
University of New Hampshire
University of New Hampshire Scholars' Repository

Applied Engineering and Sciences Scholarship Applied Engineering and Sciences

1-1-2006

Evaluation of solving methods for conditional
constraint satisfaction problem
Mihaela C. Sabin
University of New Hampshire, Manchester, mihaela.sabin@unh.edu

Follow this and additional works at: https://scholars.unh.edu/unhmcis_facpub

This Article is brought to you for free and open access by the Applied Engineering and Sciences at University of New Hampshire Scholars' Repository.
It has been accepted for inclusion in Applied Engineering and Sciences Scholarship by an authorized administrator of University of New Hampshire
Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Mihaela Sabin and Esther Gelle, Evaluation of solving methods for conditional constraint satisfaction problems, Proceedings of the
AAAI, 2006.

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/unhmcis_facpub?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/unhmcis?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/unhmcis_facpub?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


Evaluation of Solving Methods for Conditional Constraint Satisfaction Problems
Mihaela Sabin

Department of Mathematics and Computer Science, Rivier College
420 Main Street, Nashua, NH 03060, U.S.A., msabin@rivier.edu

Esther Gelle
ABB Switzerland Ltd, Corporate Research

CH-5405 Baden, Switzerland, esther.gelle@ch.abb.com

Abstract

Conditional constraint satisfaction problems (CondCSPs) ad-
equately capture problem change at solving time by condi-
tionally identifying those variables and constraints that are
relevant to final solutions. Real-world tasks with dynamic
behavior, such as configuration, design, diagnosis, planning,
and hardware test generation, have been modeled more nat-
urally with CondCSPs. Such interest has been matched by
the development of more effective algorithms that depart
from classical backtracking and incorporate local consistency
checking. Although performance results have been reported
for these specialized algorithms, the experimental analysis
has been conducted separately, using different test suites, and
little is known about the algorithms’ relative performance. In
this abstract we present a CondCSP solver that implements
direct and reformulation-based algorithms, each of which us-
ing forward checking and maintaining local consistency. In
our experimental analysis we have considered randomly gen-
erated CondCSPs of diverse topologies in terms of problem
density and satisfiability of the standard and conditional prob-
lem components. Execution time results show that there is not
one winner but that reformulation solving in conjunction with
forward checking performs better on problems with larger so-
lution sets, while direct solving in conjunction with maintain-
ing arc consistency is always preferred over direct solving us-
ing forward checking.

A conditional constraint satisfaction problem (CondCSP)
extends the standard CSP with a condition-based component
that models problem change by allowing for “on-the-fly” se-
lection of subsets of variables that participate in problem so-
lutions. The formalism, introduced by (Mittal & Falken-
hainer 1990) under the name of dynamic CSP, has been re-
named to conditional CSP (Sabin & Freuder 1998) to qualify
the control component that models dynamic changes of the
solution space with predefined conditions. The original ap-
plication domain in (Mittal & Falkenhainer 1990) is product
configuration, in which a changing rather than fixed number
of components are part of final solutions. Selecting optional
components to assemble configuration variants is naturally
represented in CondCSP with condition-based constraints.
More recently, conditional constraint satisfaction has been
adapted to the planning domain (Do & Kambhampati 2000;

Copyright c⃝ 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Ambite et al. 2005; Miguel, Jarvis, & Shen 2000) and hard-
ware test generation (Geller & Veksler 2005).

Each application domain has produced specialized al-
gorithms for solving CondCSPs. Following the example
of standard CSP solving, local consistency methods have
been incorporated in CondCSP solvers and improved perfor-
mance results have been reported. Although this solving ap-
proach has been observed across application domains, little
is known about the algorithms’ relative performance. More-
over, in striking contrast with the state-of-the-art of standard
CSP solving, CondCSP class lacks systematic findings with
regard to how algorithm efficiency correlates with problem
topology, such as density, satisfiability, and conditionality.
This challenge is compounded by an almost inexistent li-
brary of CondCSP benchmark problems.

To address these challenges, we have developed a Cond-
CSP solver that includes two representative algorithms that
have initially been proposed, implemetned, and evaluated
separately. One algorithm has direct solving methods that
adapt standard consistency checking, such as forward check-
ing and maintaining arc consistency, to the special con-
straints that enforce conditionality in a CondCSP (Sabin
2003; Sabin, Freuder, & Wallace 2003). The other algorithm
reformulates the original problem into intermediate Cond-
CSPs with incrementally lesser conditionality as they are
ultimately transformed into standard CSPs. Standard con-
sistency checking is interleaved with problem reformulation
to eliminate inconsistent subproblems and solve the result-
ing standard CSPs (Gelle 1998; Gelle & Faltings 2003). To
overcome the lack of publicly known benchmark problems,
we have used random CondCSPs and designed test suites for
both direct and reformulation solving algorithms.

The first complete description of CondCSP backtrack
search (Gelle 1998) solves a partially reformulated Cond-
CSP, in which activity constraints of exclusion are rewritten
as compatibility constraints. (Sabin 2003) proposed Cond-
CSP analogs to CSP backtrack (CondBt), forward checking
(CondFc), and maintaining arc consistency (CondMac)
search algorithms. CondMac interleaves backtrack search
with maintaining arc consistency (Mac) adapted to propa-
gate consistency checking on both compatibility and activity
constraints in the original CondCSP. Experimental evalua-
tion on random CondCSPs (Wallace 1996) shows up to two
orders of magnitude of efficiency improvement over plain



backtrack search.
A different solving approach is to successively process ac-

tivation conditions of inclusion into an equivalent reformu-
lation (Gelle 1998; Gelle & Faltings 2003). The reformula-
tion algorithm, Gt, generates a tree whose internal nodes
are CondCSPs and the leaves are standard CSPs. Gt re-
formulates inclusion activity constraints into compatibility
constraints by creating intermediate CondCSPs with lesser
conditionality until the leaves level is reached. Standard
consistency checking is interleaved with tree generation to
eliminate inconsistent subproblems and to solve in the end
the resulting standard CSPs. Experimental evaluation results
for Gt using forward checking were reported for solving a
bridge design problem.

These algorithms contribute to CondCSP solving, but
their development and evaluation took place separately and
used different implementation frameworks (C++ vs. Lisp)
and different experimental test suites. For the purpose of
examining these algorithms’ relative performance and how
problem topology impacts performance we have integrated
both implementations within the same solver.

We have analyzed experimentally the relative perfor-
mance of the two types of algorithms by using randomly
generated CondCSPs. The random CondCSP generator
(Wallace 1996) extends the random standard CSP generator
with activity parameters. In addition to the standard param-
eters of density and satisfiability of the problem compati-
bility constraints, dc and sc, we have da, density of activity,
the probability of generating a non-initial variable as a target
variable, and sa, satisfiability of activity, the probability of
generating a value in a domain as a condition variable. The
test suites we designed generated different problem topolo-
gies with a problem size of number of variables n = 10,
and number of values per domain dsize = 10. Density and
satisfiability of compatibility and activity were varied.

We designed two test suites for our experiments. We
compared the execution time, in number of seconds, for
CondFc, CondMac, GtFc and GtMac. In the first test
suite density parameters were kept constant, dc = 0.3 and
da = 0.5, while satisfiability parameters varied: sc ∈

[0.2 . . . 0.4], and sa ∈ [0.5 . . .0.8] (increments of 0.1). In
the second test suite compatibility density was increased to
dc = 0.5, and the variation of the compatibility satisfiability
was shifted up into the interval sc ∈ [0.5 . . . 0.7]. The activ-
ity parameters were maintained the same as in the first test
suite.

The problems in the first test suite have lower density of
compatibility and variable satisfiability of compatibility in
a lower range than the problems in the second suite. We
observe that in all cases CondMac outperforms CondFc
while GtFc outperforms GtMac in most cases. There are
two contributing factors in support of the latter observation.
First, Gt transforms all exclusion constraints into compat-
ibility constraints prior to the tree generation. Thus, the
advantage of MacActivity pruning in detecting activation
conflicts does not manifest in Gt. Secondly, it is known
that Mac’s performance deteriorates with increasing prob-
lem density. In the case of Gt, the compatibility density of
the resulting standard CSPs is larger than the original Cond-

CSP’s compatibility density, since all activity constraints
have been reformulated into compatibility constraints. Over-
all, the pruning power of MacCompatibility is overcome
by the implementation overhead which, in the end, does not
always pay off.

Another observation is that GtFc has the best perfor-
mance, thus outperforming CondMac, in the second test
suite for problems with higher density and satisfiability of
compatibility. Finally, we observe that, in general, de-
creasing satisfiability of activity costs both CondFc and
CondMac more, while just the opposite is seen for Gt al-
gorithms. Our test suites show that the number of solutions
increases with decreasing satisfiability of activity. Gt’s ad-
vantage of pruning whole subproblems during reformulation
copes better with larger solution spaces (in the tens of thou-
sands) than the direct solving methods.

References
Ambite, J.; Knoblock, C.; Muslea, M.; and Minton, S.
2005. Conditional constraint networks for interleaved plan-
ning and information gathering. Intelligent Systems, IEEE
[see also IEEE Intelligent Systems and Their Applications]
20(2):25–33.
Do, M. B., and Kambhampati, S. 2000. Solving planning-
graph by compiling it into CSP. In Artificial Intelligence
Planning Systems, 82–91.
Gelle, E., and Faltings, B. 2003. Solving mixed and con-
ditional constraint satisfaction problems. In Constraints,
8(2):107–141, 2003.
Gelle, E. 1998. On the generation of locally consistent so-
lution spaces. Ph.D. Thesis, Ecole Polytechnique Fédérale
de Lausanne, Switzerland.
Geller, F., and Veksler, M. 2005. Assumption-based prun-
ing in conditional CSP. In Principles and Practice of Con-
straint Programming.
Miguel, I.; Jarvis, P.; and Shen, Q. 2000. Flexible graph-
plan. In Proceedings of the Fourteenth European Confer-
ence on Artificial Intelligence, 506–510.
Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In Proceedings of the 8th National
Conference on Artificial Intelligence, 25–32. The MIT
Press.
Sabin, M., and Freuder, E. 1998. Detecting and resolv-
ing inconsistency and redundancy in conditional constraint
satisfaction problems. In CP’98 Workshop on Constraint
Problem Reformulation.
Sabin, M.; Freuder, E. C.; and Wallace, R. J. 2003. Greater
efficiency for conditional constraint satisfaction. In Princi-
ples and Practice of Constraint Programming, 649–663.
Sabin, M. 2003. Towards Improving Solving of Conditional
Constraint Satisfaction Problems. Ph.D. Dissertation, Uni-
versity of New Hampshire, Durham, NH, U.S.A.
Wallace, R. 1996. Random CSP Generator. Con-
straint Computation Center, University of New Hampshire,
Durham, NH, U.S.A.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	1-1-2006

	Evaluation of solving methods for conditional constraint satisfaction problem
	Mihaela C. Sabin
	Recommended Citation


	Evaluation of Solving Models for Conditional Constraint Satisfaction Problems

