basic rendering engine to make a more realistic image of what is

otherwise a very diagrammatic model. Cloud-based rendering is also supported by

Revit via an experimental plug-in named Project Neon. Could-based rendering

allows users to render their models through their Autodesk accounts instead of

locally through their own computers. Additionally Revit can be linked to 3ds Max to

benefit from the advanced rendering capabilities that 3DS Max provides.

2.5.3. 3ds Max

3ds Max [41] is a professional 3D computer graphics program for making 3D

models, animations, games, videos, and images. 3ds Max provides several modeling

techniques that make it possible to model any kind of 3D object. Those modeling

techniques are polygon models, NURBS and surface tools. Moreover, the user can

edit the model on the sub-object level, which allows editing object’s polygons, faces,

edges, and vertices. Additional modeling tools exists to further help the modeling

process. This includes Boolean operations to merge object, subdivision, extrude, lath,

and many more. As for rendering, 3ds Max comes with two rendering engines:

scanline and ART Renderer. Each renderer uses a specific algorithm for image

generation and incurs different measures for output quality and rendering time. It is

also possible to import and use a third party rendering engine in 3dx max. There is a

multitude of advanced third party renderers commonly used with 3ds Max including

mental ray, RenderMan, V-Ray, and more. Additionally, 3ds Max is equipped with a

multitude of powerful specialized tools including: MaxScript, character studio, scene

explorer, animations, skinning, Inverse kinematics (IK), and many more.

2.5.4. three.js

Three.js is an open-source cross-browser powerful library for creating 3D graphics

for the web. It uses JavaScript as its programming language and renders its output to

a WebGL canvas. It also supports fallback to an HTML5 canvas. Three.js provides

good set of features that are usually enough to develop most of the 3D simulations on

the web. High-level libraries such as Three.js make it possible to author complex 3D

computer simulations running in a web browser while saving the effort required to

program on the low-level computer graphics and shaders level. Three.js allows

creating all the basic geometric objects like plane, cube, sphere, torus, 3D text and

more. It supports two camera types: perspective and orthographic and many

controllers: trackball, FPS, path and more. It also supports the common light types

like ambient, direction, point and spot lights plus shadows. For advanced usages,

three.js provides access to full OpenGL Shading Language (GLSL) capabilities like

lens flare, depth pass and extensive post-processing library. Today three.js library is

widely used for a wide variety of applications, visualization, simulations and games

on the web. The community for three.js is large and it is continuously being

developed with new features. Recently, an online visual editor [58] has be developed

for three.js to allow creating and manipulating 3D scenes visually. The three.js editor

allows creating primitive 3D object, materials, lights, and cameras. The editor

22

exports the created scene in JSON format, which can then be imported to three.js

easily.

2.5.5. Unity

Unity is a professional cross-platform engine for developing interactive and 3D

application. It is mainly used for developing high quality video games for PC,

consoles, and mobile devices, but it is also suitable for creating any sort of 3D

simulations, visualizations, etc. Unity targets the following graphics APIs: Direct3D

and Vulkan on Windows and Xbox 360, OpenGL on Mac, Linux, and Windows,

OpenGL ES on Android and iOS, and other proprietary APIs on video game

consoles. One of the greatest advantages of using Unity is its ability to target

multiple platforms. Supported platforms include Windows, Windows Phone 8, Xbox,

Android, iOS, macOS, Apple TV, BlackBerry, Linux, Nintendo 3DS line,

PlayStation 4, PlayStation Vita, Unity Web Player, Wii, Wii U, and Nintendo

Switch. Today unity is one of the most widely used engine for games production.

Statistics show that in Q3 2016 alone, five billion downloads for unity developed

games has been made [59]. Unity is geared with a full list of features for physics,

animation, optimization, audio, scripting, and many more [60].

23

3. DESIGN AND IMPLEMENTATION

This chapter describes all the details of the design and implementation of the two

smart building visualization systems. This includes the system requirements,

implementation process, system design, justification of the design decisions, system

architecture, and the implemented visualizations UI elements. The two implemented

applications are similar in functionality as both visualize sensor data using various

techniques in a 3D virtual environment. The next sub-sections explain in detail the

system design and implementation details.

3.1. Design and implementation process

We followed the waterfall model in the design and implementation of both projects

independently. This progressive process provided a systematic pipeline for our

system, which guaranteed quality and minimized the time needed to fix bugs. The

process consists of the flowing phases (Figure 6):

1. Requirements definition: In this process, we define and establish the system

requirements based on the system service, constraints and goals (as discussed

in section 3.1).

2. System design: The system design process establishes the system architecture

by partitioning the system requirements into functional software sub systems

and finding the relationship among them.

3. Implementation and testing of a new feature: During this process, software

implementation of a system feature (one type of visualization) takes place.

Newly implemented feature is tested thoroughly to make sure it is functioning

correctly without any bugs.

4. Integration and testing: After one feature is developed and tested, it is

integrated into the current system state. Next, the whole system is tested to

make sure the newly added feature did not cause any system failures. This

guarantees the software is functioning well up to the current state.

5. Maintenance: This process starts once the system is ready for use. At this

process, the system is tested as a fully functional application. Should there be

any remaining bugs, features edits, etc., the software is maintained according

to the required modification.

24

Requirements
definition

System design

Impl. And test a new
feature

Integration and testing

Maintenance

Figure 6. Design and implementation process

3.2. Requirements

The system aims to provide user friendly, easy to use, visualizations for sensor data.

The following requirements were set for the system:

 Scalability: Since the building model can be large, the system must be able to

scales up when new sensor nodes are added without degrading performance.

To meet this requirement, the visualization application must be able to load

large amount of sensor data without problems.

 System performance: The system must run smoothly on an average computer.

Our system uses particle systems which could be computationally expensive,

to simulate fire and ice. To meet this requirement, the system must perform

well in worst case, which is when a particle system simulation is running plus a

point visualization.

 Maintainability: The system should easily support adding new features, like

new visualization types. Additionally, the system must support changing the

sensors data source with ease. For example if the sensors’ cloud server, the

data structure, protocol, etc. changed, this should not require a lot of code

rewrite to get the application to run.

3.3. Design

We explain in this section the design details of the two implemented projects. We

start by explaining the common features of the two projects then highlight the

differences between them before elaborating of the design of each project. Both of

the two projects serve as systems for visualizing sensor data captured from a sensor

network deployed in a smart building. The visualizations are implemented in a 3D

virtual environment that is accurately designed to match the same dimensions of the

smart building it represents. Both projects were designed to run in a web browser.

The 3D user interface manipulation is similar for the two projects as well. We

25

implemented the view manipulation as an orbit camera in which users can

manipulate the 3D UI using the mouse by clicking and dragging to change the

viewing angle of the virtual environment so that they can view a sensor visualization

at a desired area of the model. In addition, the model can be zoomed in and out using

the mouse scroll wheel. While both projects provide the same fundamental

functionality, they have significant differences in many aspects as highlighted in

Table 1.

Table 1. Details of the two approaches dubbed as project A and B

 Project A Project B

IDE Three.js Unity

data format JSON XML

programming

language

JavaScript C#

visualization types point, wall point, floor

data source python webserver SOAP web service

model type BIM Mesh

building type smart apartment 4 floored hospice

sensor data temperature, humidity, air

quality, air pressure

temperature

The literature review revealed that the choice of colors plays an important role in

making data visualization easier to understand [22]. As an example, the work

highlighted earlier by Fan et al. [20] used colors to partition different parts of a map

to give a meaning for each map partition. Literature also suggests that chosen colors

have linear separation and of different color categories. Based on that, we used colors

for our temperature visualization to make it easy for users to visually distinguish

between temperature values above and below zero. We used red to represent

temperature values above zero and blue to represent values below zero. Additionally,

we kept the user interface as simple as possible as [29] suggests that users tend to

perform better with simpler user interfaces. The use of textual information for data

visualization has been widely seen in the literature [23, 24, 28, 30]. We used textual

information to display the values of the temperature visualizations. Yet we allowed

the users to toggle it on/off.

Next, we look at the specifics of each project. Starting by project A, a sensor network

was installed in a research smart apartment located inside VTT research center in

Oulu, Finland. The apartment consists of three rooms, a kitchen, a bathroom, a sauna,

and a balcony as shown in Figure 7. The project’s goal is to create a system for

visualizing the sensors data in the smart apartment in a web interface. The model for

the smart apartment already existed and served to us as a BIM model via a BIM

server. For the sake of our project, we did not need anything specific from the BIM

data except for the geometry data. We were provided with the BIM server details and

we were able to establish a connection with the server and load the BIM model with

ease. For project A, we used three.js to program the application. For project A, we

categorized the visualizations into two groups: point visualizations, where the

visualizations are laid at the locations of the sensors, while showing the value and/or

26

a visual representing the sensor value at that point. The second visualization group is

wall visualizations, where the visualization is displayed as a 2D banner positioned on

a room wall inside the apartment. The design allows users to switch between wall

sensors with ease using a control panel on the right (more on that in the UI section).

Users can also mix point and wall visualizations at the same time.

Figure 7. Project A: 3D model of VTT’s smart apartment

In Project B, a sensor network is installed in a big, multistory hospice building for

elderly care located in the city of Oulu, Finland. The building consists of four floors,

each of which contains a multitude of rooms and passages. The first task was to

create the 3D mesh model of the hospice building. We were provided with

architectural floor plan drawings of the building. We used 3ds max to model and the

building and add the materials to it. We chose to use 3ds Max over other 3D

modeling software for three main reasons: it is a powerful professional 3D computer

graphics program, we have experience using it, and as students, we get a free 3 years

license to use the software with all its features enabled. For project B we decided to

use Unity as the development environment. We would import the 3D hospice model

to Unity and start coding the application logic. Since the hospice building has four

floors, we constrained the visualizations to only one floor at a time to keep the view

neat and clear. The user can switch between the floors using an intuitive vertical

slider that has four snap-able steps matching the total number of building floors.

When the slider is at the bottom most state, only the ground floor is visible. Upon

moving the slider up, the corresponding floor will appear. This gives the user a

natural feel of visualizing the floors of the building. Figure 8 shows the four floors of

the building corresponding to each state of the floors slider. The floors slider is

shown on the top right of the screen.

27

Figure 8. Project B: the four floors of the hospice building

In project B, we categorized the temperature visualizations into two groups: point

visualization, where each sensor is represented with a matching visualization element

in the 3D environment. Typically, the point visualization displays the value of the

temperature at the sensor location point in a user-friendly manner. The second

category is floor visualization, where for each sensor we visualize the value of the

sensor as an effect on an area around the sensor location on the floor. Typically,

showing a simulation of the area of effect of the sensor. We used red and blue colors

to allow the user to distinguish between the temperature values below and above zero

with ease (more on design justification in next section). For each visualization

category, we created several visualization options. The user can change the

visualization of each group. He can also mix one visualization from each group

together. However, it is not possible to mix two visualizations from the same

category, as in this case the two visualizations will overlap and thus obstructing the

temperature visualization altogether. The implementation sections presents detailed

information about the look of the implemented visualizations.

3.4. System architecture

We show in this section the system architecture for the two projects. Based on the

system requirements, we planned and constructed the system architecture. The

system architecture includes the main building components of the system in the real

environment, the cloud and in the client visualization application. For project A,

Figure 9 shows the various components of the system architecture.

28

Sensor
Node

Cloud server
Database

Sensor
Node

Sensor
Node

Sensor
Node

Data Parser

Point Visualizer Wall Visualizer

Render

Load sensor data

Create point viz. Create wall viz.

Client app.

BIM
model

3D scene
Load

 model

Figure 9. Project A: system architecture

Project A’s system architecture comprises of following components:

 Sensor Node: Each sensor node represents a physical sensor deployed at a

certain location within the smart apartment. A sensor node is responsible for

capturing the environmental parameters that the sensor can capture within its

sensing range and submitting it to the cloud server. The sensors were

developed by VTT and provided to us by VTT and iProtoxi.

 Cloud server: The cloud server was deployed by VTT on ThingSpeak IoT

platform. The server acts as the centralized cloud that connects between the

real environments and the visualization application. The server receives the

sensor data from the sensor nodes and persists them to the database. The server

exposes an API for the visualization application to use to request the sensors’

data in JSON format. The visualization application requests the sensors’s data

from the server to build the visualizations based on them. The sensors network

transmits the collected data periodically to a centralized database deployed on a

webserver.

 Database: this the data storage for the sensors’s data collected by the sensor

nodes network. The database was developed by VTT. For security reasons, the

cloud server is the only entity that can connect to the database to read and write

data.

29

 Data Parser: This component is responsible for loading the data from the

server and parsing it into unified data structures that can be used by the rest of

the application using a standard format and API.

 3D scene: this component is where the 3D environment is constructed. By this

stage, the 3D model must be loaded and ready to be positioned in the 3D scene.

Materials, lighting, camera, renderers, and the rest of 3D scene construction

components are initialized in this stage.

 BIM Model: this is the 3D model of the smart apartments in BIM format. The

model is served as a BIM file. BIM format was explained in the previous

section. BIM files are served from BIM servers.

 BIM server: BIM server serves BIM models in the form of BIM files. The

client visualization application connects to the BIM server to request the smart

apartment BIM model.

 Point visualizer: Once the sensors’ data are loaded, it is fed to the point

visualizer to create the point visualizations. Point visualizations show the value

of the environmental parameters at the location of the sensor. For project A, we

have implemented five point visualization types. Each point visualization type

has its unique design, size, and color. One of them has slight animation as well.

More details on each type and its look will be provided in the implementation

section.

 Wall visualizer: This component works is a similar manner to the point

visualizer, but instead of creating point visualizations, it creates visualizations

as banners laid on the building’s internal walls. A wall visualization can also be

a 3D model, we have implemented one of the wall visualizations as a 3D

thermometer to be laid on a wall. Each wall banner shows the values of the

sensor data in a certain color, font, size, and design. We have implemented five

wall visualization types in project A. More details on each type and how it look

will be provided in the implementation section.

 three.js: three.js is an open-source JavaScript library used to create computer

graphics simulation running in a WebGL canvas in a web browser. It contains a

wide set of features and rendering capabilities suitable for creating 3D graphics

for the web. We programmed project A using JavaScript programming

language.

For project B, we followed a similar system architecture to what has been designed

for project A. The main difference is that project B did not request the model from a

BIM server. Instead, the model was loaded from a mesh model file. The system

architecture of project B is shown in Figure 10.

30

Sensor
Node

Cloud server
Database

Sensor
Node

Sensor
Node

Sensor
Node

Data Parser

Point Visualizer Area Visualizer

Render

Load sensor data

Create point viz. Create floor viz.

Client app.

Mesh
model

3D scene
Load

 model

Figure 10. Project B: system architecture

In the following sub-section, we explain in detail each component in the system

architecture:

 Sensor Node: Each sensor node is a physical sensor deployed at a certain

location within the hospice building. A sensor node is responsible for capturing

the temperature value within its location and submitting it to the cloud server.

The sensor nodes were deployed at the building construction stage.

 Cloud server: This is the centralized server that connects between the real

environments and the visualization application. The server is developed by

Fidelix [57]. The server receives the temperature readings from the sensor

nodes and persists them to the database. The server exposes a SOAP-based

web service running over HTTP for the visualization application to use to

request temperature values. The visualization application requests the

temperature values from the server to build the visualizations based on them.

The sensors network transmits the collected data periodically to a centralized

database deployed on a webserver. The webserver utilizes Web Services

Description Language (WSDL) and Simple Object Access Protocol (SOAP) to

enable the visualization frontend application to fetch and create the sensors

31

visualizations. SOAP protocol uses XML based data format to serialize and

transmit the data. XML is a widely used data transfer format on the world wide

web (WWW), for storing, serializing and transferring data around the internet.

 Database: this is the data storage for the temperature values collected by the

network of sensor nodes. The cloud server is the only entity that can connect to

the database to read and write data.

 Data Parser: This component is responsible for loading the data from the

server and parsing it into unified data structures that can be used by the rest of

the application.

 3D scene: this component is where the 3D environment is created. By this

stage, the 3D model must be loaded and ready to be positioned in the 3D scene.

Materials, lighting, camera, renderers, and the rest of 3D scene construction

components are initialized in this stage.

 Point visualizer: Once the data are loaded, it is fed to the point visualizer to

create the point visualizations. Point visualizations show the value of the

temperature at the location of the sensor in a certain design and color. We have

implemented four point visualization types: bubble, sphere, thermometer, and

icons. More details on each type and it look will be provided in the next

section.

 Floor visualizer: This component works in a similar manner to the point

visualizer, but instead of creating point visualizations, it creates floor

visualizations. A floor visualization shows the color or effect of the

temperature value on the floor instead of showing the temperature textual

value. We have implemented three floor visualization types: solid colors, heat

map, and an experimental fire and snow visualization. More details on each

type and it look will be provided in the next section.

 Unity: unity is a cross-platform game engine providing a rich set of features

and rendering capabilities. We used unity to build and render project B. Unity

allows publishing the project to multiple platforms with ease. We used C#

programming language to code the application.

3.5. Visualizations

We present in this section the implemented visualizations in both projects. In Project

A, we implemented five point visualizations, five wall visualizations together with

one table view and one visualization based on area coloring. Project B implements

four point visualizations and three floor visualizations including a fire and snow

simulation. All point visualizations in both projects are made always facing the

camera, which make them easy for the user to view from any angle. In project B was

included an option to generate random data for rooms that does not have real data

coming from the server. This makes it easy to view the visualizations even when

there is no data available at the server. Figure 11 shows the view of the smart

apartment when only the wall visualizations are active. Figure 12 shows the

apartment when both the wall and point visualizations are active together.

32

Figure 11. Project A: wall visualizations

Figure 12. Project A: wall and point visualization

The five implemented point visualization are labeled: sprite, sprite 2, bars, arrows,

and bubbles. Figure 13 shows an up-close look at the various point visualizations

implemented for project A. The sprite and sprite 2 visualizations (Figure 13 a and b)

show the value of sensor data as a yellow text that is always facing the camera. The

difference between them is that Sprite visualization shows one sensor value at a time

(temperature, humidity or Co2). On the controls panel, the Sprite visualization has a

radio button group that the user can use to switch the visualized sensor data type.

Sprite 2 visualization on the other hand shows all the data for one sensor stacked

vertically in one visualization. Additionally, it shows indicative icons beside the

values. Bar visualization (Figure 13c) shows the sensor values as bars where the

height and color of the bar change according to the sensor value. Each bar represents

one sensor data. The arrow visualization (Figure 13 d) is a special visualization for

visualizing pressure. It shows an animated arrow plus the pressure value in blue

above the arrow. Finally, the bubble visualization (Figure 13 e) shows each value of

the sensor data in a bubble containing the sensor data value. The color of the bubble

33

changes according to the sensor data type and value. The bubble has a slight vertical

animation that gives it a vivid look.

Figure 13. Project A: point visualizations

In addition to the wall and point visualizations, a table view shows all the sensors

and their data in a raw table view as shows in Figure 14.

Figure 14. Project A: table view

We have implemented some additional features in project A that are not available in

project B. As for camera controls we have added preset camera position and rotation

34

values in a drop down list that allows the user to switch the view to certain position

and angle so that he can move directly to a certain room. In addition, we have

implemented a first person view so that the user can move inside the apartment using

the standard first person shooter (FPS) game controls (arrows or A, S, D, W keys to

move + mouse to look around). As for lighting, we created two lighting modes:

global and room. The global lighting is composed of two three.js directional lights

positioned so that they light the entire scene. The result is a basic strong light that

lights the apartment equally. The room lighting mode is a more advanced light that

provides a soft lighting in each room. For room lighting, one point light was created

for each room. The light radius and attenuation of the point lights were set so that the

light affects the area of the area it is lighting. There is also a checkbox to toggle the

visibility of the room’s light source (bulb) on and off. Room lighting casts soft

shadows. We added also a checkbox to toggle the room lightings’ shadows on and

off. The scene looks much better with shadows but switching off shadows could

come in handy when working on a computer with low rendering capabilities. The last

additional feature in project A is an experimental light controls that allows the user to

change the color of three RGB color-lights installed in the real apartment. The user

would be able to click a color picker and choose a color and this color would be

reflects to the real light in real-time. This feature is still experimental and additional

work is required to finalize and test it. Lastly, project A apartment model contains

some furniture models with materials applied while project B doesn’t.

Figure 15. Project B: bubbles point visualization

Next, we present the implemented visualizations in project B. We implemented four

point visualizations and three floor visualizations in project B. Project B hospice

35

model container 4 floors. For the sake of simplicity, we will present our implemented

visualization in the ground floor (Figures 15 and 16). Yet, toggling the model to

another floor will show the currently selected visualizations applied for new floor. As

highlighted before, point and floor visualizations can be mixed together. Figure 15

shows a view from the ground floor of the hospice building with a point visualization

only. Figure 16 shows the ground floor when a point visualization plus a floor

visualization are toggled on at the same time.

Figure 16. Project B: bubbles point visualization with heat map floor visualization

The intensity of the visualizations color and the radius of the heap map is

proportional to temperature value as shown in Figures 15 and 16. Also it worth

noting that the heat map visualization looks good with almost all point visualizations

as it acts as a continuation of the visualization on the floor. In Figure 17, the four

implemented point visualizations are displayed.

36

Figure 17. Project B: point visualizations

The first visualization is labeled “Bubble” (Figure 17a). It shows the temperature

value in a message bubble. The color of the bubble’s background is a shade of red or

blue depending on the temperature value. The higher the temperature value, the more

saturated the color. Figure 18 shows all the possible color shades corresponding to

different temperature values. If the temperature value is bigger than 20 or less than -

20 the color is completely saturated red or blue.

Figure 18. Bubbles point visualization color shades

The second point visualization is labeled “Sphere” (Figure 17b). It shows the

temperature as a number inside a translucent specular sphere. The color of the text as

well as the sphere is either red, if the temperature is above zero or blue if temperature

is below zero. The text also has a thin white outline that makes it clearer to read. The

third point visualization is labeled “Thermometer” (Figure 17c). It shows a graphical

icon of a thermometer where the height of the inner bar reflects the temperature

value. The color of the thermometer is either blue if the temperature value is below

zero or red if the temperature is above zero. The temperature value is also shown

beside the thermometer. The user interface has a checkbox to toggle the temperature

value beside the thermometer on and off. We added the ability to switch off the text

because when there are many visualizations in the scene, the text values interfere

together making it hard to read individual sensor values. The last point visualization

37

implemented in project 2 is “Fire and Ice” (Figure 17d). It shows the value of the

temperature in either a yellow color with orange outline if the temperature is above

zero or cyan with blue outline if the temperature value is below zero. Additionally,

either a fire or a snowflake icon is shown next to the temperature value depending on

the temperature value. The colors of the text were chosen to match the colors of the

fire and snowflake icons. This point visualization looks good either alone or in

combination with the fire and snow floor visualization. Next, we look at the three

implemented floor visualizations in project B (Figure 19).

Figure 19. Project B: floor visualizations

The first visualization is labeled “solid colors” (Figure 19.a). It shows the floor of

each area (typically a room) in either red or blue shade. The color intensity is

proportional to the temperature value so the more reddish the color, the more hot the

temperature. The more bluish, the more cold. If the temperature value is close to

zero, the floor’s color would be close to white. Figure 20 shows the possible color

shades of red and blue versus the temperature values for project B’s solid colors floor

visualization.

Figure 20. Solid colors visualization color shades

The heat map visualization shown in Figure 19.b works in a similar way. It shows a

circle with fading edge on the floor. The center of the circle represents the point

where the sensor is located. The color of the circle can be either red if the

temperature value is above zero or blue if it is below zero. The radius of the

visualization circle is proportional to the temperature value. The higher the

temperature, the bigger the radius. To implement the heap map visualization we

created custom pixel and fragment shaders that can be fed with the sensors’ locations

and temperature values and generate a material with the discussed heat map

properties. Additionally, we split the floor into separate meshes so that each room

has its own floor piece. This is required technically so that the heat map shader

38

material only affects the floor part it is meant to affect and do not extend to adjacent

floors. The heat map visualization looks good in combination with any of the

aforementioned point visualizations. The last implemented floor visualization is the

fire and ice (Figure 19.c). In this visualization, fire or snow falling simulations are

simulated in each floor area depending on the temperature value. For temperature

values above zero, a fire particle system is started. For values below zero a snow

falling system is started. The intensity of the fire and snow particles is proportional

with the temperature value. So the higher the temperature, the more strong is the fire.

The lower the temperature, the higher the snow precipitation rate. This visualization

looks good in combination with the fire and ice point visualization.

3.6. User interface

We present in this section the user interface (UI) of the two implemented projects. In

both projects, the user interface is implemented as a panel docked to the right of the

screen. We start by demonstrating the user interface for project A. The user interface

of project A is shown in Figures 11, 12 and 14. To the left of the screen is a white

panel containing the list of the project partners. The partners for project A are

Fidelix, Gane, iProtoXi, Oulu3D, and VTT research center. At the bottom of the

screen is another white panel containing a descriptive message about the project and

its funding source. To the right of the screen is the main UI panel, which contains all

the controls to toggle the visualizations on and off. The panel is divided into five

sections stacked vertically. The first section contains the point visualizations. Each

visualization has a checkbox next to it where the user can toggle it on and off.

Depending on the visualization type, additional controls may exist, for example,

Sprite point viz. has a radio button group allowing the user to choose which sensor

data to show (temperature, humidity, co2 or pressure). The second section is for wall

visualizations. Wall visualizations cannot be switched off. For each room in the

apartment that is a drop down list showing the list of the wall visualizations. The user

can change the wall visualization for a specific room using the drop down list for that

room. The third section in the panel contains a drop down list containing the

implemented preset camera controls plus the first person mode. The fourth section

contains lighting controls including a radio button group to choose between the

global and room lighting modes, a checkbox to toggle the room bubbles on and off,

and a checkbox to toggle shadows on and off. The last section contains the

experimental RGB light controls. This section contains three light labels and color

pickers that the user can use to control the colors of three real lights deployed in the

real apartment as discussed in the implementation section.

The user interface for project B is simpler than project A’s as shown in figures 15

and 16. It contains only the controls panel to the right where the user can choose the

visualizations and the floor. The first section of the panel contains a vertical slider

that the user can use to change the view to a certain floor of the building. We

implemented the slider in a vertical direction with four snap-able steps so that

switching floors mimics the visual change of the model floors, which give a natural

feedback to the user about changing floor and hence improving the system usability.

When the user change to a different floor the current visualizations are removed from

the old floor and recreated to the newly chosen floor. After the floor selection

section, a check box exists to allow generating random data for all the floor areas.

39

Current active visualizations will be updated with the randomly generated data. This

is useful to be able to experiment with the application visualizations even if the

sensor data is limited or not available. Next comes the two visualization sections.

Each visualization type (point and floor) is represented as a drop down list that the

user can click to check the available visualizations and choose one of them.

Depending on the chose visualization, additional options can appear in the panel to

change some aspects of the visualization. The thermometer point visualization has an

additional option to toggle the visibility of the temperature text. The sphere point

visualization has an additional option to toggle the sphere visibility on and off.

40

4. COMPARATIVE PERFORMANCE EVALUATION

This chapter reports the comparison of the two approaches with respect to rendering

performance, model size, request time, and development effort.

4.1. Rendering performance

To compare the performance of both applications we ran a small experiment in

which we started each project and tried all visualizations and controls. We monitored

the frames per second (fps) count while doing this experiment. We ran both projects

on the same computer having the following specifications: Intel Core i7 6700HQ

CPU, 16GB RAM, NVIDA GeForce GTX 960M, memory 4MB GDDR5 GPU.

Results showed that project A kept a steady frame rate of 59-60 fps in worst case

when all visualizations were on at the same time plus shadows. The frame rate only

dropped shortly to about 55 when moving the view very quickly while all the

visualizations are switched on. Yet it is just a momentarily drop that did not cause

any noticeable result on the user experience. Project B also kept a steady frame rate

of 59 all the time in worst case when the fire and snow particles were on plus a floor

visualization. The frame rate dropped shortly when switching between floors or

changing the point or floor visualization type. This is expected as when switching

floors or changing visualizations, the application removes the old visualizations and

creates new ones. Yet the frame rate drop is very short and acceptable as it happens

only during changing a setting. Therefore, we conclude that both applications run

smoothly on a web browser on an average modern computer. Table 2 summarizes the

performance of both projects.

Table 2. Performance of the two projects in terms of fps

 average fps shortly dropped fps (reason)

Project A 59-60 55 (very fast navigation)

Project B 59 50-55 (change visualization or floor)

4.2. Model format and size

Each of the two projects has a different model format. Project A utilized a BIM

model loaded from a BIM server. BIM models cover more than just geometry. It also

covers spatial relationships, light analysis, geographic information, and quantities

and properties of building components. For the sake of creating a 3D visualization

application, we did not really need the extra information that the BIM standard

provides. Additionally the BIM file size is bigger than a regular mesh model due to

the extra information it holds. Also bigger file size means additional time to request

and load the BIM model from the server. For those reasons, we extracted a mesh

model out of the BIM file used for Project A and removed the extra information that

we do not need. The BIM model is 26.7MB while the exported FBX is just 10.3MB.

This gave us a 61.4% save on the request size. If the exported FBX is compressed it

can even greatly reduce in size to around 390KB. To load the model to the three.js

scene, we converted it to the JSON format that is supported by three.js. Project B

41

utilized a mesh model created using 3D max. The mesh model is exported as FBX

file format, which works well with unity. Project B model is a four-floor hospice

building, which has much bigger geometric data compared to Project A’s model. The

file size of projects B model is 3.74MB before compression and 975KB after

compression. Table 3 summarizes relevant details of the models used in the two

projects.

Table 3. Relevant details of the models used in the two projects

 file size (MB) file size

compressed

file format model description

Project A 3.72 974 KB JSON small apartment

Project B 10.3 390 KB FBX large 4-floor hospice

4.3. Request format and load time

To measure the time taken to request the sensor data from the server, we monitored

the period since a request is issued until the result is returned successfully. To request

the sensor data from the server in project A, we issue a GET request to the sensor

webserver. We pass an authentication key as a parameter with the request. The result

comes in JSON format and contains the most recent sensors data for all the sensors in

the smart apartment. The returned result contains 100 records. We found from

monitoring the request time that it takes between 0.1 to ~0.3 seconds. In average, it

took 0.15 seconds. The size of the requested data is 17.8 KB. For project B, we issue

a POST request to a SOAP web service to load the sensors data. We need to issue

one request per each sensor node. The request takes as parameter the sensor’s unique

ID. The request took between 0.03 to 0.05 seconds to return a result. In average, it

takes 0.04 seconds. While this is very small compared to project A’s request time,

the request only returns data for a single sensor. The response has a size of 0.42 KB.

To estimate the request speed we divide the request time by the response size. This

returns a load speed of 8.42 milliseconds/KB for project A’s requests and 95.2

milliseconds/KB for project B. The results of the tests are summarized in the table

below.

Table 4. Request and response time of the two approaches

 request time response size (KB) speed (ms/KB)

Project A 0.15 s 17.8 KB 8.42

Project B 0.04 s 0.42 KB 95.2

4.4. Development SDK

We discuss and compare in this section the development environments for both

projects. Project A was developed using Three.js JavaScript library while project B

was developed using Unity IDE. When comparing the two SDKs, the comparison is

not balanced. Unity is a full-fledged commercial software with rich set of high-end

42

tools and features tailored for creating 3D applications and game. On the other hand,

three.js is an open-source library for creating 3D graphics using JavaScript for the

web. Three.js provides a good set of features that are enough most of the time to

create 3D graphics simulations yet Unity is much more powerful. We start by taking

a closer look at Unity IDE. Unity is a complete game engine for create 2D and 3D

games and application. It contains a rich visual editor allowing manipulating the 3D

scene visually with ease. Moreover, the visual editor serves as a level designer. Unity

also provides tools for networking/multiuser support, advanced particle system,

physics system, post effects, and more. Furthermore, it has an easy to use user

interface and utilizes an intuitive component system. Due to its powerful capabilities,

unity has a productive workflow. Unity provides three scripting languages for

programming: C#, JavaScript and boo. Boo programming language has been

deprecated since Unity version 5 and is no longer supported. The majority of unity

community uses C# with a ratio of 80.4% compared to 18.9% of JavaScript users.

Unity provides two license options: commercial and free. The free license provides

all the engine features but the builds have a unity watermark splash screen. In

addition, the free license come with a light editor theme while the commercial editor

comes with a dark theme. Unity can build to all common platforms including

windows, mac, iphone, android, xbox, and more. Some aspects to consider as

weaknesses for using unity is that it is not the best choice if the required task is a to

create simple animated 3D object. In order to program that, Unity must be

downloaded and set up. Visual Studio IDE and .NET framework are mandatory for

scripting on Unity. Also in terms of communication between the application and the

web page containing it, it would be cumbersome to achieve this communication

using unity whereas three.js would naturally have access to the DOM, as well as any

JavaScript snippets on the web page.

Next, we discuss three.js, the library used by project A. Three.js is a JavaScript

WebGL library that runs in the browser and integrates well into existing website

code. Three.js handles common graphics feature like shadows, rendering, post

effects, vertex processing, shaders, etc. It is a lightweight library that takes care of

most of the complex low-level graphics and shaders programming. Being open-

source, three.js is completely free to use and customize. In terms of weaknesses,

being open-source, the library is rapidly changing and as a result, it can be difficult to

rely on it to build an enterprise level project using it until the codebase matures

enough to a consistent stable build. It is also very challenging to build something big

using three.js due to the absence of a visual editor and the limited features of

JavaScript. Table 5 summarizes the relevant properties and differences between

three.js and Unity IDE.

Table 5. Comparison of Three.js and Unity

 three.js (project A) Unity (project B)

programming language JavaScript C#, JavaScript

visual editor no yes

features and tools basic rich

build target web browser all common platforms

license open-source free and commercial

43

5. DISCUSSION

The purpose of this study is the compare the two built projects and highlight the

advantages of disadvantages of the different tools and methods used to build them. In

this chapter, we discuss in more detail some points based on the analysis. We also

give our recommendation based on our experience of building the two projects. We

conclude the chapter by shedding some light on how to develop this work further.

5.1. BIM models

As shown before, BIM models contain additional information beyond the geometric

data. Those additional features are useful for collaboration and other purposes.

However, those features come at the cost of bigger file size and additional time to hit

the BIM server and load the model. This means, for small-scale projects that do not

require additional information beyond the geometry information, it would be

redundant to use BIM model. We believe that for a small smart apartment, using

BIM incurs unnecessary additional load time. Consequently, we extracted a mesh

model out of the provided BIM and used it to save bandwidth and to simplify our

workflow.

5.2. SOAP web service

Project B utilized SOAP web service to load the sensors data. SOAP format is

language and platform independent which makes it easy to use on any platform.

There are additional advantages for using SOAP web services, yet the SOAP XML

data format presents a major disadvantage that makes it considerably slow to transfer

data compared to its counterparts. While XML is a human friendly data format that is

easy to read and edit even with a simple text editor, it is verbose due to the text-based

delimiters it uses. Even worse, SOAP standard injects extra XML tags in the SOAP

response, which bloats the response unnecessarily. Considering the response of the

web service call to load a sensor’s data in project B. The response look like the

following (Appendix 2):

<soap:Envelopexmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:xsd=http://www.w3.org/2001/XMLSchema

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <getPointDataResponse xmlns="http://fidelix.fi/webVision/">

 <getPointDataResult>23.673</getPointDataResult>

 </getPointDataResponse>

 </soap:Body>

</soap:Envelope>

As seen from the code block above, the XML response is unnecessarily bloated due

to the XML verbosity and the SOAP format tags although the only required data is

the sensor’s temperature value (23.673). If JSON is utilized, the same result could

look like the following:

{“data”: 23.673}

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

44

Thus, an important improvement to project B is to utilize JSON format instead of

SOAP XML. JSON is a common data transfer format similar to XML but it is much

more compact as it uses curly brackets to delimit stored values instead of text nodes

like in XML. This makes JSON a lightweight format that is faster to parse and

transmit. Since the sensor network consists of a large number of nodes and the

sensors data is sent periodically, we believe that utilizing JSON instead of XML

would greatly improve the overall system performance.

5.3. Unity vs Three.js

We used three.js and JavaScript to build project A, and unity and C# programming

language to build project B. Based on our experience using both SDKs, we can say

that unity was more productive and easier to use. In particular, the powerful visual

editor that unity provides is indispensable for any non-trivial 3D project

development. Besides, C# is a strongly typed object-oriented language that is suitable

for writing extensible and maintainable code. JavaScript nevertheless is not strongly

typed nor object-oriented language. This makes writing maintainable code with it is a

bit challenging. Additionally, unity provides a rich framework of component-based

features that are easy to integrate with existing code. As a result, we conclude that to

create any non-trivial 3D simulation, unity would provide a more productive pipeline

compared to Three.js.

45

6. CONCLUSION

The vision of smart buildings is rapidly progressing. Investment in smart building

solutions is growing across different regions and business segments. Consequently,

creating an easy-to-use 3D user interface to assist non-technical users to take full

command of their smart apartment facilities is of a major concern. We presented in

this thesis two approaches for building a visualization application that visualizes

sensors data in smart buildings. The underlying principles and the building blocks of

the two applications have been discussed. We analyzed and discussed the advantages

and disadvantages of several of the approaches we used in our implementation. The

applications were designed to run smoothly in a modern WebGL-enabled web-

browser. We kept the controls and visualizations simple so that all user categories

can use the application easily. This work contributes towards increasing the usability

of smart buildings monitoring and configuration and enhancing the user experience

for IoT services generally.

We highlighted in this thesis a small subset of the smart home vision, which is

sensors visualization. However, the vision of smart apartments extends largely

beyond that. In a smart home, everything is connected and controlled. This includes

lighting, heating, ventilation, air conditioning, and security. In addition, home

appliances like washing machine, refrigerator, oven, etc. are also connected using

wired and wireless communication technologies. That said, to extend this work,

additional types of smart sensors need to be installed and subsequently visualizations

need to be developed to visualize the sensors data in the 3D visualization application.

Moreover, the projects we developed work in one direction, it takes the sensors data

and visualize it. The other direction is equally important for smart apartments.

Allowing the client application to control the real apartment to adjust lighting,

temperature, and more is an interesting subject for future work. Furthermore, there is

a big space for experimenting with new techniques for sensor data visualization.

Porting this work to mobile devices would also be of significant importance. It would

allow people to monitor and configure the smart environment anytime anywhere.

Other ideas open for future research include the use of voice commands, camera

gestures, visualizations in virtual reality (VR) and augmented reality (AR).

46

7. REFERENCES

[1] De Cristofaro, E., & Di Pietro, R. (2013). Adversaries and

countermeasures in privacy-enhanced urban sensing systems. IEEE

Systems Journal, 7(2), 311-322.

[2] Dutta, P., Aoki, P. M., Kumar, N., Mainwaring, A., Myers, C., Willett, W.,

& Woodruff, A. (2009, November). Common sense: participatory urban

sensing using a network of handheld air quality monitors. In Proceedings

of the 7th ACM conference on embedded networked sensor systems (pp.

349-350). ACM.

[3] Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin, D., Guibas, L., ...

& Reich, J. (2007). Mobiscopes for human spaces. IEEE pervasive

computing, 6(2).

[4] Campbell, A. T., Eisenman, S. B., Lane, N. D., Miluzzo, E., & Peterson, R.

A. (2006, August). People-centric urban sensing. In Proceedings of the 2nd

annual international workshop on Wireless internet (p. 18). ACM.

[5] Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban

climates. Remote sensing of environment, 86(3), 370-384.

[6] Resch, B., Mittlboeck, M., Lipson, S., Welsh, M., Bers, J., Britter, R., &

Ratti, C. (2009, June). Urban sensing revisited–Common scents: Towards

standardised geo-sensor networks for public health monitoring in the city.

In Proceedings of the 11th International Conference on Computers in

Urban Planning and Urban Management-CUPUM2009, Hong Kong (pp.

16-18).

[7] Lane, N. D., Eisenman, S. B., Musolesi, M., Miluzzo, E., & Campbell, A.

T. (2008, February). Urban sensing systems: opportunistic or

participatory?. In Proceedings of the 9th workshop on Mobile computing

systems and applications (pp. 11-16). ACM.

[8] Ono, T., Ishizuka, H., Ito, K., Ishida, Y., Miyazaki, S., Mihirogi, O., &

Tobe, Y. (2007, November). Uscan: Towards fine-grained urban sensing.

In International Workshop on Real Field Identification (RFId2007).

[9] Farias, C., Soares, H., Pirmez, L., Delicato, F., Santos, I., Carmo, L. F., ...

& Dohler, M. (2014). A control and decision system for smart buildings

using wireless sensor and actuator networks. Transactions on Emerging

Telecommunications Technologies, 25(1), 120-135.

[10] Meyer, S., & Rakotonirainy, A. (2003, January). A survey of research on

context-aware homes. In Proceedings of the Australasian information

security workshop conference on ACSW frontiers 2003-Volume 21 (pp.

159-168). Australian Computer Society, Inc..

47

[11] Robles, R. J., & Kim, T. H. (2010). Review: context aware tools for smart

home development. International Journal of Smart Home, 4(1).

[12] Kleissl, J., & Agarwal, Y. (2010, June). Cyber-physical energy systems:

Focus on smart buildings. In Proceedings of the 47th Design Automation

Conference (pp. 749-754). ACM.

[13] Morvaj, B., Lugaric, L., & Krajcar, S. (2011, July). Demonstrating smart

buildings and smart grid features in a smart energy city. In Energetics

(IYCE), Proceedings of the 2011 3rd International Youth Conference on

(pp. 1-8). IEEE.

[14] Wang, Z., Wang, L., Dounis, A. I., & Yang, R. (2012). Multi-agent control

system with information fusion based comfort model for smart buildings.

Applied Energy, 99, 247-254.

[15] Martins, J. F., Oliveira-Lima, J. A., Delgado-Gomes, V., Lopes, R., Silva,

D., Vieira, S., & Lima, C. (2012, October). Smart homes and smart

buildings. In Electronics Conference (BEC), 2012 13th Biennial Baltic (pp.

27-38). IEEE.

[16] Främling, K., Oliver, I., Honkola, J., & Nyman, J. (2009, October). Smart

spaces for ubiquitously smart buildings. In Mobile Ubiquitous Computing,

Systems, Services and Technologies, 2009. UBICOMM'09. Third

International Conference on (pp. 295-300). IEEE.

[17] Stefanov, D. H., Bien, Z., & Bang, W. C. (2004). The smart house for

older persons and persons with physical disabilities: structure, technology

arrangements, and perspectives. IEEE transactions on neural systems and

rehabilitation engineering, 12(2), 228-250.

[18] Lu, J., Sookoor, T., Srinivasan, V., Gao, G., Holben, B., Stankovic, J., ... &

Whitehouse, K. (2010, November). The smart thermostat: using occupancy

sensors to save energy in homes. In Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems (pp. 211-224).

ACM.

[19] Friendly, M. (2008). A brief history of data visualization. In Handbook of

data visualization (pp. 15-56). Springer Berlin Heidelberg.

[20] Fan, F., & Biagioni, E. S. (2004, January). An approach to data

visualization and interpretation for sensor networks. In System Sciences,

2004. Proceedings of the 37th Annual Hawaii International Conference on

(pp. 9-pp). IEEE.

[21] Su, J. M., & Huang, C. F. (2014). An easy-to-use 3D visualization system

for planning context-aware applications in smart buildings. Computer

Standards & Interfaces, 36(2), 312-326.

[22] Healey, C. G. (1996, October). Choosing effective colours for data

visualization. In Visualization'96. Proceedings. (pp. 263-270). IEEE.

48

[23] Buschmann, C., Pfisterer, D., Fischer, S., Fekete, S. P., & Kröller, A.

(2005). Spyglass: a wireless sensor network visualizer. Acm Sigbed

Review, 2(1), 1-6.

[24] Hu, Y., Li, D., He, X., Sun, T., & Han, Y. (2009, November). The

implementation of wireless sensor network visualization platform based on

wetland monitoring. In Intelligent Networks and Intelligent Systems, 2009.

ICINIS'09. Second International Conference on (pp. 224-227). IEEE.

[25] Boers, N. M., Chodos, D., Huang, J., Gburzynski, P., Nikolaidis, I., &

Stroulia, E. (2009, April). The Smart Condo: Visualizing independent

living environments in a virtual world. In Pervasive Computing

Technologies for Healthcare, 2009. PervasiveHealth 2009. 3rd

International Conference on (pp. 1-8). IEEE.

[26] Saito, T., Miyamura, H. N., Yamamoto, M., Saito, H., Hoshiya, Y., &

Kaseda, T. (2005, October). Two-tone pseudo coloring: Compact

visualization for one-dimensional data. In Information Visualization, 2005.

INFOVIS 2005. IEEE Symposium on (pp. 173-180). IEEE.

[27] Schneiderman, S. C. J. M. B. (1999). Information Visualization: Using

Vision to Think.

[28] Cañas, A. J., Carff, R., Hill, G., Carvalho, M., Arguedas, M., Eskridge, T.

C., ... & Carvajal, R. (2005). Concept maps: Integrating knowledge and

information visualization. In Knowledge and information visualization (pp.

205-219). Springer Berlin Heidelberg.

[29] Chen, C., & Yu, Y. (2000). Empirical studies of information visualization:

a meta-analysis. International Journal of Human-Computer Studies, 53(5),

851-866.

[30] Kapler, T., & Wright, W. (2005). Geotime information visualization.

Information Visualization, 4(2), 136-146.

[31] Keim, D. A. (2002). Information visualization and visual data mining.

IEEE transactions on Visualization and Computer Graphics, 8(1), 1-8.

[32] Heer, J., Card, S. K., & Landay, J. A. (2005, April). Prefuse: a toolkit for

interactive information visualization. In Proceedings of the SIGCHI

conference on Human factors in computing systems (pp. 421-430). ACM.

[33] Plaisant, C. (2004, May). The challenge of information visualization

evaluation. In Proceedings of the working conference on Advanced visual

interfaces (pp. 109-116). ACM.

[34] Yi, J. S., ah Kang, Y., & Stasko, J. (2007). Toward a deeper understanding

of the role of interaction in information visualization. IEEE transactions on

visualization and computer graphics, 13(6), 1224-1231.

49

[35] Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C. D., & Roberts,

J. C. (2011). Visual comparison for information visualization. Information

Visualization, 10(4), 289-309.

[36] Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of things.

International Journal of Communication Systems, 25(9), 1101.

[37] Eastman, C. M., Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011).

BIM handbook: A guide to building information modeling for owners,

managers, designers, engineers and contractors. John Wiley & Sons.

[38] Autodesk Revit [Computer software]. Retrieved April 6, 2017, from

http://www.autodesk.com/products/revit-family/overview

[39] Unity Technology. Unity (Version 5). Retrieved April 6, 2017, from

https://unity3d.com

[40] Cabello, R. (n.d.). Three.js r84. Retrieved April 06, 2017, from

https://threejs.org/

[41] Autodesk 3DS Max (Version 2017) [Computer software]. Retrieved April

6, 2017, from http://www.autodesk.com/products/3ds-max/overview

[42] Autodesk, B. I. S. (2002). Building information modelling. Autodesk Inc.

White Paper, San Rafael, CA.

[43] Documentation, Unity scripting languages and you – Unity Blog. (n.d.).

Retrieved April 06, 2017, from

https://blogs.unity3d.com/2014/09/03/documentation-unity-scripting-

languages-and-you/

[44] Suresh, P., Daniel, J. V., Parthasarathy, V., & Aswathy, R. H. (2014,

November). A state of the art review on the Internet of Things (IoT)

history, technology and fields of deployment. In Science Engineering and

Management Research (ICSEMR), 2014 International Conference on (pp.

1-8). IEEE.

[45] Risden, K., Czerwinski, M. P., Munzner, T., & Cook, D. B. (2000). An

initial examination of ease of use for 2D and 3D information visualizations

of web content. International Journal of Human-Computer Studies, 53(5),

695-714.

[46] Robertson, G. G., Card, S. K., & Mackinlay, J. D. (1993). Information

visualization using 3D interactive animation. Communications of the

ACM, 36(4), 57-71.

[47] Ware, C., & Franck, G. (1994, October). Viewing a graph in a virtual

reality display is three times as good as a 2D diagram. In Visual

Languages, 1994. Proceedings., IEEE Symposium on (pp. 182-183). IEEE.

50

[48] Marcus, A., Feng, L., & Maletic, J. I. (2003, June). 3D representations for

software visualization. In Proceedings of the 2003 ACM symposium on

Software visualization (pp. 27-ff). ACM.

[49] Kjellin, A., Pettersson, L. W., Seipel, S., & Lind, M. (2010). Evaluating

2D and 3D visualizations of spatiotemporal information. ACM

Transactions on Applied Perception (TAP), 7(3), 19.

[50] McMahan, A. (2003). Immersion, engagement and presence. The video

game theory reader, 67, 86.

[51] Gauntlett, D. (n.d.). VISUALISATION. Art Lab. University of

Westminster. Retrieved April 06, 2017, from

http://www.artlab.org.uk/visualisation.htm

[52] Quigley, A. (n.d.). Information Visualisation: Proceedings. Los Alamitos

Calif.: IEEE Computer Society, 2002. University of St Andrews. Retrieved

April 06, 2017, from https://aquigley.host.cs.st-

andrews.ac.uk/downloads/tc/TradingConsequencesInfoVisMay17.pdf

[53] Harrower, M., & Brewer, C. A. (2003). ColorBrewer. org: an online tool

for selecting colour schemes for maps. The Cartographic Journal, 40(1),

27-37.

[54] PointLight. (n.d.). Retrieved April 06, 2017, from

https://threejs.org/docs/api/lights/PointLight.html

[55] DirectionalLight. (n.d.). Retrieved April 06, 2017, from

https://threejs.org/docs/api/lights/DirectionalLight.html

[56] ThingsSpeak. (n.d.). Retrieved April 06, 2017, from

https://thingspeak.com/

[57] Älykäs ratkaisu energiansäästöön ja hyvään sisäilmaan. (n.d.). Retrieved

April 06, 2017, from https://www.fidelix.fi/

[58] Three.js / editor. (n.d.). Retrieved April 07, 2017, from

https://threejs.org/editor/

[59] U. (n.d.). Fast Facts. Retrieved April 08, 2017, from

https://unity3d.com/public-relations

[60] Unity - Engine Features. (n.d.). Retrieved April 08, 2017, from

https://unity3d.com/unity/engine-features

[61] Tracy, P. (2016, July 25). What is a smart building and how can it benefit

you? Retrieved April 11, 2017, from

http://www.rcrwireless.com/20160725/business/smart-building-tag31-

tag99

https://www.fidelix.fi/
https://threejs.org/editor/
https://unity3d.com/public-relations
https://unity3d.com/unity/engine-features
http://www.rcrwireless.com/20160725/business/smart-building-tag31-tag99
http://www.rcrwireless.com/20160725/business/smart-building-tag31-tag99

51

[62] Haynes, G. (2017, December 11). Beyond Smart Cities. Retrieved April

11, 2017, from https://www.linkedin.com/pulse/beyond-smart-cities-

george-haynes-5948850577994760192

52

8. APPENDICES

Appendix 1. Project A data request result

Appendix 2. Project B data request result

53

Appendix 1. Project A data request result

{

"channel": {

"id": 8,

"name": "Sensor data",

"field1": "SensorId",

"field2": "SensorType",

"field3": "Value1",

"field4": "Value2",

"field5": "Value3",

"field6": "Value5",

"field7": "Value5",

"field8": "Value6",

"created_at": "2016-08-23T07:01:24Z",

"updated_at": "2017-03-21T11:37:06Z",

"last_entry_id": 3246796

},

"feeds": [

{

"created_at": "2017-03-21T11:35:12Z",

"entry_id": 3246697,

"field1": "84283",

"field2": "1",

"field3": "19.89",

"field4": "18.76",

"field5": "994.2",

"field6": "3.12",

"field7": "71.0",

"field8": "0"

},

{

"created_at": "2017-03-21T11:35:13Z",

"entry_id": 3246698,

"field1": "106258",

"field2": "4",

"field3": "0",

"field4": "600",

"field5": "0",

"field6": "1000",

"field7": "0",

"field8": "400"

},

…

]

}

54

Appendix 2. Project B data request result

<soap:Envelopexmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:xsd=http://www.w3.org/2001/XMLSchema

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <getPointDataResponse xmlns="http://fidelix.fi/webVision/">

 <getPointDataResult>23.673</getPointDataResult>

 </getPointDataResponse>

 </soap:Body>

</soap:Envelope>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

