

Computer Engineering and Applications Vol. 5, No. 3, October 2016

ISSN: 2252-4274 (Print) 91

ISSN: 2252-5459 (Online)

Exploration Based Genetic Algorithm for Job Scheduling in Grid

Computing

Hanaa Abdelrahman
1
, Adil Yousif

1
 , Mohammed Bakri Bashir

3

1
Faculty of Computer Science - University of Science and Technology- Sudan

2
Faculty of Science and Technology -Shendi University-Sudan

ABSTRACT

Grid computing presents a new trend to distribute and Internet computing to

coordinate large scale heterogeneous resources providing sharing and problem

solving in dynamic, multi- institutional virtual organizations. Scheduling is one of

the most important problems in computational grid to increase the performance.

Genetic Algorithm is adaptive method that can be used to solve optimization

problems, based on the genetic process of biological organisms. The objective of

this research is to develop a job scheduling algorithm using genetic algorithm with

high exploration processes. To evaluate the proposed scheduling algorithm this

study conducted a simulation using GridSim Simulator and a number of different
workload. The research found that genetic algorithm get best results when increasing

the mutation and these result directly proportional with the increase in the number of

job. The paper concluded that, the mutation and exploration process has a good

effect on the final execution time when we have large number of jobs. However, in

small number of job mutation has no effects.

Keywords: Grid Computing, Genetic Algorithm, Crossover, Mutation, Exploration

1. INTRODUCTION

The term ―the Grid‖ was coined in the mid1990s to denote a proposed distributed

computing infrastructure for advanced science and engineering [1]. Computing

resources are geographically distributed under different ownerships each having

their own access policy, cost and various constraints [2]. Grid computing displays a

new direction for the distribution of the Internet and computing to coordinate the

sharing of resources is homogeneous on a large scale problem solving in dynamic,

multi-institutional virtual organizations. Grid computing has high heterogeneous

computing resources, ranging from computers and one workstation, a group of

workstations to super computers. With network technologies, it is possible to build

large-scale applications on the network environments [3]. Grid computing has

emerged as a distributed methodology that coordinates the resources that are spread

in the heterogeneous distributed environment, Grid is a type of parallel and

distributed system that enables the sharing, selection and aggregation of resources

distributed across multiple administrative domains based on their availability,

capability, performance, cost and user’s quality-of-service requirements . A Grid is

loosely coupled, geographically distributed and heterogeneous computers in the grid

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ComEngApp-Journal

https://core.ac.uk/display/86430738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hanaa Abdelrahman, Adil Yousif , Mohammed Bakri Bashir

Exploration Based Genetic Algorithm for Job Scheduling in Grid Computing

92 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

donate printers, application software, disk storage, CPU power etc, Grid uses a

middleware layer to communicate with heterogeneous hardware and datasets [4].

A computational Grid is a hardware and software infrastructure that provides

Dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities .It is a shared environment implemented via the

deployment of a persistent , standards-based service infrastructure that supports the

creation of, and resource sharing with in, distributed communities[5]

 Scheduling is one of the most important problems in computer systems, such as

the network. To increase performance, there is a need to schedule the network

performance and efficiency. Unfortunately, the dynamic nature of the network and

also the demands of different users, due to the complexity of the problem is the

schedule of the network. This means that the efficiency of resources and the network

is always changing dynamic nature. Possible for the user and other financial cost of

the process is important. The goal of the network schedule is to find the optimal

allocation of resources and to function, and to overcome the heterogeneous

resources and maximize overall system performance. The network is known as the

tabulation in the decision-making process of scheduling resources listed on multiple

administrative domains. And this process can include searching multiple

administrative domains to use one device or schedule one job to use multiple

resources in a single location or multiple locations. Define the function to be

anything needs to be a resource request of bandwidth, to application, for a range of

applications. We use the term resources to mean anything can be scheduled:

machine, disk space, network quality of service, and so on [6]. From the point of

view of scheduling systems, a higher level abstraction for the Grid can be applied by

ignoring some infrastructure components such as authentication, authorization,

resource discovery and access control. Thus, in this paper, the following definition

for the term Grid adopted: ―A type of parallel and distributed system that enables the

sharing, selection, and aggregation of geographically distributed autonomous and

heterogeneous resources dynamically at runtime depending on their availability,

capability, performance, cost, and users' quality-of-service requirements‖ [7]. Each

job consists of a set of tasks . The task has a number of processing requirements. In

the exceptional case when the job consists of only one task we recognize with and

the processing requirements with. Each task is associated with a number of

resources and possibly be processed on any of the resources of [8] . Job scheduling

on grid computing represents a great challenge. Genetic algorithm is one of the

widely used algorithms for scheduling on grid computing. The process of exploring

new solution in the genetic search space is an important issue. Because sometimes

the initial population so far from the best solution because initial population is

random.

This paper contains six sections. Section two describes the related works. Section

three gives details about genetic algorithm. Section four illustrates the proposed

scheduling algorithm. Section five describes simulation environment and the results.

We concluded in section six.

2. RELATED WORK

Natural metaheuristics such as hill climbing, genetic algorithm and particle

swarm optimization are inspired by the natural phenomena to solve complex

combinatorial real world problems. Hill Climbing (HC) is a local search

optimization mechanism. It is an iterative technique that begins with a random

http://en.wikipedia.org/wiki/Local_search_%28optimization%29

Computer Engineering and Applications Vol. 5, No. 3, October 2016

ISSN: 2252-4274 (Print) 93

ISSN: 2252-5459 (Online)

solution in the search space, and then tries to discover optimized solutions by
continuously modifying a single element of the current solution. If the modification

generates a better candidate solution, the modification is considered, otherwise the

modification is discarded [9]. Similar to the HC mechanism is Tabu Search (TS)

which can be defined as ―a strategy for solving combinatorial optimization problems

whose applications range from graph theory and matroid settings to general pure and

mixed integer programming problems‖[10]. Tabu Search has superiority over Hill

Climbing as it has a memory facilitates in keeping on exploration even if the

improving movement is absence. Moreover, the memory prevents the TS scheduling

mechanism form trapping in local optimum that has been visited previously.

However, TS uses single search path of solutions and not population search or tree

search. In single search path techniques for each candidate solution in this path, the

technique assesses a set of moves through the solution search space and chooses the

best toward the next solution.

The main challenge for optimization mechanisms is to increase the possibility of

finding the global optimal solutions. Greedy optimization mechanism such as HC

and TS strive to improve each single step; they can find the solution fast. However,

greedy optimization mechanisms are often traps in local optimal solutions[11].

Evolutionary optimization mechanisms, such as differential evolution and genetic

algorithm have a limited range of movements; which reduces the likelihood of

trapping in local or sub optimal solutions. However, they are slower in finding

optimal solutions as a result of the complexity in managing the population

movements[12]. TS, HC and GA are used to schedule jobs on computational grid;

these metaheuristics scheduling mechanisms outperform the grid basic scheduling

mechanisms in most cases[13, 14].

Swarm intelligence (SI) is a new class of nature inspired metaheuristics based on

population optimizations. The population elements are particles that aim to find the

global optimal candidate solution by communicating with other particles and with

the environment. In SI such as particle swarm optimization (PSO), ant colony

optimization (ACO) and firefly algorithm (FA) particles do not die, and rather they

move throughout the search space themselves. PSO and ACO have been used as

scheduling mechanisms to map the jobs to resources on computational grid in

several researches [8, 15-17].

3. GENETIC ALGORITHM

Genetic algorithm (GA) is an optimization metaheuristic that imitates the process

of natural evolution. GA generates a random initial population of feasible candidate

solutions, that is a set of integer random numbers, and each solution represents a

chromosome. Each chromosome is a vector indexed with a number from 1 to NP,

where NP is the population size. After the initial population is generated, the

population chromosomes are refined using crossover and mutation operations. GA

has a limited range of movements; and this reduces the likelihood of trapping in

local optimum solutions. Nevertheless, they are slower in discovering optimum

solutions as a result of the complexity in managing the population movements [12].

Figure 1 describes the follow of genetic algorithm.

http://en.wikipedia.org/wiki/Heuristic

Hanaa Abdelrahman, Adil Yousif , Mohammed Bakri Bashir

Exploration Based Genetic Algorithm for Job Scheduling in Grid Computing

94 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

FIGURE 1. Flow Chart of Genetic Algorithm.

Abraham et al (2000) presented a hybrid of three of the nature's mechanisms GA,

SA and TS for job scheduling on computational grids. The hybrid mechanism

showed a better convergence and enhanced the search process of GA. A simple

version of GA is utilized in [18] to find an optimal or suboptimal schedules for the

grid job scheduling problem. A Hierarchical mechanism for scheduling jobs using

Genetic Algorithms is proposed for computational grid to increase the scalability of

the scheduling process [19]. In [20] a suboptimal optimization mechanism for

scheduling job on computational grid based on genetic algorithm was developed.

The Suboptimal mechanism is capable to converge in simple problems. However, in

complex scheduling problems the mechanism cannot converges the search space.

Two models, single service and multiple services, are presented by [21]to estimate

the completion time for jobs on computational grid using GA. To enhance GA

further, an integration between job clustering using fuzzy C-Mean and a scheduling

mechanism using GA was developed in [22]. To reduce the repetitions of the

generations in GA, Delavar et al (2010) introduced a new scheduling mechanism to

achieve a higher speed and to decrease the communication costs. To speeds up

convergence and to minimize the search time, a rank based genetic scheduler is

proposed by Abdulal et al. (2010). Furthermore, they utilized MCT schedule to

initialize the algorithm.

Genetic Algorithm (GA) GAs are adaptive methods that can be used to solve

optimization problems, based on the genetic process of biological organisms [2].

The Standard Genetic Algorithm follows the method of haploid sexual reproduction.

In the Standard Genetic Algorithm, the population is a set of individual binary

integers such as 1001011. Each individual represents the chromosome of a life form.

There is some function that determines how fit each individual is, and another

function that selects individuals from the population to reproduce. The two selected

chromosomes crossover and split again. Next, the two new individuals mutate. The

process is then repeated a certain number of times. Let’s consider each of the

highlighted notions in more detail. Fitness is a measure of the goodness of a

chromosome, that is, a measure of how well the chromosome fits the search space,

or solves the problem at hand. For the standard genetic algorithm, the fitness f is a

function from the set of possible chromosomes to the positive reals. Selection is a

process for choosing a pair of organisms to reproduce. The selection function can be

any increasing function, but we will concentrate on fitness-proportionate selection,

whose selection function is the probability function, crossover is a process of

exchanging the genes between the two individuals that are reproducing. There are

several such processes, but we will consider only one-point crossover, a process that

is both standard and simple. A random integer i is selected uniformly between 1 and

n. This is the place in the chromosome at which, with probability p c , crossover will

occur. If crossover does occur, then the chunks up to i of the two chromosomes are

swapped[23].

start
Initialization of

Population

Valuation (Fitness

value)

Solution

found
Stop

Reproduction

Computer Engineering and Applications Vol. 5, No. 3, October 2016

ISSN: 2252-4274 (Print) 95

ISSN: 2252-5459 (Online)

We describe the seven steps in the Standard Genetic Algorithm as described in
Figure 3. Start with a population of n random individuals each with l-bit

chromosomes. Calculate the fitness f(x) of each individual. Choose, based on

fitness, two individuals and call them parents. Remove the parents from the

population. Use a random process to determine whether to perform crossover. If so,

refer to the output of the crossover as the children. If not, simply refer to the parents

as the children. Mutate the children with probability p m of mutation for each bit.

Insert the two children into an empty set called the new generation. Return to Step 2

until the new generation contains n individuals. Delete one child at random if n is

odd. Then replace the old population with the new generation. Return to Step 1.

Figure 2 illustrates pseudo code genetic algorithm.

FIGURE 2. Genetic Algorithm Pseudo Code

4. EXPLORATION BASED GENETIC ALGORITHM

Crossover operation may produce degenerated population. In order to avoid this,

mutation operation is performed. Mutation operation can be bit flipping,

interchanging, inversion, insertion, reciprocal exchange or others. In case of

insertion a node is inserted at random position in the string. This is because a node

along the optimal path may be eliminated through crossover. Using insertion, it can

be brought back as shown in Figure 3. Once mutation is completed, the offspring

generated by mutation have to be validated with the same process used in crossover.

Simple Genetic Algorithm ()

begin

initialize population;

evaluate population;

While termination criterion not

reached

{

select solutions for next

population;

perform crossover and

mutation;

evaluate population;

}

end

Hanaa Abdelrahman, Adil Yousif , Mohammed Bakri Bashir

Exploration Based Genetic Algorithm for Job Scheduling in Grid Computing

96 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

FIGURE 3: Mutation process

Exploration process occurs during the mutation stage assuming the best solutions

are far from the available solutions. Genetic Algorithm may traps in local optimal

as the algorithm continue searching the same area and regenerate same solutions.

Sometimes the optimal solutions are far from the already discovered solutions, as

shown in Figure 4. So, it is better if the search process explored new areas.

FIGURE 4: Exploration in Genetic Algorithm

In this paper, we have increased the mutation in genetic algorithm in order to get

better results, and this increase applied as increase the mutation rate of the genetic

algorithm. The research increased the proportion of mutation at a constant rate in

every time and registers the results with observations. Furthermore, the research,

changes the number of tasks in each time to find out to what extent we need to

increase mutations rate in the genetic algorithm to obtain efficient results.

5. EXPERIMENTAL RESULTS

In this section, we'll show the findings through an increase in the mutation on

genetic algorithm and process of exploration. To evaluate the proposed mechanism,

this research has considered different size of workload traces ranging from

lightweight loads containing only 500 jobs to heavy load contains 7000 jobs. Each

experiment was repeated several times with different random seeds, and the

averages finish times were calculated until the results were saturated. In our

experience we have high exploitation by increasing crossover rates in genetic

algorithm in each scenario.

TABLE 1.

The effects of increasing the mutation when the number of tasks = 500

250 200 150 100 50 Mutation

2800 2800 2800 2800 2800 Execution Time

500 450 400 350 300 Mutation

2800 2800 2800 2800 2800 Execution Time

Computer Engineering and Applications Vol. 5, No. 3, October 2016

ISSN: 2252-4274 (Print) 97

ISSN: 2252-5459 (Online)

job =500

1000

1500

2000

2500

3000

50 100 150 200 250 300 350 400 450 500

mutation

fi
n

al
 e

xe
cu

ti
o

n
 t

im
e

Time

FIGURE 5: The relationship between the mutation and the increase in the time when

the number of jobs = 500

As shown in Table 1 and Figure 5 when the mutation rate is increased and the job

= 500 the execution time remained constant. This result indicate that the increase in

mutation have no effect when the number of jobs is small.

TABLE 2.

The effects of increasing the mutation when the number of tasks = 4000

250 200 150 100 50 Mutation

663136.4 666954.5 721400 724650 731400 Execution Time

500 450 400 350 300 Mutation

539720 569523 579720 581640 583320 Execution Time

a.

job =4000

500000

550000

600000

650000

700000

750000

50 100 150 200 250 300 350 400 450 500

mutation

fi
n

a
l

e
x
e
c
u

ti
o

n
 t

im
e

Time

FIGURE 6: The relationship between the mutation and the increase in the time when

the number of jobs = 4000

From Table 2 and Figure 6 we can observe that when we increased the number of

mutation and the job = 4000 the final execution time of algorithm decreases

Hanaa Abdelrahman, Adil Yousif , Mohammed Bakri Bashir

Exploration Based Genetic Algorithm for Job Scheduling in Grid Computing

98 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

whenever we increased the number of mutation. We can state that the increase in

mutation affected the final execution time.

TABLE 3.

The effects of increasing the mutation when the number of tasks = 7000

250 200 150 100 50 Mutation

810166.7 815166 923100 936000 936801 Execution Time

500 450 400 350 300 Mutation

741550 743600 747550 752400 771900 Execution Time

job =7000

700000

750000

800000

850000

900000

950000

50 100 150 200 250 300 350 400 450 500

mutation

fi
n

a
l

e
x
e
c
u

ti
o

n
 t

im
e

Time

Fig 7: The relationship between the mutation and the increase in the time when the number of jobs =
7000

As shown in Figure 7 and Table 3 when we increased the number of mutation and

the job = 7000 the final execution time of algorithm decreases sharply whenever we

increased the number of mutation. We can state that, the increase in mutation

affected the final execution time significantly.

6. CONCLUSIONS

This research aims to obtain better scheduling results by modifying the

implementations of genetic algorithm. The study proposed increasing the mutation

of genetic algorithm higher than the typical rates. The study recorded the results

with a different number of jobs in each time and the observations that occur in final

execution time in each time while increasing mutation. The research found that

genetic algorithm get best results with the best time when increasing the mutation

and these result directly proportional with the increase in the number of jobs. The

mutation and exploration process has a good effect on the final execution time when

we have large number of jobs. However, in small number of jobs mutation has no

effects.

Computer Engineering and Applications Vol. 5, No. 3, October 2016

ISSN: 2252-4274 (Print) 99

ISSN: 2252-5459 (Online)

REFERENCES

[1] C. K. Ian Foster , Steven Tuecke •, "The Anatomy of the Grid Enabling

Scalable Virtual Organizations," {foster, tuecke}@mcs.anl.gov, carl@isi.edu.

[2] R. B. a. B. N. Ajith Abraham, "Nature’s Heuristics for Scheduling Jobs on

Computational Grids."

[3] H. JIN, X. S. † a) , †, W. Q. , †, a. D. Z. , †, and N. , "DRIC: Dependable Grid

Computing Framework," IEICE TRANS. INF. & SYST.,, vol. .E89–D,

FEBRUARY 2006.

[4] M. P. M. Dipti Sharma "Job Scheduling Algorithm for Computational Grid in

Grid Computing Environment," International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 3, May 2013.

[5] F. D. a. S. G. Ak, "Scheduling Algorithms for Grid Computing: State of the

Art and Open Problems " January 2006

[6] H. S. Maryam Rabiee "Job Scheduling in Grid Computing with Cuckoo

Optimization Algorithm " International Journal of Computer Applications vol.

62, January 2013

[7] F. D. a. S. G. Akl, "Scheduling Algorithms for Grid Computing: State of the

Art and Open Problems " 2006.

[8] A. Yousif, S. M. Nor, A. H. Abdullah, and M. B. Bashir, "A Discrete Firefly

Algorithm for Scheduling Jobs on Computational Grid," in Cuckoo Search and

Firefly Algorithm, ed: Springer, 2014, pp. 271-290.

[9] A. Yousif, A. H. Abdullah, S. M. Nor, and A. Abdelaziz, "Intelligent Task

Scheduling for Computational Grid," presented at the 1st Taibah University

International Conference on Computing and Information Technology, 2012. P.

Brucker, Scheduling algorithms: Springer Verlag, 2007.

[10] A. Abraham, R. Buyya, and B. Nath, "Nature’s heuristics for scheduling jobs

on computational grids," in The 8th IEEE International Conference on

Advanced Computing and Communications (ADCOM 2000), 2000, pp. 45–

52.

[11] S. Li, Y. Li, Y. Liu, and Y. Xu, "A GA-based NN approach for makespan

estimation," Applied Mathematics and Computation, vol. 185, pp. 1003-1014,

2007.

[12] A. Abraham, R. Buyya, and B. Nath, "Nature’s heuristics for scheduling jobs

on computational grids," 2000, pp. 45-52.

[13] R. Entezari-Maleki and A. Movaghar, "A genetic algorithm to increase the

throughput of the computational grids," International Journal of Grid and

Distributed Computing, vol. 4, 2011.

[14] H. Liu, A. Abraham, and A. E. Hassanien, "Scheduling jobs on computational

grids using a fuzzy particle swarm optimization algorithm," Future Generation

Computer Systems, vol. 26, pp. 1336-1343, 2010.

[15] M. Dorigo and T. Stützle, Ant colony optimization: the MIT Press, 2004.

[16] A. Abraham, H. Liu, W. Zhang, and T. G. Chang, "Scheduling jobs on

computational grids using fuzzy particle swarm algorithm," 2006, pp. 500-507.

[17] V. Di Martino and M. Mililotti, "Scheduling in a grid computing environment

using genetic algorithms," 2002, p. 297.

Hanaa Abdelrahman, Adil Yousif , Mohammed Bakri Bashir

Exploration Based Genetic Algorithm for Job Scheduling in Grid Computing

100 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

[18] S. Sanyal, A. Jain, S. K. Das, and R. Biswas, "A hierarchical and distributed

approach for mapping large applications to heterogeneous grids using genetic

algorithms," in Cluster Computing, 2003. Proceedings. 2003 IEEE

International Conference on, 2003, pp. 496-499.

[19] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, "Evaluation of

job-scheduling strategies for grid computing," Grid Computing—GRID 2000,

pp. 191-202, 2000.

[20] Y. Gao, H. Rong, and J. Z. Huang, "Adaptive grid job scheduling with genetic

algorithms," Future Generation Computer Systems, vol. 21, pp. 151-161,

2005.

[21] S. Lorpunmanee, M. Sap, M. Noor, and A. H. Abdullah, "Fuzzy C-Mean And

Genetic Algorithms Based Scheduling For Independent Jobs In Computational

Grid," Jurnal Teknologi Maklumat, vol. 18, pp. 1-13, 2006.

[22] G. Singh, 1, a. M. S. Manna, and 2, "Genetic Algorithms: An Unbiased

Optimization Technique for Image Segmentation."

