
University of New Hampshire
University of New Hampshire Scholars' Repository

Applied Engineering and Sciences Scholarship Applied Engineering and Sciences

1-1-2007

Conditional constraint satisfaction and
configuration: A win-win proposition
Esther Gelle

Mihaela C. Sabin
University of New Hampshire, Manchester, mihaela.sabin@unh.edu

Follow this and additional works at: https://scholars.unh.edu/unhmcis_facpub

This Article is brought to you for free and open access by the Applied Engineering and Sciences at University of New Hampshire Scholars' Repository.
It has been accepted for inclusion in Applied Engineering and Sciences Scholarship by an authorized administrator of University of New Hampshire
Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Mihaela Sabin, Conditional constraint satisfaction and configuration: A win-win proposition, IEEE INTELLIGENT SYSTEMS 22
(2007), no. 1, 81–83.

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/unhmcis_facpub?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/unhmcis?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/unhmcis_facpub?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


Page 1/4 

Conditional Constraint Satisfaction and Configuration – A Win-Win Proposition 
 
Esther Gelle, Power Generation, ABB Switzerland Ltd, Bruggerstrasse 72, CH-5400 Baden, Switzerland 
Mihaela Sabin, Department of Mathematics and Computer Science, Rivier College, 420 Main Street, 
Nashua, NH 03060 
 
Submitted and accepted by IEEE Intelligent Systems (Revised Submission, November 2006) 
 

Product configuration, like design, planning, or hardware test generation, is a real-world, 
dynamic task. It supports on-the-fly selection of parts to assemble a large assortment of possible 
product variants to satisfy functional specifications and customer choices. The conditional 
constraint-satisfaction formalism offers a natural way of representing these constraints, some of 
which model how parts selection changes during the problem-solving process. Conditional 
constraint-satisfaction problems (CondCSPs) extend standard CSPs with a special type of 
constraints that can capture changes at solving time based on predefined conditions. 

Recently, researchers have been increasingly interested in modeling dynamic application 
problems as CondCSPs. Consequently, they’ve developed specialized algorithms that depart from 
standard CSP solving. However, we know little about these algorithms’ relative performance 
because they’ve been experimentally analyzed separately using different test suites. We present a 
CondCSP solver that includes two algorithms for direct and reformulated problem-solving of 
CondCSPs. Our analysis uses randomly generated CondCSPs and shows new correlations between 
problem topology and algorithm performance. These results shed more light on the CondCSP 
problem class while expanding on the configuration problem’s solution. 

Why Conditional Constraint Satisfaction? 
Sanjay Mittal and Brian Falkenhainer introduced the dynamic CSP formalism and its original 

application domain, product configuration.1 Sabin and Eugene C. Freuder further developed this 
formalism and renamed it “conditional CSP” to point out that the particular dynamic behavior this 
formalism captures consists of conditionally selecting only those variables and constraints that are 
relevant to final solutions.2 Figure 1 shows a configuration problem’s general characteristics in a 
simple example for configuring an industrial mixer. 
 
Required parts and their values: 

•   mixer’s vessel type is either mixer or reactor 
•   vessel’s volume is either small or large 
•   mixing process is either dispersion or blending 
 

Optional parts and their values: 
•   cooler’s type is either cool1 or cool2 
•   condenser’s type is either cond1 or cond2 
 

Configuration requirements of parts compatibility: 
•   small volume is incompatible with condenser’s cond1 
•   mixer and reactor type is only compatible with small volume 
 

Configuration requirements for selecting optional parts: 
•   reactor type includes the cooler option 
•   dispersion process includes the condenser option 
•   cool1 cooler excludes the condenser option 
•   large volume includes the condenser option 

Figure 1 The characteristics of a configuration problem for an industrial mixer example. 
 



Page 2/4 

In CondCSP terms (see figure 2), the mixer configuration problem has variables, corresponding 
to all the catalog parts, and constraints, corresponding to parts’ compatibility rules and optional 
functional and user selections. A formal description of CondCSPs is available elsewhere.3 
 
 

 
 

Initial Variables: 
Type: {mixer,reactor} 
Process: {dispersion,blending} 
Volume: {small,large} 
 
Optional Variables: 
Cooler: {cool1,cool2} 
Condenser: {cond1,cond2} 
 
Compatibility Constraints: 
c1: {(large,cond1)(large,cond2) 
        (small, cond2)} 
c2: {(mixer,small)(reactor,small)} 
 
Activity Constraints: 
a1: Type=reactor →includes Cooler 
a2: Process=dispersion →includes Condenser 
a3: Cooler=cool1 →includes Condenser 
a4: Volume= large →excludes  Condenser  

Solution Set: 
Type Process Volume Cooler Condenser 
reactor dispersion small cool2 cond2 
reactor blending small cool1 EXCLUDED 
reactor blending small cool2 UNDETERMINED 
mixer dispersion small UNDETERMINED cond2 
mixer blending small UNDETERMINED UNDETERMINED 

 

Figure 2. Variables and constraints of the industrial mixer example.  
 
Recently, researchers have adapted constraint satisfaction and its conditional variant to the 

planning domain4,5 and hardware test generation.6 These application domains have produced 
either specialized algorithms for solving CondCSPs or reformulations of CondCSPs into standard 
CSPs using the classical CSP-solving arsenal. However, the CondCSP class lacks systematic 
findings with regard to relative algorithm performance and how that performance correlates with 
problem topology, such as density, satisfiability, and conditionality. CondCSP benchmark 
problems are almost nonexistent, compounding this challenge. 

Our Contributions 
To address these challenges, we’ve developed a CondCSP solver that includes two algorithms, 

which we initially introduced and evaluated separately. One algorithm uses direct solving methods 
that adapt standard consistency checking, such as forward checking and maintaining arc 
consistency, to the special constraints that enforce conditionality in a CondCSP.7,8 The second 
algorithm reformulates the original problem into intermediate CondCSPs with incrementally lesser 
conditionality as they’re ultimately transformed into standard CSPs. Standard consistency checking 
is interleaved with problem reformulation to eliminate inconsistent subproblems and solve the 
resulting standard CSPs.9,10 

To overcome the lack of publicly available benchmark problems, we’ve used random CondCSPs 
and designed test suites for both direct- and reformulation-solving algorithms. Our initial work is 
available elsewhere.3 

A more extensive evaluation analysis shows that no one method is best.11 Reformulation 
solving in conjunction with forward checking has the advantage of pruning whole subproblems, so 
it copes better with larger problems (with solution spaces in the tens of thousands) than direct 
solving methods. Direct solving in conjunction with maintaining arc consistency is always 



Page 3/4 

preferable to direct solving using forward checking and is more efficient on large, overconstrained 
problems. 

Solving Methods for CondCSPs 
The large collection of thoroughly tested algorithms for solving standard CSPs contrasts starkly 

with the few existing algorithms for solving CondCSPs. Esther Gelle provides the first complete 
description of CondCSP backtrack search, which solves a partially reformulated CondCSP that 
rewrites exclusion activity constraints as compatibility constraints.9 Sabin proposed CondCSP 
analogs to CSP backtrack (CondBt), forward checking (CondFc), and maintaining arc consistency 
(CondMac) search algorithms.7 CondMac interleaves backtrack search with maintaining arc 
consistency, which is adapted to propagate consistency checking on both compatibility and activity 
constraints in the original CondCSP. Experimental evaluation on random CondCSPs shows up to 
two orders of magnitude improved efficiency over plain backtrack search. 

A different approach is to successively process activation conditions of inclusion into an 
equivalent reformulation.9,10 The reformulation algorithm, Gt, generates a tree whose internal 
nodes are CondCSPs and whose leaves are standard CSPs. Gt reformulates inclusion activity 
constraints into compatibility constraints by creating intermediate CondCSPs with lesser 
conditionality until it reaches the leaves level. Standard consistency checking is interleaved with 
tree generation to eliminate inconsistent subproblems and to eventually solve the resulting standard 
CSPs. The two algorithms implemented are Gt with forward checking (GtFc) and Gt with 
maintaining arc consistency (GtMac) algorithms. Experimental evaluation results of GtFc were 
reported for solving a bridge design problem 9.//by you? Do you have a reference?// 

To examine these algorithms’ relative performance, we’ve integrated both implementations 
within the same solver framework (written in C++). 

Experimental Evaluation 
Our experimental analysis used randomly generated CondCSPs. The random CondCSP 

generator  extends problem topology parameters, such as density and satisfiability of standard 
constraints, with similar parameters that describe problem conditionality. R.J. Wallace, currently at 
the Cork Constraint Computation Centre, University College Cork,  Ireland, developed the random 
CondCSP generator in 1996 when he was affiliated with the University of New Hampshire, U.S.A. 
. We designed several test suites for which we varied the number of variables and the density and 
satisfiability of both standard and condition-based constraints. We wanted to run experiments for 
solving problems of a solution space that was large enough to expose measurable differences in 
execution time, but still manageable. Our evaluation’s main goal was to compare performance of 
both types of algorithm encoded in the same C++ framework and executed on the same type of 
machine (1.86 GHz Intel Pentium M processor). 

All test suites showed that all methods’ time performance improves with increasing 
conditionality. With increasing conditionality the problem gets overconstrained and the number of 
solutions decreases dramatically ,so finding all solutions is easier. 

In all cases, CondMac outperformed CondFc, confirming Gelle and Sabin’s results.3 CondMac 
exploits activity constraints and the tension between inclusion and exclusion activations to prune 
variable domains. Because the experimental studies use binary constraints, the activity constraints 
with unary conditions yield a good pruning effect. 

GtFc and GtMac’s relative time performance depends on the solution-space size. In general, 
GtFc solves underconstrained problems faster. Gt transforms all exclusion constraints into 
compatibility constraints before generating the tree. We know that Mac’s performance deteriorates 
with increasing problem density. In the case of Gt, the number of different compatibility 
constraints of the resulting standard CSPs is larger than the original CondCSP’s because all activity 
constraints have been reformulated into compatibility constraints. Overall, the implementation 



Page 4/4 

overhead overcomes Mac’s pruning power, which doesn’t always pay off. Consequently, GtFc 
prunes more efficiently at a lower effort cost. 

GtFc becomes faster than CondMac when the solution space is large (that is, in an 
underconstrained problem), and, within the same parameter setting problem, GtFc runs faster when 
the solution space is small (that is, in an overconstrained problem). 

 

References 
 1. S. Mittal and B. Falkenhainer, “Dynamic Constraint Satisfaction Problems,” Proc. 8th Nat’l 

Conf. Artificial Intelligence, MIT Press, 1990, pp. 25–32. 
 2. M. Sabin and E.C. Freuder, “Detecting and Resolving Inconsistency and Redundancy in 

Conditional Constraint Satisfaction Problems,” Proc. Constraint Programming (CP 98), 
Workshop on Constraint Problem Reformulation, 1998. http://ic-
www.arc.nasa.gov/people/frank/workshop.html#pub 

 3. E. Gelle and M. Sabin, “Solving Methods for Conditional Constraint Satisfaction,” 
Proceedings of the  IJCAIWorkshop on Configuration affiliated with the Eighteenth 
International Joint Conference on Artificial Intelligence, 2003; www2.ilog.com/ijcai-
03/Papers/IJCAI03-02.pdf, pp 7-12 

 4. M. Binh Do and S. Kambhampati, “Solving Planning-Graph by Compiling it into CSP,” Proc. 
5th Int’l Conf. Artificial Intelligence Planning Systems, AAAI Press, 2000, pp. 82–91. 

 5. I. Miguel, P. Jarvis, and Q. Shen, “Flexible Graphplan,” Proc. 14th European Conf. Artificial 
Intelligence, IOS Press, 2000, pp. 506–510. 

 6. F. Geller and M. Veksler, “Assumption-Based Pruning in Conditional CSP,” Proc. 11th Int’l 
Conf. Principles and Practice of Constraint Programming, LNCS 3709, Springer, 2005, pp. 
241–255. 

 7. M. Sabin, “Towards Improving Solving of Conditional Constraint Satisfaction Problems,” 
doctoral dissertation, Computer Science Department, University of New Hampshire, 2003. 

 8. M. Sabin, E.C. Freuder, and R.J. Wallace, “Greater Efficiency for Conditional Constraint 
Satisfaction,” Proc. 9th Int’l Conf. Principles and Practice of Constraint Programming, LNCS 
2833, Springer, 2003, pp. 649–663. 

 9. E. Gelle, “On the Generation of Locally Consistent Solution Spaces,” doctoral thesis, 
Artificial Intelligence Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1998. 

 10. E. Gelle and B. Faltings, “Solving Mixed and Conditional Constraint Satisfaction Problems,” 
Constraints, vol. 8, no. 2, 2003, pp. 107–141. 

 11. E. Gelle and M. Sabin, “Solver Framework for Conditional Constraint Satisfaction Problems,” 
Papers from the Proceedings of the ECAI 2006 Workshop on Configuration affiliated with the 
17th European Conference on Artificial Intelligence, 2006, pp 14-19 

 
Esther Gelle is head of R&D power generation at Asea Brown Boveri Switzerland. Contact her at 
esther.gelle@ch.abb.com. 
 
Mihaela Sabin is associate professor of computer science in the Department of Mathematics and Computer Science at 
Rivier College. Contact her at msabin@rivier.edu. 
 


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	1-1-2007

	Conditional constraint satisfaction and configuration: A win-win proposition
	Esther Gelle
	Mihaela C. Sabin
	Recommended Citation


	2017-2018-arredondo-annual-evaluation-signed

