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Highlights 

 

 ESP‐r and BCVTB tools coupling is possible, with minimum computational time penalty 

 Advanced ventilative cooling control algorithms are simulated on coupled BPS tools 

 Developed window system control approaches are verified from numerical analysis 

 

 

 

 

 

Abstract 

Automated window opening control systems with integrated ventilative cooling strategies may 

significantly diminish the thermal discomfort and overheating risk of dwellings during cooling 

periods in temperate climates. One of the challenges with demonstrating the benefits of the 

systems is the lack of building performance simulation (BPS) tools which may represent 

precisely how actual algorithms are applied.  



The study supported herein aims to present a framework of how to simulate an advanced 

ventilative cooling algorithm of a window system on coupled BPS environments (ESP-r and 

BCVTB tools). Parametric analysis has been conducted to verify specific operational functions 

of the system. The analysis uses a renovated single-family house in Denmark (monitored June 

to August, 2016).  

Parametric analysis was highlighted that the performance of the developed ventilative cooling 

strategy for these climatic conditions was not affected by the number of opening steps (3 or 5) 

for low and medium natural indoor ventilation cooling set points (22-24oC). For all the examined 

spaces, the static trigger set points perform better than the dynamic for all the evaluating 

metrics and criteria that were included in this study. Under the proposed framework, the 

simulation of any other developed ventilative cooling concept or system is possible. 

 

Abbreviations 

BCVTB                Building controls virtual test bed software 

BPS                     Building performance simulation (tool) 

ESRU                  Energy Systems Research Unit of the University of Strathclyde 

HVAC                  Heating ventilation and air conditioning systems 

LBNL                   Lawrence Berkeley National Laboratory 

POR                    Percentage outside the range index 

RBC                    Rule based control 
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1. Introduction 

Overheating incidents indoors greatly affect health, productivity, morale, satisfaction and well-

being of building occupants [1]. Scientific research has documented incidents of extensive 

overheating when mechanical cooling is not used in new nearly zero energy and in deep 



renovated residential buildings in the temperate climates of the central and western Europe [2-

5]. A number of post-occupancy surveys have also shown elevated indoor temperatures even 

in heating dominated northern European temperate climates [6,7]. The strict requirements for 

high energy efficiency in building regulations, guidelines and standards for new or existing 

residential buildings with major renovations in temperate climates are oriented mainly to the 

heating season and they often underestimate the potential issues that could arise with regards 

to indoor air quality and thermal comfort during the warmer months (simplified monthly 

methods, in house not in room level; [8]). The building occupants of these climates do not have 

the knowledge of how to efficiently diminish their thermal discomfort indoors and their behavior, 

preferences and attitude might instead increase it [9].  

Experimental research, in real buildings and test cells, and theoretical research have shown 

that attractive passive cooling methods, control strategies and technologies and more 

specifically ventilative cooling provide excellent indoor thermal conditions and air quality with 

minimum energy use [10]. The effectiveness of ventilative cooling strategies depends on the 

availability of a proper natural heat sink (external air mass) with satisfactory temperature 

gradient and the efficient thermal coupling between the sink and the thermal mass [11,12]. In 

most cases, night ventilation strategies could considerably decrease the peak temperature of 

the next day for ‘free-running’ buildings and the cooling load for air-conditioned spaces [10,12]. 

Extensive research has revealed that occupants in naturally ventilated residential buildings 

have larger comfort acceptability and suffer less from ‘sick-building’ symptoms compared to 

those in conditioned spaces [1,13].  

Various researchers have examined the impact on building energy consumption that the use of 

the natural ventilation systems (mainly windows) has in different temperate climates [14-17]. 

Window opening behavior is related with psychological and social factors, education, lifestyle, 

building characteristics, position of the opening in relation to the location of the occupants in 

the building and indoor and outdoor conditions [18-22]. Most of the developed models on 

window opening patterns refer to office buildings and moderate climates. Fabi et al. have 

described a methodology for the application of window opening occupant behavior for 

residential buildings in building performance simulation (BPS) tools [23]. Occupants control on 



window openings or simple venting schedules lead to thermal discomfort risk and unnecessary 

energy waste, undermining the energy savings that natural ventilation could offer [24-26].  

A continuously higher penetration of automated control systems is expected in the coming 

years not only in large scale buildings but also in individual houses, transforming them into 

intelligent smart houses [27,28]. Building automation systems monitor, control and optimize the 

indoor environment, the energy use and the cost savings [29]. These systems are able to 

communicate with each other, return control to the user and give him feedback [29]. Karjalainen 

has concluded (2013) that the system characteristics which improve the level of trust between 

the user and the domestic system are the predictability, the transparency, the individual control 

opportunities, the simplicity, the usability and the suitability for daily life [30]. Automated window 

control opening systems, with integrated smart algorithms, hereafter called ‘window systems’, 

that match the needs of occupants and the building characteristics have high saving potential 

for ventilation and cooling [26,31,32]. 

Window systems with rule-based-control (RBC; heuristic control) are the conventional 

approach and the industry standard [33]. The RBC is based on ‘IF (condition)-THEN (action)’ 

rules and introduce the expert knowledge into the control loop [34]. Advanced window systems 

are complex (especially for large buildings), need sufficient computing power (huge data 

collection), are model and assumptions dependent (fidelity), are expensive for medium size 

buildings, and are not user friendly for operators [35,36]. Schulze et al. (2013) and Martin et al. 

(1996) concluded that complex algorithms in many buildings do not perform better than simple 

ones and setting parameters proved more important than the control strategy itself [37,38].  

Literature review concludes that there were no well documented, mature and validated BPS 

tools which could represent the state-of-the-art ventilation and passive cooling control 

strategies [11,37]. Controls improve performance considerably and, as a result, the control 

representation in BPS tools needs to mirror precisely how actual algorithms are developed and 

applied [39]. Idealized controls that exist in many tools cannot substitute these algorithms 

effectively [39]. The study supported herein aims to present a methodology and a framework of 

how to simulate a developed ventilative cooling algorithm of a window system on time-step 

coupled BPS environments. The window system is oriented to address mainly overheating risk 

during peak summer periods. The ventilative cooling algorithm is presented analytically in 



Section 2.1. In addition, parametric analysis has been conducted to document and verify 

specific operational functions of the window system. These operational functions are related 

mainly with the number of steps of window opening (step-approach) and the nature (dynamic 

or static) of the indoor natural ventilation cooling set point (Section 2.1). The window system at 

its current form uses a 5-steps approach and static indoor natural ventilation cooling set points. 

This analysis used a 1930s single-family deep renovated house close to Copenhagen, 

Denmark and the BPS software ESP-r. For the simulation and realistic representation of the 

control algorithm, the ESP-r software is coupled with Building Controls Virtual Test Bed 

(BCVTB) tool. The model was calibrated to represent, as close as possible, the real indoor 

environment (operative temperature) of the dwelling (13th-18th June 2016). The calibration 

process is highlighted as the initial part of the proposed framework and workflow for the 

verification and documentation of the ventilative cooling performance of the developed window 

systems or any other window system. In addition, the conclusions of the parametrical analysis 

(June to August 2016), as far as the examined operational functions of the window system, will 

be directly applicable for the further development of the system. Both static and dynamic 

thermal discomfort and overheating risk metrics and criteria are used to perform comfort 

assessment for the whole period of the analysis.  

 

2. Methodology 

2.1 Software description and coupling 

For the realistic representation and simulation of the function of the new developed window 

system (effect to the dynamic thermal environment), a custom virtual environment has been 

created with the use of two well-documented tools, ESP-r and BCVTB (Fig. 1). A limited number 

of building simulation software has currently the capability to simulate the effects of a relatively 

complex algorithm for natural ventilation and ventilative cooling, and for this reason a time step 

coupling with an external emulator for controllers has been considered. ESP-r and BCVTB 

could offer the possibility to achieve this goal, if their standard capabilities are extended to 

include external controller of flow network components [40,41]. The connection between ESP-

r and BCVTB was previously developed and presented by Hoes et al. [42]. In this research 

work the HVAC heating and cooling load was managed by a controller, developed in Matlab, 



via BCVTB. In a previous study, focused on an evaluation methodology and implementation for 

natural ventilation control strategies, Fiorentini et al. (2016) integrated the BCVTB 

communication functions in the ESP-r code to achieve time step control of the opening 

components [43]. 

ESP-r is a state-of-the-art open-source BPS software initially developed by the Energy Systems 

Research Unit at the University of Strathclyde (ESRU; [40,44]). ESP-r is based on the finite 

volume method and it has been under constant development and validation for more than three 

decades [45,46]. Dynamic thermal building response and multi-zone airflow phenomena are 

accurately represented in ESP-r [47]. A further advantage is that the ESP-r code is transparent 

to developers and may easily be expanded, modified and recompiled [40,44]. The integrated 

airflow network allows air paths to be described in detail (response to outdoor conditions and 

control; [46]). Generic pressure and flow resistances coefficient are integrated in the tool and 

are described in [47]. Typical window controllers use indoor air temperature (virtual sensor) to 

trigger opening (actuator) at a certain percentage and/or proportional control with hysteresis 

above a benchmark [48]. The open nature of the code allows the development and integration 

of self-developed algorithms and link with other tools [42,43,49]. 

BCVTB (version 1.5.0) is an open-source (Java based) and free available software platform 

developed by Lawrence Berkeley National Laboratory (LBNL) for coupling different simulation 

programs (middleware) and information exchange (real-time data exchanger; [41]). BCVTB is 

an extension of Ptolemy II, a program developed for heterogeneous simulations [50]. Relatively 

complex controls and algorithms may also be implemented directly in its interface.  

The coupling of the two tools was achieved by modifying the relevant sections of the ESP-r 

code of the branch called ‘ESP-r_BCVTB’, and re-compiling it. The code alterations were made 

in the files ‘mfs.F’, which manages the flow network calculations, and ‘mfcntl.F’, which contains 

the code of the controllers. The combination of the two tools for the flow network components 

is not direct and requires a certain level of programming of building simulation software 

knowledge. The computational time in this case remained almost unaltered when compared to 

a simulation of a standard ESP-r model without external coupling. 

The input data may be categorized into two types: parameters and variables. The parameters 

refer to the data that remains constant during the building simulation process and variables 



refer to the data that might change during the simulation. The coupling of the two software 

allows the exchange of an array of numerical values between the ESP-r model and the BCVTB 

controller at the beginning of each time step (measured states, x(k), and measured 

disturbances ud(k) at each time step k; Fig. 1). The measured states array includes the zones 

indoor operative temperatures. The measured disturbance is the outdoor temperature (current 

time is also exchanged). The arrays of measured and disturbances states replicate the real-

time sensor measurements that act as inputs in the window system. The control loop closes 

with the BCVTB controller, which could emulate any control logic and return an array of opening 

percentages uc(k) for all the operable windows in each zone. 

 

 

Fig. 1 Graphical representation of the communication architecture (measured state-disturbance 

and window opening) of the coupled tools (ESP-r and BCVTB).  

 

The ventilative cooling algorithm of the window system is summarized below (Fig. 2). The 

operable windows in each zone are activated by independent controllers. Windows of every 

examined zone open incrementally with 5 discreet steps when the ambient air temperature is 

lower than the indoor operative zone temperature and when the indoor operative temperature 

is higher than the indoor natural ventilation cooling set point. Indoor ventilative cooling set point 

is a static operative temperature set point at its current form. The 5 discrete steps for window 

opening were 10%/25%/50%/75%/100% of the motor actuator, as described in detail in [26]. 

After each control time step, which in this study was considered to be equal to 30 minutes, if 

the indoor operative temperature is higher than the previous time step, the opening percentage 

increases to the next incremental step, otherwise the opening remains unchanged. The 



algorithm was applied to all the roof windows of the zones of the upper floor of the case study 

presented in Section 2.2. 

 

Fig. 2 Ventilative cooling algorithm integrated to window system. (T: stands for operative 

temperature (zone), Tset: stands for indoor natural ventilation cooling set point (dynamic or 

static), i: stands for window opening step (maximum 3 or 5-steps) and t: stands for time interval 

(30 minutes)). 

 

2.2 Case Study 

This section presents the technical and thermal characteristics and details of the dwelling used 

to demonstrate the method for enabling the windows opening algorithm to be modelled when 

the ESP-r building simulation tool is coupled with the BCVTB controls emulator platform. The 

algorithm was implemented in a real house, which was audited and monitored to collect data 

for calibrating the building model. The simulated house is a typical 1930s yellow-brick single-

family house located at a suburban area close to Copenhagen, Denmark. The gross area and 

the surface-to-net-volume ratio are 172.4 m2 and 0.47 m-1 respectively. The house is a two-

storey detached building with a pitched roof and a basement. It is surrounded by vegetation at 

the southern orientation. The house is occupied by a four-member working family with two 

children and has been significantly renovated over the last years. The deep renovation covers 

the increase of the efficiency of the building envelope and the installation of nine high-

performance pivot roof windows with electrically driven motors and actuators. Both floors have 



external brick walls. For the ground floor, the insulation is inside the external wall (compressed), 

and for the upper floor, the insulation is internal (with gypsum boards covering). The roof 

windows with the integrated shading systems were installed at the corridor, the W.C. and the 

three bedrooms (Fig. 3). Side-hung windows are double-glazed from the middle 1990s (not 

renovated). The doors of the house are wooden and the internal space is light-white colored. 

The service rooms are at the ground floor and through stairs there is a connection with the 

basement. The balcony on the south part of the upper floor functions as an overhang for the 

facade windows of the ground floor. Table 1 presents the thermal characteristics (U-value) of 

the case study envelope elements (both floors). Table 2 presents the window-to-net floor area 

ratio for all the examined rooms of the upper floor of the house.  

 

 

Fig. 3. Architecture floor plan of the simulated upper floor (three bedrooms, W.C. stairs and 

corridor) of the examined case study (roof and façade windows are indicated). 

 

The case study has been simulated according to its design specifications in ESP-r (Table 1), 

with an airflow network that accounts for internal air movement between spaces, ventilation 

through windows and infiltration. The internal thermal mass values and the thermal 



characteristics of the non-renovated materials (e.g. old Danish bricks) were extracted from 

International Standards [51]. The case study has been simulated as a ‘free-running’ building 

without mechanical ventilation and active systems (heating and cooling) for the three examined 

summer months (June, July and August) of 2016 (Fig. 4). The only simulated active system 

was the controllable window system. The façade windows of both floors (used only the roof 

windows) remained closed for the total examined period and the active shading system was 

not used during the simulation. Tables 3 and 4 present information about the occupancy and 

the internal heat gain profiles (appliances and lighting) respectively for two day types (weekday, 

weekends). The occupancy profile was derived from an interview-survey with the family. Default 

values for the radiant and convective fraction of the internal gains has been used [46]. 

Homogeneous air properties and full air-mixing were assumed as well [47]. The initialization 

(warm-up) period for the analyses of this research work was 15 days.   

 

Table 1  

U-value (W/m2K) of the simulated envelope elements of the case study (both floors).  

Floor 
External 

wall 

Ceiling-

roof 

Internal 

partition 
Floor 

Façade 

windows 

Roof 

windows 

Ground  0.37 0.21 2.48 0.19 2.70 - 

Upper  0.16 0.11 0.32 0.21 2.70 1.10 

 

Table 2 

Window-to-net floor area ratio (%) for the different examined rooms of the upper floor. 

Corridor 

(North) 

W.C. (North-

East) 

Main 

bedroom 

(South-East) 

Daughter’s 

room 

(South-

West) 

Son’s room 

(North-West) 

31 28 30 32 36 

 

 

 



 

 

Table 3  

Developed occupancy daily profile (weekdays and weekend; office, dining room and living 

room: 108 Watts, kitchen: 126 Watts and bedroom: 90 Watts). 

Hour of 

the day 

Weekdays Weekend 

Parent 1 Parent 2 Children Parent 1 Parent 2 Children 

1 Bedroom Bedroom Bedroom Bedroom Bedroom Bedroom 

2 Bedroom Bedroom Bedroom Bedroom Bedroom Bedroom 

3 Bedroom Bedroom Bedroom Bedroom Bedroom Bedroom 

4 Bedroom Bedroom Bedroom Bedroom Bedroom Bedroom 

5 Bedroom Bedroom Bedroom Bedroom Bedroom Bedroom 

6 Bedroom Bedroom Bedroom Bedroom Bedroom Bedroom 

7 Bedroom Bedroom Bedroom Bedroom Bedroom Bedroom 

8 
Dining 

room 

Dining 

room 

Dining 

room 

Dining 

room 

Dining 

room 

Dining 

room 

9 - - - 
Office 

room 

Living 

room 
Bedroom 

10 - - - 
Office 

room 

Living 

room 
Bedroom 

11 - - - 
Office 

room 

Living 

room 
Bedroom 

12 - - - 
Office 

room 

Living 

room 
Bedroom 

13 - - - 
Office 

room 

Living 

room 
Bedroom 

14 - - - 
Office 

room 

Living 

room 
Bedroom 

15 - - - 
Office 

room 

Living 

room 
Bedroom 



16 - - - 
Office 

room 

Living 

room 
Bedroom 

17 
Living 

room 
Kitchen 

Living 

room 

Living 

room 
Kitchen Bedroom 

18 
Dining 

room 

Dining 

room 

Dining 

room 

Dining 

room 

Dining 

room 

Dining 

room 

19 
Living 

room 

Living 

room 
Bedroom 

Living 

room 

Living 

room 
Bedroom 

20 
Office 

room 

Living 

room 
Bedroom 

Living 

room 

Living 

room 
Bedroom 

21 
Office 

room 

Living 

room 
Bedroom 

Living 

room 

Living 

room 
Bedroom 

22 
Office 

room 

Living 

room 
Bedroom 

Living 

room 

Living 

room 
Bedroom 

23 
Office 

room 

Living 

room 
Bedroom 

Living 

room 

Living 

room 
Bedroom 

24 Bedroom Bedroom Bedroom Bedroom Bedroom Bedroom 

 

Table 4  

Internal heat gains daily profile [52]. 

Hour of the day Appliances (x2.4 W/m2) Lighting (x8.0 W/m2) 

1 0.5 0.0 

2 0.5 0.0 

3 0.5 0.0 

4 0.5 0.0 

5 0.5 0.0 

6 0.5 0.0 

7 0.5 0.15 

8 0.7 0.15 

9 0.7 0.15 



10 0.5 0.15 

11 0.5 0.05 

12 0.6 0.05 

13 0.6 0.05 

14 0.6 0.05 

15 0.6 0.05 

16 0.5 0.05 

17 0.5 0.2 

18 0.7 0.2 

19 0.7 0.2 

20 0.8 0.2 

21 0.8 0.2 

22 0.8 0.2 

23 0.6 0.15 

24 0.6 0.15 

 

Real weather data of global radiation, wind speed intensity and direction (June to August, 2016) 

were taken from the closest meteorological station of the Danish Meteorological Institute, 

Sjælsmark, 3.7 km away from the building (Figs. 4 (a-c)). The outdoor ambient temperature 

was measured in-situ, with a calibrated sensor (Netatmo sensor) that was totally protected from 

solar radiation by being encapsulated in silver plastic box (Table 6). Weather conditions during 

the examined summer period (June to August, 2016) were typical for the area and period [26]. 

The hottest month, in terms of average temperatures, was July followed by June. August had 

the highest and the lowest temperature during the 3-month examined period. The wind intensity 

ranged mainly from 1.4 to 3.9 m/s (North-West and South-West orientations). 

 



(a)

(b) 



(c)

(d)  

Fig. 4. a) Accumulated horizontal global solar radiation (kWh/m2), b) wind speed (m/s), c) wind 

direction (degrees) and d) ambient air temperature (oC) of the location of the dwelling during 

the summer period (June to August) of 2016.  

 

2.3 Performance indicators 

For more than seven decades, over 160 different climatic stress indices have been developed 

and have been reported in the literature [53], of which over seventy indices (70) were for 



overheating risk assessments [54]. The majority of these indices are related either on comfort 

models and acceptability ranges or health evidences [55]. For the past years, a new discomfort 

index has been developed describing in one number the long-term discomfort of indoor spaces 

for different building types [52,54]. The index was embedded in the derived dynamic adaptive 

models and tools, which are used widely for naturally ventilated and non-mechanically cooled 

residential buildings, because it was found that they reflect the user’s perceptions and 

experiences for thermal comfort in these types of buildings [52]. In houses, there are different 

ways of thermal adaptation through clothing and activity modification and environmental control 

on building systems (windows, blinds, fans and others; [56,57]).  

This research work uses two widely applied metrics and four criteria for the assessment of the 

discomfort conditions during the examined period. The first metric is the “percentage outside 

the range-POR”, which accumulates the hours over the examined-simulated period 

(percentage of total hours) during which the indoor zone operative temperature is higher or 

lower than the boundaries-limits of the dynamic adaptive comfort theory (Eqs. (1) and (2); [52]). 

Table 5 presents the Categories for the values to be used when calculating the upper and lower 

limits of Eq. 1. Category I refers to buildings occupied by fragile or elderly people, with high 

level of expectations in terms of indoor conditions and thermal comfort [52]. Category II 

represents a normal level of expectation (new buildings or renovations). Category III represents 

an acceptable-moderate level (existing buildings). Category IV is acceptable only during a 

limited part of the year. The first part (without category range) of Eq. 1 is the comfort 

temperature.  

Ti,op.max/min =0.33*Trm+18.8±Category range limit (Equation 1) 

Trm= (Ted-1 + 0,8*Ted-2 + 0,6*Ted-3 + 0,5*Ted-4 + 0,4*Ted-5 + 0,3*Ted-6 + 0,2*Ted-7)/3.8 (Equation 2) 

Ti,op.max/min: limit value of indoor operative temperature (°C) 

Trm: running mean outdoor temperature (°C). 

Ted-i: daily mean ambient temperature for the previous i day (°C) 

 

 

 

 



Table 5 

Limit value of indoor operative temperature for the different Categories [52]. 

 Category I Category II Category III* 

Upper limit +2 +3 +4 

Lower limit -3 -4 -5 

*Category IV includes the indoor operative temperatures above or below the other Categories. 

 

The second metric is the temperature excess which is defined as the cumulative number of 

hours with indoor operative temperatures over static thresholds. Literature extensively uses this 

method because it is simple and easily understandable and communicable by non-technical 

users [54]. Danish regulations forward fixed thresholds and hours of exceedance for critical 

rooms (100 hours over 27oC and 25 hours over 28oC; [8]). This research work employs the 

suggested static thresholds of the Danish regulations for the assessment of the overheating 

risk (percentage of time, %). The compliance with the regulations for both metrics and criteria 

is outside of the interest of this research work [8,52]. 

 

3. Results and discussion 

3.1 Model calibration  

The first step prior to simulating the performance of the ventilative cooling method with the 

different control options was to undertake a model calibration process. The calibration process 

is highlighted as the initial part of the proposed framework for the verification of the ventilative 

cooling performance of the developed window systems or any other window system. In addition, 

the conclusions of the parametrical analysis, as far as the examined operational functions of 

the window system, will be directly applicable for the further improvement of the system.  

The model was calibrated using house monitoring data acquired between 13th-18th June. The 

indoor sensors (similar with the outdoor sensors; [58]) were calibrated and installed in locations, 

where they were not exposed to direct solar radiation and heat sources (Table 6). Only the 

rooms of the upper floor (3 bedrooms, corridor and W.C.) were monitored during this period. 

During the calibration period the dwelling was not occupied. Internal gains from the equipment 



were minimal and the façade-roof window and shading elements of the upper floor were under 

the control of the research team (closed and open respectively).  

The following three criteria were taken from these studies in the literature [59,60] and were 

used in this work for the aforementioned case study model, to verify the agreement between 

the two datasets (simulated and measured) for each individual zone of the upper floor of the 

house: 

a) Visual observation of general trends and time shifts (misalignment) between measurements 

and predictions.  

b) Magnitude-fit metric defined as the absolute average temperature difference between the 

datasets. In the analysis, results less than 1.00°C (<1.00) were classed as “acceptable”, 

although the actual acceptable ranges for calibration purposes would depend on the context of 

the comparison [60]. 

c) Shape-fit metric defined through the calculation of the Spearman’s rank correlation coefficient 

and it highlights the level of correspondence (shape profile). In the analysis, results over 0.80 

(>0.80) were classed as “acceptable” [60]. 

Although care was taken to ensure that model parameters were as accurate as possible to the 

real thermo-physical counterparts, there will still be uncertainty due to reasons related for 

example with uncertainty in thermo-physical properties of the envelope materials (poor 

craftsmanship and thermal bridges), glazing properties, infiltration and door openings, sensors 

accuracy and temperature stratification, erroneous selection of pressure coefficients and other 

reasons. Ad hoc calibration of the developed model was conducted to gauge the effect of 

assumptions on modelling parameters on the experimental response. 

Figs. 5 (a-c) present the monitored and simulated data series for three representative rooms of 

the upper floor. The comparison by visual observation shows adequate agreement, with 

maximum and minimum values occurring in a similar way and with the overall temperature 

fluctuations to follow a similar pattern. In addition, Table 7 presents the shape-fit and the 

magnitude-fit metrics for all the calibrated rooms. All rooms fulfill the requirements  of the 

aforementioned metrics. 

 

 



Table 6 

Range and accuracy levels of the sensors of the environmental parameters [61]. 

Metrics 
Temperature 

(oC) 

Relative 

humidity (%) 

Carbon 

dioxide 

concentration 

(ppm) 

Range 

0÷50 

(indoor)/ 

-40÷65 

(outdoor) 

0÷100 0÷5000 

Accuracy ±0.3 ±3 ±50 or 5% 

 

Table 7 

Shape-fit and magnitude-fit metrics for all the simulated rooms of the upper floor for the total of 

the examined period. 

Metrics 
Main 

bedroom 
Son’s room 

Daughter’s 

room 
Corridor W.C. 

Spearman’s 

coefficient 
0.92 0.85 0.92 0.92 0.95 

Absolute 

average 

temperature 

difference 

(oC) 

0.3 0.6 0.5 0.3 0.6 

 



(a)

(b) 



(c) 

Fig. 5. Monitored and simulated indoor operative temperature (oC) series for the examined 

period and for different rooms of the upper floor (a: main bedroom, b: daughter’s room and c: 

corridor). 

 

3.2 Operational functions of window systems-Number of opening steps analysis 

This section presents the comparison of the indoor thermal environments of the three-simulated 

bedrooms and the upper floor of the case study in total, based on two different thermal comfort 

and overheating assessment metrics (static and dynamic), four criteria (static: 27oC, 28oC and 

dynamic: Category II, Category I in Table 5) and for two different operational functions (control 

approaches) of the developed window system that have a different number of steps for the 

window actuator  until the full opening of the window. The first control approach has three 

opening steps (25%/50%/100%; Fig. 2) and the second approach has five opening steps 

(10%/25%/50%/75%/100%; Fig. 2). The advantage of the 3-step approach is that the ventilative 

cooling strategy is more efficient, because the windows open faster (full opening in 3 time step 

intervals). The advantage of the 5-step is that the natural ventilation is more controllable in 

relation to the intense extreme outdoor conditions (wind speed) and could therefore in many 

cases eliminate the summer discomfort and the risk of overheating without causing 

considerable draft problems, high internal air velocities (internal damages) and considerable 

undercooling incidents. The time interval for the algorithm in both examined cases is similar, 



30 minutes (Fig. 2). The developed algorithm is applied during all day for the whole examined 

period. The analysis covers different constant indoor natural ventilation cooling set points (22-

26oC). Previous research has shown that ventilative cooling set points for similar automated 

window systems range inside this temperature band and are often around 24oC for these 

climatic conditions [26]. The parametric analysis will highlight which step-approach causes less 

discomfort and overheating risk for different examined set points. 

Figs. 6 (a-d) present the percentage difference (delta; %) of the overheating risk and thermal 

discomfort for different indoor natural ventilation cooling set points, number of opening steps, 

metrics, criteria and rooms. The difference is positive for the majority of the set points, criteria 

and examined rooms of the upper floor. For all the assessed rooms and the floor in total, the 

differences are negligible (less than 0.5%) for low and medium natural ventilation cooling set 

points (22 to 24oC). For 22oC degrees, the adaptive approach (criterion Category I) and the 

south-oriented rooms, the difference is more profound (close to minus 1%). For higher set 

points (25 and 26oC), the differences are more profound (positive) for all rooms (especially 

criteria 27oC and Category I). The maximum value is resulted for the maximum set point of the 

parametric analysis, 26oC, for all the criteria and rooms. High trigger set points, close to the 

upper limits of the assessment criteria, result in lower performance of the ventilative cooling 

strategy. Higher internal temperatures occur when set points are set to high values and 

therefore the 3-step opening approach is suggested in these cases to provide ventilative cooling 

as fast as possible. The 3-step approach is suggested also for hotter climatic conditions with 

low ventilative cooling potential. 

The results indicate that the effectiveness of the ventilative cooling strategy and the 

performance of the window system for these climatic conditions is not affected by the number 

of steps (3 or 5) for low and medium indoor natural ventilation cooling set points.  

 



(a) 

 

(b) 

 



(c) 

 

(d) 

Fig. 6. Percentage difference-delta (5-step minus 3-step approach; %) of thermal discomfort 

and overheating risk for different rooms (a: upper floor on average, b: main bedroom, c: son’s 

room and d: daughter’s room) during the examined summer period and for different assessment 

metrics-criteria and indoor natural ventilation cooling set points.  

 



3.3 Operational functions of window systems-Static versus dynamic indoor natural ventilation 

cooling set points 

The determination of the optimum set point of a developed control algorithm is fundamental for 

the efficiency of the ventilative cooling method and the thermal optimization of the space. In 

this section, two different approaches have been examined for the determination of the optimum 

indoor natural ventilation cooling set point for actuating the window components. The first one 

is based on static discreet values of operative temperature and the second one on dynamically 

changing values based on the adaptive comfort temperature. The advantage of the former 

approach is that the occupant is aware about the set point values and has a physical feeling, 

understanding and responsibility about them. The advantage of the latter approach is that the 

system may calculate the dynamic set point with past outdoor temperature monitored values 

(Eqs. 1 and 2). This approach makes the window system more automated.  

For this comparison between the two control approaches, all the rooms of the upper floor with 

window systems use the same approach (i.e. all static or all dynamic) and the same value 

(static) for the total of the examined period (summer 2016). The examined ranges of static set 

points are from 22 to 26oC (1oC intervals). The ranges of dynamic set points are from ±2oC to 

comfort temperature (0.5oC intervals). In addition, the algorithm follows the 5-step approach as 

described in Section 2.1 (Fig. 2). The time interval for the algorithm is the same in both 

examined cases (30 minutes). The algorithm is applied during the whole day. 

Table 8 presents the ranking (high frequency to low frequency of thermal discomfort and risk) 

of the set points for both control approaches assessed by the two discomfort and overheating 

metrics and four criteria that were described in Sections 2.3. At the top of the Table there are 

the set points with the lowest  thermal discomfort or risk. For all the rooms and floor in total, the 

static set points (22oC and 23oC) performs better than any dynamic set point for all the 

evaluating metrics and criteria (dynamic and static). Both northern and southern oriented rooms 

show similar results (Table 8).  

It can be seen from Table 8 that the higher the set point value, the higher the thermal discomfort 

or risk. The static metrics have been optimized with the maximum hours of ventilative cooling. 

This has been accomplished by low indoor natural ventilation cooling set points (22oC for this 

particular research). Dynamic criteria assess both overheating and undercooling incidents. 



Categories I and II have been optimized in different set points (22oC and 23oC). Different case 

studies in different climates and with different internal and solar loads will result in different 

optimum set points. 

 

Table 8  

Ranking (lowest to highest frequency) of static and dynamic indoor natural ventilative cooling 

set points (oC), for three rooms (main bedroom, son’s room and daughter’s room) and upper 

floor (average), and four criteria (static: 27oC, 28oC and dynamic: Category II, Category I; Tcfrt.: 

stands for adaptive comfort temperature Eq. 1). 

Discomfort 
Upper floor Main bedroom 

27oC 28oC Cat. II Cat. I 27oC 28oC Cat. II Cat. I 

Lowest 

frequency 
22 22 22 23 22 22 22 23 

 Tcfrt.-2 Tcfrt.-2 Tcfrt.-2 Tcfrt.-1 Tcfrt.-2 Tcfrt.-2 23 Tcfrt.-1.5 

 23 23 23 24 23 23 Tcfrt.-2 24 

 Tcfrt.-1.5 Tcfrt.-1.5 Tcfrt.-1.5 Tcfrt.-1.5 Tcfrt.-1.5 Tcfrt.-1.5 Tcfrt.-1.5 Tcfrt.-2 

 24 Tcfrt.-1 Tcfrt.-1 Tcfrt.-0.5 Tcfrt.-1 Tcfrt.-1 Tcfrt.-1 22 

 Tcfrt.-1 24 24 Tcfrt.-2 24 24 24 Tcfrt.-1 

 Tcfrt.-0.5 Tcfrt.-0.5 Tcfrt.-0.5 22 Tcfrt.-0.5 25 Tcfrt.-0.5 Tcfrt.-0.5 

 25 Tcfrt. Tcfrt. Tcfrt. 25 Tcfrt.-0.5 Tcfrt. Tcfrt. 

 Tcfrt. 25 25 25 Tcfrt. Tcfrt. 25 25 

 Tcfrt.+0.5 26 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 

 26 Tcfrt.+0.5 Tcfrt.+1 Tcfrt.+1 26 26 26 Tcfrt.+1 

 Tcfrt.+1 Tcfrt.+1 26 26 Tcfrt.+1 Tcfrt.+1 Tcfrt.+1 Tcfrt.+1.5 

 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 26 

Highest 

frequency 
Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 

 

Discomfort 
Son’s room Daughter’s room 

27oC 28oC Cat. II Cat. I 27oC 28oC Cat. II Cat. I 

Lowest 

frequency 
22 22 22 23 22 22 22 23 



 23 Tcfrt.-2 Tcfrt.-2 Tcfrt.-1.5 Tcfrt.-2 Tcfrt.-2 Tcfrt.-2 Tcfrt.-1.5 

 Tcfrt.-2 23 23 Tcfrt.-1 23 23 23 Tcfrt.-2 

 Tcfrt.-1.5 Tcfrt.-1.5 Tcfrt.-1.5 24 Tcfrt.-1.5 Tcfrt.-1.5 Tcfrt.-1.5 Tcfrt.-1 

 24 Tcfrt.-1 24 Tcfrt.-2 24 24 Tcfrt.-1 24 

 Tcfrt.-1 24 Tcfrt.-1 22 Tcfrt.-1 Tcfrt.-1 24 22 

 Tcfrt.-0.5 Tcfrt.-0.5 Tcfrt.-0.5 Tcfrt.-0.5 Tcfrt.-0.5 Tcfrt.-0.5 Tcfrt.-0.5 Tcfrt.-0.5 

 25 25 Tcfrt. Tcfrt. 25 25 Tcfrt. Tcfrt. 

 Tcfrt. Tcfrt. 25 25 Tcfrt. Tcfrt. 25 25 

 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 Tcfrt.+0.5 

 Tcfrt.+1 26 Tcfrt.+1 Tcfrt.+1 Tcfrt.+1 26 Tcfrt.+1 Tcfrt.+1 

 26 Tcfrt.+1 26 26 26 Tcfrt.+1 26 Tcfrt.+1.5 

 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 Tcfrt.+1.5 26 

Highest 

frequency 
Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 Tcfrt.+2 

 

4. Conclusions  

Passive and hybrid ventilation and ventilative cooling methods, techniques, strategies and 

technologies may significantly decrease the environmental impact of residences and create 

healthy and comfortable indoor spaces. One of the challenges with assessing and 

demonstrating the benefits of automated controlled ventilative cooling strategies is the lack of 

well documented, mature and validated BPS tools which may replicate and represent precisely 

the complexity of air-movement physics and the control of the automated systems.  

This research works presents a representation and simulation of a developed ventilative cooling 

algorithm on coupled BPS environments through a well-defined proposed framework and 

workflow. Under this framework that the use of ESP-r and BCVTV tools facilitate, the simulation 

of any other developed window system or ventilative cooling concept for different climatic 

conditions and building types is possible.  

An analytical parametric analysis of the developed window system in roof window 

configurations of a typical single-family house in Denmark was conducted and it was found that 

the effectiveness and performance of the ventilative cooling strategy for these climatic 

conditions was not affected by the number of opening steps (3 or 5) for low and medium natural 

indoor ventilation cooling set points (22-24oC). In addition, for all the examined rooms, the static 



set points perform better (best results with 22oC and 23oC) than the dynamic for all the 

evaluating metrics and criteria (dynamic and static) that were included in this study.  

Further investigation of the developed window system and algorithm in other building types and 

climatic conditions is suggested for future work. The description of the ventilative cooling 

heuristic algorithm of the window system can be used as a baseline for further development of 

window systems for residential cases in temperate climates or in more complicated architectural 

layouts and building types. The examination of different dynamic-based ventilative cooling set 

points resulting from future climatic conditions could also be investigated in the future. In 

addition, the proposed window system outputs of this research could be used as supporting 

material for installed window systems in these climatic conditions. However, the outputs are 

sensitive to climatic conditions and building types, and therefore additional modelling by 

following a similar methodology as in this study is recommended.  
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