
University of New Hampshire
University of New Hampshire Scholars' Repository

Applied Engineering and Sciences Scholarship Applied Engineering and Sciences

10-10-2013

QuizPower: a mobile app with app inventor and
XAMPP service integration
David Meehan
University of New Hampshire, Manchester

Mihaela C. Sabin
University of New Hampshire, Durham, mihaela.sabin@unh.edu

Follow this and additional works at: https://scholars.unh.edu/unhmcis_facpub

This Article is brought to you for free and open access by the Applied Engineering and Sciences at University of New Hampshire Scholars' Repository.
It has been accepted for inclusion in Applied Engineering and Sciences Scholarship by an authorized administrator of University of New Hampshire
Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
David Meehan and Mihaela Sabin, Quizpower: a mobile app with app inventor and xampp service integration, Proceedings of the 14th
annual ACM SIGITE conference on Information technology education, ACM, 2013, pp. 103–108.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/86427256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/unhmcis_facpub?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/unhmcis?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/unhmcis_facpub?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

QuizPower: A Mobile App with App Inventor and XAMPP
Service Integration

David Meehan
University of New Hampshire

88 Commercial Street
Manchester, NH 03101

603 454 6552
david.meehan.unh@gmail.com

Mihaela Sabin
University of New Hampshire

88 Commercial Street
Manchester, NH 03101

603 641 4144
mihaela.sabin@unh.edu

ABSTRACT
This paper details the development of a mobile app for the
Android operating system using MIT App Inventor language and
development platform. The app, Quiz Power, provides students a
way to study course material in an engaging and effective manner.
At its current stage the app is intended strictly for use in a mobile
app with App Inventor course, although it provides the facility to
be adapted for other courses by simply changing the web data
store. Development occurred during the spring semester of 2013.
Students in the course played a vital role in providing feedback on
course material, which would be the basis for the structure of the
quiz as well as the questions. The significance of the project is the
integration of the MIT App Inventor service with a web service
implemented and managed by the department.

Categories and Subject Descriptors
D.1.7 [Visual Programming]; D.2.6 [Programming
Environments]: Graphical environment; H.3.5 [Online
Information Services]: Data sharing

General Terms
Design, Languages, Experimentation

Keywords
App Inventor, mobile computing, data store web service

1. MOTIVATION
1.1 Mobile Computing First and For Most
Computing Technology program at University of New Hampshire
at Manchester has expanded its computing curricula with an
introductory course that satisfies the University’s Environment,
Technology, and Society general education requirement, CIS 415
Mobile Computing First and For Most. The course teaches
computational thinking in the context of solving problems of
social and environmental relevance and emphasizes issues of
inclusiveness of diverse cultural backgrounds, life experiences,

and talents that all students bring to class. Students learn how to
create mobile apps for Android operating system with App
Inventor, a visual blocks-based programming language and
development platform. The App Inventor project, led by Hal
Abelson from MIT and Mark Friedman from Google was released
publicly in 2010. App Inventor codebase, run-time environment,
app projects’ cloud storage, and community resources are now
supported and hosted by the MIT Center for Mobile Learning [1].

COMP 415 was first offered in Spring 2013. The class had fifteen
students: ten students in the B.S. Computer Information Systems
(CIS) program and five students majoring in History,
Communication Arts, Political Science, Biology, and Engineering
Technology. Although enrollment sample size is small, gender
and race demographic data breakdown of 13% female students
(both CIS majors) and 20% underrepresented minorities in
computing showed a higher participation from underrepresented
groups than gender and race representation percentages in the CIS
program (10% females and 5% underrepresented minorities).

The course requirements consisted of eight homework
assignments (16% of the final grade), two exams (48%), one 6-
week creative project developed by teams of two students (10%),
one 6-week creative project developed by teams of five students
(20%), and project presentation at the University’s Undergraduate
Research Conference (6%).

1.2 Guided Practice and Self-Assessment
App Inventor with Android smartphones, coupled with a studio-
based teaching and learning model [2], suggests a positive effect
on students’ motivation, creativity, achievement, and attitudes
towards computer science [3]. Class pedagogy of studio-based
learning was further inspired by the course textbook [4] and its
scaffolding approach to learning from telling the app’s user story
to creating an original app:

tell à build àcustomize àconceptualize à create

In this model, when students progress through these five layers,
the scope of guidance they receive decreases, while expectation
for higher-order cognitive skills increases.

Students in CIS 415 reported more study time out of class than in
other classes and were fully engaged in peer learning activities:
pair programming lab exercises; structured class forum
participation; collaborative project activities during 3-hour weekly
class meetings; and further collaboration outside class to share
and review artifacts with Google Drive and Google Sites services.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGITE/RIIT'13, October 10 - 12 2013, Orlando, FL, USA
Copyright 2013 ACM 978-1-4503-2239-3/13/10…$15.00.
http://dx.doi.org/10.1145/2512276.2512300

Students became proficient with building apps by following
tutorial instructions. The use of peer learning helped students meet
the customization requirements of apps built from tutorials. What
remained a challenge was conceptualizing programming language
constructs and design techniques. These competencies were
critical for scaffolding competencies to create apps from
description of the app’s features and user stories.

To help students achieve conceptual learning outcomes,
homework assignments and creative project iterations were
enhanced with worksheets that required students to practice test
questions. Retrieval, as a learning activity, has been found to be a
powerful way to enhance conceptual learning in science [5]. To
make retrieval practice integral part of the class learning activities,
four worksheets with more than 80 questions were assigned over
the course of the semester. A CIS senior and student tech
consultant in the department (this paper’s first author) and the
course instructor (paper’s second author) developed and refined
the worksheets’ questions and answer keys.

We had plenty of opportunities to learn about students’ struggle
with concept comprehension and inferences from in-class
activities, tutoring and help sessions, and class forum discussions.
Our quest for composing relevant questions and improving the
clarity and conciseness of the answers gave us the idea of
QuizPower, an app to guide students through a self-directed
assessment and practice with test questions.

2. OBJECTIVE
QuizPower research and development project was intended to:
• Guide students in their practice with test questions that assess

comprehension and require inferences;
• Be a case study of a creative project with educational

relevance for students.

The prototype we developed is an interactive tool with which
students:

(1) Get access to questions organized by topics
(2) Select topics to study and quiz themselves
(3) Go through topic questions in a random order
(4) Enter their answer
(5) Compare their answer with the tool’s answer
(6) Self-assess quality of answer to remove question from

further study if answered adequately
(7) Receive feedback on progress based on how many

questions were answered correctly from those
attempted.

Non-functional requirements of the project were that:
(1) QuizPower be developed primarily in App Inventor
(2) Questions be stored in a web data store.

3. PROJECT APPROACH AND METHODS
3.1 App Inventor Platform
App Inventor is a free and open source server software that runs in
the MIT App Inventor’s cloud. Developers need a Google account
to access the App Inventor’s development service1. To design an
app’s user interface and decide on the structure of its architectural
components, developers need to use a browser, in which they run
the Component Designer tool. To implement the app’s behavior
and logic of the component methods, developers use the Blocks

1 http://beta.appinventor.mit.edu

Editor, a Java web application that is downloaded on demand
from the Component Designer on the developer’s client computer.

The App Inventor language has a rich library of component
classes2. Component classes represent basic user interface
facilities (text box, button, canvas, arrangement, etc.), sprites
(touch-sensitive objects), and a wealth of built-in, smartphone-
specific functional features (texting, phone calling, contact search,
sensors, camera, sound player, video player, etc.). Apps developed
with App Inventor can be compiled and packaged into an
application package file (APK) to be distributed and installed on
Android mobile devices. The packaging command, available in
the Component Designer, generates the APK file and downloads it
to the client computer, a USB-connected phone, or a phone
connected over Wi-Fi. The downloading over Wi-Fi option
requires the MIT AI Companion app, which establishes a
connection between the Android mobile device and client
computer over the MIT RendezVous Server.

3.2 Software Development Process
We developed the project in spring 2013 over a ten-week time
period using an agile software development approach with weekly
sprints. At the beginning of each sprint we chose the sprint
backlog items. We held two or three meetings every week to track
our progress and update the backlog of work items.

Before we sketched user stories and user interface mockups, we
sampled student questions and answers from a variety of sources:
class forum, in-class lab activities, student assignment self-
evaluations, and help sessions. Our goal was to create practice
worksheets that were informed by student common
misconceptions. We classified over 80 questions into sixteen
topical categories: animation, architecture, components,
conditionals, control flow, data types, debugging, events and
event handlers, expressions, lists, loops, procedures, sensors,
software development process, variables, databases and web
services. These questions became the basis of the students self-
directed assessment and practice we envisioned for the QuizPower
app.

As explained in the following sections, architectural and
implementation decisions have changed during development
iterations in order to address performance and maintainability
issues.

3.3 Quiz Questions Data Store
3.3.1 App Inventor’s Google App Engine Database
Service
Early on in the development process we determined that the use of
a data store was necessary to reduce the coupling between the
quiz questions and the QuizPower engine. The data store also
allowed us to experiment with different branches of the code base
independently of acquiring, refining, and encoding quiz questions.
App Inventor library has a database component class called
TinyWebDB. This class facilitates communication between the
app and a specialized web-based database of (tag, value) pairs,
hosted through the Google App Engine. TinyWebDB component
has StoreValue() and GetValue() methods, by which tagged
values are placed into and retrieved from the database. When a
GetValue() server request succeeds, a GotValue event is

2 http://beta.appinventor.mit.edu/learn/reference/

generated with (tag, value) information that is made available to
the app’s logic (Figure 1).

Figure 1: App Inventor communication with Google App
Engine web service via TinyWebDB methods and event
handler3.

Data store hosting enabled by the Google App Engine has the
advantage of eliminating any administrative overhead, including
administration tasks for scaling the service instance. The database
administration tasks left to us were to manage entries in the data
store (get, store, view, and delete operations), control write access
to the data store for testing purposes only, and monitor usage.

By default, TinyWebDB component communicates with a web
service4 that manages a data store shared by all possible App
Inventor users. The service limits, however, the number of
database entries to 1,000 per user. To create a custom web service
for our QuizPower app, we used the Google App Engine
Launcher client application to:

• Adapt a custom web service template in the textbook [4]
such that it uniquely identifies the QuizPower data web
store among Google App Engine web services

• Set QuizPower web service properties (title, URL, and
other web service required properties).

The drawbacks with this solution were query performance and
ease of data manipulation. We did not want to limit the number of
questions per topic that a student would be interested in practicing
with. What we observed, however, was that the time to retrieve
the questions for a single topic (on average 20 questions/topic)
was more than one second (on average 3 seconds) when we run
experiments that were using the college’s Wi-Fi network. This
was not problematic until the interface was refined to include the
possibility of a student requesting questions from more than one
topic.

We also expected to be able to change quiz question data in the
web data store easily and efficiently. Google App Engine data
web service has very simple data manipulation operations. There
is no facility to store multiple entries from a data file or
selectively update or delete multiple entries from the data store
based on filtering conditions. Given these restrictions, our focus
shifted to a relational database solution that integrates MySQL
with App Inventor.

3.3.2 MySQL Service Integration
Google App Engine supports a SQL database instance via Google
Cloud SQL. This is a fully managed web service that offers a
scalable MySQL database running on Google infrastructure.
Although this service met our performance needs, it is not a free

3 Figure 1 is adapted from Chapter 10 Persistent Data [4].
4 http://appinvtinywebdb.appspot.com

and open source software solution, and we did not have the
expertise to delve in it right away. The question we were
interested in was whether we can integrate our own instance of a
MySQL database with App Inventor.

To establish communication between the QuizPower app and
MySQL database instance, we used the App Inventor Web
component class. This class has methods that make HTTP GET
and POST requests to a given URL to get or post data in text
stream format. There are two methods of the Web component
class that we used for integration with a relational database:

1. get() request - initiates communication with the web
app specified in the URL property of the Web
component instance. SaveProperty value of the
WebService instance determines whether a GotText or
GotFile event is triggered. In our implementation, this
value is set to false to trigger GotText event. It performs
an HTTP GET request.

2. gotText() event handler - takes four parameters: URL,
response code, response type, and the actual content of
the response. Response content is in text stream format
and received upon successful completion of the get()
request.

To bridge the App Inventor communication with a relational
database, we configured a run-time environment that had MySQL,
PHP, and Apache web server support bundled together. We used a
server machine managed by our department and installed a
XAMPP5 stack instance. Next, we created a relational database
using MySQL to store quiz questions organized by topics. We
then developed a PHP application to retrieve and produce a text
stream with quiz questions from the database – all of them or
filtered by topics. In the QuizPower app, we created WebService,
an instance of the App Inventor’s Web component class, and
initialized it with the URL of the PHP app.

Figure 2 QuizPower interaction with WebService.

In Figure 2, we show the interaction between the user’s selection
of topics and the WebService operations that perform data store
retrieval of topic questions.

5 Free and open source cross-platform distribution of Apache,
HTTP server, MySQL database, and interpreters for scripts in
PHP and Perl (www.apachefriends.org/en/xampp.html)

After a student selects any number of question topics, the
QuizPower app calls WebService.get() to make a request to the
URL of the PHP application. The underlying HTTP GET request
carries topic information in the URL query string. The PHP
application extracts topic information from the $_GET associative
array and communicates with the MySQL database to retrieve a
list of corresponding questions and answers. The list is then
“echoed” into a dynamic HTML page that is sent back as a text
stream captured by the responseContent parameter of the
WebService.gotText() event handler. Figure 3 illustrates the App
Inventor implementation of the GotText() event handler.

4. RESULTS
The result at the end of the spring 2013 semester was a mobile
application developed with App Inventor for the Android
platform. The app maintains a list of questions related to topics
the student selects when starting the app. The decisions we made
during development have improved the app’s performance and
usability. The app can be easily scaled to work with any number
of quiz questions and topics by simply adding new questions and
topics to the database and corresponding selection buttons to the
app’s interface.

4.1 Components
The foundation for all apps developed in App Inventor is a rich
library of component classes. Component instantiations from
these classes are objects that perform the app’s work. When
creating components, the developer initializes the component
property values.

Figure 4 has the list of all components used by the Quiz Power
app. The object hierarchy shows aggregation associations among
QuizPower components, as displayed in the Component Designer
tool. Except for the SolutionNotifier and WebService
components, all the other components model the app’s interface,
with buttons, labels, and horizontal and table arrangements.

4.2 User Interface
User interface arrangements are hidden or displayed depending on
the user activity. In total, there are three main views: topic
selection view modeled by the TopicPage, question view modeled
by the QustionPage, and the solution view corresponding to the
SolutionPage (Figure 4).

When students first start the app, they are presented with the topic
selection view (Figure 5). Upon making their topic selection, they
see the question view, in which they answer questions picked at
random from the selected topics. Upon submitting an answer to a
question, the solution view presents the correct answer. Students
self-assess their answer and continue practicing with the
remaining questions.

Our initial design had multiple-choice questions. In that scenario,
the student answer was checked against a correct choice.
Although this version was simple to implement, figuring out
meaningful choices to pick from was the difficult part. Literature
on peer instruction with concept test questions points to the
challenge of writing effective multiple choice questions [6]. We
decided to start with short answer questions and gain more insight
about student misconceptions before moving to multiple-choice
questions.

Figure 3. QuizPower Blocks Editor view of the gotText event
handler.

Figure 4. QuizPower’s Component Designer view.

Figure 5. QuizPower user experience sample.

The final result was a simple solution that displays the student
answer along with the correct answer. In this case students could
use prompt feedback to judge the accuracy of their answers. In
Figure 6 we show the activity diagram of the app’s user
interface.

Figure 6. Activity diagram of the QuizPower user interface.

4.3 MySQL Integration
The most important finding of the QuizPower development
project was the integration of MIT’s App Inventor development
services with a web service hosted by the department
infrastructure. The MySQL database implementation proved to
be successful in reducing query times and simplifying database
management operations. The end result was a high performance
question and answer retrieval app, which could scale well
regardless of the number of topics selected. Using a MySQL
database instead of the conventional TinyWebDB service
simplified our App Inventor codebase and eliminated tedious
data manipulation and encoding schemes imposed by
TinyWebDB. MySQL integration with App Inventor via a PHP
application opens many opportunities for using App Inventor
platform to develop more sophisticated apps with much larger
and complex data stores.

5. CONCLUSION
The goal of our project was to develop QuizPower, an app for
Android mobile devices using the App Inventor language and
MIT App Inventor development and packaging service. Our
motivation for creating QuizPower is supported by evidence that
retrieval practice is a powerful way to promote meaningful
learning of complex concepts commonly found in science
education. With QuizPower, students in a general education
course for all majors could practice test questions to better learn
concepts in a mobile computing course. The project’s current
product is a working prototype written in App Inventor, PHP,
and MySQL. This implementation solution integrates App
Inventor development and packaging service with a XAMP-
based execution environment.

Further work with this project has multiple directions. First, we
plan to deploy the app in a live, production environment for use
in the CIS 415 course in our department, as well as similar
courses in other STEM disciplines in our college. The goal of
making QuizPower publicly available is to improve and expand
the collection of test questions. Second, we are interested in
converting the app’s codebase from App Inventor to Java to gain
more control over the app’s performance and functionality. We

would also like to provide students with a preliminary
evaluation of their answers based on the presence of desired
keywords. A keyword could be a simple word or grouping of
words with similar meaning. Finding keywords indicative of the
goodness of an answer would require learning from the app’s
usage and application of machine learning techniques.

Finally, we plan to develop a MakeQuizPower app for course
instructors to manage the topics and questions in MySQL
database, thus eliminating the need to do any SQL
programming.

6. ACKNOWLEDGMENTS
We would like to acknowledge the Spring 2013 CIS 415 students,
who worked with us in the development of this app.

7. REFERENCES
[1] MIT Center for Mobile Learning. 2013. MIT App Inventor.

Retrieved from http://appinventor.mit.edu.

[2] Brown, J.S. 2006. New Learning Environment for the 21st
Century: Exploring the Edge. Change (September/October).

[3] Ahmad, K. and Gestwicki, P. 2013. Studio-based learning
and App Inventor for Android in an introductory CS course
for non-majors. In Proceeding of the 44th ACM technical

symposium on Computer science education (SIGCSE '13).
ACM, New York, NY, USA, 287-292.

[4] Wolber, D., Abelson, H., Spertus, E., and Looney, L. 2001.
App Inventor: Create Your Own Android Apps. O'Reilly
Media.

[5] Karpicke, J. D., & Blunt, J. R. 2011. Retrieval practice
produces more learning than elaborative studying with
concept mapping. Science, 331, 772-775.

[6] Grissom, S., Simon, B., Beck, L., and Chizhik, A. 2013.
Alternatives to lecture: revealing the power of peer
instruction and cooperative learning. In Proceeding of the
44th ACM technical symposium on Computer science
education (SIGCSE '13). ACM, New York, NY, USA, 283-
284.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	10-10-2013

	QuizPower: a mobile app with app inventor and XAMPP service integration
	David Meehan
	Mihaela C. Sabin
	Recommended Citation

	Microsoft Word - sigite-2013-last-version.docx

