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Abstract Abstract 
In this letter, SiC nanowires were adopted to reinforce the nanoparticle-based shear thickening fluid (STF) 
to improve its rheological properties. The reinforced STF showed a significant increase in viscosity. A 
Split-Hopkinson pressure bar was implemented to evaluate the dynamic response of STF at strain rates in 

the range of 3 × 103–1.2 × 104/s. For the pure STF, the flow stress reaches a saturation value with 
increasing strain rates and shows almost no strain rate sensitivity, whereas the flow stress of the 
reinforced STF increases with strain rates, and the strain rate sensitivity to flow stress is obvious owing to 
the resistance of nanowires. The essence of this study is to reveal that there is a limiting value of the flow 
stress of traditional nanoparticle-based STF at high strain rates due to the lubrication force among 
particles. SiC nanowires can be used to break this limitation of the nanoparticle-based STF. 
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In this letter, SiC nanowires were adopted to reinforce the nanoparticle-based shear thickening fluid

(STF) to improve its rheological properties. The reinforced STF showed a significant increase in

viscosity. A Split-Hopkinson pressure bar was implemented to evaluate the dynamic response of

STF at strain rates in the range of 3� 103–1.2� 104/s. For the pure STF, the flow stress reaches a

saturation value with increasing strain rates and shows almost no strain rate sensitivity, whereas the

flow stress of the reinforced STF increases with strain rates, and the strain rate sensitivity to flow

stress is obvious owing to the resistance of nanowires. The essence of this study is to reveal that

there is a limiting value of the flow stress of traditional nanoparticle-based STF at high strain rates

due to the lubrication force among particles. SiC nanowires can be used to break this limitation of

the nanoparticle-based STF. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4994066]

The study on energy absorption and penetration resis-

tance of materials/structures has attracted considerable inter-

est in the field of armor systems. Many efforts have been

done on materials such as metal foam,1 ceramic,2 and Kevlar

fabrics.3 Recently, some works focused on the integration of

shear thickening fluid (STF) in soft armor systems to

improve ballistic performance.4–7 When the fabrics impreg-

nated with STF are subjected to impact loading, the viscosity

of STF in fabrics increases sharply at a certain shear rate.

Part of the energy is dissipated through the increased viscos-

ity of STF;8,9 further, the sliding of the fibers is prevented by

the STF in the fabrics, which increases the loading capacity

of the fabrics. Thus, viscosity is an essential property of STF

required in various applications.10,11 However, the viscosity

of STF relies on the lubrication force, which is influenced by

the material, size, and volume fraction of the nanopar-

ticles.12–14 Currently, STF is mainly prepared from fumed

silica or sub-micron particles, because of which it is difficult

to improve the viscosity of STF based on nano-particles.15

To address this issue, we used SiC nanowires to reinforce the

nanoparticle-based STF, which was expected to increase the

viscosity by hindering the flow of nanoparticles.

In addition, we also tested the viscosity and dynamic

flow stress of the reinforced STF to demonstrate the effec-

tiveness of this method at high strain rates. STF undergoes

high strain rate loading in the order of 103 to 105/s in appli-

cations involving energy absorption and vibration control,

such as fabrics impregnated with STF against ballistic load-

ing16,17 and vibration control by squeeze flow of STF,18

whereas at present, the dynamic behavior of STF is mainly

characterized by a rheometer at strain rates of the order of

103/s.19,20 Moreover, some studies have been conducted on

the numerical simulation of fabric or squeeze flow with

STF,21 where the dynamic material parameters at high strain

rates are in urgent demands.

In this letter, SiC nanowires were used to reinforce pure

silica nanoparticle-based STF, and then the dynamic

response of the pure and reinforced STFs at high strain rates

was investigated using the Split-Hopkinson pressure bar

(SHPB). Pure STF consists of silica nanoparticles and poly-

ethylene glycol, and the silica nanoparticles with a diameter

approximately 400 nm were fabricated using the Stober

method. Then, the specific amount of SiC nanowires [prod-

uct of Nanjing XF Nano Company, as shown in Fig. 1(a)]

was dispersed by the ultrasonic method and added into pure

STF to improve the rheological properties. The total volume

fraction of the solid phase in the STF was 56 vol. %, as

shown in Table I.

The viscosities of STFs with/without SiC nanowires

were tested at shear rates in the range of 10�3–100/s with a

rheometer (Anton-Paar MCR301) at a temperature of 25 �C.

As shown in Fig. 1(b), there are three phases in each curve:

shear thinning, shear thickening, and again shear thinning.

The viscosity of the reinforced STF is significantly higher

compared to that of pure STF. At low shear rates, the viscos-

ity values of the STF reinforced with 0.625 vol. % and

1.25 vol. % SiC nanowires are about 300 Pa s and 750 Pa s,

respectively, which are several times larger than those of

pure STF. In the shear thickening phase, the maximum vis-

cosities of STF with and without SiC nanowires are approxi-

mately 587 Pa s and 465 Pa s, respectively, and the increase

in amplitude is approximate to 26%. Although the viscosity

of the STF with 1.25 vol. % SiC nanowires is the highest at

the low strain rate, the viscosity in the shear thickening zone

is approximately 300 Pa s, which is almost the same as pure

STF but less than the STF with 0.625 vol. % SiC nanowires.

We considered that the excessive quantity of nanowires
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presented the nanoparticles in the case of 1.25 vol. %, which

made the chain of nanoparticles unstable.

The SHPB is widely used to characterize dynamic

mechanical properties of materials, which consists of a strike

bar, an incident bar, and a transmission bar.7,22,23 During the

test, the incident wave, reflection wave, and transmission

wave are recorded using strain gauges mounted on the inci-

dent and transmission bars. The dynamic stress and strain

can be calculated using the following formula:

r ¼ AB

AS
EeT e ¼ 2c

l

ð
eRdt _e ¼ 2c

l
eR; (1)

where r and e are the dynamic stress and strain, respectively;

c is the stress wave velocity in the pressure bar; eR and eT are

the reflection and transmission stress waves, respectively;

AB and As and l are the cross-sectional area of the bar and

specimen and the length of the specimen, respectively. All the

pressure bars are made of aluminum due to the low imped-

ance of STF. The pressure bar is 40 mm in diameter, the

incident and transmission bars are both 1800 mm in length

(elastic modulus EAL ¼ 70 GPa, density q ¼ 2.71 g/cm3, and

wave velocity c ¼ 5218 m/s), and the strike bar is 300 mm

long. The schematic graph of SHPB is shown in Fig. 2. The

sampling rate is 5 MHz. The specimen is 1 mm in thickness

and 40 mm in diameter.22–24

A typical stress wave obtained in the experiments is

shown in Fig. 3(a). The dynamic stress-strain curves are

shown in Figs. 3(b)–3(d). The strain rate has a significant

influence on the flow stress in all the STF samples. The flow

stress of pure STF increases as the strain rate increases, but

such an increasing tendency decreases when the strain rate

exceeds 5000/s. In addition, the flow stress of pure STF

reaches a saturated value of approximately 48.03 MPa at

higher shear rates. However, the STFs reinforced with SiC

nanowires do not show such tendency and saturated value,

and the flow stress continues to increase with the strain rate.

Moreover, the maximum flow stress of the STF reinforced

with SiC nanowires is approximately 70 MPa, which shows

that SiC nanowires have a significant influence on the flow

stress at different strain rates, as shown in Fig. 3(d).

In the SHPB tests, STF samples were compressed

between two pressure bars, which can be considered as

squeeze flow, as shown in Fig. 3(e). According to the

squeeze flow theory,15 both normal and shear stresses in the

STF are induced by dynamic compression. In the case of

pure STF, the lubrication force among the nanoparticles suf-

fers the flow stress produced at low strain rates, namely, the

flow stress can increase with the strain rate within the range

of the lubrication force. Once the flow stress is larger than

the lubrication force at a certain strain rate, STF would flow

in the radial direction, which results in no obvious increment

in flow stress at high strain rates, namely, the flow stress

reaches a saturated value. In the case of reinforced STF,

although the squeeze force acts on the STF, SiC nanowires

prevent the flow of nanoparticles in the radial direction,

which results in an increase in flow stress. Therefore, the

greater the squeeze force, the larger the increase in flow

stress, which corresponds to the strain rate sensitivity to flow

stress in reinforced STF at high strain rates.

The peak stresses at different strain rates are shown in

Fig. 4(a). At strain rates in the range of 3000/s–12 000/s, the

peak stresses in pure STF are approximately 37.2 MPa,

45.6 MPa, 47.9 MPa, and 48.1 MPa, whereas those of the

STF reinforced with 1.25 vol. % SiC nanowires are

41.86 MPa, 52.86 MPa, 63.87 MPa, and 74.41 MPa. It is clear

that the reinforced STFs show significant strain rate sensitiv-

ity compared to pure STF.

The energy absorption E is defined as25

E ¼ EI�S � ET�S ¼
cBAB

EB

ðT

0

r2
I�S tð Þdt� cBAB

EB

ðT

0

r2
T�S tð Þdt;

(2)

where EI�S and rI�S are the incident energy and incident

pulse, respectively, at the front specimen-bar interface;

ET�S and rT�S are the transmission energy and transmission

pulse, respectively, at the back specimen-bar interface. The

energy absorption levels at different strain rates are shown in

Fig. 4(b). It is evident that the reinforced STF has a higher

FIG. 1. SiC nanowires in STF and its

viscosity. (a) SEM graphs of SiC nano-

wires; and (b) Curves of viscosity-

shear rates of samples A, B, and C.

TABLE I. Volume fraction of the solid phase in different STFs.

Sample No. A B C

Volume fraction of SiC nanowires (vol. %) 0 0.625 1.250

Volume fraction of SiO2 (vol. %) 56 55.375 54.750

FIG. 2. Schematic graph of SHPB in the experiment.
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energy absorption capacity compared to the pure STF. The

tendency is in agreement with the strain rate sensitivity of

the STF.

In summary, SiC nanowires were used to reinforce the

STF, which resulted in a significant increase in viscosity

compared to pure STF. In the SHPB experiments, the flow

stress of pure STF reached a saturated value, whereas rein-

forced STF showed a significant increase in flow stress with

strain rate. We considered that SiC nanowires prevented the

flow of silica nanoparticles in the reinforced STF, which

increased the normal and shear stresses at high strain rates. It

means that the reinforced STF can bear a larger dynamic

loading than pure STF, and this improvement will be useful

in future applications.
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