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ABSTRACT 

Grid computing presents a new trend to distribute and Internet computing to 

coordinate large scale heterogeneous resources providing sharing and problem 

solving in dynamic, multi- institutional virtual organizations. Scheduling is one of 

the most important problems in computational grid to increase the performance. 

Genetic Algorithm is adaptive method that can be used to solve optimization 

problems, based on the genetic process of biological organisms. The objective of 

this research is to develop a job scheduling algorithm using genetic algorithm with 

high exploration processes. To evaluate the proposed scheduling algorithm this 

study conducted a simulation using GridSim Simulator and a number of different 
workload. The research found that genetic algorithm get best results when increasing 

the mutation and these result directly proportional with the increase in the number of 

job. The paper concluded that, the mutation and exploration process has a good 

effect on the final execution time when we have large number of jobs. However, in 

small number of job mutation has no effects. 
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1. INTRODUCTION 

 

The term ―the Grid‖ was coined in the mid1990s to denote a proposed distributed 

computing infrastructure for advanced science and engineering [1]. Computing 

resources are geographically distributed under different ownerships each having 

their own access policy, cost and various constraints [2]. Grid computing displays a 

new direction for the distribution of the Internet and computing to coordinate the 

sharing of resources is homogeneous on a large scale problem solving in dynamic, 

multi-institutional virtual organizations. Grid computing has high heterogeneous 

computing resources, ranging from computers and one workstation, a group of 

workstations to super computers. With network technologies, it is possible to build 

large-scale applications on the network environments [3]. Grid computing has 

emerged as a distributed methodology that coordinates the resources that are spread 

in the heterogeneous distributed environment, Grid is a type of parallel and 

distributed system that enables the sharing, selection and aggregation of resources 

distributed across multiple administrative domains based on their availability, 

capability, performance, cost and user’s quality-of-service requirements . A Grid is 

loosely coupled, geographically distributed and heterogeneous computers in the grid 
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donate printers, application software, disk storage, CPU power etc, Grid uses a 

middleware layer to communicate with heterogeneous hardware and datasets [4]. 

A computational Grid is a hardware and software infrastructure that provides 

Dependable, consistent, pervasive, and inexpensive access to high-end 

computational capabilities .It is a shared environment implemented via the 

deployment of a persistent , standards-based service infrastructure that supports the 

creation of, and resource sharing with in, distributed communities[5] 

 Scheduling is one of the most important problems in computer systems, such as 

the network. To increase performance, there is a need to schedule the network 

performance and efficiency. Unfortunately, the dynamic nature of the network and 

also the demands of different users, due to the complexity of the problem is the 

schedule of the network. This means that the efficiency of resources and the network 

is always changing dynamic nature. Possible for the user and other financial cost of 

the process is important. The goal of the network schedule is to find the optimal 

allocation of resources and to function, and to overcome the heterogeneous 

resources and maximize overall system performance. The network is known as the 

tabulation in the decision-making process of scheduling resources listed on multiple 

administrative domains. And this process can include searching multiple 

administrative domains to use one device or schedule one job to use multiple 

resources in a single location or multiple locations. Define the function to be 

anything needs to be a resource request of bandwidth, to application, for a range of 

applications. We use the term resources to mean anything can be scheduled: 

machine, disk space, network quality of service, and so on [6]. From the point of 

view of scheduling systems, a higher level abstraction for the Grid can be applied by 

ignoring some infrastructure components such as authentication, authorization, 

resource discovery and access control. Thus, in this paper, the following definition 

for the term Grid adopted: ―A type of parallel and distributed system that enables the 

sharing, selection, and aggregation of geographically distributed autonomous and 

heterogeneous resources dynamically at runtime depending on their availability, 

capability, performance, cost, and users' quality-of-service requirements‖ [7]. Each 

job consists of a set of tasks . The task has a number of processing requirements. In 

the exceptional case when the job consists of only one task we recognize with and 

the processing requirements with. Each task is associated with a number of 

resources and possibly be processed on any of the resources of [8] . Job scheduling 

on grid computing represents a great challenge. Genetic algorithm is one of the 

widely used algorithms for scheduling on grid computing. The process of exploring 

new solution in the genetic search space is an important issue. Because sometimes 

the initial population so far from the best solution because initial population is 

random.  

This paper contains six sections. Section two describes the related works. Section 

three gives details about genetic algorithm. Section four illustrates the proposed 

scheduling algorithm. Section five describes simulation environment and the results. 

We concluded in section six.  

 

2. RELATED WORK 

 

Natural metaheuristics such as hill climbing, genetic algorithm and particle 

swarm optimization are inspired by the natural phenomena to solve complex 

combinatorial real world problems. Hill Climbing (HC) is a local search 

optimization mechanism. It is an iterative technique that begins with a random 

http://en.wikipedia.org/wiki/Local_search_%28optimization%29
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solution in the search space, and then tries to discover optimized solutions by 
continuously modifying a single element of the current solution. If the modification 

generates a better candidate solution, the modification is considered, otherwise the 

modification is discarded [9]. Similar to the HC mechanism is Tabu Search (TS) 

which can be defined as ―a strategy for solving combinatorial optimization problems 

whose applications range from graph theory and matroid settings to general pure and 

mixed integer programming problems‖[10]. Tabu Search has superiority over Hill 

Climbing as it has a memory facilitates in keeping on exploration even if the 

improving movement is absence. Moreover, the memory prevents the TS scheduling 

mechanism form trapping in local optimum that has been visited previously. 

However, TS uses single search path of solutions and not population search or tree 

search. In single search path techniques for each candidate solution in this path, the 

technique assesses a set of moves through the solution search space and chooses the 

best toward the next solution. 

The main challenge for optimization mechanisms is to increase the possibility of 

finding the global optimal solutions. Greedy optimization mechanism such as HC 

and TS strive to improve each single step; they can find the solution fast. However, 

greedy optimization mechanisms are often traps in local optimal solutions[11]. 

Evolutionary optimization mechanisms, such as differential evolution and genetic 

algorithm have a limited range of movements; which reduces the likelihood of 

trapping in local or sub optimal solutions. However, they are slower in finding 

optimal solutions as a result of the complexity in managing the population 

movements[12]. TS, HC and GA are used to schedule jobs on computational grid; 

these metaheuristics scheduling mechanisms outperform the grid basic scheduling 

mechanisms in most cases[13, 14]. 

Swarm intelligence (SI) is a new class of nature inspired metaheuristics based on 

population optimizations. The population elements are particles that aim to find the 

global optimal candidate solution by communicating with other particles and with 

the environment. In SI such as particle swarm optimization (PSO), ant colony 

optimization (ACO) and firefly algorithm (FA) particles do not die, and rather they 

move throughout the search space themselves. PSO and ACO have been used as 

scheduling mechanisms to map the jobs to resources on computational grid in 

several researches [8, 15-17]. 

 

3. GENETIC ALGORITHM 

 

Genetic algorithm (GA) is an optimization metaheuristic that imitates the process 

of natural evolution. GA generates a random initial population of feasible candidate 

solutions, that is a set of integer random numbers, and each solution represents a 

chromosome. Each chromosome is a vector indexed with a number from 1 to NP, 

where NP is the population size. After the initial population is generated, the 

population chromosomes are refined using crossover and mutation operations. GA 

has a limited range of movements; and this reduces the likelihood of trapping in 

local optimum solutions. Nevertheless, they are slower in discovering optimum 

solutions as a result of the complexity in managing the population movements [12].  

Figure 1 describes the follow of genetic algorithm. 

 

http://en.wikipedia.org/wiki/Heuristic
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FIGURE 1. Flow Chart of Genetic Algorithm. 

 

Abraham et al (2000) presented a hybrid of three of the nature's mechanisms GA, 

SA and TS for job scheduling on computational grids. The hybrid mechanism 

showed a better convergence and enhanced the search process of GA. A simple 

version of GA is utilized in [18] to find an optimal or suboptimal schedules for the 

grid job scheduling problem. A Hierarchical mechanism for scheduling jobs using 

Genetic Algorithms is proposed for computational grid to increase the scalability of 

the scheduling process [19]. In [20] a suboptimal optimization mechanism for 

scheduling job on computational grid based on genetic algorithm was developed. 

The Suboptimal mechanism is capable to converge in simple problems. However, in 

complex scheduling problems the mechanism cannot converges the search space. 

Two models, single service and multiple services, are presented by [21]to estimate 

the completion time for jobs on computational grid using GA. To enhance GA 

further, an integration between job clustering using fuzzy C-Mean and a scheduling 

mechanism using GA was developed in [22]. To reduce the repetitions of the 

generations in GA, Delavar et al (2010) introduced a new scheduling mechanism to 

achieve a higher speed and to decrease the communication costs. To speeds up 

convergence and to minimize the search time, a rank based genetic scheduler is 

proposed by Abdulal et al. (2010). Furthermore, they utilized MCT schedule to 

initialize the algorithm.  

Genetic Algorithm (GA) GAs are adaptive methods that can be used to solve 

optimization problems, based on the genetic process of biological organisms [2].  

The Standard Genetic Algorithm follows the method of haploid sexual reproduction. 

In the Standard Genetic Algorithm, the population is a set of individual binary 

integers such as 1001011. Each individual represents the chromosome of a life form. 

There is some function that determines how fit each individual is, and another 

function that selects individuals from the population to reproduce. The two selected 

chromosomes crossover and split again. Next, the two new individuals mutate. The 

process is then repeated a certain number of times. Let’s consider each of the 

highlighted notions in more detail. Fitness is a measure of the goodness of a 

chromosome, that is, a measure of how well the chromosome fits the search space, 

or solves the problem at hand. For the standard genetic algorithm, the fitness f is a 

function from the set of possible chromosomes to the positive reals. Selection is a 

process for choosing a pair of organisms to reproduce. The selection function can be 

any increasing function, but we will concentrate on fitness-proportionate selection, 

whose selection function is the probability function, crossover is a process of 

exchanging the genes between the two individuals that are reproducing. There are 

several such processes, but we will consider only one-point crossover, a process that 

is both standard and simple. A random integer i is selected uniformly between 1 and 

n. This is the place in the chromosome at which, with probability p c , crossover will 

occur. If crossover does occur, then the chunks up to i of the two chromosomes are 

swapped[23].  
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We describe the seven steps in the Standard Genetic Algorithm as described in 
Figure 3. Start with a population of n random individuals each with l-bit 

chromosomes. Calculate the fitness f(x) of each individual. Choose, based on 

fitness, two individuals and call them parents. Remove the parents from the 

population. Use a random process to determine whether to perform crossover. If so, 

refer to the output of the crossover as the children. If not, simply refer to the parents 

as the children. Mutate the children with probability p m of mutation for each bit. 

Insert the two children into an empty set called the new generation. Return to Step 2 

until the new generation contains n individuals. Delete one child at random if n is 

odd. Then replace the old population with the new generation. Return to Step 1.  

Figure 2 illustrates pseudo code genetic algorithm. 

 

 
 

FIGURE 2. Genetic Algorithm Pseudo Code 

 

4. EXPLORATION BASED GENETIC ALGORITHM 

 

Crossover operation may produce degenerated population. In order to avoid this, 

mutation operation is performed. Mutation operation can be bit flipping, 

interchanging, inversion, insertion, reciprocal exchange or others. In case of 

insertion a node is inserted at random position in the string. This is because a node 

along the optimal path may be eliminated through crossover. Using insertion, it can 

be brought back as shown in Figure 3. Once mutation is completed, the offspring 

generated by mutation have to be validated with the same process used in crossover.  

 

 
 

Simple Genetic Algorithm ( ) 

begin  

initialize population; 

evaluate population; 

While termination criterion not 

reached 

{ 

select solutions for next 

population; 

perform crossover and 

mutation; 

evaluate population; 

}  

end 
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FIGURE 3: Mutation process 

 

Exploration process occurs during the mutation stage assuming the best solutions 

are far from the available solutions.  Genetic Algorithm may traps in local optimal 

as the algorithm continue searching the same area and regenerate same solutions. 

Sometimes the optimal solutions are far from the already discovered solutions, as 

shown in Figure 4. So, it is better if the search process explored new areas. 

 

 
FIGURE 4: Exploration in Genetic Algorithm 

In this paper, we have increased the mutation in genetic algorithm in order to get 

better results, and this increase applied as increase the mutation rate of the genetic 

algorithm. The research increased the proportion of mutation at a constant rate in 

every time and registers the results with observations. Furthermore, the research, 

changes the number of tasks in each time to find out to what extent we need to 

increase mutations rate in the genetic algorithm to obtain efficient results. 
 

5. EXPERIMENTAL RESULTS 

 

In this section, we'll show the findings through an increase in the mutation on 

genetic algorithm and process of exploration. To evaluate the proposed mechanism, 

this research has considered different size of workload traces ranging from 

lightweight loads containing only 500 jobs to heavy load contains 7000 jobs. Each 

experiment was repeated several times with different random seeds, and the 

averages finish times were calculated until the results were saturated. In our 

experience we have high exploitation by increasing crossover rates in genetic 

algorithm in each scenario.  

TABLE 1. 

The effects of increasing the mutation when the number of tasks = 500  

250 200 150 100 50 Mutation 

2800 2800 2800 2800 2800 Execution Time 

500 450 400 350 300 Mutation 

2800 2800 2800 2800 2800 Execution Time 
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FIGURE 5: The relationship between the mutation and the increase in the time when 

the number of jobs = 500 

 

As shown in Table 1 and Figure 5 when the mutation rate is increased and the job 

= 500 the execution time remained constant. This result indicate that the increase in 

mutation have no effect when the number of jobs is small. 

 

TABLE 2. 

The effects of increasing the mutation when the number of tasks = 4000  

250 200 150 100 50 Mutation 

663136.4 666954.5 721400 724650 731400 Execution Time 

500 450 400 350 300 Mutation 

539720 569523 579720 581640 583320 Execution Time 
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FIGURE 6: The relationship between the mutation and the increase in the time when 

the number of jobs = 4000 

 

From Table 2 and Figure 6 we can observe that when we increased the number of 

mutation and the job = 4000 the final execution time of algorithm decreases 
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whenever we increased the number of mutation. We can state that the increase in 

mutation affected the final execution time. 

 

TABLE 3. 

The effects of increasing the mutation when the number of tasks = 7000  
 

250 200 150 100 50 Mutation 

810166.7 815166 923100 936000 936801 Execution Time 

500 450 400 350 300 Mutation 

741550 743600 747550 752400 771900 Execution Time 
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Fig 7:  The relationship between the mutation and the increase in the time when the number of jobs = 
7000 

 

As shown in Figure 7 and Table 3 when we increased the number of mutation and 

the job = 7000 the final execution time of algorithm decreases sharply whenever we 

increased the number of mutation. We can state that, the increase in mutation 

affected the final execution time significantly. 
 

 

6. CONCLUSIONS 

 

This research aims to obtain better scheduling results by modifying the 

implementations of genetic algorithm. The study proposed increasing the mutation 

of genetic algorithm higher than the typical rates. The study recorded the results 

with a different number of jobs in each time and the observations that occur in final 

execution time in each time while increasing mutation. The research found that 

genetic algorithm get best results with the best time when increasing the mutation 

and these result directly proportional with the increase in the number of jobs. The 

mutation and exploration process has a good effect on the final execution time when 

we have large number of jobs. However, in small number of jobs mutation has no 

effects. 
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