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electrolyte, including solvents and salts, for LSBs strongly depends on its physical and chemical properties,
which is heavily controlled by its molecular structure. In this review, the fundamental properties of organic
electrolytes for LSBs are presented, and an attempt is made to determine the relationship between the
molecular structure and the properties of common organic electrolytes, along with their effects on the LSB
performance.
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Electrolyte, which is a key component in electrochemical devices, transports ions between the 

sulfur/carbon composite cathode and the lithium anode in lithium-sulfur batteries (LSBs). The 

performance of a LSB mostly depends on the electrolyte, due to the dissolution of 

polysulfides into the electrolyte, along with the formation of a solid electrolyte interphase 

(SEI). The selection of electrolyte and its functionality during charging and discharging is 

intricate and involves multiple reactions and processes. The selection of the proper electrolyte, 

including the solvents and salts, for LSBs strongly depends on its physical and chemical 

properties, which is heavily controlled by its molecular structure. In this mini review, the 

fundamental properties of organic electrolytes for LSBs are presented, and an attempt is made 

to determine the relationship between the molecular structure and the properties of common 

organic electrolytes, along with their effects on the LSB performance. 

1. Introduction 

With the emergence of new portable electronic devices and of hybrid and electric vehicles in 

our daily lives, the demand for high-energy batteries has increased rapidly. Moreover, storing 

renewable energy (e.g., solar, wind, wave, etc.) when it is abundant and available also 

requires high-energy batteries. Conventional Li-ion batteries using a lithium metal oxide 
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cathode and graphite anode, which were introduced by Sony in 1991, feature a theoretical 

specific energy of 400 Wh kg-1[1]. In practice, only half of the theoretical specific energy has 

been achieved to date, which is unable to meet the current requirements for electric vehicles 

and hybrid electric vehicles [2, 3]. Moreover, metal oxide batteries contain heavy transition 

metals, which not only reduce the specific capacity but also increase the overall cost of the 

battery due to the scarcity of heavy transition metals in the earth’s crust. To solve this 

problem, researchers have focused on different cathode materials with high theoretical 

capacity, such as sulfur. Although studies on the Li/S system have been ongoing for the last 

thirty years, the system has yet to be commercialized due to many unsettled issues. The most 

well-known problems of the Li/S system are its short cycle life, low coulombic efficiency, 

poor safety, and a high self-discharge rate, which are related to the dissolution of longer chain 

polysulfides in organic electrolytes [4]. On the other hand, the dissolution of longer chain 

polysulfides is equally important for the performance of the Li/S system to overcome the 

challenges of low ionic and electronic conductivity of sulfur and lithium sulfide, specifically 

in order to achieve a higher discharge voltage [5]. This appears to be a Goldilocks problem, 

where the dissolution of longer chain polysulfides has both positive and negative effects. 

Numerous research studies have been conducted on the cathode, anode, and electrolyte to 

minimize the challenges, and significant advances have been achieved. There are some 

excellent reviews on Li/S batteries, specifically on cathodes, which cover the current ongoing 

research and understanding of the Li/S system [6, 7, 8, 9]. These papers have meticulously 

reviewed the correlation between the electrode morphology and the cycling performance, 

along with the effects of different conducting additives, binders, and interlayers. Very few 

papers available from open sources have focused on the effects of different electrolytic 

components (e.g., solvents, salts, additives, etc.) on the cycling performance of the Li/S 

system, except for these three review papers [4, 5, 10], which are solely focused on the effects of 

different electrolytes on the cycling performance of Li/S batteries. No review papers were 
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found that comprehensively discuss the structure-property relationships of the electrolytic 

components (solvents, salts and additives) that dictate the cycling performance of any 

electrochemical system. This has motivated us to write this mini review, which explains how 

the molecular structures of solvents and salts affect the electrochemical performance of the 

cells containing them. This mini review also focuses on the common physicochemical 

properties that should be considered during the selection of electrolytes and the relationship 

between the molecular structure and the respective physicochemical properties. 

2. Principles and background of the lithium/sulfur battery system 

A battery is an electrochemical device that can store electrical energy through chemical means 

and can deliver the electrical energy through chemical reaction when needed. In lithium-sulfur 

batteries (LSBs), electrical energy can be stored in the sulfur electrode through a chemical 

reaction between lithium and sulfur. Like all other rechargeable batteries, LSBs also consist of 

an anode, a cathode, and electrolyte. Figure 1 describes the components and the operating 

principle of LSBs.  

 

Figure 1 Schematic diagram of lithium-sulfur (Li-S) cell showing its components and the 

chemical reaction. 
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After fabrication, the Li-S cell is in a charged state and will discharge when connected with a 

load. During discharging, oxidation occurs at the anode surface where lithium metal atoms 

form lithium ions (Li+) by losing one electron each. The electrons then pass through the load 

and reach the cathode, where sulfur is reduced by accepting electrons and lithium ions to form 

lithium sulfide. During charging, however, the opposite phenomena occur, i.e., the oxidation 

of sulfur and the reduction of lithium.  

Even though the overall reaction is shown as a single step, in reality, the reaction has multiple 

steps. The theoretical capacity of a Li-S full cell is 1166 mAh/g, which is equal to 1166 Ah/kg. 

The average discharge voltage plateau (since the discharge shows multiple plateaus) is 2.2 V, 

and hence, the gravimetric energy density of a Li-S cell is = 2.2 × 1166 ≈ 2600 Wh/kg. The 

average volumetric energy density of a Li-S full cell is 2200 Wh/L. As mentioned earlier, the 

reduction of sulfur has multiple steps, which include both single-phase and two-phase 

reduction. The details of the reduction products, steps, and mechanism are stated below and 

are shown in Figure 2. 

 

Figure 2 The charge-discharge curve shows the oxidation and reduction of sulfur [1]. 

Reprinted with permission. Copyright 2012 Nature Publishing Group. 
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Step 1: A solid-liquid two-phase reaction where S8 is reduced to Li2S8. The reduction product, 

which is Li2S8, is highly soluble in liquid organic electrolyte due to its high polarity. This 

liquid solution acts as a catholyte for further reduction.  

Step 2: A liquid-liquid single-phase reduction where dissolved Li2S8 is reduced to Li2S6 and 

Li2S4. 

Step 3: A liquid-solid two-phase reaction where the dissolved Li2S6 and Li2S4 polysulfides are 

further reduced to insoluble Li2S2.  

Step 4: A solid-solid single-phase reaction where insoluble Li2S2 is reduced to Li2S.  

There is huge controversy about the reaction mechanism and steps of the Li-S system. Few in 

situ characterizations have been done; however, it was found that the formation of Li2S6 along 

with Li2S8 occurs during the formation of the first plateau. Moreover, the individual steps do 

not produce any one specific product, but instead produce multiple reduction products [11]. 

Researchers are still struggling to find concrete proof of the reduction mechanism. Very 

recently, Wild et al. [9] wrote a critical review of the reduction mechanism and attempted to 

model the polysulfides. Their model output the reduction products and the corresponding 

voltages, which are shown in Table 1 [9]. 

Table 1 Reactions and their corresponding voltages during charging and discharging of an 

LSB [9]. 

Step Corresponding reaction Voltage 

1 
S8 + 2Li+ + 2e- ↔ Li2S8 >2.3V 

 
3Li2S8 + 2Li+ + 2e- ↔ 4Li2S6 

2 2Li2S6 + 2Li+ + 2e- ↔ 3Li2S4 2.3 to 2.1 V 

3 

Li2S4 + 2Li+ + 2e- ↔ 2Li2S2 

1.9 to 2.1 V 

Li2S4 + 6Li+ + 6e- ↔ 4Li2S 

4 Li2S2 + 2Li+ + 2e- ↔ 2Li2S < 1.9 V 
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More simply, the first two steps, which involve the reduction of S8 to S8
2-, S6

2-, and S4
2-, 

resemble the first plateau of the discharge curve, while the last two steps, where S4
2- is 

reduced to S2
2- and S2-, form the second plateau of the discharge curve, which is shown in 

Figure 2. 

3. Key challenges for the lithium/sulfur system and possible solutions 

Elemental sulfur has been used as a cathode since 1962 when Herbet and Ulam fabricated a 

sulfur-based electric dry cell [12]. Over the following forty years, sulfur batteries did not gain 

much attention and were only used as primary batteries due to their intricate chemistry [13, 14]. 

With the advancement of technology and organic chemistry, however, interest in the Li-S 

system was revived, which attracted a number of researchers in the early 2000s. Although the 

Li/S system is a hot topic in current research and numerous researchers all over the world are 

working on it, researchers have yet to solve all the challenges in order to commercialize the 

system. There are three main challenges that need to be solved for the commercialization of 

LSBs. 

The first challenge is the insulating nature of sulfur. Sulfur is not electrically conductive at all 

and shows an electrical conductivity of 5 × 10-30 S·cm-1[15, 16, 17, 18, 19, 20, 21], which leads to poor 

active material accessibility and low utilization of sulfur in the electrode. The second 

challenge is the reduction product of sulfur. When sulfur is fully reduced (during discharging), 

lithium sulfide (Li2S) is formed, which is not only electrically insulating but also ionically 

insulating [22, 23, 24, 25]. Moreover, when sulfur is reduced to Li2S, it is deposited on the surface 

of the cathode, and once a thin Li2S layer completely covers the whole electrode, further 

lithiation is largely impeded, causing the voltage to decrease rapidly. Thus, the complete 

conversion of sulfur to Li2S rarely occurs, and in every case, the discharge capacity is less 

than 80% of the theoretical capacity [9]. Third, and the most fatal challenge by far, polysulfide 



  

7 

 

can dissolve into the electrolyte. Polysulfide anions, which are readily formed as reaction 

intermediates, are highly soluble in organic electrolyte solvent [24], where they then create a 

concentration gradient in the electrolyte and move to the anode surface through diffusion. 

These soluble species are then reduced to Li2S, which is insoluble in the electrolyte; thus, Li2S 

is precipitated out of the electrolyte and forms a passivation layer at the lithium anode surface, 

which causes the loss of active material and increases the impedance of the Li-S cell. 

Furthermore, the polysulfide dissolution and precipitation process alters the morphology of 

the cathode in each cycle, such that it does not return to its initial morphological structure, 

leading to ~80% volume expansion from S to Li2S, which induces strain inside the electrode 

and results in low active material utilization and poor cycle life [26, 27, 28, 29]. Polysulfide 

dissolution is also responsible for the well-known “shuttle” phenomenon, where long-chain 

polysulfides diffuse to the surface of the lithium anode due to the concentration gradient and 

are reduced to short-chain polysulfides, which also creates a concentration gradient on the 

anode side. The short-chain polysulfides can then move back to the cathode where they are 

oxidized to long-chain polysulfides, again creating a concentration gradient. This parasitic 

process occurs continuously and creates an internal “shuttle” phenomenon [30, 31, 32, 33, 34, 35, 36, 

37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. The general mechanism of the shuttle phenomenon involving 

organic electrolyte is shown in Figure 3, which is redrawn from the concept that Akridge et al. 

proposed [47]. 
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Figure 2 Schematic diagram of the shuttle phenomenon of polysulfides in Li/S batteries 

during charging-discharging.  

To be precise, this shuttle phenomenon, along with its parasitic reactions, causes the 

following problems: (1) the consumption or loss of active material, (2) the corrosion of the Li 

metal anode, and (3) the polarization of the Li anode when insoluble Li2S and Li2S2 are 

formed and deposited on the Li surface. In other words, this shuttle phenomenon leads to low 

active material utilization, low coulombic efficiency, and short cycle life for the Li-S system 

[48, 49].  

The first challenge in overcoming the insulating nature of sulfur in the Li/S system can be 

mitigated by the addition of conductive carbons, which have very high electronic and ionic 

conductivity, along with high voltage stability, low density, and chemical inertness [37]. 

Moreover, different chemical and mechanical processes for the fabrication of sulfur/carbon 

composites and innovative electrode design help increase the active material accessibility and 

utilization [50, 51]. The second and third challenges are, however, closely related to the 

electrolyte, because the initial discharge products (longer chain polysulfides) are soluble in 

most organic electrolytes, which leads to Li2S deposition and the shuttle phenomenon. The 

selection of a suitable electrolyte (both solvents and salts) can abate the challenges and 

advance the commercialization of the Li/S system [52, 53, 54]. 
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4. Fundamentals of liquid organic electrolyte for the Li/S system 

The electrolyte is one of the most important components in an electrochemical device, along 

with the anode and cathode. The main task of the electrolyte is to transfer ions between the 

two electrodes. However, the emergence of the Li-ion system and more advanced systems 

beyond Li, which can provide high energy and high power, have changed this view of the 

functionality of the electrolyte. The electrolyte can not only transport ions but can also help 

form a solid electrolyte interphase (SEI) on the electrode surface, which will prevent reactions 

between the electrolyte and the electrodes. Organic liquid electrolytes mainly consist of two 

or three substances, namely, the solvent and the salt, although in some cases, additives are 

also included. For the Li/S system, the theoretical voltage window between sulfur and lithium 

is less than 3 V (vs. Li/Li+), which facilitates the use of several organic solvents as the 

electrolyte in the Li/S system. Various forms of polysulfides (e.g., short chain, long chain, 

radicals) have been found to form during charging and discharging, which react with almost 

all the organic solvents that fit into that electrochemical window [10]. This reactivity of 

polysulfides, sulfides, and sulfur radicals limits the selection of organic solvents for the Li/S 

system to an extremely narrow range. Before we discuss the structure-property relationships 

of organic electrolytes, it is important to mention the fundamental properties of electrolytes, 

specifically the solvents and salts. 

4.1. Properties of solvents 

All protic solvents release hydrogen gas at 2.2 V, which makes them unsuitable as electrolyte 

solvents for the Li/S system. In addition to the large electrochemical voltage window, liquid 

organic solvents should meet a number of criteria to be effective electrolyte solvents, notably, 

high ionic conductivity, low electrical conductivity, high transference number, high and low 

temperature stability, high dielectric permittivity, low viscosity, inertness to all other cell 

components (e.g., the separator, electrode, spacer, etc.), low flammability, low toxicity, and 
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finally, low cost [55]. It is difficult to find a unary solvent that possesses all these properties; 

however, a number of binary and ternary solvents exhibit the aforementioned properties. 

Organic carbonates and esters, which meet almost all the criteria, are widely used in Li-ion 

batteries. Mixtures of cyclic (ethylene carbonate and propylene carbonate) and linear 

carbonates (dimethyl carbonate and diethyl carbonate), which have high and low viscosity, 

respectively, feature the optimum properties of an effective electrolyte solvent and have been 

used in Li-ion batteries for two decades. It was expected that these electrolytes could also be 

used in the Li/S system. However, the polysulfide intermediates in the multiple reduction 

steps irreversibly react with carbonates and esters to form a sulfide carbonate complex, which 

makes these electrolytes unsuitable for the Li/S system. Figure 4 shows the reaction 

mechanism proposed by Gao et al. [56]. 

 

Figure 4: Proposed reaction mechanism of polysulfides in carbonate electrolyte [53]. Reprinted 

with permission. Copyright 2011, American Chemical Society. 

Figure 4 shows that nucleophilic polysulfides attack the single-bonded carbon atoms attached 

to the oxygen atoms of the linear diethyl carbonate (DEC) and cyclic ethylene carbonate (EC) 

molecules, which are partially positive and act as electrophiles due to electron attraction by 

the highly electronegative oxygen atoms. The central carbon atom, which is double bonded to 

an oxygen atom, is stabilized, however, by its resonance structure and shows steric hindrance, 

and thus it is unable to react with polysulfide nucleophiles. A similar mechanism can also be 
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found for ester-based electrolytes. Moreover, ester-based electrolytes show very low dielectric 

permittivity and dipole moments, making them unsuitable to dissolve salts, and hence, 

reduces their ionic conductivity [57]. 

Ethers, which are unsuitable electrolyte solvents for Li-ion batteries due to their instability 

above 4 V, have been considered as potential electrolytes for the Li/S system. Most ethers are 

stable in liquid form over a wide range of temperatures and have low viscosity, resulting in 

high ionic conductivity [58]. Most importantly, ethers do not react with polysulfides or sulfur 

radicals during charging and discharging processes, which makes them suitable electrolytes 

for the Li/S system [56]. The physical and chemical properties of common ether solvents are 

listed in Table 2  [55]. 

Table 2 Physicochemical properties of ether-based solvents for Li/S batteries. 

Solvent Molecular formula Melting 
temperature [°C] 

Boiling 
temperature [°C] 

Viscosity at 
25 °C 

Dielectric 
permittivity 

Dimethoxy methane 
(DMM) 

 

-105 41 0.33 2.7 

Diethoxy ethane 
(DEE) 

 

-74 121 - - 

Dimethoxy ethane 
(DME) 

 

-58 84 0.46 7.2 

Tetrahydrofuran 
(THF) 

 

-109 66 0.46 7.2 

1,3-Dioxolane  
(DOL) 

 

-95 78 0.59 7.1 

2-Methyl-
tetrahydrofuran 

 

-137 80 0.47 6.2 

2-Methyl-1,3-
dioxolane (DOL) 

 

- - 0.54 4.39 

4-Methyl-1,3-
dioxolane (DOL) 

 

-125 85 0.60 6.8 
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Table 2 shows that almost all ether-based electrolytes (both linear and cyclic) exhibit similar 

physicochemical properties, although cyclic ethers have been shown to have better cycling 

performance than linear ethers [58]. Importantly, cyclic ethers have higher viscosity than linear 

ethers, which impedes the movement of ions and results in low ionic conductivity. Thus, a 

mixture of linear and cyclic ethers is generally used as the electrolyte in Li/S systems. Among 

the linear ethers, dimethoxyethane (DME) is chosen due to its high dielectric permittivity, 

which helps dissolve a large amount of Li-based salts for better ionic movement. Among the 

cyclic ethers, THF and DOL show higher dielectric permittivity. DOL is selected, however, 

due to its low dipole moment, which is approximately 1.25 D compared to 1.7 D for THF. 

The dipole moment of a molecule strongly depends on the atoms and their arrangement in the 

molecule. Even though DOL contains two oxygen atoms, which are highly electronegative, its 

dipole moment is lower than that of THF, which has only one oxygen atom. Figure 5a shows 

the molecular structures and atomic arrangements of THF and DOL. The overall dipole 

moment of a molecule is approximately the vector sum of the bond dipole moments. In DOL, 

the two opposite bond dipole moments mitigate each other, and the resultant dipole moment is 

lower than that of THF. Because nucleophilic polysulfides have a higher tendency to react 

with molecules with higher dipole moments, THF is avoided as the solvent. 

 

Figure 5: (a) Directions of the dipole moments in THF and DOL and (b) the molecular 

structure of TEGDME. 
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In addition to ethers, linear and cyclic glymes are also used as solvents in Li/S systems, and 

among them, tetraethylene glycol dimethyl ether (tetraglyme or TEGDME) and polyethylene 

glycol dimethyl ether (PEGDME) are notable [59, 60]. All glymes have a very wide temperature 

stability (-27 °C to 275 °C) and high dielectric permittivity (~6.7). Nevertheless, their 

viscosity is 8 to 10 times higher than that of both linear and cyclic ethers, which reduces their 

ion transfer mobility. Moreover, viscous electrolytes have very low wettability and show very 

high impedance, which makes them unsuitable for Li/S systems [60]. 

As stated earlier and supported by the physicochemical properties observations, a single 

solvent cannot fulfill all the fundamental requirements for a suitable electrolyte. Moreover, in 

Li/S systems, the electrolytes should have additional properties, such as polysulfide solubility, 

resistance to reactions with nucleophilic polysulfides, etc. [10]. A number of binary and ternary 

solvent mixtures containing combinations of different unary solvents have been used in the 

Li/S system. Only a few of them, however, could meet the property requirements, which are 

shown in Table 3. Among binary mixtures, TEGDME/DOL and DME/DOL have been 

studied extensively [61, 62, 63, 64, 65, 66, 67]. Both TEGDME/DOL and DME/DOL were found to 

show very high discharge capacity. Though TEGDME/DOL has high viscosity and low ionic 

conductivity compared to DME/DOL, it has a synergistic effect on the ionic conductivity and 

polysulfide solubility. Henderson and Wesly [64] showed that in the presence of the additional 

oxygen atoms in TEGDME (Figure 5b), Li+ ions are solvated due to the attraction of the 

electronegative oxygen atoms. They also studied different ratios of TEGDME to DOL and 

found that the best performance was obtained with a ratio of 30:70, at which the sulfur 

utilization and ionic conductivity were maximized. 
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Table 3 Properties of common binary and ternary solvents for Li/S battery electrolytes. 

Solvent mixture Ratio Viscosity [cP] Ionic conductivity at 25 oC [mS/cm] Reference 

TEGDME/DOL 33:67 1.9 8.5 [66] 

DME/DOL 50:50 0.5 10.5 [67] 

THF/DOL/Toluene 10:30:6 - 3.5 [14] 

 

DME/DOL binary solvent may be the most popular and best-studied solvent for the Li/S 

system due to its attractive properties. Both DOL and DME have very high dielectric 

permittivity, low viscosity, high temperature stability and low molecular weight and are able 

to form a stable SEI on the Li metal surface. Because of these attractive properties, the binary 

solvent of DOL and DME has very high ionic conductivity, low viscosity, and high 

polysulfide solubility [63], which makes it one of the best potential electrolyte solvents. In 

addition to binary solvents, ternary solvents have also been considered. Peled et al. [14] studied 

a THF/DOL/toluene mixture, although its low ionic conductivity and dielectric permittivity 

limit its potential usage. 

Gao et al. [56] evaluated the cycling performance of a sulfur-carbon composite with different 

electrolyte solvents. Figure 6 shows that carbonate-based electrolytes exhibit no capacity after 

the first discharge cycle due to the irreversible reaction between the carbonates and 

polysulfides, which is triggered when the nucleophilic polysulfides attack the partially 

polarized and higher-dipole-moment carbonate-based solvents. In contrast, ether-based 

solvents show high initial capacity along with high capacity retention. Among the ether-based 

solvents, DOL/DME (1:1) shows a very high discharge capacity along with the highest 

capacity retention. The better physicochemical properties of DOL/DME (1:1), such as higher 

ionic conductivity, lower viscosity, and higher dielectric permittivity, which depend on the 

molecular structure of DOL and DME, afford a higher discharge capacity. Moreover, the 

chemical inertness of DOL and DME towards the polysulfides and sulfur radicals that evolve 
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during charging and discharging also play a pivotal role in achieving a higher discharge 

capacity and better capacity retention. 

 

Figure 6: Effects of different solvents on the cycling performance of Li/S batteries [56]. 

Reprinted with permission. Copyright 2011, American Chemical Society. 

Mikhaylik and co-workers [68] studied the utilization of sulfur in ether-based electrolytes for 

Li/S batteries. They specifically focused on DOL, DME, and an equimolar mixture of DOL 

and DME. They found that the solvents DOL and DME, which have low viscosity, provide a 

balance among active material utilization (sulfur), rate capability, and high temperature 

stability over a wide operating range. DOL, which has a lower dipole moment due to the 

presence of two oxygen atoms with opposite dipole moment directions, has lower polysulfide 

solubility and slower kinetics than DME, but generates a more stable SEI on the anode 

(lithium) surface, which reduces the shuttle problem and affords high capacity retention 

(Figure 7). On the other hand, DME, which is a linear molecule with a higher dipole moment 

than DOL, shows higher reactivity towards lithium but exhibits higher polysulfide solubility 

and faster kinetics, which improve the cathode operation [68], and thus DME-based batteries 

feature high initial capacity but lower capacity retention. Figure 7 also shows that the mixture 
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of these two electrolyte solvents (1:1 by volume) exhibits a synergistic effect related to the 

discharge capacity and cycle life. 

 

Figure 7 Cycling performance of DOL and DME-based electrolyte [65]. Reprinted with 

permission. Copyright 2010, Electrochemical Society. 

In addition to the general properties of ideal electrolytes, such as viscosity, ionic conductivity, 

thermal stability, dielectric permittivity, and donor number, DOL and DME-based electrolyte 

possesses another significant property, which is the formation and stabilization of S3
*- radicals 

[69, 70]. Other electrolytic solvents such as tetrahydrofuran (THF), which has a similar donor 

number and dielectric permittivity to DME, does not exhibit the stabilization of S3
*- radicals. 

It was hypothesized that the higher number of oxygen atoms in the molecular structure of 

DOL/DME can trigger the formation of stable S3
*- radicals [70, 71]. It has been found, based on 

extensive observations, that the S3
*- radical helps to increase the active material utilization in 

the Li-S battery by completing the reduction and oxidation of sulfur and lithium sulfide (Li2S), 

respectively [72]. Therefore, the DOL and DME-based electrolyte shows higher 

electrochemical performance. 
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An important observation was reported by Barchasz and co-workers [58]. They investigated the 

first discharge capacity with respect to the number of oxygen atoms present in the molecular 

structure of the solvent and found a linear relationship, where a greater number of oxygen 

atoms in the solvent increase the initial capacity. As seen in Figure 8, polyethylene glycol 

dimethoxyethane (PEGDME) shows the highest initial discharge capacity compared to other 

ethers that contain fewer oxygen atoms. The primary reason behind this finding is the six-fold 

coordination of lithium ions and the higher solvation capability of longer chain glymes. The 

secondary reason behind this finding is the greater solubility of shorter chain polysulfide in 

longer chain glymes, which reduces the passivation of the cathode surface and hence 

increases the active material utilization [58]. Even so, these longer chain glymes fail to exhibit 

high discharge capacity due to their higher viscosity. On the other hand, DOL (DIOX in 

Figure 8) shows a similar discharge capacity to TEGDME, even though DOL contains only 

two oxygen atoms. The mechanism behind this is still not fully understood, although it has 

been proposed that the cyclic molecular structure has a different dipole moment orientation 

than linear ethers and thus solvates lithium differently [58]. 
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Figure 8 First discharge capacity versus the number of oxygen atoms in the different 

electrolyte solvents [55]. Reprinted with permission. Copyright 2013, Elsevier. 

4.2. Salts for the Li/S system 

Like solvents, salts should also possess certain properties to be ideal solutes for the solvents 

and to be a component of a suitable electrolyte. The general requirements of a salt that can be 

used as an electrolyte solute are as follows: 

(1) The salt should have higher solubility in aprotic solvent, which means that the lattice 

energy of the salt should be low, so that without forming a hydrogen bond, the Li+ ion 

can be dissociated from its counter anion. Moreover, after the formation of Li+, the 

anion should have a very high mobility in that solvent [55]. 

(2) The anion should have very high stability and be inert to the solvent. This 

phenomenon is related to the lattice energy and solubility. Stable anions can form 

crystals with very low lattice energy and can dissociate very easily. In aprotic solvent, 

the dissociation of salts occurs by the attraction of lone pair electrons in the solvent to 

Li+. In other words, dissociation occurs through a Lewis acid-base interaction between 

the solvent and the salt [73]. Thus, conventional simple salts cannot be used due to their 

very high lattice energy, which cannot be overcome by the weak Lewis acid-base 

interaction. 

(3) The salt, specifically the anions, should exhibit an optimum donor number (ability to 

donate electrons). Because higher donor number anions are strong Lewis bases and 

have a tendency to donate electrons, the stability of the anion is reduced. Moreover, 

higher donor number anions have a significant effect towards reducing the solubility 
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of polysulfides. In contrast, lower donor number anions may act as Lewis acids, which 

will react with nucleophilic polysulfides. 

(4) Finally, both the anion and the cation should be inert towards other parts of the battery, 

specifically the separator, current collectors, and shells. 

Table 4 Molecular structure, ionic conductivity, and donor number of common Li-salt anions 

[57]. Reprinted with permission. Copyright-2015, RSC Publishing. 

Li-salt anion Molecular structure Solvent (1:1) with 1 M Li 

salt 

Ionic conductivity at 25 oC 

[mS/cm] 

Donor number* 

PF6
─ 

 

EC-DMC 10.8 2.5 

ClO4
─ 

 EC-DMC 10.1 

8.4 
DOL-DME 7 

DOL-TEGDME 5 

TFSI─ 

 EC-DMC 9 

5.4 DOL-DME 11 

DOL-TEGDME 7 

BF4
─ 

 

EC-DMC 4.9 6 

AsF6
─ 

 EC-DMC 11.1 

2.5 

BETI─ 

 DOL-DME 11.1 

- 
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* The donor number of different anions, measured using tetrabutylammonium (TBA+) as the 

counter cation [74]. 

Table 4 summarizes the molecular structures and physicochemical properties of conventional 

lithium salts commonly used in Li/S batteries. As mentioned earlier, carbonate-based 

electrolytes react with polysulfides and are not suitable for Li/S systems, which makes LiPF6, 

LiBF4, and LiAsF6 incompatible [75]. These three salts generally show better physicochemical 

properties in carbonate-based solvents, although LiPF6 will induce the polymerization of DOL, 

greatly decreasing the ionic conductivity of the electrolyte, which makes it inappropriate for 

the Li/S system. LiClO4, however, is compatible with both carbonate- and ether-based 

solvents and shows very low ionic conductivity in ether-based electrolyte compared to that in 

carbonate-based electrolyte. Moreover, chlorate anions (ClO4
-) are very strong oxidants (due 

to the high oxidation number of chlorine) and react vigorously with ethers at high temperature 

and high current [55]. The two remaining salts, lithium bis(trifluoromethylsulfonyl)imide 

(LiTFSI) and lithium bis(pentafluoroethanesulfonyl)imide (LiBETI), are considered to be 

suitable in ether solvents due to their high ionic conductivity. LiTFSI, however, features a 

lower viscosity, well-defined temperature stability, optimum donor number, and low cost, 

which makes it a better option than LiBETI as a Li/S battery salt in ether-based solvents. 

LiTFSI, which features a low melting point (234 °C) and very high conductivity (11 mS/cm) 

in DOL-DME solution, has a resonance stabilized anion (TFSI-). Due to the resonance 

stabilization, TFSI- anions act as very poor Lewis bases, leading to lower lattice energy and 

higher ionic conductivity. Thus, LiTFSI can dissociate even in solvents with very low 

dielectric coefficients [76, 77]. 
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Figure 9 Resonance structure of the TFSI anion [51]. Reprinted with permission. Copyright-

2004, American Chemical Society. 

Figure 9 shows the five different stable resonance structures of the TFSI anion, where the 

negative ions (delocalized electron clouds) continuously shift between the nitrogen and the 

four oxygen atoms. This resonance stabilization is also triggered by two strongly electron-

withdrawing triflic (CF3) groups. Hence, the bond between Li+ and TFSI- is very labile and 

dissociates with very little energy [78]. Thus, the LiTFSI salt is highly soluble in both protic 

and aprotic solvents. In protic solutions (e.g., water), LiTFSI can have a solubility as high as 

21 mol/kg (molal), and in aprotic solutions (DOL-DME), 7 M (molar) has been reported so 

far [79, 80]. The low lattice energy and dissociation energy of LiTFSI creates a new electrolyte 

system, commonly known as concentrated electrolyte or “salt in solvent” electrolyte. 

It is important to mention here that the solubility of polysulfides sharply drops with 

decreasing polysulfide chain length. This has been elaborately described by Pan et al. [81, 82] in 

their Li-S redox flow battery system. They also found that L2S4 polysulfide shows less than 

0.1M solubility in DOL/DME solution, whereas THF and other solvents (e.g. dimethyl sulfo-



  

22 

 

oxide) show higher solubility. From the above information, it seems that the DOL/DME 

solvent is not suitable for Li/S battery electrolyte. However, they further observed that, with 

the addition of stable anion, the solubility of L2S4 polysulfide in DOL/DME electrolyte 

increased drastically. A small amount of LiTFSI salt can increases Li2S4 and Li2S2 polysulfide 

significantly. 

It can be inferred from the properties of the solvents and salts that a binary mixture of DOL 

and DME along with the organometallic salt LiTFSI should exhibit better electrolytic 

properties in Li/S systems. For further confirmation, it is necessary to employ the electrolyte 

in an electrochemical cell and evaluate its performance. Kim et al. [83] recently compared the 

effects of different salts in DOL-DME solvent on the cycling performance of Li/S batteries, 

and the results are shown in Figure 10. As expected, LiTFSI shows the best cycling 

performance, specifically the best initial discharge capacity and capacity retention compared 

to the other salts, due to its high ionic conductivity in DOL-DME solvent and its highest 

donor number. These two properties are determined by the anionic stability of the salt and the 

compatibility between the salts and solvents. In both cases, LiTFSI shows promising features 

due to the five different resonance structures of TFSI. LiBETI, which also possesses a stable 

anion, shows promising capacity but is impaired by its high viscosity and cost. On the other 

hand, LiPF6 and lithium triflate (LiTf) are not well-suited to DOL-DME solvent and also have 

low donor numbers. 
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Figure 10 Cycling performance of Li/S cells containing a DOL/DME solvent mixture with a 

1 M salt concentration [74]. Reprinted with permission. Copyright-2007, Elsevier. 

Cao et al. [84] investigated the anionic activity of Li-salts towards the stability of the lithium 

metal anode in the Li/S battery. They used equimolar DOL/DME as the solvent and LiTFSI 

and lithium bis(fluorosulfonyl)imide (LiFSI) as the salts with a concentration of 3 M and 

observed the cycling performance. The cycling performance, presented in Figure 11, of the 

LiTFSI-containing electrolyte shows a high specific capacity and high capacity retention, 

even after 200 cycles, whereas the cell with the LiFSI-containing electrolyte was unable to 

achieve high capacity and exhibited very low capacity retention, even after forty cycles. They 

finally concluded that the N-S bond in the FSI− anion is the weakest, and its breakage could 

lead to the formation of lithium sulfate (LiSOx) in the presence of polysulfide. The continuous 

breakage of the N-S bond will induce the fast growth of insulating lithium sulfate passivation 

layers, along with other complexes. On the other hand, the C-S bond in the TFSI− anion is 

much stronger compared to the N-S bond in the FSI− anion, and hence, breakage of the C-S 

bond in the TFSI− anion is unlikely; furthermore, even if it does break, it leads to the 

formation of lithium sulfide (LiSx) in the presence of soluble polysulfide. They also stated that 
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the diffusion coefficient of FSI− anions (DFSI) in 3 M LiFSI-DME/DOL is clearly larger than 

the measured value for Li (DFSI > DLi). The diffusion coefficient of TFSI− anions in 3 M 

LiTFSI-DME/DOL, however, is similar to that of Li+ (DTFSI ≈ DLi). The higher diffusion 

coefficient of FSI− anions generally reflects weaker coordination by the solvent molecules, 

which may accelerate their decomposition on the surface of the Li metal anode, leading to a 

greater extent of polysulfide shuttling. 

 

Figure 11  a) Cycling stability and b) coulombic efficiency of Li-S batteries with 3 M LiTFSI 

and 3 M LiFSI in DOL-DME (1:1 by volume) [74]. Reprinted with permission. Copyright 2016, 

Wiley. 

Another important characteristic for LiTFSI salt in DOL/DME solvent has been observed by 

Suo et al. He found that highly concentrated LiTFSI salt in DOL/DME (later, he named it 

solvent-in-salt electrolyte) exhibits better electrochemical performance compared to its low 

concentration electrolyte. He demonstrated that this concentrated electrolyte can not only 

inhibit the polysulfide dissolution phenomenon but also can effectively protect the metallic 

lithium anode against the formation of lithium dendrites [80]. Figure 12 shows that 7M LiTFSI 

in DOL/DME solvent not only exhibits a higher discharge capacity compared to 2M and 4M 

electrolyte but also shows very high rate capability and better Coulombic efficiency. 
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Figure 12 a) First discharge–charge profiles of C/S electrodes in electrolytes with different 

ratios of LiTFSI to DOL:DME (1:1 by volume). b) Cyclic performance. c) Coulombic 

efficiency at a current rate of 0.2 C. d) Rate capability with 7M LiTFSI electrolyte. Reprinted 

with permission. Copyright 2013, Nature communication. 

Transportation of ions, another important characteristics of electrolyte, has been briefly 

discussed in this section. The weakly coordinated lithium ion-based salts release lithium ion 

when solvated in solvent. During charging and discharging these ions move back and forth in 

between electrodes. The numbe of ions transported between the electrodes and their speed 

determine the energy and power of a battery. The ability to transfer a higher number of ions 

with greater speed between electrodes is also one of the key criteria for a suitable electrolyte. 

Ion transport between electrodes generally occurs in three ways: migration, convection, and 

diffusion [55]. Among them, migration and diffusion are the major transport means; however, 
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ions in the electrolyte that are transported through convection are coordinated with electrolyte 

molecules and are driven to the counter electrode by an electric field. The speed of the ions 

have a significant impact on the energy and power of a cell. 

ν = 1/(6πƞr)                                        (1) 

The ion mobility is heavily dependent on the electrolyte, specifically the structure of the 

solvent and the viscosity of the electrolyte, which depend not only on the solvent structure but 

also on the salt. Eq. (4), the Stokes-Einstein equation, determines the velocity of the ions. In 

Equation (4), ƞ represents the viscosity of the electrolyte, r represents the solvation radius, 

and ν represents the ion mobility. The equation states that the ion mobility is inversely 

proportional to the viscosity and the solvation radius. Again, the viscosity and the solvation 

radius are functions of the solvents and salts. Solvents and salts that have high molecular 

weights and larger sizes show high viscosity and hence reduced ion mobility. Therefore, 

TEGDME/DOL has a lower ionic conductivity than DOL/DME. 

5. Additives and formation of a solid electrolyte interphase (SEI) for Li/S batteries 

From a thermodynamic point of view, electrolytes and salts should have an electrochemical 

stability window (energy gap between the highest occupied molecular orbital and the lowest 

unoccupied molecular orbital) that is beyond the oxidation and reduction potentials of the 

anode and cathode, respectively. The Li/S system, where Li metal is used as the anode, has a 

reduction potential of -3.04 V (vs. the standard hydrogen potential), which is higher than the 

lowest unoccupied molecular orbital energy of most aprotic electrolytes. Thus, the electrolyte 

should continuously decompose when the potential of the electrode passes beyond the 

electrochemical stability window. However, electrolytes have been shown to decompose and 

form an SEI layer on the lithium surface, which prevents further decomposition of the 

electrolyte [85]. In the Li/S system, when DOL/DME with LiTFSI salt is used as the electrolyte, 
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an SEI is formed on the Li anode by the decomposition of DOL and LiTFSI [86]. The exact 

mechanism for the formation of the SEI is yet to be discovered, although it has been 

hypothesized that a thin layer of lithium complexes (LiOR, HCO2Li, Li2NSO2CF3, Li2SO2CF3 

and LixCFy) derived through reactions of DOL, LiTFSI, and lithium [85] comprise the thin SEI 

layer. However, due to the infinitive volume change of the Li anode during Li 

deposition/depletion, this thin SEI layer cannot completely prevent further decomposition of 

the electrolyte during cycling. 

As mentioned earlier, the Li/S battery suffers from several notable challenges, and among 

them, the shuttle phenomenon, where longer chain polysulfides react with lithium and are 

reduced to shorter chain polysulfides, is the most notorious. The thin SEI layer that is formed 

by the decomposition of DOL and LiTFSI fails to prevent polysulfide diffusion to the lithium 

metal surface, and hence, severe capacity fading occurs in subsequent cycles. Comprehensive 

research has been conducted to mitigate this challenge, and the use of additives, specifically 

lithium salts (simple salts), was found to be helpful [10, 87, 88, 89]. Among them, LiNO3 results in 

the most significant improvement in the cycling performance by forming a more stable and 

thicker SEI layer, which suppresses the shuttle phenomenon [58, 90]. Aurbach et al. proposed 

that LiNO3, LiTFSI, and lithium metal react with ether-based electrolyte to form multiple 

complexes, which are then deposited at the lithium metal-organic electrolyte interface [86]. 

Xiong et al. meticulously studied the SEI formation and characterized its chemical structure. 

They found not only that LiNO3, LiTFSI, and DOL are responsible for SEI formation but also 

that polysulfides play a critical role in thickening the SEI layer [89, 91, 92]. They proposed that 

long-chain polysulfides (Li2S8, Li2S6, and Li2S4) dissolve during the first discharge, are 

reduced to short-chain polysulfides (Li2S2 and Li2S), and are deposited on the lithium metal 

surface along with the reduced product of LiNO3 (LiNxOy) 
[91, 92]. Another layer is also 

deposited on top of this layer, which consists of lithium sulfate and lithium thiosulfate formed 
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through oxidation of the polysulfides (Figure 13). They also inferred that this top layer is 

much more stable and prevents direct contact between the electrolyte and the fresh lithium 

surface, which helps reduce the shuttle phenomenon [93]. A schematic illustration of their 

proposed SEI formation mechanism is shown below. 

 

Figure 13 Effects of LiNO3 and polysulfides on the formation of the SEI [81]. Reprinted with 

permission. Copyright 2012, Elsevier. 

The effects of LiNO3 on the electrochemical performance have been studied by several 

researchers [59, 94, 95]. Among them, Xin et al. studied the effects of LiNO3 on the coulombic 

efficiency of a polypyrrole-coated sulfur electrode. They found that with the addition of 0.1 M 

LiNO3, 100% of the coulombic efficiency was retained, even after fifty cycles (Figure 14), 

and they concluded that a small amount of LiNO3 can form a dense and stable SEI, which 

successfully prevents the reduction of longer chain polysulfides, hence alleviating the shuttle 

phenomenon. 
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Figure 14 Effect of LiNO3 on the coulombic efficiency of a polypyrrole-coated sulfur cathode 

[55]. Reprinted with permission. Copyright 2015, Elsevier. 

6. Application of DOL/DME-LiTFSI-based electrolyte in Li/S batteries 

Thus far, it has been well established that DOL/DME and LiTFSI-based electrolyte with 

LiNO3 additive possesses better electrochemical performance than alternative electrolytes. A 

short survey of the Web of Science was conducted regarding number of papers published on 

Li/S batteries in 2016. Among the 553 papers published in 2016, more than 92% used 

DOL/DEM and LiTFSI electrolyte in their Li/S system, with most using LiNO3 as an additive 

in the electrolyte. A few recent works that have been published in high-impact journals, where 

DOL/DME and LiTFSI-based electrolyte was used along with a modified cathode and 

separator, are presented below, with details on their electrochemical performances. 
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Figure 15 Electrochemical performance of Li/S systems where DOL/DME and LiTFSI 

electrolyte and LiNO3 additive were used with a) a polybenzimidazole binder [96] and b) 

carbon nanotubes (CNTs) and activated carbon nanofibers (ACNFs) in an MnO2 host [97]. 

Reprinted with permission. Copyright 2016, NPG and Elsevier. 

Figure 15a and 15b shows the discharge capacity of two different Li/S cells that used 

DOL/DME and LiTFSI electrolyte with LiNO3 additive. The only difference was in the 

fabrication of the cathode, where a polybenzimidazole binder was used in Figure 15a and a 

combination of different conductive carbons was used in Figure 15b. In both cases, the 

discharge capacity remained stable, even after several hundred cycles, and a very high 

coulombic efficiency was achieved, which is only possible by using the best combination of 

solvents, salts, and additives in the electrolyte. 
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Figure 16 Electrochemical performance of an Li/S system containing a DOL/DME, LiTFSI, 

and LiNO3 electrolyte system and a) a graphene/Li2S cathode [98] or b) a sandwich -type 

hybrid carbon nanosheet (SCNMM)/sulfur cathode [99]. Reprinted with permission. Copyright 

2016 Elsevier and 2014 Wiley. 

Similar to Figure 15, Figure 16 also shows the electrochemical performance of a Li/S system 

containing a DOL/DME, LiTFSI, and LiNO3 electrolyte system along with two modified 

sulfur cathodes. In Figure 16a, lithiated sulfur anchored in single-layer graphene was used 

instead of the conventional sulfur/carbon composite cathode. Alternatively, a sandwich-type 

hybrid carbon nanosheet and sulfur composite was applied in Figure 16b. In both cases, a high 

and stable discharge capacity was achieved, even at very high current density. It has been 

accepted by the scientific community that a high electrochemical performance can never be 

achieved by solely modifying the electrodes, specifically the cathode, unless a suitable 

electrolyte is employed. 

7. Carbonate-based electrolyte with a short-chain sulfur-based cathode for Li/S systems 

As discussed earlier, even though carbonate-based electrolytes show better physiochemical 

properties and have been used in Li-ion batteries for the last two decades, they are not suitable 

for Li/S systems due to the irreversible reactions that occur between polysulfides and 

carbonates. The proposed mechanism and reaction products are shown in Figure 4. It was 
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previously established that carbonate-based electrolytes are unsuitable for Li/S systems; 

however, in 2010, Gao et al. [48] reported that carbonate-based electrolytes (EC, PC, and DEC) 

together with LiPF6 salt can be used in Li/S batteries, but only if the sulfur particles are 

homogeneously dispersed inside the micropores of carbon spheres. Later, different 

approaches [100, 101, 102, 103] were adopted to use carbonate-based electrolyte, in which different 

carbon sources were used instead of microporous carbon. Gentle et al. [100] used a hierarchy of 

micropores and mesopores, and Wang et al. [104] impregnated disordered carbon nanofibers 

with sulfur, making them compatible with carbonate-based electrolytes. Both groups 

successfully used carbonate electrolytes, although the mechanism at the molecular level was 

not explained. 

Few hypotheses regarding the mechanisms involved in the use of carbonate-based electrolytes 

have been well-accepted by the scientific community, namely, the formation of special 

complexes, the desolvation of solvated lithium ions in micropores, and the assimilation of 

short-chain sulfurs in micropores [105]. Among them, the latter approach is favored by most 

researchers. Wang et al. have claimed that at high temperature or in solution, short-chain 

sulfurs (S4, S2, etc.) can easily be impregnated into micropores due to their simple and linear 

molecular structure, and during discharge, they react with lithium to form short-chain 

polysulfides, which are nonreactive to carbonate-based electrolytes. The single plateau 

discharge curve and stable cycling performance, as shown in Figure 17, strengthen this claim. 

The conventional two-plateau discharge curve of Li/S systems, where the first plateau results 

from the formation of longer chain polysulfides (Li2S8, Li2S6), is absent in this case, which 

also supports the claim that small-chain sulfurs are confined in the micropores. In addition, 

the exceptional cycling stability, shown in Figure 17, also supports the claim that there are no 

longer chain polysulfides, which are mainly responsible for the abrupt capacity decay with 

cycle number due to the polysulfide shuttle phenomenon. Very recently, Aurbach et al. [105] 
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claimed that porous carbon, with a pore size of 2-3 nm, can not only accommodate short-

chain sulfur but can also accommodate long-chain sulfur or octasulfur (S5 to S8) and also 

exhibits the same discharge plateau behavior, which invalidates the proposed effect of the 

confinement of small-chain sulfurs in the microporous carbon.  

 

Figure 17 (a) Charge-discharge curve and (b) cycling performance of a sulfur-impregnated 

microporous carbon cathode [106]. Reprinted with permission. Copyright 2013, American 

Chemical Society. 

Aurbach et al. [105] also claimed that the formation of an SEI on the sulfur cathode through a 

quasi-solid-state reaction during the initial discharge is responsible for the single plateau 

discharge curve and higher capacity retention. They found that the initial discharge plateau 

showed an extremely high discharge capacity compared to that in the second and third cycles, 

which is due to the irreversible reaction between the carbonate-based electrolyte and the 

microporous carbon/sulfur composite to form an SEI on the cathode surface. Later, Ishikawa 

et al. [101] found that this single plateau behavior is found not only with carbonate electrolytes 

but also with ionic liquid and glyme electrolytes, as shown in Figure 18. They also showed 

support for the quasi-solid-state reaction behavior, as a high discharge capacity during initial 

discharge was also observed in each of the electrolytes that they studied. 
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Importantly, even though the use of carbonate-based electrolyte promotes high capacity 

retention, the discharge capacity is quite low, and the cell voltage is approximately 1.5 V, 

which will reduce the total energy and power of the battery. Therefore, it can be inferred from 

the above discussion that carbonate-based electrolyte can only be used in microporous carbon 

and that the resultant cells still suffer from low energy and power. 

 

Figure 18 Charge-discharge curves of a sulfur/carbon electrode with (a) LiTFSI/G4/HFE, (b) 

LiFSI/EMImFSI and (c) LiPF6/EC:DMC electrolyte at 0.1 C [101]. Reprinted with permission. 

Copyright 2015, Elsevier. 

8. Fluorinated electrolyte system for Li/S battery 

Fluorinated ether-based electrolyte, which is a new kind of solvent for Li-S system was 

recently introduced by Zhang’s group [107] and  Wang’s group. [108, 109]. They used different 

types of linear fluorinated ethers, including bis (2,2,2-trifluoroethyl) ether (BTFE) and 
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1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), instead of DME in the 

DOL/DME and LiTFSI system. They showed that the fluorinated ether-based solvent can 

form a stable and thick SEI, as well as reducing polysulfide dissolution. In addition, BTFE 

can significantly enhance the shelf life of the Li-S system. 

 

Figure 19 Schematic illustration of (a) the reduction of polysulfide dissolution and (b) the 

formation of a thick SEI in DOL/TTE electrolyte [107]. Reprinted with permission. Copyright 

2015, American Chemical Society. 

The schematic illustration in Figure 19 shows that long chain polysulfides only have very 

limited solubility in the DOL/TTE solvent, which decreases the shuttle phenomenon. This 

new electrolyte system looks promising, but more fundamental work needs to be done, such 

as determining its ionic conductivity, viscosity, dielectric permittivity, and temperature 

stability. In addition, a comprehensive DOL-TTE/BTFE phase diagram also needs to be 

drawn to determine the most appropriate ratio of DOL to the fluorinated ethers. 

9. Conclusions  

In this mini review, we provided an overview of suitable organic electrolytes for Li/S systems. 

Moreover, the effect of the molecular structure on the properties of the solvents and salts in 
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the electrolyte was also demonstrated. Proper selection of solvents, salts, and additives can 

significantly abate the challenges of Li/S batteries. However, these challenges are yet to be 

solved completely. The dissolution of elemental sulfur and longer chain polysulfides are 

indispensable and inevitable in Li/S systems. Since sulfur and its polysulfides are insulating in 

nature, polysulfide dissolved in the electrolyte (or catholyte) can effectively increase the 

active material utilization and enhance the redox reaction rate. However, highly soluble 

electrolyte suffers from the shuttle phenomenon due to the induced concentration gradient. 

Many researchers have inferred that manipulation of the solubility of polysulfide, with either 

controlled increases or decreases, can solve the challenges of Li/S systems. Concentrated 

electrolyte may successfully minimize the shuttle phenomenon by reducing the polysulfide 

solubility but can result in low ionic mobility and hence, low rate capability. If the lithium ion 

mobility and the transference number can successfully be improved in such concentrated 

electrolytes or ionic liquids, which also have appreciable polysulfide solubility, which 

increases the reaction rate and active material utilization, it is possible to mitigate all the 

challenges of Li/S systems. A mixture of DOL/DME solvents along with LiTFSI salt has been 

proven to be effective for ion transport, the dissolution of sulfur and polysulfides, the 

formation of a suitable SEI layer and the utilization of high amount active material by 

formation of stable S3
*- radicals. The anionic stability of the LiTFSI salt and the reaction 

products of DOL and lithium increase the ionic conductivity and contribute to the thickness of 

the SEI layer, respectively. An additive salt, such as LiNO3, can also significantly reduce the 

shuttle phenomenon and increase the coulombic efficiency through the formation of a stable 

and dense SEI layer. Though the combination of DOL/DME, LiTFSI, and LiNO3 is currently 

the best electrolyte for the Li/S system, a few vital concerns remain. The high reactivity of 

LiNO3 and the high flammability of DOL/DME impede the commercialization of Li/S 

batteries. In addition, the cycling stability is another area of concern that can be mitigated by 

additives in this electrolyte system. Moreover, the amount of electrolyte also plays an 
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important role in the electrochemical performance of Li-S system. The dissolution of 

polysulfides largely depends on the electrolyte to sulfur ratio [110]. Comprehensive research 

should be conducted in DOL/DME and LiTFSI electrolyte systems to find out the electrolyte 

to sulfur ratio. The ongoing search for additives, salts, and solvents will surely resolve all the 

challenges of Li/S systems. We believe, however, that the solution lies in the electrolyte rather 

than in cathodic and anodic modifications of the Li/S system. 
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