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ABSTRACT

Effective Capacity (EC) indicates the maximum communication rate subject to
a certain delay constraint while the effective energy efficiency (EEE) is the ra-
tio between this EC and power consumption. In this thesis, we analyze the EC
and EEE of multi-user networks operating in the finite blocklength (FB) regime.
We consider a layout in which a number of users communicate through a com-
mon controller. A closed form approximation for the per-user EC is obtained
in Nakagami-m fading collision channels. The interference between transmitted
data packets degrades the EC of each user. We analyze this decrease proposing
three methods to alleviate the interference effect for one of the users namely power
control, delay relaxation and joint compensation. Our results show that systems
with stringent delay constraints favor power controlled compensation while for
shorter packets, the amount of compensation needed by both θ relaxation and
power increases is higher. Thus, it is more costly to compensate networks trans-
mitting shorter packets. For the hybrid method, we maximize an objective func-
tion whose parameters are determined according to the design priorities (e.g. rate
and latency requirements). Results reveal that there is a unique throughput maxi-
mizer which is obtained at an intermediate operational point applying both power
control and delay relaxation in the joint compensation process. Furthermore, we
characterize the per-user EEE for different power consumption models. The re-
sults show that accounting for empty buffer probability enhances the per-user
EEE. Considering flexible transmission power and extending the maximum delay
tolerance boosts the per-use EEE which is depicted in the thesis as well.

Keywords: Finite blocklength, Effective capacity, Effective energy efficiency,
Multi-user interference, Machine-to-machine communication.



Shehab M. (2017) Suorituskyvyn analysointi viiverajoitetussa usean käyttäjän
verkossa lohkohäipyvissä kanavissa. Oulun yliopisto, sähkö- ja tietotekniikan osasto.
Diplomityö, 50 s.

TIIVISTELMÄ

Efektiivinen kapasiteetti kertoo suurimman tietoliikenteen datanopeuden määri-
tetyillä viiverajoituksilla, kun taas efektiivinen energiatehokkuus on efektiivisen
kapasiteetin ja tehonkulutuksen suhde. Tässä diplomityössä analysoidaan efek-
tiivistä kapasiteettiä ja efektiivistä energiatehokkuutta monisolmuverkoissa, kun
käytetään äärellistä lohkon pituutta. Työssä käytetään mallia, jossa tietty mää-
rä käyttäjiä kommunikoi yhteisen kontrolliyksikön ohjaamana. Käyttäjäkohtai-
sen efektiivisen kapasiteetin approksimaatio datapakettien törmäyksiä mallinta-
vassa Nakagami-m ?häipyvässä kanavassa esitetään suljetussa muodossa. Lähe-
tettyjen pakettien välinen häiriö pienentää kunkin käyttäjän efektiivistä kapasi-
teettia. Tätä ilmiötä pyritään lieventämään kolmella ehdotetulla menetelmällä eli
tehonsäädöllä, viiveen relaksoinnilla ja näiden yhdistelmällä. Tutkimustulokset
osoittavat, että tiukkojen viiverajoitusten voimassa ollessa tehopohjainen kom-
pensointi toimii parhaiten kun taas lyhyille paketeille vaaditaan molempia me-
netelmiä. Niinpä lyhyitä paketteja lähettävien verkkojen kompensointimenetel-
mät ovat kalliita. Hybridimenetelmässä maksimoidaan kohdefunktio, jonka pa-
rametrit määritellään suunnittelukriteerien mukaan (esim. datanopeus- ja viive-
vaatimukset). Tulokset paljastavat, että löytyy yksittäinen verkon läpäisykyvyn
maksimoiva keskialueen toimintapisteen kohta teho- ja viivepohjaista kompen-
sointia yhdessä käytettäessä. Lisäksi työssä mallinnetaan solmukohtaista efektii-
vistä energiatehokkuutta eri tehonkulutusmalleilla. Tulokset osoittavat, että ei-
tyhjän puskurin todennäköisyyden huomioon ottaminen parantaa käyttäjäkoh-
taista efektiivistä energiatehokkuutta. Työssä kuvataan myös, että joustavan lä-
hetystehon käyttö yhdessä väljennetyn maksimiviivetoleranssin kanssa parantaa
efektiivistä energiatehokkuutta.

Avainsanat: äärellinen lohkon pituus, efektiivinen kapasiteetti, efektiivinen ener-
giatehokkuus, monikäyttöhäiriö, laitteiden keskinäinen kommunikaatio
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FOREWORD

The focus of this thesis is to study reliable transmission of short packets in multi-user
environments. This research was carried out at Center for wireless communication
(CWC) as part of 5Gto10G project and was partially supported by Finnish Funding
Agency for Technology and Innovation (Tekes), Huawei Technologies, Nokia and An-
ite Telecoms. I would like to express my sincere gratitude to Dr. Hirley Alves for his
guidance, and immense knowledge. I would like to thank Prof. Matti Latva-aho for
giving me the opportunity to join the research group in the CWC. Special thanks to
my family who supported me all the time and above all to God who led me to this
achievement.



ABBREVIATIONS AND SYMBOLS

AWGN Additive White Gaussian Noise
bpcu bit per channel use
CSI Channel State Information
ICSI Imperfect Channel State Information
EC Effective Capacity
EEE Effective Energy Efficiency
FB Finite Blocklength
KKT Karush-Kuhn-Tucker
LoS Line of Sight
LTE Long Term Evolution
max maximize
NBP Non-empty Buffer Probability
PDF Probability Density Function
QoS Quality Of Service
SINR Signal-to-Interference-plus-Noise Ratio
SNR Signal to Noise Ratio
s.t subject to
UR Ultra Reliable
URC Ultra Reliable Communication
5G fifth mobile generations

C(ρ) Shannon capacity
Dmax maximum delay
E[] expectation of
EC effective capacity
ECmax maximum effective capacity
ECRy effective capacity in Rayleigh channel
L(ε, λ) Lagrangian function
N number of users
Pr() probability of
Pc power dissipated in circuit
Pmax maximum transmission power
Pnb non-empty buffer probability
Poutdelay delay outage probability
Pt(ρ) power consumption
Q(x) Gaussian Q-function
Q−1(x) inverse Gaussian Q-function
R(Tf , ε) coding (achievable) rate
Tf blocklength
V (ρ) channel dispersion

e exponential Euler’s number
|h|2 fading coefficient
log natural logarithm to the base e



log2 logarithm to the base 2
m fading parameter
r normalized achievable rate
rf fixed rate
r∗f optimum fixed rate
fz(z) fading parameter probability density function
ri normalized achievable rate in multi-user network
w additive while Gaussian noise vector
xn transmitted signal vector of user n
yn received signal vector of user n
z fading random variable

α collision loss factor
αc compensation loss factor
αco operational point of compensation loss factor
αt total loss
γc compensation gain
θ delay exponent
ε error probability
εt target error probability
ε∗ optimum error probability
ζ inverse drain efficiency
ηα compensation loss priority factor
ηθ delay priority factor
λ Lagrangian multiplier
µ arrival rate
ρ signal to noise ratio
ρc compensation SNR
ρco operational point of compensation SNR
ρi signal-to-interference-plus-noise ratio
ρs SINR of other non-compensating users
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1. INTRODUCTION

Modern communication systems have become an indispensable part of our daily lives.
In such systems, information bits are usually transmitted through non ideal channels
in the form of coded packets. For a certain communication channel, Shanon capacity
[1] is defined as the rate by which information can be transmitted error free. Conven-
tionally, communication systems are designed based on Shanon theory, which resorts
to long data package transmission when there is a large number of channel uses per
packet. However, recently introduced applications such as vehicle to vehicle commu-
nication, and smart grids have a massive number of users that use short messages to
communicate to each other. Transmission of such short packets is not liable to Shannon
capacity anymore as Shannon theory performs poorly at finite blocklengths (FB) [2].
Instead, the maximum transmission rate of FB packets was characterized in [3], and
shown to be a function not only of the signal to noise ratio (SNR), but also blocklength
and maximum error probability.

Applications which use short messages usually have strict delay constraints where
packets are required to be transmitted with minimum latency and a high level of re-
liability [4], which is not easily achieved using conventional coding with long block-
length. Often real time applications (e.g. Internet of things [5] [6] [7] [8] and industrial
automation) require a fast response time with minimum delay, in the order of a few
milliseconds. The next generation of mobile communication, namely 5G [9] [10] [11],
will support such demands via machine type communications [12] [13] [14] [15]. In
this context, ultra reliable communication (URC) has emerged to provide solutions for
reliable and low latency transmissions [4], [16] [17], and FB codes are a promising
solution to achieve such goals as envisaged by [2].

Communication in the FB regime has gained an increasing attention in the recent
years [2, 3, 4, 16, 18, 19, 20, 21, 22, 23, 24]. The maximum transmission rate of FB
packets was characterized in [3], [18], where Wang et al. characterized the attainable
rate as a function of blocklength and error probability ε for block fading channels. The
results highlighted a constant gap between their achievability bound and turbo code
rates in LTE-Advanced. In [19], a per-user throughput model was introduced for addi-
tive white Gaussian noise (AWGN) and quasi-static collision channels where interfer-
ence is treated as additive Gaussian noise while considering average delay. The effect
of relaying of blocklength-limited packets was studied and compared to direct trans-
mission in [20], [21] where the authors concluded that relaying is more efficient than
direct transmission in the FB regime specially with average channel state information
(CSI). Recently, in [22], Schiessl et al. studied the performance of FB communication
with imperfect channel state information (ICSI). Automatic repeat request [25] [26]
and resource allocation schemes [27] were also discussed in order to raise reliability.

Effective capacity (EC) was introduced in [28] as a metric that guarantees certain
quality requirements by capturing the physical and link layers aspects [29] [30]. It
provides an indication of the maximum possible arrival rate that can be supported by
a network subject to a particular latency requirement. A finite blocklength statistical
model for a single user effective rate in bits per channel use (bpcu) for a certain error
probability with quality of service (QoS) exponent was discussed in [3] and [23] for
Rayleigh block fading channels, where the channel is assumed to be fixed for a block of
Tf symbols. However, a closed form expression for the effective rate (or capacity) was
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not provided in these discussions. Musavian et al. analyzed the EC maximization of
secondary user with some interference power constraints for primary user in a cognitive
radio environment [31]. Three types of constraints were characterized namely average
interference power, peak interference power and interference power outage. To the
best of our knowledge, no one has addressed the EC analysis and maximization for FB
packets transmission in multi-users collision scenario.

Effective energy efficiency (EEE) is defined as the ratio between EC and the total
consumed power [32]. The maximization of EEE is of great importance for energy
limited systems such as sensor networks and massive machine-to-machine networks
[33] where the goal is to maximize the throughput for each consumed unit of power.
In [34], empty buffer probability was considered as an EEE booster for long packets
transmission. The trade off between EEE and EC was highlighted in [35] where the
authors suggested an algorithm to maximize the EC subject to EEE constraint but
without considering probability of transmission error that appears in finite blocklength
communication due to imperfect coding. She et al. showed in [36] that the relation
between EEE and delay in wireless systems is not always a tradeoff. They illustrated
that a linear relation between service rate and power consumption leads to an EEE-
delay non-tradeoff region.

1.1. Thesis contribution

In this thesis, we analyze multiuser throughput of short packet transmission in quasi-
static Nakagami-m fading channels under delay exponent limit, which is directly
linked to the delay outage probability. A closed form approximation for the per-user
EC is obtained which leads us to characterize the effect of collision on the system
performance for different fading environments such as Rayleigh and Ricean fading.
After that, we focus on Rayleigh fading proposing three methods to allow one of the
users recover from this interference effect: i) Compensation via power control; ii)
compensation via delay relaxation; and iii) hybrid of power control and delay relax-
ation. Power controlled compensation depends on increasing the power of a certain
user instantly to recompense for the interference resulting from the other users towards
this user. This does have a side effect on the other users in the system as this power
increase would cause more interference to them. We study this impact where the re-
sults show that the side effect of power controlled compensation appears to be worse
for less stringent delay constraints, while it is more convenient to employ delay relax-
ation in the case of longer packets. Furthermore, we illustrate the trade off between
the above two procedures, then we introduce a hybrid model which combines both of
them. The operational point to determine the amount of compensation performed by
each of the two methods in the hybrid model is determined by means of an objective
function leveraging the system performance.

Furthermore, based on the per-user EC work, we extend the analysis to the per-user
EEE in multi-user networks communicating in the FB regime. First, we prove that
the power consumption model accounting for the probability of empty buffer which
was introduced in [34] is valid as well for blocklength limited packets. Then, we
emphasize that considering the probability of emptying the buffer during transmission
of short packets boosts the per-user EC and EEE when compared to the case when the
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buffer is always full. Finally, we confirm the fact that flexible transmission power and
extending the allowable delay provides EEE gain over fixed transmission power.

1.2. Thesis Outline

The rest of the thesis is organized as follows: in Chapter 2, we define communication
at FB, effective capacity and energy efficiency. In Chapter 3, we obtain a closed form
expression of the per-user EC for multi-users in Nakagami-m collision channels and
characterize the optimum error probability which maximizes the EC. After that, in
Chapter 4, we analyze the effect of interference on the EC of each user compared to
the single user scenario and how to compensate for it. In Chapter 5, we discuss the
per-user EEE in the finite blocklength regime considering empty buffer probability.
Finally, we state the thesis conclusions and suggested future work in Chapter 6.
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2. PRELIMINARIES

The focus of this thesis lies on studying the performance of multi-node networks com-
municating with short messages and with limited delay bounds. Our performance
metrics are the effective capacity (EC) and the effective energy efficiency (EEE). We
study how different network parameters such as delay outage probability, blocklength,
transmission power, and probability of decoding error affect these metrics in trade-off
with each other. In this chapter, we start by stating some definitions and highlight
related work.

2.1. Communication at finite blocklength

2.1.1. Single node scenario

We start by presenting the notion of FB transmission in which short packets are con-
veyed at rate that depends not only on the SNR, but also on the blocklength Tf given
in the unit of "symbol periods", and the probability of error ε [2]. In this case, ε has
a small value but not vanishing. For error probability ε ∈ [0, 1] and a signal to noise
ratio equals to ρ, the maximal coding rate for various channels in the finite blocklength
regime is given by

R∗(Tf , ε) = C(ρ)−

√
V (ρ)

Tf
Q−1(ε) +

log2 Tf
2Tf

, (1)

where Q(x) =
∫∞
0

1√
2π
e
−t2
2 dt is the Gaussian Q-function, C(ρ) is the Shannon limit

for long packets and V (ρ) is the channel dispersion. The Capacity C(ρ) and the chan-
nel dispersion for AWGN channels are given by

C(ρ) = log2(1 + ρ), (2)

V (ρ) = ρ
2 + ρ

(1 + ρ)2
(log2(e))

2. (3)

The relationship between the transmission rate R and error probability ε shows that
R is increasing in ε because the inverse Q-function Q−1(ε) is a decreasing function in
ε. This means that by allowing higher error probability, we can transmit with a higher
rate. This may be applicable in some streaming application where high reliability is
not a critical issue (e.g football match streaming). The maximal coding R∗(Tf , ε) rate
is expected to reach an asymptotic value of C as the packet length Tf approaches∞.

In Fig. 2.1, we give a normalized plot for the relation between the capacity and
achievable rate of finite short packets for AWGN channel as ε = 10−3 and ρ = 1.
We notice that the normalized achievable rate increases with the packet length Tf till
reaching the capacity C(ρ) at infinite blocklength. We conclude that at blocklength
Tf < 1000 symbol periods, the achievable rate is less than 90% of the capacity and
hence Shannon limit is not accurate in this case.
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Figure 2.1. Normalized achievable rate R(Tf , ε) vs the packet length Tf for AWGN
channel with parameters ε = 10−3 and ρ = 1.

For block fading channels, the achievable rate expression is affected by the fading
coefficient and the normalized achievable rate in bits per channel use (bpcu) is given
by

r = log2(1 + ρ|h|2)−

√
1

Tf

(
1− 1

(1 + ρ|h|2)2

)
Q−1(ε) log2(e), (4)

where |h|2 is the channel fading coefficient, whose PDF is denoted as fz(z).

2.2. Effective capacity

The concept of EC indicates the capability of communication nodes to exchange data
with maximum rate and certain latency constraint. A statistical delay violation model
implies that an outage occurs when a packet delay exceeds a maximum delay bound
Dmax. The delay outage probability is defined as [?]

Pout_delay = Pr(delay ≥ Dmax) ≈ e−θ.EC.Dmax , (5)

where Pr(·) denotes the probability of a certain event. Conventionally, a system’s
tolerance to long delay is measured by the delay exponent θ. The system tolerates
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large delays for small values of θ (i.e., θ → 0) while for large values of θ, it becomes
more delay strict. For example, a system with unity EC and a delay outage probability
Pout_delay = 10−3 can tolerate a maximum delay Dmax = 691 symbol periods for
θ = 0.01 and 23 symbol periods when θ = 0.3.

In quasi-static fading, the channel remains constant within each transmission period
Tf [21], and the EC in bits per channel use (bpcu) is [23]

EC(ρ, θ, ε) = − 1

Tfθ
log
(
Ez=|h|2

[
ε+ (1− ε)e−Tf θr

])
, (6)

where r is given in 4 In [3, 23], the effective capacity is statistically studied for single
node scenario, but never to a closed form expression. It has been proven that the EC is
concave in ε and hence, has a unique maximizer. Here, we present a part of the results
discussed in [23]. Also, as the delay constraint θ becomes higher (i.e, more strict), the
EC decreases as appears from (6). In Figure 2.2, we plot the EC vs error probability
ε for different values of delay constraint θ to depict the EC-θ trade-off. The figure
shows that when the delay constraint becomes more strict (has higher value), the EC
decreases and vice versa. The figure also shows the concavity of EC in ε where ε has a
unique optimum value which maximizes the EC in each curve. Later in the thesis, we
define the optimum value of error probability ε∗ analytically.
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Figure 2.2. Effective capacity vs error probability ε for different values of θ in Rayleigh
fading where ρ = 2, Tf = 1000.



14

In some applications, it is more efficient to transmit with a invariable rate or the
transmitter does not have enough channel information and hence, unable to adapt its
transmission rate to the channel conditions. In contrary to flexible rate transmission
where the rate depends on fading conditions, the normalized achievable rate is kept at
a fixed value rf while the probability of error becomes variable and is defined as

ε = Q

 log2(1 + ρ|h|2)− rf√
1
Tf

(
1− 1

(1+ρ|h|2)2

)
log2 e

 . (7)

In Fig. 2.3, we compare the EC vs the delay constraint θ for fixed and variable rate
transmissions. The SNR and the blocklength are set as ρ = 1, and Tf = 1000, respec-
tively. It can be observed that for high values of θ, fixed rate transmission performs
strictly better. The figure also confirms the fact that EC is monotonically decreasing in
θ where the EC degrades with the increase of delay constraint θ.
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Figure 2.3. Comparison between fixed rate transmission and variable rate for different
values of delay constraint θ where ρ = 1, and Tf = 1000.

Also in [23], the EC has been shown to be concave in rf and hence the EC has
a unique fixed rate maximizer. The fixed rate has the same behavior as EC with the
delay constraint θ where increasing the value of θ (i.e more stringent delay constraint)
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degrades the transmission rate. Fixed rate also have a unique maximum value r∗f which
will be determined analytically in the next chapter.

2.3. Effective energy efficiency

Defined as the ratio between EC and consumed power, the EEE metric indicates the
network’s capability of achieving a certain latency restricted rate with minimum energy
consumption [37]. Here, we characterize the EEE in FB regime for different power
models. Consider the model in which power consumption is defined by

Pt(ρ) = ζρ+ Pc (8)

with ζ being the inverse drain efficiency of the transmit amplifier and Pc the hardware
power dissipated in circuit [34].

In [34], empty buffer probability was considered for long packet transmission where
the service process is defined by Shannon limit C = log(1 + ρz) where it was proven
that this model is valid as an energy consumption model for long packets. In this
section, we show the effect of EEE maximization with empty buffer probability and
compare it with the case of always full buffer for single node scenario in Rayleigh
fading channels as z is an exponential random variable modeling the Rayleigh fading
channel. After accounting for the non-empty buffer probability, the power consump-
tion is formulated as

Pt(ρ) = ζPnbρ+ Pc =
µ

Ez [log(1 + ρz)]
ζρ+ Pc, (9)

with Pnb = µ
C

denoting the non-empty buffer probability (NBP), and µ denoting the
data arrival rate. Notice that here the noise is normalized so that the SNR ρ frankly
represents the transmit power. The corresponding EEE is

EEE =
−1
θ

logEz
[
log(1 + ρz)−θ

]
µ

Ez [log(1+ρz)]
ζρ+ Pc

. (10)

Here, we aim at maximizing the EEE with EC, delay and power constraints. Thus,
the optimization problem is formulated as

max
ρ≥0,θ≥0

EEE,

s.t EC(ρ, θ) ≥ µ,

Pnbe
−θµDmax ≤ Pout_delay,

ρ ≤ Pmax.

(11)

The optimal value of θ can be obtained from the second constraint as

θ∗(ρ) =
1

µDmax

log
µ

PoutEz [C]
(12)
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For θ ≥ 0 we should have Ez [C] ≤ µ
Pout

Substituting for θ∗ in (12), we formulate the
problem as

max
p≥0

−1
θ∗

logEz
[
log(1 + ρz)−θ

∗]
µ

Ez [log(1+ρz)]
ζp+ Pc

,

s.t EC(p, θ∗) ≥ µ,

Ez [C] ≤ µ

Pout
,

ρ ≤ Pmax.

(13)

In Fig. 2.4, we plot the maximum EEE in (13) considering both the case of always
full buffer and empty buffer probability for µ = 2, ρ = 30dB, ζ = 2.5 and Pc = 10.
For the full buffer, we set Pnb = 1 in (12) resulting in

θ∗(ρ) =
1

µDmax

log
1

Pout
. (14)

The results shows that considering empty buffer probability maximizes the EEE
over the case of always full buffer. Extending the delay limit and relaxing delay outage
probability (i.e allowing a higher delay outage probability) enhances the EEE as well.
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ity and always full buffer for µ = 2, ρ = 30dB, ζ = 2.5 and Pc = 10. and different
delay outage probabilities Pout_delay.
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Fig. 2.5 shows a plot for the EEE resulting from EEE maximization and EC max-
imization for different values of maximum transmission power Pmax where the maxi-
mum delay is fixed atDmax = 400, Pout_delay = 10−1 and the rest of parameters are the
same as in the previous figure. We also consider both cases of empty buffer probability
and always full buffer. The figure shows that EEE maximization results in higher EEE
rather than maximizing the EC. Furthermore, accounting for empty buffer probability
increases the EEE compared to the case when the buffer is always full.
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for different values of maximum transmit power Pmax in cases of empty buffer prob-
ability and always full buffer for µ = 2, ζ = 2.5, Pc = 10, Pout_delay = 10−1 and
Dmax = 400.
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3. EFFECTIVE CAPACITY OF MULTI-USER NETWORKS IN
THE FINITE BLOCKLENGTH REGIME

In this chapter, we obtain a closed form approximation for the per-user effective capac-
ity in a multi-user network operating in the finite blocklength regime and we character-
ize the optimum error probability for the EC maximization for all cases. The general
Nakagami-mmodel is first considered then we study Rayleigh fading as a special case.

3.1. System layout

We consider a transmission scenario in which N users (or users) transmit packets with
equal power to a common controller through a block fading interference channel with
blocklength Tf as shown in Figure 3.1. Given that all users transmit at the same time
slot, the controller tries to decode the transmitted symbols arriving from all of them.
When the controller decodes user’s data, the other users appear as interference to it.
For this model, imagine that a user needs to raise its EC temporarily for a critical
reason. Later on, we study the interference alleviation scenarios for one user at a
certain time slot while all users also keep transmitting at the same time. The channel
fading coefficient |h|2 is assumed to be constant for each block of Tf symbol periods
and changes from one block to another. The received vector yn ∈ Cn of user n is given
by

yn = hnxn +
∑
s 6=n

hsxs + w (15)

where xn ∈ Cn is the transmitted packet of user n, hn is the fading coefficient for user
n; the index s includes all N − 1 interferes which collide with user n, and w is the
additive complex Gaussian noise vector whose entries are circularly symmetric and
assumed to have a unit variance. Given the signal to noise ratio ρ of a single user, the
signal-to-interference-plus-noise ratio (SINR) of any user n is

ρi =
ρ

1 + ρ
∑

s |hs|2
. (16)

To simplify the analysis, we assume that: i) each user always has a packet to transmit
(buffer is always non-empty); ii) all users are equidistant from the common controller
(i.e., same path loss); and iii) the fading coefficients hs are independent and identically
distributed and perfectly known to the receiver. Thus, the interference resulting from
users in set s can be modeled as additive Gaussian noise as in [19] [38], then (16)
reduces to

ρi =
ρ

1 + ρ (N − 1)
. (17)

The channel is assumed to be Nakagami-m block fading where the fading coeffi-
cients remain constant over Tf symbols which spans the whole packet duration. For



19

ℎ1

ℎ2

ℎ𝑁

ℎ𝑛

𝑇𝑓

node 1

node 2

𝐱1

𝐱2

𝐱𝑛

node 𝑁

Common controller

𝐲𝑛

Figure 3.1. System layout where N users communicate to a common controller in a
block-fading scenario.

Nakagami-m channels, the fading coefficients z = |h|2 have the following probability
density function distribution [31]

fz(z) =
mmzm−1

Γ(m)
e−mz, (18)

where low values of m mark severe fading, high values of m mark the presence of line
of sight (LOS) and m = 1 represents Rayleigh fading.

For this model, the normalized achievable rate in bits per channel use (bpcu) is given
by

ri = log2(1 + ρiz)−

√
1

Tf

(
1− 1

(1 + ρiz)2

)
Q−1(ε) log2(e), (19)

where ρi is the signal-to-interference-plus-noise ratio (SINR). Leveraging the effect of
interference via (6) , the per-user EC for this model would be

EC(ρi, θ, ε) = − 1

Tfθ
log
(
Ez=|h|2

[
ε+ (1− ε)e−Tf θri

])
, (20)

which is considered to be concave in ε as the only changed term of the equation is the
SINR. Assuming always full buffer, the per-user EEE is given by

EEE =
− 1
Tf θ

log
(
Ez=|h|2

[
ε+ (1− ε)e−Tf θri

])
ζρ+ Pc

. (21)

For constant transmit power and always full buffer, the per-user EEE is concave in ε and
there is a unique maximizer in ε for both EC and EEE which is obtained later in Lemma
1. This is because the denominator of (21) does not depend on ε; so maximization of
EC consequently maximizes the EEE.
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3.2. Per-node effective capacity in the finite blocklength regime

In what follows, we shall represent the EC expression for Nakagami-m channels; then
we proceed with Rayleigh fading as a special case in our analysis.

Lemma 1. The per-user effective capacity for a network of N users communicating in
a Nakagami-m block fading collision channel with blocklength Tf is approximated by

EC(ρi, θ, ε) ≈−
1

Tfθ

mm

Γ(m)
log

[
ε

Γ(m)

mm

+(1− ε)
∫ ∞
0

(1 + ρiz)d
2∑

n=0

(cx)n

n!
zm−1e−mzdz

]
.

(22)

Proof. Using (18) in (6), we attain

EC(ρi, θ, ε) = − 1

Tfθ

mm

Γ(m)
log

(∫ ∞
0

(
ε+ (1− ε)e−θTf ri

)
zm−1e−mzdz

)
, (23)

e−θTf ri = e−θTf log2(1+ρiz).e
θ
√
Tf (1− 1

(1+ρiz)
2 )Q

−1(ε) log2 e. (24)

Analyzing,

e−θTf log2(1+ρiz) = e
−θTf log(1+ρiz)

log 2

= (1 + ρiz)
−θTf
log 2

= (1 + ρiz)d.

(25)

where d =
−θTf
log(2)

. Also let c = θ
√
TfQ

−1(ε) log2 e and x =
√

(1− 1
(1+ρiz)2

); then we
have

e
θ
√
Tf (1− 1

(1+ρiz)
2 )Q

−1(ε) log2 e = ecx, (26)

where ecx =
∑∞

n=0
(cx)n

n!
. It follows from (24),(25) and (26) that the expression in (23)

can be written as

EC(ρi, θ, ε) =− 1

Tfθ

mm

Γ(m)
log

[∫ ∞
0

ε zm−1e−mzdz

+(1− ε)
∫ ∞
0

(1 + ρiz)d
∞∑
n=0

(cx)n

n!
zm−1e−mzdz

]
.

(27)

The infinite series in (27) can be truncated to a finite sum of terms and we evaluate
the accuracy of the expression noting that the accuracy increases with the number of
terms. But, it is noticed that when testing for different system parameters (N , ρ, θ,
Tf ), the accuracy for expanding 1 term is 92.7%, 2 terms is 99% and 99.9% for 3 terms
only. This is depicted in Figure 3.2 when comparing to the expectation plot resultant
from 107 monte-carlo runs for the parameters N = 1, ρ = 2, Tf = 1000, and θ = 0.01,
in a Rayleigh fading channel (m = 1). Henceforth, in our analysis, 3 terms will be
enough and (27) reduces to (22).
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Corollary 1. There is a unique maximizer in ε for the per-user EC in general
Nakagami-m block fading collision channels which is given by

ε∗(ρi, c, d) ≈ arg min ε
Γ(m)

mm
+ (1− ε)

∫ ∞
0

(1 + ρiz)d
2∑

n=0

(cx)n

n!
zm−1e−mzdz.

(28)
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Figure 3.2. EC as a function of error outage probability ε for different number of
users, with Tf = 1000, ρ = 2, and θ = 0.01.

Proof. The expectation in (6) is shown to be convex in ε in [23] independent of the
distribution of channel coefficients z = |h|2. Thus, it has a unique minimizer ε∗ which
is consequently the EC maximizer given by (28)

Note that c is not a function of z, so it can be taken out of the integration which sim-
plifies the optimization problem. To obtain the maximum per-user effective capacity
ECmax, we simply insert ε∗ into (22).
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Corollary 2. The per-user effective capacity for a network of N users communicating
in a Rayleigh block fading collision channel with blocklength Tf is approximated as

ECRy(ρi, θ, ε) ≈−
1

Tfθ
log

[
ε+ (1− ε) ∗

∫ ∞
0

(1 + ρiz)d
2∑

n=0

(cx)n

n!
e−zdz

]
. (29)

and the corresponding optimum probability of error is given by

ε∗(ρi, c, d) ≈ arg min ε+ (1− ε)
∫ ∞
0

(1 + ρiz)d
2∑

n=0

(cx)n

n!
e−zdz. (30)

Proof. The proof is straight forward when substituting for m = 1 in (22).

For fixed rate transmission, and approximation for the optimum value of r∗f that
maximizes the EC can be obtained analytically from (proof is straight forward)

r∗f ≈ arg max EC(ρi, θ, rf ) = −
log

(
ε∗+(1−ε∗)

∫∞
0 (1+ρiz)

d
∑2
n=0

(cx)n

n!
e−zdz−ε∗

1−ε∗

)
θTf

. (31)

Now that we obtained a non-statistical solution for EC, we proceed with studying
the effect of multi-user interference and various fading scenarios on the per-user EC.
In Figure 3.3, we examine the effect of different types of fading by plotting the per-
user EC vs the probability of error ε for different values of fading parameter m using
Lemma 1 where the network parameters are set as Tf = 500, ρ = 2, and θ = 0.01. The
figure shows that for a 2 users network, the per-user EC in Ricean fading (m = 1.2) is
higher than Rayleigh case (m = 1) while it is the lowest in case of severe fading (m =
0.8). This is because as the value of the parameter m increases, the LoS transmitted
component of the signal increases and consequently the signal strength at the receiver
which boosts the EC according to [39].

Figure 3.4 addresses the effect of interference on the per-userEC when several users
transmit to a common controller at the same time in a Rayleigh block fading channel
with blocklength Tf = 500 where ρ = 2, and θ = 0.01. It is clear that the per-user EC
decreases when increasing N as more interference is added to the system. Notice that
the EC curves are concave in ε and hence, have a unique maximizer which is obtained
from (28). Another observation worth mentioning is that the optimum probability of
error ε∗ which maximizes the EC becomes higher when increasing the number of users.
From now on, our analysis and results will focus on the Rayleigh fading case where
the same procedures can be applied for any type of channels simply by changing the
value of m.

The previous 2 figures highlight the trade off between per-user EC and error proba-
bility ε. It is apparent that we can get lower ε by sacrificing only a small amount of EC.
For example, Figure 3.4 shows that for the 2 users network, if we tolerate a decrease
in the EC from 0.192 to 0.186 bpcu, the error probability ε improves to 10−3 instead of
8× 10−3. This means that sacrificing a 3% of the EC maximum value boosts the error
probability by nearly 800% and hence, leads to a dramatic enhancement of reliability.
In a future work, we are planning to analyze the EC-ε throughly with a target of maxi-
mizing the transmission error reliability with some EC constraints reflecting the delay
issues.
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Figure 3.3. EC as a function of error outage probability ε for N = 2 users, with
Tf = 500, ρ = 2, and θ = 0.01.

3.3. Maximization of effective capacity in the ultra-reliable region

In this section, we discuss the EC maximization in ultra reliable (UR) region. We
maximize the EC so that the error outage probability stays below a very small target
value εt. We define the optimization problem as

max
ε≤εt

ECRy(ρi, θ, ε) ≈ −
1

Tfθ
log

[
ε+ (1− ε) ∗

∫ ∞
0

(1 + ρiz)d
2∑

n=0

(cx)n

n!
e−zdz

]
.

(32)

which can be interpreted to

min ψ(ε) = ε+ (1− ε) ∗
∫ ∞
0

(1 + ρiz)d
2∑

n=0

(cx)n

n!
e−zdz,

s.t ε ≤ εt.

(33)

Due to the convexity of ψ(ε), the first derivative of ψ(ε) is positive if ε is greater
than the global maximum and vice versa. Thus, we can check if the optimum solution
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Figure 3.4. EC as a function of error outage probability ε for different number of users,
with Tf = 500, ρ = 2, and θ = 0.01.

is given by εt or not through the first derivative of ψ(ε). To elucidate, we write down
the Lagrangian of (33) as

L(ε, λ) = ψ(ε) + λ(ε− εt), (34)

and we have the following Karush−Kuhn−Tucker (KKT) conditions

∂ψ(ε)

∂ε
+ λ = 0

λ(ε− εt) = 0.
(35)

From the second condition, if λ is greater than zero, this means that the constraint is
active and ε∗ = εt and ∂ψ(ε)

∂ε
|ε=εt is indeed negative. Reversing this conclusion, we can

infer if the constraint is active or not from the sign of ∂ψ(ε)
∂ε
|ε=εt so that

ε∗ =

{
εt

∂ψ(ε)
∂ε
|ε=εt < 0

arg minε≥0 ε+ (1− ε)
∫∞
0

(1 + ρiz)d
∑2

n=0
(cx)n

n!
e−zdz, ∂ψ(ε)

∂ε
|ε=εt > 0

.

(36)
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The first derivative of ψ(ε) with respect to ε can be derived to be

∂ψ(ε)

∂ε
= 1− (1− ε)δ

√
2πe

(Q−1(ε))2

2 (I2 + δI3)− I, (37)

where

I2 =

∫ ∞
0

(1 + ρiz)d

√
1− 1

(1 + ρiz)2
e−zdz,

I3 =

∫ ∞
0

(1 + ρiz)d
(

1− 1

(1 + ρiz)2

)
e−zdz,

I =

∫ ∞
0

(1 + ρiz)d
(

1+ c

√
1− 1

(1 + ρiz)2
+
c2

2

(
1− 1

(1 + ρiz)2

))
e−zdz,

δ = θ
√
Tf log2 e.

(38)
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4. MULTI-USER INTERFERENCE ANALYSIS AND
COMPENSATION

In the previous chapter, we have clarified how the existence of multiple users affects
the per-user EC degrading it. It has been shown that as networks become denser, the
per-user EC significantly declines due to increases interference. In future technologies
such as vehicular networks, it is essential to maintain reasonable data rates with strict
delay constraints even if there are lots of vehicles operating in urban areas and the
network becomes denser. There are plenty of methods to manage interference such as
scheduling algorithms. However, we get to suppose that all users transmit at the same
time and define methods to alleviate interference when a certain user requires its EC to
be restored at least temporarily.

In this chapter, we study the trade-off between EC, transmit power ρ, and delay
constraint θ in multi-user networks lightly dense and heavily dense networks. We
propose 3 procedures to restore the EC for one user which are power control, relaxation
of delay constraint and joint compensations which combines the first two methods.
We study the trade-off between the power and delay and characterize the optimum
percentage of compensation that should be performed by each method in the joint
compensation.

4.1. Interference cancellation via power control

The method of power control depends on increasing the SNR of a certain user n to
allow it recover from the interference effect. In this section, we determine the amount
of extra power needed by this user in order to compensate for the decrease in EC when
many users are present and interference increases. After that, we study the behavior
of this method when varying the network parameters (ρ, θ,N). First, let ρc be the new
SNR of user n (the other users still transmit with SNR equal to ρ). Then we simply
equate the SINR equation in (17) to the case where no collision occurs (N = 1). That
is

ρc
1 + ρ(N − 1)

= ρ

ρc = ρ (1 + ρ(N − 1)).
(39)

When a certain user transmits with SNR of ρc, its EC is the same as in the case
when transmitting with SNR equals to ρ while other users are silent. As an example,
consider 3 colliding users where Tf = 500, θ = 0.01, and ρ = 0.5. Applying (39), we
get ρc = 1. Hence, the interference effect is canceled for a certain user by boosting its
SNR from 0.5 to 1. Notice that the amount of increase in SNR of the compensating
user does not depend on the blocklength Tf , delay exponent θ, it only depends on the
number of users N in a direct proportional relation. This is because the amount of
power needed to compensate one user increases when increasing the number of users
N where more interference is added to the system as depicted in the previous chapter.

The method of power control is simple. Nevertheless, its drawback lies in the effect
of extra interference affecting other users due to the power increase of the recovering
user. To elucidate more, Figure 4.1 shows the effect of collision of 5 users before and
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Figure 4.1. Effect of compensation of 1 user via power control as a function of error
outage probability ε with Tf = 1000, θ = 0.1, and ρ = 1.

after compensation of one user via power control for a network with the parameters
Tf = 1000, θ = 0.1, and ρ = 1. We plot the per-user EC before compensation of 1
user; and then we compare it to the effective capacities of the 4 remaining users after
this one user compensates using (39). The figure shows that the EC of the compen-
sating user rises to its original level as if it is not affected by interference while the
per-user EC of the other users falls down due to the extra interference caused by rising
the SNR of the compensating user.

From (39), we define the SINR of other users colliding in the same system (users in
set s) after the compensation of 1 user as

ρs =
ρ

1 + ρc + ρ(N − 2)
(40)

=
ρ

1 + ρ (ρ+ 1)(N − 1)
. (41)

Now, we are interested in comparing the per-user EC in 3 cases: i) No collision, ii)
collision without compensation, and iii) collision with compensation of 1 user. Here,
we look for the maximum achievable per-user EC in each case. Define the collision
loss factor α as the ratio between the maximum per-user effective capacity ECmax of
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the users in the network in case of collision and in case of no collision (i.e, every user
is standing alone) as

α =
ECRy(ρi, θ, ε

∗
i )

ECRy(ρ, θ, ε∗)
, (42)

where ε∗ is the optimal error probability for the case of no collision (N = 1) and ε∗i
is the optimal error probability for the case of collision without compensation where
both are obtained from (30). Collision loss factor α indicates the effect of collision on
all users in the system without any user increasing its transmission power for compen-
sation. To determine the effect of compensation of 1 user on the other users, we define
the compensation loss factor αc as the ratio between maximum EC of other users (set
s) in case of 1 user compensation and in case of no compensation. That is

αc =
ECRy(ρs, θ, ε

∗
s)

ECRy(ρi, θ, ε∗i )
, (43)

where ε∗s is the optimum probability of error obtained from (28) when we set the SINR
to ρs.
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Figure 4.2. compensation loss factor αc vs number of users N for a network operating
in a Rayleigh block fading channel with blocklength Tf = 1000 and SNR ρ = 1.
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Furthermore, we include the compensation factor γc as the ratio of the maximum
achievable EC of the compensated user after and before compensation which is ex-
pressed as

γc =
ECRy(ρ, θ, ε

∗)

ECRy(ρi, θ, ε∗i )
=

1

α
, (44)

where γc is a gain factor (i.e., γc ≥ 1). Finally, we define the total loss factor αt as
the ratio between the maximum attainable effective capacity of colliding users in the
system (set s) when a user compensates to the maximum attainable EC of these users
if they were not colliding at all. That is

αt =
αc
γc

= α.αc. (45)

It is worth mentioning that the amount of loss increases (i.e worse situation) when the
loss factor decreases.

Consider a multi-user network with the parameters Tf = 1000 and ρ = 1. For this
network, we plot the above mentioned compensation and loss factors to observe their
behavior for different values of delay constraint θ and study how they are affected by
increasing the number of users N .
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Figure 4.3. compensation loss factor αc vs delay constraint θ for a network operating
in a Rayleigh block fading channel with blocklength Tf = 1000 and SNR ρ = 1.

Figure 4.2 depicts the compensation loss factor αc for different number of users N
with θ = 0.1 and 0.001. We notice that the compensation loss factor decreases rapidly
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when the number of usersN is less than 10. However, this attenuation becomes slower
for higher number of users. In other words, the effect of compensating of 1 user on the
other users tends to be constant as a function of the number of users when N is high.
The figure also shows that the decrease of αc is more rapid when the delay constraint
is less stringent (lower values of θ); αc decreases in a sharper way but then becomes
more settled nearly around 5 for N > 5. The effect of compensation appears to be
more severe for less stringent delay constraints.

In Figure 4.3, we plot the compensation loss factor αc versus the delay constraint
θ for different number of users N . The figure shows that the effect of compensation
is more severe (i.e causing more degrading for the EC ) for lower values of θ (less
stringent delay constraint) which we concluded in the previous figure. This effect
tends to be constant for θ > 0.1 especially when we have a small number of users in
the network. It is also apparent from the figure that the compensation loss factor lower
(i.e higher loss) for higher number of users N . This is because the amount of power
needed to compensate one user in a denser network is much higher which rises the
interference level for other users
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Figure 4.4. Compensation loss factor αc vs SNR ρ for a network operating in a
Rayleigh block fading channel with blocklength Tf = 1000, and delay constraint
θ = 0.01.

In Figure 4.4, we plot the compensation loss factor αc, versus the SNR ρ for different
number of users N . The figure shows that the effect of compensation 1 user on other
users is more severe in high SNR regime as the value of compensation loss factor αc
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is lower. We also observe the effect of compensation on the other users is worse for
denser networks which appears also from Figure 4.2 and Figure 4.3. To sum up, power
controlled compensation is not feasible when dealing with dense networks, less strict
delay bounds, or high SNR regime transmissions as its effect on other users in the
network becomes more deleterious.

Figure 4.5 shows the compensation factor γc versus the number of users in the sys-
tem N . γc appears to have a linear behavior as a function of N . That is, the effect of
compensation for the compensated user increases linearly with N . The rate by which
γc increases is faster for less θ. The compensation factor γc (compensation gain) is
higher for less stringent delay constraint (less θ).
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Figure 4.5. Compensation factor γc vs number of users N for a network operating in a
Rayleigh block fading channel with blocklength Tf = 1000 and SNR ρ = 1.

Figure 4.6 depicts the compensation factor γc versus the delay constraint θ for dif-
ferent number of users. It is clear that compensation is more effective and powerful in
case of less stringent delay constraint. It also appears that the compensation factor γc
becomes higher when increasing the number of users. This is because the high interfer-
ence in a highly dense network requires more compensation for a single user to restore
its EC. We can also observe that the compensation factor γc is not much affected by
the change of delay constraint θ for high values of θ (>0.1) reflecting more strict delay
constraints.

Figure 4.7 depicts the compensation factor γc versus the transmission SNR ρ. While
the compensation factor γc of less dense and highly dense networks is nearly the same
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Figure 4.6. Compensation factor γc vs delay constraint θ for a network operating in a
Rayleigh block fading channel with blocklength Tf = 1000 and SNR ρ = 1.

in the low SNR regime, compensation factor γc becomes significantly higher in highly
dense networks than in networks with small number of users for the high SNR regime
due to the same reason stated in the discussion of Figure 4.5 which is that highly dense
network needs more compensation for a single user to restore its EC. It is clear that
compensation is more effective and powerful in high SNR regime specially for net-
works with large number of users.

The collision loss factor α and the total loss factor αt are plotted in Figure 4.8 versus
the number users N . As observed from the figure, the total loss is nearly the same as
the collision loss for small N . However, they have the same behavior as αc where they
appear to be settle at a certain value for θ > 0.1. The gap between collision and total
losses starts to appear and becomes almost constant for high number of users. This gap
is tighter in case of small θ (i.e., the collision loss α is more dominant). Also, the loss
factors (both collision and total) are lower in case of less stringent delay constraint θ.
Both losses are more severe in case of less stringent delay constraint (lower θ). Thus,
the effect of collision and compensation is more annoying in case of less stringent
delay constraint (smaller θ). Furthermore, α and αt has the same behavior as αc which
is shown in Figure 4.2. They decrease rapidly for small number of users and tend to be
constant for high N .
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Figure 4.7. Compensation factor γc vs SNR ρ for a network operating in a Rayleigh
block fading channel with blocklength Tf = 1000 and delay constraint θ = 0.01.

We also plot the collision loss factor α and the total loss factor αt are plotted for
different number of users N in Figure 4.9 versus the delay constraint θ. The figure
shows that both losses (collision and total loss) become higher as the delay constraint
θ increases. Thus, the networks suffer more from interference and compensation via
power control in case of tighter delay constraints. The loss factors (both collision and
total) are lower for denser network mapping a higher loss. Although the gap between
collision and total losses is tighter for high number of users (more dense networks),
this gap remains nearly unaffected by the change of delay constraint θ.
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Figure 4.8. Loss factors α and αt vs number of users N for a network operating in a
Rayleigh block fading channel with blocklength Tf = 1000 and SNR ρ = 1.
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Rayleigh block fading channel with blocklength Tf = 1000 and SNR ρ = 1.
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Finally, the collision loss factor α and the total loss factor αt are also plotted in Fig-
ure 4.10 vs the SNR ρ for the delay exponent θ = 0.01. The figure shows that collision
loss factor α and the total loss factor αt are more severe in High SNR Regime. It also
appears that both as the number of users becomes higher, the loss factors becomes
lower. Hence, denser networks suffer from higher losses as was discussed in Figure
4.9. The gap between these losses increases in the high SNR regime.
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Figure 4.10. Loss factors α and αt vs SNR ρ for a network operating in a Rayleigh
block fading channel with blocklength Tf = 1000 and θ = 0.01.
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4.2. Interference cancellation via relaxation of delay constraint

In this section, we discuss how to compensate for the decrease in the per-user EC for
the multiuser interference scenario by changing the value of delay constraint θ. More
specifically, we try to determine the decrease in the value of θ and hence the delay
bound extension needed to obtain the sameECmax as if the target user was transmitting
without collision.
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Figure 4.11. Interference cancellation via relaxation of delay constraint θ in case of 2
users colliding where Tf = 1000 and ρ = 1.

Let θ1 be the original delay exponent in case of collision and θ2 represent the new
one, so our aim here is to equate the maximum effective capacity ECmax in the case
of one and N users. This is formulated in (46)

ECRy(ρ, θ1, ε
∗)=ECRy(ρi, θ2, ε

∗
2) (46)

−1

Tfθ1
log

[
ε∗ + (1− ε∗)

∫ ∞
0

(1 + ρz)d1
2∑

n=0

(c1x1)
n

n!
e−zdz

]

=
−1

Tfθ2
log

[
ε∗2 + (1− ε∗2)

∫ ∞
0

(1 + ρiz)d2
2∑

n=0

(c2x2)
n

n!
e−zdz

]
, (47)
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where

dj =
−θjTf
log 2

,

cj = θj
√
TfQ

−1(ε∗j) log2 e,

x1 =

√
(1− 1

(1 + ρz)2
),

x2 =

√
(1− 1

(1 + ρiz)2
),

and ε∗i is the maximizer of EC for the parameters (ρ, θ1) and ε∗2 is the optimum er-
ror probability for (ρi, θ2). Notice that (46) can be solved numerically to obtain the
necessary value of θ2 to compensate for the rate decrease due to collision in this case.

Applying (46) for a network of 2 users where θ1 = 0.01, ρ = 1 and Tf = 1000, we
get θ2 = 0.0058. Thus, if we relax the delay constraint to 0.0058 instead of 0.01, we
obtain the same value for the maximum effective capacity ECmax = 0.226. This cor-
responds to extending the maximum allowable delay Dmax from 4100 to 5300 symbol
periods with a delay outage probability of 10−3. Note that the optimum error proba-
bilities have different values in each case where ε∗1 = 0.0065 and ε∗2 = 0.0122. This is
illustrated in Figure 4.11 where the compensated user has the same maximum EC in
the two cases.

In contrary to the method of power control, the method of delay extension has a
hidden advantage. It raises the EC without the need of extra power and this implicitly
enhances the network service process and hence, the maximum delay bound for pack-
ets in the queue decreases. Thus, the relaxation of the delay exponent θ does not have a
severe effect of the maximum delay bound. An example for this is depicted in the next
section where we can see that the maximum delay remains almost the same before and
after compensation.

4.3. Joint compensation via power control and relaxation of delay constraint

In this section, we discuss the trade off between compensation of interference effect
via power control and via relaxation of delay constraint θ. We also propose a joint
compensation of the decrease in EC using both power control and relaxation of delay
constraint. For a certain user, a part of interference compensation can be done via
power control and the rest can be performed by delay constraint relaxation. In this
way, the degradation in EC of other users (set s) due to extra interference caused by
power increase of the compensated user is less sharp. At the same time, the delay
constraint is relaxed more gently, thus both side effects are less severe.

First, we start by defining the operational SINR in power controlled compensation
for users in set s as ρso where ρso lies on the interval [ρs ρi]. Using (40), the operational
SNR for the recovering user can be written as

ρco =
ρ

ρso
− 1− ρ(N − 2). (48)
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Figure 4.12. Trade off between compensation loss factor via power control αco and
relaxation of delay constraint θ2 for different operational points.

The operational point of the compensation loss factor αco is

αco =
EC(ρso , θ1, ε

∗
so)

EC(ρi, θ1, ε∗i )
, (49)

where ε∗so is the optimum error probability obtained from (28) for the parameters
(ρso , θ1). αco is considered to be the loss factor caused by the part of compensation
performed via power control.

After that, we perform the rest of compensation via relaxation of θ as in Section 4.2.
Our aim here is to equate the maximum EC in the case of one user alone and the same
user when present as a part of N users after partial compensation via power control.
That is

ECRy(ρ, θ1, ε
∗) = ECRy(

ρco
1 + ρ(N − 1)

, θ2, ε
∗
2) (50)

−1

Tfθ1
log

[
ε∗ + (1− ε∗)

∫ ∞
0

(1 + ρz)d1
∑
N

(c1x1)
n

n!
e−zdz

]

=
−1

Tfθ2
log

[
ε∗2 + (1− ε∗2)

∫ ∞
0

(1 +
ρco

1 + ρ(N − 1)
z)d2

∑
N

(c2x2)
n

n!
e−zdz

]
. (51)
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From (51), we can conclude the necessary value of θ2 to continue the compensation
process via delay relaxation.

Figure 4.12 illustrates different operational points for interference compensation
for different blocklength Tf where the system parameters are set as N = 5, ρ = 1,
Pout_delay = 10−3 and θ1 = 0.1. For example, when Tf = 700, we select the opera-
tional point αco = 0.9, θ2 = 0.075. This means that a part of compensation for the user
under consideration will be performed via power control which leads to a 0.9 loss in
EC of other users (set s). Then the rest of compensation will be performed by relaxing
its θ from 0.1 to 0.075. Here is an example of how the restoration of EC compensates
for the decrease in delay exponent where the maximum delay of the recovering user
remains 2500 symbol periods before and after recovery as in (5). The figure also shows
that for shorter packets, the amount of compensation needed by both θ relaxation and
power increase is higher when a point is moved to the new curve. Thus, it is more
costly to compensate networks transmitting shorter packets.

It is simple to implement joint compensation by selecting any operational point on
the curve. However, here a question triggers one’s mind: which operational point
should we choose and according to which criteria ?

To characterize this, we propose an objective function leveraging the system perfor-
mance in case of hybrid compensation via power control and relaxation of θ according
to network design preferences. Let us define the priority factor ηα as a measure of the
risk implied by the decrease in EC of users in set s when the compensating user boosts
its transmission power. In other words, the higher the value of ηα, the more important it
is for user in set s to maintain their ECs and hence, we try not to compensate via power
control and shift compensation towards θ relaxation. On the other hand, we define the
priority factor ηθ as a measure of strictness of the delay constraint (i.e., the higher the
value of ηθ, the more strict it is not to change delay constraint and hence, the less we
are allowed to relax θ to get higher EC for the compensating user). Note that as the
value of θ2 gets lower, the delay bound is raised which is not feasible for delay critical
applications. Priority factors can be chosen to be any non-negative values. Thus we
can formalize our objective function as the summation

η = ηααco + ηθθ2 (52)

where (αco , θ2) is the operational point and αco ∈ [0, 1]. Now, we choose this opera-
tional point to satisfy

ηmax = max
θ2≥0

ηααco + ηθθ2,

s.t ρs ≤ ρso ≤ ρi.
(53)

where the solution to this problem gives the optimum operational point which can be
found from (48), (49) and (50).
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According to the system parameters, certain values of the priority factors ηα and
ηθ may produce a concave maximization problem for the objective function η. This
is illustrated in Figure 4.13 for N = 15, Tf = 1000, ρ = 2, θ1 = 0.1, ηα = 1 and
ηθ = 4. The optimum value of ρso in this case is 0.057 which corresponds to the
operational point αco = 0.9397 and θ2 = 0.053. The SNR of the recovering user
becomes ρco = 8.08. In other words, in order to maximize the system throughput
according to the given priority factors, the compensating user boosts its SNR from 2 to
8.08 and relaxes its delay exponent from 0.1 to 0.053 which results in 6% loss in EC of
other users. This is depicted in Figure 4.14. Priority factors are left for the designer’s
preferences depending on reliability or latency requirements.
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5. EFFECTIVE ENERGY EFFICIENCY ANALYSIS

As discussed in the previous chapter, the raise of transmission power boosts the EC
but at the cost of energy consumption which is not feasible for energy limited systems
such as smart grids, vehicular networks, and massive machine to machine type sys-
tems which are the main concern of our analysis. Such networks are usually isolated
from stationary power sources and thus they are energy limited. Now that we have
characterized the per-node EC and the trade-offs implied by interference alleviation,
we need to study the energy consumption of such networks and the trade-off between
the per-user EC and the per-user EEE.

In this section, we discuss the per-user EEE in FB regime for different power models.
Previously, we assumed that the buffer is always full which practically is not always
the case. In real transmission, there would be instants in which a certain user becomes
idle and therefore has no data to transmit. Thus, we need to account for the case the
buffer is empty as was considered in [34]. We extend the results obtained in [34]
to multi-user networks operating in the FB regime with non-vanishing probability of
error ε. We investigate the effect of EEE maximization with empty buffer probability
and compare it with the case of always full buffer. After accounting for a non-empty
buffer probability which is equal to (1-probability of empty buffer), the per-user power
consumption is formulated as

Pt(p) = Pnbζp+ Pc =
µ

r
ζρ+ Pc, (54)

with Pnb = µ/r is the non-empty buffer probability (NBP) which has a value of 1 if
the buffer is considered to be always full. In this case, the per-user EEE is given by

EEE =
− 1
Tf θ

log
(
Ez=|h|2

[
ε+ (1− ε)e−Tf θr

])
µ
E[r]

ζρ+ Pc
, (55)

where the numerator represents the effective capacity EC in the finite blocklength
regime. It is worth mentioning that here we consider NBP only for one user (the
user under consideration). Therefore, Pnb is not affecting the rate calculation of other
nodes and ρi. In future work, we plan to consider NBP for all users.

5.1. Verifying the EEE model with empty buffer probability in FB

It was proven in [34] that the power consumption model considering the probability
of empty buffer fulfills the characteristic properties of an energy efficiency function
mentioned in [32] for the Shannon Capacity model. An energy efficiency function
must be non-negative, must be zero when the transmit power is zero, and must tend to
zero as the transmit power tends to infinity. Here, we start by verifying that this power
consumption model is valid for the blocklength limited EC model.

Lemma 2. The EEE in (55) is zero for ρ = 0 and tends to 0 when ρ→∞.
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Proof. For ρ = 0, the achievable rate r = 0 and the numerator of (55) becomes 0.
Applying L’Hopital’s rule for the denominator, we have

lim
ρ→0

ρ

r
= lim

ρ→0

1

z

(
1

(1+ρiz) log 2
− Q−1(ε) log2(e)√

Tf (1+ρiz)
3x

)
(1 + ρ(N − 1))2

= 0.
(56)

Thus the denominator of (55) equals to Pc yielding 0 for the EEE.
For the second condition, (17) implies that lim

ρ→∞
ρi = 1

N−1 and Hence, from (4), we

can infer that r is a finite function of the number of users N while the denominator of
(55) tends to∞. Thus the EEE vanishes. The validity of the EEE expression in (55) is
verified in the FB regime.
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Figure 5.1. EEE vs ε with and variable transmit power ρ for N = 2, Pout_delay =
10−2, Pc = 0.2, ζ = 0.2, µ = 0.2, Dmax = 200, and Tf = 1000.
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5.2. EEE maximization with buffer constraints

We investigate the per-user EEE maximization with EC, delay, and power constraints.
EC should be higher than the arrival rate µ to guarantee a stable queue while the trans-
mission SNR ρ has a higher bound ρmax. Thus, the optimization problem is formulated
as

max
ρ≥0,θ≥0

− 1
Tf θ

log
[
ε+ (1− ε)

∫∞
0

(1 + ρiz)d
∑2

n=0
(cx)n

n!
e−zdz

]
µ
r
ζρ+ Pc

,

s.t EC(ρi, θ, ε) ≥ µ

Pbe
−θµDmax ≤ Pout_delay

ρ ≤ ρmax.

(57)

Here Pout_delay is the maximum allowed delay outage probability. The optimal value
of θ can be obtained from the second constraint as

θ∗(ρ) =
1

µDmax

log
µ

Pout_delayEz [Rs]
. (58)
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Figure 5.2. Per-user EEE vs ε with and without empty-buffer probability for N =
2, Pout_delay = 10−2, Pc = 0.2, ζ = 0.2, µ = 0.2, Dmax = 200, and Tf = 1000.

We plot the maximum per-user EEE as a function of error outage probability ε for
fixed and variable transmit power ρ in Figure 5.1 for the parameters Pout_delay =
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10−2, Pc = 0.2, ζ = 0.2, µ = 0.2, Dmax = 200, ρ = 5 (fixed case), ρmax = 5, and
Tf = 500. In case of variable transmission power, we notice that the per-user EEE is
higher than the case of fixed ρ. This is because the system selects the optimum value
of ρwhich maximizes the EEE in each iteration of ε. Thus, we can obtain the favorable
value of ε and ρ for maximizing the per-user EEE in both variable and fixed transmit
power scenarios.

Furthermore, in Figure 5.2, we include a plot for the EEE in case of empty buffer
probability and compare it to the case where the buffer is always full. The system
parameters are the same as Figure 5.1 with ρmax = 5 (variable transmission power).
Here, the advantage of considering empty buffer probability is two fold. It is clear
that non empty buffer allows for a better modeling of the power consumption, thus is a
more realistic model. This reflects that full buffer is the worst case, where we assume
that all power will be consumed while non empty models the fraction that is actually
used according to queue congestion which highlights the gain of this model compared
to always full buffer. Moreover, the optimum error probability ε∗ for maximizing the
per-user EEE is lower when considering empty buffer probability.

Figure 5.3 depicts the achieved per-user EEE for different delay limits Dmax and the
same network parameters as in the previous two figures. We observe that the per-user
EEE increases when increasingDmax and the delay outage probability Pout_delay. Also,
considering empty buffer probability significantly boosts the per-user EEE.
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6. CONCLUSIONS

In this work, we presented a detailed analysis of the performance of delay constrained
multi-user networks in the finite blocklength regime. First, we offered a literature
review for FB communication in Chapter 2. For Rayleigh fading collision channels, we
obtained a closed form for the per-user EC and investigated the effect of interference on
the per-user EC in Chapter 3. In Chapter 4, we suggested three methods to compensate
for this collision effect. The first technique is power control where one of the users is
allowed to raise its transmission power which causes more interference to other users in
return. Power control is shown to be more suitable for systems with less stringent delay
constraints. The second method is relaxation of delay constraint. Joint compensation
emerges as a combination between these two methods where an operational point is
selected to maximize an objective function according to the system design aspects.
The results of implementing this method showed that for shorter packets, the amount
of compensation needed by both θ relaxation and power increase is higher when a point
is moved to the new curve. Thus, it is more costly to compensate networks transmitting
shorter packets.

Our analysis was not limited only to the EC as we also explored the EEE of such
networks Chapter 5. We showed that considering non-empty buffer probability and
flexible transmission power significantly improves the per-user EEE of multi-user net-
works operating in the FB regime. We investigated the trade off between EEE and
maximum delay limit Dmax. The results show that allowing for larger delays signifi-
cantly boosts the per-user EEE.

In future work, we are looking to analyze the EC-error trade-off discussed in Chapter
3 and look for an analytical solution to optimum error probability ε. We also suggest
considering empty buffer probability for all nodes in a game theoretic model to maxi-
mize EEE and EC.
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