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There is genetic evidence of similarities and differences among autoimmune diseases (AIDs) that warrants looking at a general
panorama of what has been published. Thus, our aim was to determine the main shared genes and to what extent they contribute
to building clusters of AIDs. We combined a text-mining approach to build clusters of genetic concept profiles (GCPs) from
the literature in MedLine with knowledge of protein-protein interactions to confirm if genes in GCP encode proteins that truly
interact. We found three clusters in which the genes with the highest contribution encoded proteins that showed strong and
specific interactions. After projecting the AIDs on a plane, two clusters could be discerned: Sjögren’s syndrome—systemic lupus
erythematosus, and autoimmune thyroid disease—type1 diabetes—rheumatoid arthritis. Our results support the common origin
of AIDs and the role of genes involved in apoptosis such as CTLA4, FASLG, and IL10.

1. Introduction

There are clinical and genetic grounds for assuming sim-
ilar immunogenetic mechanisms in autoimmune diseases
(AIDs). Clinical evidence highlights the cooccurrence of dis-
tinct AIDs within members of a nuclear family and within an
individual [1]. Individuals with a multiple autoimmune syn-
drome (MAS) have been grouped into three basic groups in
which various AIDs cluster around one of three “main” AIDs,
namely, systemic lupus erythematosus (SLE), autoimmune
thyroid disease (AITD), and primary Sjögren’s syndrome
(SS). These three might be considered the “chaperones” of
the other AID [2]. Along the same line of clinical evidence,
there are therapies such as tumor necrosis factor inhibitors,
rituximab, or a gluten-free diet that are already proving
effective for more than one AID [3, 4]. With regards to
genetic evidence, it has also been stated that around 44%
of the single nucleotide polymorphisms (SNPs), which were
found in genome-wide association studies (GWAS) on AIDs,
are shared by two or more of the following diseases: celiac
disease, Crohn’s disease, psoriasis, multiple sclerosis (MS),

rheumatoid arthritis (RA), type 1 diabetes (T1D), and SLE
[5].

There are also genetic differences among AIDs. In spite
of sharing several susceptibility genes, the differences among
most AIDs, in particular systemic ones such as SLE and
RA, seem to reside in the contribution of each gene to
each disease [6]. Additionally, clusters of AIDs have been
described where SNPs that make an individual susceptible
to one class of AIDs also protect from another class of AIDs
[7]. Furthermore, it is already known that different AIDs
are associated with some different alleles from the human
leukocyte antigen (HLA) [6].

As a consequence, it is important to obtain a general
panorama of the problem in order to understand the origin
of the AIDs. However, in biomedical research, the amount
of experimental data and published scientific information is
overwhelming. Therefore, literature-based discovery (LBD)
tools emerge as useful to make the biomedical literature
accessible for research purposes [8]. Thus, different LBD
methods have been used to mine large amounts of literature
and find the necessary information (Table 1) [8–11] with
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Table 1: Examples of literature-based knowledge discovery tools.

Tool Mined data URL

ANNI MedLine http://www.biosemantics.org

Arrowsmith1, MedLine, OVID http://wiki.uchicago.edu/

UMLS concepts in

Arrowsmith2 title words (MedLine) http://arrowsmith.psych.uic.edu/

BITOLA MeSH and LocusLink http://www.mf.uni-lj.si/bitola/

LitLinker UMLS http://litlinker.ischool.washington.edu/

FACTA MedLine http://refine1-nactem.mc.man.ac.uk/facta/

FAUN MedLine https://grits.eecs.utk.edu/faun/

1 University of Chicago
2 University of Illinois at Chicago
For more information about biomedical text mining tools visit
http://arrowsmith.psych.uic.edu/arrowsmith uic/tools.html.

two main approaches in the biomedical domain [12]. One
approach focuses on the extraction of precise relationships
between concepts, and the other relates biomedical concepts
one to each other based on the statistical properties of
their occurrence and cooccurrence in literature. A known
LBD method based on concept occurrence is the concept
profile (CP), in which a concept is characterized by a list of
associated concepts, together with weights that indicate the
strength of the association [13].

The output of the concept profiling method is a list of
associations ordered by the strength of their relationship that
needs verification. It is typically done with domain-relevant
knowledge usually based on expert human judgments or
even experimental validation [8, 14]. The latter approach
is currently more feasible in the biomedical field given
the increase in experimentally identified binary interactions
between proteins that has made it possible to see how these
components come together to form large functional regu-
latory networks [15]. There are several network approaches
[16] that could be organized based on the type of biological
or molecular interactions [17] and that analyze diverse
databases (Table 2) [18–24]. Thus, the information related
to protein-protein interactions helps us to study these
associations from the perspective of biochemistry, signal
transduction, and biomolecular networks [25]. Identifica-
tion of functional roles of unknown pathogenic genes can
also make it possible to understand pathogenic mechanisms.
Proteins that are tightly connected in biological networks
often work in similar processes [26].

This complex panorama shows that we are still distant
from knowing everything, that is to know about genes, their
interactions with other genes, and their impact on biological
functions [6]. Therefore, the aim of this study was to obtain
information from the literature and annotated databases to
find main common genes in autoimmunity and determine
to what extent they contribute to different clusters of AIDs.

2. Methods

Our analysis was made by using experimental knowledge of
protein-protein interaction to evaluate the top ranked genes,

which had been found through the CP approach to mine the
biomedical literature (Figure 1).

2.1. Literature-Based Knowledge Discovery. The concepts
selected as input for the LBD software were the three AIDs
referred to as chaperones of autoimmunity (i.e., AITD, SS,
and SLE). We also selected as input concepts the AIDs
mentioned in literature as present in relatives of probands
of these three diseases: MS, RA, T1D, vitiligo (VIT), and
systemic sclerosis (SSc) [2].

To evaluate the genetic similarity of those AIDs, we chose
the Anni software because it uses the CP methodology that
has proven to be effective for finding information in the
form of associations in the biological domain [27]. First,
the mapping of those concepts in the thesaurus of the
Anni software that uses the concept profile methodology
was evaluated [28]. At this point, we eliminated the VIT
concept because it showed ambiguity in mapping. Next, the
CP for each one of the seven remaining AIDs was built.
Those profiles corresponded to the weighted list made by
all the genes mentioned in MedLine, so they were called
genetic CPs (GCPs). To do this, we selected the 25.010 genes
that belong to human beings from the thesaurus in Anni,
and, then, we mined all the MedLine records that contained
these genes in their text. Next, the associations between GCP
were explored through hierarchical clustering. The clusters
were generated by matching the GCP for each one of the
mapped AIDs, as the CP can be described as vectors. Then,
the similarities between the GCP in the found clusters were
analyzed. For this purpose, we obtained a cohesion score by
using as an inclusive filter for matching the described 25.010
genes. Briefly, the cohesion score is an average of the inner
products of all possible pairs of profiles corresponding to the
concepts in the group of interest. The contribution of each
gene in the profile to the cohesion score was assessed in terms
of percentage. To interpret the cohesion score we used a P
value that gives the probability that the same score or higher
would be found in a random group of the same size. This P-
value was obtained by using the default parameter in Anni
of 200 iterations. Finally, the distances between concepts that
reflect the matching value between GCPs were projected in
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Table 2: Examples of tools to analyze biological pathways.

Tool Analyzed data URL

Cytoscape 220 diverse databases. http://www.cytoscape.org/

BIANA uniprot, GenBank, IntAct, http://sbi.imim.es/web/BIANA.php

KEGG and PFAM.

Pathway studio MedLine.
http://www.ariadnegenomics.com/products/path-

way-studio/expression-analysis/algorithms

Patika Reactome, UniProt, Entrez http://www.patika.org/

Gene, and GO.

Genes2networks BIND, DIP, IntAct, MINT, http://actin.pharm.mssm.edu/genes2networks/

pdzbase, SAVI, Stelzl, vidal, ncbi hprd, and KEGG
mammalian

Anni
literature-based
discovery (LBD)

Input: term for each
disease: AITD, SS

SLE, MS, RA, T1D, SSc

Mapping of disease
terms to concepts in
the Anni thesaurus

Building of genetic
concept profiles (GPCs)
∗Selection of the human

genes in Anni
∗Mining of all the medline

records that contained
these genes in the text

GCP projection in
a bidimensional

space
Figure 4

Analysis
of the results

in the context of
the autoimmune

tautology

Generation
of the protein-protein
interaction network

with the top
ranked genes

Figure 3

Mined databases:
BIND, DIP, InAct,

MINT.
pdzbases, SAVI,

Stelzl, vidal, NCBI
hprd, and

KEGG mammalian

Genes2networks
Protein-protein

interactions

Hierarchical clustering:

∗Analysis of similarity
(cohesion score)

∗Determination of each

gene contribution
to the cohesion score

Figure 2

Verification of literature-based discovery with protein-protein
interaction knowledge in autoimmune diseases

Figure 1: Flowchart of the methodology. AITD: autoimmune thyroid disease, SS: primary Sjögren’s syndrome, SLE: namely systemic lupus
erythematosus, MS: multiple sclerosis, RA: rheumatoid arthritis, T1D: type 1 diabetes, and SSc: systemic sclerosis.

a two-dimensional space, in order to understand the AID
clustering.

2.2. Network Analysis. To analyze if the genes in the clusters
previously found through LBD corresponded to proteins
with a known interaction, a network analysis was done with
the genes that contributed at least 0.1% to any of the clusters
found by the method described in Section 2.1. For this
purpose, the software, Genes2networks, was selected because
it finds relationships between proteins by using ten high
quality mammalian protein-protein interaction databases
that take into account not only filtered high throughput
but also low throughput experiments that have a lower
probability of false positives [29]. Then, in order to find
tightly connected proteins, the settings that were used in
Genes2networks to build the network were (1) no filter for
minimum number of references, (2) the maximum links per
reference were four, (3) a maximum pathway length of two,

and (4) a significant Zscore of 2.5 of the intermediate nodes,
which was calculated through a binomial proportions test, as
previously described [29].

2.3. Systematic Search. We did a classical systematic search,
as previously done by our group [30], to understand the
relevance of the genes found by our approach on AIDs. The
genes selected were ones that contributed more than 1% to
two or more clusters of AIDs and were close to each other
in subnetworks where they were separated by a maximum
of one node. To do this, we did a systematic search of the
Catalog of Published Genome-Wide Association Studies at
http://www.genome.gov/26525384 and on PubMed by using
three terms: the gene name, the MeSH term “genome-wide
association study” and the MeSH term for each AIDs that
belonged to the found clusters. Consequently, the terms for
the AIDs were chosen from the next MeSH terms: “arthritis,
rheumatoid,” “multiple sclerosis,” “diabetes mellitus, type 1,”
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Table 3: Genes with a contribution higher than 0.1% to the found clusters of the studied autoimmune diseases.

Cluster 1. SLE-SS Cluster 2. T1D-AITD Cluster 4. RA-MS

Gene % Gene % Gene %

TRIM21 27.91 TPO 32.4 TNF 39.5

TNFSF13B 27.46 CTLA4 28.6 HLA-DRB1 20.7

TROVE2 19.8 TNFRSF25 6.7 IL10 5.2

SSB 6.6 HLA-DRB1 6.7 IL6 2.2

FAS 2.7 PTPN22 6.4 CCL2 0.6

DLAT 2.6 GAD1 4.6 CD4 0.6

IRF5 1.0 GAD2 3.6 MMP9 0.6

IL10 0.9 AIRE 1.7 IL1B 0.5

FASLG 0.8 PTPRN 1.5 IL4 0.5

TNFRSF25 0.6 HLA-DQB1 0.5 TNFSF13B 0.5

CR1 0.5 IDDM2 0.5 IL23A 0.4

CALR 0.5 SUMO4 0.5 CCR2 0.4

SPTAN1 0.4 ICA1 0.4 IL1RN 0.4

RNPC3 0.4 FOXP3 0.3 CCL5 0.3

CR2 0.2 FCRL3 0.2 ICAM1 0.3

SNRNP70 0.2 CD4 0.2 CXCR3 0.3

SERPIND1 0.2 FASLG 0.2 HLA-DQB1 0.3

C1QA 0.2 CXCL10 0.2 VCAM1 0.2

IL18 0.2 CD8A 0.2 CTLA4 0.2

IL6 0.2 IL1B 0.2 PADI4 0.2

TSHR 0.2 IFNB1 0.2

CRP 0.2

CCR5 0.2

IL12B 0.2

SLE: systemic lupus erithematosus, SS: Sjögren’s syndrome, T1D: type 1 diabetes, AITD: autoimmune thyroid disease, RA: rheumatoid arthritis, MS: multiple
sclerosis, %: percentage of contribution to the cluster.

“lupus erythematosus, systemic,” “scleroderma, systemic”
and “Sjögren’s syndrome.” In the case of thyroid disease, the
term “thyroid” was used. The information from PubMed was
excluded when the retrieved information did not explicitly
refer to the specific gene, for instance when CD4 referred to
a type of cell (i.e., lymphocyte) but not to the gene.

3. Results

There were three paired clusters with a probability equal to
or less than 3 percent that their cohesion score would be
found in a random group of the same size: SLE with SS
(P = 0.02), T1D with AITD (P = 0.02), and RA with MS
(P = 0.03) (Figure 2). Regarding the genes that contributed
to building the clusters, 55 of them had a contribution higher
than 0.1% to the cohesion score of any of those clusters.
Some of them were shared by more than one cluster: HLA-
DQB1, CD4, TNFSF25, FASLG, IL1B, IL6, IL10, TNFSF13B,
CTLA4 and HLA-DRB1. The later three had a contribution
higher than 20% to any of the three specific clusters. The
other genes contributed to only one cluster. It should be
mentioned that there were also specific genes for one cluster
that had a contribution of around 20% to their clusters, such

as TRIM21 and TROVE2 in the cluster made up of SLE and
SS, TPO in the cluster made up of T1D and AITD, and TNF
in the cluster made up of RA and MS (Table 3).

Concerning to the network analysis, we used as input
the previously mentioned 55 genes. 29 of these 55 entries
were identified and described on the graph (Figure 3).
Some genes such as IL6 and HLA-DRB1 did not appear
in the network. This could have been because of the strict
threshold, a maximum pathway length of two, established to
avoid weak interactions or because they did not have protein-
protein interactions already reported in the used database.
For instance, some genes relating to antigen presentation
such as HLA-DRB1 may be absent in protein interaction
networks.

The network had 20 intermediary nodes, 19 signif-
icant with a Z score above the cutoff of 2.5 (Table 4),
thus indicating that they may be specific to interact with
components from the inputted seed list of genes. In other
words, those results indicated that the seed genes encode
proteins that had strong and specific interactions. In the
graph, it can also be seen that the genes common to more
than one cluster belonged to the same connected network
(Figure 3). There were two subnetworks of genes that had
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SLE

SS

T1D

AITD

RA

MS

SSc

P = 0.02

P = 0.02

P = 0.03

SLE: systemic lupus erithematosus
SS: sjogrens syndrome
T1D: type 1 diabetes
AITD: autoimmune thyroid disease

RA: rheumatoid arthritis
MS: multiple sclerosis
SSc: systemic sclerosis

Figure 2: Clustering of seven autoimmune diseases. SLE: systemic lupus erithematosus, SS: Sjögren’s syndrome, T1D: type 1 diabetes, AITD:
autoimmune thyroid disease, RA: rheumatoid arthritis, MS: multiple sclerosis, SSc: systemic sclerosis.

Table 4: Significance of intermediates sorted by z-score.

Gene name Link Link in background Links to seed Links in subnetwork z-score

HLA-DQA2 3 11429 2 60 15,852

DARC 4 11429 2 60 13,692

LCK 67 11429 6 60 9,548

PRTN3 9 11429 2 60 9,007

APCS 10 11429 2 60 8,522

FN1 62 11429 5 60 8,215

IGFBP7 11 11429 2 60 8,103

PTPN13 12 11429 2 60 7,737

CASP1 18 11429 2 60 6,215

A2M 24 11429 2 60 5,293

DCN 25 11429 2 60 5,171

NCL 30 11429 2 60 4,655

C3 31 11429 2 60 4,566

JAK2 116 11429 4 60 4,356

PTPRC 35 11429 2 60 4,248

THBS1 37 11429 2 60 4,108

ARRB1 44 11429 2 60 3,690

TRADD 63 11429 2 60 2,910

PIK3R1 133 11429 3 60 2,761

FYN 153 11429 3 60 2,457

a contribution higher than 0.1% and that were shared by
more than one cluster. The first was made up of HLA-DQB1,
CD4, CTLA4 and FASLG that were genes connected through
only one internode (TNFRSF25 is also connected through
three internodes with FASLG) and the second subnetwork
was made up of IL1B and IL10 that was connected to TNF, the
gene with the highest contribution to the cluster made by RA

and MS. There was also another subnetwork made with the
directly connected C1QA, CR1, and CR2 genes that belonged
to the cluster made by SLE and SS (Figure 3).

We also observed that some of the genes with a contribu-
tion higher than 0.1% to only one cluster belonged to three
little separate networks. The first little network had the genes
GAD1 and GAD2 from the cluster of T1D-AITD, the second
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CD8A
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CCL5
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CCR2
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C TLA4LCK

PIK3R1

ARRB1

TRIM21

TROVE2

NCLSSB

CALR C1QA CR1

CR2

IL1B IL10

DCN
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C3

A2M

CD4

TSHR
FAS LG

FAS
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SNRNP70

CPR

TNF

IL18

GAD1

GAD2

JAK2

CASP1

THBS1

DARC

IGFBP7

P RTN3

PTPRC

PTPN13

TRADD

FYN∗

HLA-DQB1

HLA-DQA2

Figure 3: Network analysis of the genes that contribute to the clusters of autoimmune diseases. Solid squares: genes with a contribution
higher than 0.1% that are shared by more than one cluster. Dotted squares: genes with a contribution higher than 0.1% from the SLE-SS
cluster. Solid ovales: genes with a contribution higher than 0.1% from the T1D-AITD cluster. Dotted ovales: genes with a contribution higher
than 0.1% from the RA-MS cluster. The other nodes correspond to significant intermediary ones (the asterisk indicates a nonsignificant
intermediary node).

had the sgenes TRIM21, TROVE2, and SSB from the cluster
of SLE-SS, and the third had the genes CCL5 and CCL2 from
the cluster RA-MS (Figure 3).

Through the systematic search, we looked for GWAS
information on six genes (Table 5). HLA-DQB1 [31], CTLA4
[32, 33], and FASLG and IL10 [34] were related to AIDs in
GWAS. In contrast, to date CD4 and IL1B have not been
related by GWAS data to any of the above-mentioned AIDs.

Finally, according to the distances obtained through the
LBD approach, the evaluated AIDs were projected into two
main spaces that are near each other. The first included SS
and SLE, and the second, AITD, T1D, and RA. Both were
distant from SSc and a little closer to MS, especially in the
case of the RA (Figure 4).

4. Discussion

Our in silico approach that combined LBD and network
analysis of protein-protein interactions allowed us to confirm
common genes involved in autoimmunity as well as to
estimate their contribution into the clusters of AIDs. Some
common genes made an important contribution to only
one specific cluster such as TRIM21, TROVE2, or SSB, but
others were present in more clusters of AIDs such as HLA-
DQB1, FASLG, CTLA4, or CD4. However, our approach did
not intend to find all the genes shared among AIDs. In
fact, not all the genes could be validated through protein-
protein interactions, and others did not make a significant
contribution to the described clusters of AIDs.
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Table 5: Relevance on autoimmunity GWAS of the genes with a contribution higher than 1% to two or more clusters of the studied
autoimmune diseases.

Gene Full name Location GWAS catalogue Reference

HLA-DQB1 Major histocompatibility complex, class II, DQ beta 1 6p21.3 MS, PBC, RA, SSc, CD, UC, CrD [31]

CD4 CD4 molecule 12pter-p12 — —

CTLA4 Cytotoxic T-lymphocyte-associated protein 4 2q33 T1D, RA, MS, SLE, CD [32, 33]

FASLG Fas ligand (TNF superfamily, member 6) 1q23 CD, CrD —

IL1B Interleukin 1, beta 2q14 — —

IL10 Interleukin 10 1q31-q32 T1D, SLE, UC, CrD [34]

MS: multiple sclerosis, PBC: primary biliar cirrhosis, RA: rheumatoid arthitis, SSc: systemic sclerosis, CD: celiac disease, CrD: crohn disease, T1D: Type 1
diabetes, SLE: systemic lupus erithematosus, UC: ulcerative colitis, PSO: Psoriasis.

Multiple sclerosis

FASLG∗
TNFRSF25∗

Systemic lupus erythematosus

Sjogren’s syndrome

Systemic
scleroderma

CALCR, C1QA, CR1, CR2, SE PIND1
FAS, TRIM21, TROVE, SS B, IL18

IL10

Autoimmune
thyroid disease

Diabetes mellitus,
insulindependent

Rheumatoid arthritis

CXCL10, CD8A, TSHR
GAD1, GAD2

NF, MMP9, CRP,
CCR2, CCR5, CCL2, CCL5

CD4∗
CTLA4∗

HLA-DQB1∗
IL1B∗

Figure 4: Projection of the seven studied autoimmune diseases on a plane. This figure shows the shared space of the genetic concept
profiles from the studied AIDs (underlined), according to the matching value of their genetic concept profiles. We can see the genes with a
contribution to clustering higher than 0.2%, the asterisk indicates the genes shared by two clusters.

With regards to genes shared by more than one cluster
of AIDs, it can be seen that they were typically found to be
significant in GWAS. However, there were exceptions. In the
case of CD4, an association was not found with any AID
by GWAS, but another approach that combines biological
similarities found that CD4 is a likely causal gene of RA [35],
one that had been seen as high risk by recent studies [36, 37].
In contrast to GWAS, the genes that were found to be related
to RA by the approach that combines biological similarities

could be easily classified into related functional categories or
biological processes [35], thus making these finding similar
to our results.

In contrast, there were genes that contributed mainly to
specific clusters of AIDs such as TRIM21 (Ro52), TROVE2
(Ro60) and SSB (La) that were found to be important for
the SLE-SS cluster. In spite of the fact that they were not
significant at the GWAS level, this observation agreed with
the fact that anti-SS-A (Ro52/Ro60) autoantibodies have
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been described as serological markers for both SS and SLE
[38–40]. Ro52 works as an E3 ligase and mediates ubiq-
uitination of several members of the interferon regulatory
factor (IRF) family. Its deficiency has been associated with
enhanced production of proinflammatory cytokines that
are regulated by the IRF transcription factors including
cytokines involved in the Th17 pathway [41]. Although Ro
ribonucleoproteins such as Ro60 and La were discovered
many years ago, their function is still poorly understood
[42]. It has been suggested that TROVE2 acts as a modulator
in the Y RNA-derived miRNA biogenesis pathway. The
hypothesis is that Ro RNPs are “latent” pre-miRNAs that can
be converted into miRNAs under certain circumstances [42].
In addition, it was observed that narrow-band ultraviolet
B irradiation provoked significant alterations of the ker-
atinocyte morphology and led to the membrane expression
of antigens recognized by anti-La and anti-Ro 60 kDa sera
[43].

Another observation about genes that contributed
mainly to specific clusters was that genes typically involved in
one AID such as C1QA and CR1 in the case of SLE, or GAD1
and GAD 2 in the case of T1D, were found by our approach to
be shared with SS or AITD, respectively. These findings agree
with the observations that around 24% of patients with T1D
expressed antithyroid autoantibodies and that 17% of them
had AITD in comparison to 6% of age-matched controls
[44].

The projection of the AIDs on a plane agreed with the
similarity between genetic variation profiles of T1D and
AITD found by another approach, which builds genetic
variation profiles taking into account P values and odds-
ratios of significant SNPs in GWAS, but does not totally agree
with the claimed opposition between MS and RA [7]. It can
be seen that RA has some similarity with MS in spite of being
closer to AITD. This projection also agreed with the behavior
of HLA, even in admixed Latin-American populations, as
diseases that were closer in it shared risk alleles. This is the
case for SLE, SS, and T1D that have the DRB1∗03:01 allele
as a risk factor [30, 45, 46]. Furthermore, in diseases that are
distant in our clustering analysis, such as MS and T1D, the
same DQB1∗06:02 allele gives protection to the first but risk
to the second disease [47].

From the biological perspective, our results showed the
central role of FASLG as it is connected through one node
to CTLA4, which is connected to CD4 through one node
and that, in turn, is connected to HLA-DQB1 the same
way (Figure 3). FASLG is also connected with TNF through
two nodes, and this is connected, in turn, through one
node to IL1B, which is also connected through one node
to IL10 and IL18. It is interesting that these two pathways
are involved in similar processes since CTLA4, and IL10 are
implicated in peripheral immunologic tolerance [48]. FASLG
is also connected to two other pathways. It is connected
through one node to C1QA, which is directly connected to
CR1. Lastly, it is also indirectly connected to the pathway of
TROVE2, TRIM21, and SSB through a route that was not
shown on the graph. This route involved SUMO1, a gene
that has been associated with a blockage of the FAS pathway

in RA, thus preventing apoptosis [49]. Taken together, our
results highlight the autoimmunity role of genes involved in
the process of apoptosis such as CTLA4, FASLG, and IL10
that work together with genes involved in the inflammatory
process such as IL1B [50].

Biomedical informatics involves a core set of methodolo-
gies that can provide a foundation for crossing the “transla-
tional barriers” associated with translational medicine [51].
Since the classical systematic review of literature could be
incomplete because a significant amount of conceptual infor-
mation present in literature is missing from the manually
indexed terms [10], it seems to be advisable to combine the
classical approach for searching literature with these new
techniques.

In summary, the bioinformatics approach that combines
text mining and network analysis of proteins allowed func-
tional modules of interacting disease genes to be identified
and can be used to predict additional disease gene candidates.
Our approach also gave further evidence of the common
origin of AIDs as the clustering of these diseases took into
account thousands of genes that contribute to make the
genetic concept profiles. Furthermore, this mining approach
identified the specific contribution of a number of genes to
causing some AIDs to cluster. These genes could be useful for
further research.
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[50] A. Pawlik, M. Herczyńska, M. Kurzawski et al., “IL-1β, IL-
6 and TNF gene polymorphisms do not affect the treatment
outcome of rheumatoid arthritis patients with leflunomide,”
Pharmacological Reports, vol. 61, no. 2, pp. 281–287, 2009.

[51] I. N. Sarkar, “Biomedical informatics and translational
medicine,” Journal of Translational Medicine, vol. 8, article 22,
2010.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


