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Evapotranspiration and water use efficiency in relation to
climate and canopy nitrogen in U.S. forests
Rossella Guerrieri1,2, Lucie Lepine1, Heidi Asbjornsen1, Jingfeng Xiao1, and Scott V. Ollinger1

1Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA, 2Centre for Ecological
Research and Forestry Applications (CREAF), Universidad Autonoma de Barcelona, Cerdanyola, Barcelona, Spain

Abstract Understanding relations among forest carbon (C) uptake and water use is critical for
predicting forest-climate interactions. Although the basic properties of tree-water relations have long
been known, our understanding of broader-scale patterns is limited by several factors including (1)
incomplete understanding of drivers of change in coupled C and water fluxes and water use efficiency
(WUE), (2) difficulty in reconciling WUE estimates obtained at different scales, and (3) uncertainty in how
evapotranspiration (ET) and WUE vary with other important resources such as nitrogen (N). To address
these issues, we examined ET, gross primary production (GPP), and WUE at 11 AmeriFlux sites across
North America. Our analysis spanned leaf and ecosystem scales and included foliar δ13C, δ18O, and %N
measurements; eddy covariance estimates of GPP and ET; and remotely sensed estimates of canopy %N.
We used flux data to derive ecosystem WUE (WUEe) and foliar δ13C to infer intrinsic WUE. We found that
GPP, ET, and WUEe scaled with canopy %N, even when environmental variables were considered, and
discuss the implications of these relationships for forest-atmosphere-climate interactions. We observed
opposing patterns of WUE at leaf and ecosystem scales and examined uncertainties to help explain these
opposing patterns. Nevertheless, significant relationship between C isotope-derived ci/ca and GPP
indicates that δ13C can be an effective predictor of forest GPP. Finally, we show that incorporating species
functional traits—wood anatomy, hydraulic strategy, and foliar %N—into a conceptual model improved
the interpretation of Δ13C and δ18O vis-à-vis leaf to canopy water-carbon fluxes.

1. Introduction

Terrestrial ecosystems influence climate through regulation of carbon (C), water (H2O), and energy exchanges
with the atmosphere [Bonan, 2008; Canadell et al., 2007; Meir et al., 2006; Schulze, 2006]. In recent decades,
advances in our understanding of the C cycle include improved estimates of C assimilation and storage
[e.g., Pan et al., 2011], new methods for assessing spatiotemporal dynamics [Anav et al., 2015; Xiao et al.,
2013, 2014], and better understanding of underlying environmental drivers [Fernández-Martínez et al.,
2014a, 2014b; Heimann and Reichstein, 2008; Luyssaert et al., 2007; Reichstein et al., 2007]. Despite this pro-
gress, our understanding of how the C cycle interacts with the water (H2O) cycle has lagged. This is important
because CO2 uptake by tree canopies occurs at the expense of H2O lost during transpiration, which has sig-
nificant effects on heat partitioning and energy exchange between vegetation and the atmosphere
[Bonan, 2008].

To date, most studies on the spatial patterns of evapotranspiration (ET) have focused on physical factors
such as temperature, soil moisture, and vapor pressure deficit [Federer et al., 1996; Pan et al., 2015; Tang
et al., 2006]. The extent to which biological factors, particularly plant nutrient status, affect ET has received
less attention beyond results obtained using models [e.g., Dickinson et al., 2002; Lee et al., 2013]. In addition
to C and H2O fluxes, biological properties of vegetation (e.g., canopy %N and leaf area index (LAI)) can
affect albedo, i.e., the fraction of the solar radiation not absorbed in the biosphere and reflected back to
space [Ollinger et al., 2008; Zhu and Zeng, 2015]. Ollinger et al. [2008] observed positive correlations
between canopy %N, C assimilation, and albedo, raising the question of whether canopy N can influence
climate by modulating radiative forcing as well as C assimilation. Furthermore, forest canopy ET can also
modify the climate system by affecting albedo (i.e., through cloud formation), as well as the concentration
of water vapor (a potent greenhouse gas) in the atmosphere [Bright et al., 2015]. Although intriguing, the
net effect of these relationships on climate is difficult to ascertain without additional information on the
nature of coupled C-N-H2O fluxes in forests.
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Water use efficiency (WUE), the C gain per unit of H2O loss through transpiration, is a key physiological para-
meter linking C and H2O cycles. Its definition and quantification vary depending on the scale of investigation
(leaf, ecosystem, region, or globe), the time resolution (seconds, seasons, and years), and the measurement
methods used. At the scale of individual leaves, WUE can be defined as (1) the ratio between net CO2 assim-
ilation (A) and stomatal conductance to H2O (gs), known as intrinsic water use efficiency (iWUE), or (2) the ratio
between A and transpiration (E), known as instantaneous WUE [Farquhar et al., 1989; Donovan and Ehleringer,
1994]. One of the most commonly used methods for assessing tree-level iWUE is the measure of the stable
carbon isotope composition (δ13C) in plant tissue. This approach is based on the well-established theory
for the physiology of C3 photosynthesis, in particular, the relationship between the ratio of the CO2 in the
intercellular spaces, ci, and that in the atmosphere, ca (i.e., ci/ca), and C isotope discrimination, Δ13C
[Farquhar et al., 1982]. In addition to δ13C, the measure of δ18O allows to gain additional insight into the eco-
physiological processes underlying changes in leaf WUE [Scheidegger et al., 2000]. The δ18O in plant organic
matter reflects the δ18O of leaf water where it was formed [Gessler et al., 2013], which, in turn, is affected by
the δ18O of the water source [Craig and Gordon, 1965; Dongmann et al., 1974] and isotopic fractionations
occurring during transpiration, as determined primarily by gs. Notably, unenriched water from the soil and
enriched water at the leaf evaporative sites continuously mix, as a function of transpiration rate and the path-
way of water movement through foliar tissues (i.e., Péclet effect, see among others [Barbour et al., 2004;
Barbour, 2007; Farquhar and Lloyd, 1993; Gessler et al., 2014; Roden et al., 2015; Song et al., 2013]). Several
authors have reported a negative relationship between δ18O in leaf organic matter and gs due to their reci-
procal link to relative humidity [Barbour et al., 2000, 2004; Grams et al., 2007; Moreno-Gutiérrez et al., 2012;
Ripullone et al., 2009; Roden and Siegwolf, 2012; Sullivan and Welker, 2007]. The combination of the two iso-
topes in a conceptual model proposed by Scheidegger et al. [2000] has been successful applied to disentangle
physiological mechanisms of tree species in response to environmental changes under natural [Barnard et al.,
2012; Keitel et al., 2003; Moreno-Gutiérrez et al., 2012; Sullivan and Welker, 2007] and experimental conditions
[Grams et al., 2007; Guerrieri et al., 2011; Leonelli et al., 2012; Jennings et al., 2016; Siegwolf et al., 2001].

At the scale of whole ecosystems, C and H2O fluxes have increasingly been assessed using the eddy covar-
iance (EC) technique, which provides direct measurements of net ecosystem exchange (NEE) of CO2 between
ecosystems and the atmosphere [Baldocchi, 2008]. NEE is routinely partitioned into its two components: gross
primary production (GPP) and ecosystem respiration [Baldocchi et al., 2001; Reichstein et al., 2005]. The EC
method also provides information related to energy fluxes, including incoming solar radiation (Rg) and
energy dissipation by sensible heat and latent heat (LE); the latter of which is used to estimate ET. Hence, eco-
system water use efficiency, WUEe, is then obtained as the ratio between GPP and ET [Law et al., 2002; Beer
et al., 2009; Keenan et al., 2013].

Although the approach of integrating tree-scale (e.g., using leaf or tree ring δ13C) and ecosystem-scale (e.g.,
based on EC data) measurements to assess WUE is not new, most studies to date have focused on within-site
comparisons of the methods applied to forests [Belmecheri et al., 2014; Michelot et al., 2011; Monson et al.,
2010; Scartazza et al., 2014] or grasslands [Flanagan and Farquhar, 2014; Niu et al., 2011]. Analyses that com-
pare both methods across a range of sites and broad climate and N gradients are less common. Furthermore,
the combination of δ13C and δ18O in a dual-isotope conceptual model has proved to be useful to assess dif-
ferences in co-occurring tree species in their water use strategies under different environmental conditions
[e.g., Moreno-Gutiérrez et al., 2012; Lévesque et al., 2014], but to our knowledge its use to gain a better under-
standing of the ecosystem fluxes has never been explored. Cross-site comparisons that integrate EC and both
stable carbon and oxygen isotopes data can offer a useful approach for advancing fundamental understand-
ing of the spatial and temporal patterns of ecosystem fluxes.

The goal of this study was to explore the relationships among GPP, ET, WUE, and canopy %N for AmeriFlux
sites that span a broad range of climate conditions, forest types, and tree species in the U.S. Given the differ-
ent methodological approaches and associated scales over which WUE can be assessed, we also sought to
determine whether isotopically based tree-level measurements are representative of EC-derived
ecosystem-scale estimates. Finally, the differences among the investigated species in term of foliar %N, wood
anatomy (coniferous, ring porous, and diffuse porous type), and hydraulic strategies (isohydric and anisohyd-
ric) gave us the unique opportunity to test whether (i) the estimate of changes in A and gs from the dual-
isotope approach could be improved by integrated species’ functional traits and (ii) convergence and
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divergence in functional traits facilitate a better understanding on ecosystem fluxes. To accomplish this, built
on previous data (e.g., canopy%N) fromOllinger et al. [2008], we added newdata, i.e., foliar δ13C, δ18O, and%N;
conductednewanalyses of eddy covariancedata; and added three xeric sites in order to (1) extend the rangeof
site moisture status, (2) examine the relationship between ET and WUE versus canopy N (which was not
addressed in the previous work), and (3) explore species-specific physiological mechanisms for the dominant
species at each site. We addressed the following specific questions: (1) do ET andWUE vary with forest canopy
%N, and if so, do these patterns amplify or offset the expected effects of N on climate via its influence on GPP
alone? (2) Can leaf level measures of WUE be scaled to provide qualitative understanding of ecosystem-scale
WUE and fluxes? And finally, (3) does incorporating information about species’ functional traits when applying
conceptual models to interpret leaf-level δ13C and δ18O in terms of A and gs improve our understanding of the
ecosystem C and H2O fluxes?

2. Materials and Methods
2.1. Site Description and Foliar Sample Collection

Eleven forested research sites within the AmeriFlux network were selected to represent major temperate for-
est types of North America (Figure 1a and Table 1) and to span a range of biological properties, i.e., N plant
status, LAI, and biodiversity (assessed through Shannon diversity index, SH). Nine of the 11 sites were part of a
previous study [Ollinger et al., 2008], so to make use of relevant data (i.e., canopy %N) and samples already
available. Moreover, other two sites were added to expand the range of biological and meteorological prop-
erties, with particular reference to water stress.

At each site, 6–12 plots were selected fromwithin a 1 km radius around the flux tower that generally captured
the species composition and soil conditions across the landscape. Where possible, we selected plots that
were part of established research plot networks, where stemmaps, tree counts, and other ancillary data were
available. Within each plot, all dominant and codominant species were identified, and between two and five
trees per species were selected for green leaf collection via shotgun sampling from several heights in the
canopy as described in Ollinger and Smith [2005]. A camera-based point quadrat method [Smith and

Figure 1. (a) Location of forested AmeriFlux sites included in this study. The base map is the 1 km resolution land cover map derived fromMODIS, and the vegetation
types are evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF), deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), mixed forests
(MF), closed shrublands (CSH), open shrublands (OSH), woody savannas (WSA), savannas (SAV), grasslands (GRA), and croplands (CRO). (b–e) Relationship between
environmental parameters and latitude. Parameters considered were mean annual temperature, Ta (R

2 = 0.52, β =�0.69, p< 0.05), and mean of the maximum
temperature (R2 = 0.34, β =�0.53, p = 0.05) when daily solar radiation, Rg, peaked (i.e., values >800–1000Wm�2; Figure 2b), mean of maximum values of VPD
(β =�0.51, R2 = 0.45, p< 0.05; Figure 2c), potential evapotranspiration (Figure 2d), PET (R2 = 0.77, β =�5.50, p< 0.001), and difference between annual precipitation
(Pa) and PET as a proxy of moisture stress (R2 = 0.72, β = 8.75, p< 0.001; Figure 2e). Pa-PET values near or below zero (i.e., ACMF, FUF, DFH, and NR) indicate xeric
conditions. For full name of the sites refer to Table 1.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003415

GUERRIERI ET AL. ET AND WUE SCALED WITH CANOPY NITROGEN 2612



Ta
b
le

1.
D
es
cr
ip
tio

n
of

th
e
Si
te
s
C
on

si
de

re
d
in

Th
is
St
ud

ya

Si
te

La
tit
ud

e
(°
N
)

Lo
ng

itu
de

(°
W
)

El
ev
at
io
n

(m
as
l)

Fo
re
st
Ty
pe

(F
T)

D
om

in
an

t
Sp

ec
ie
s

Fr
ac
tio

n
(%

)
A
ge

(y
ea
r)

SH
LA

I
(m

2
m
�
2
)

T a (°
C
)

P a (c
m
)

P a
-P
ET

(c
m
)

(a
)

(b
)

A
us
tin

C
ar
y,
FL

(A
C
M
F)

29
°7
4′

82
°2
2′

44
Pi
ne

fl
at
w
oo

ds
(C
on

)
Pi
nu

s
pa

lu
st
ris

M
ill
.

0.
71

0.
73

80
0.
60

4
2.
9

20
.2

73
.7

�7
7.
05

Pi
nu

s
el
lio
tt
ii
En

ge
lm

0.
29

0.
27

Ba
rt
le
tt
,N

H
(B
EF
)

44
°0
6′

71
°2
9′

27
2

Te
m
pe

ra
te

no
rt
he

rn
ha

rd
w
oo

d
(M

ix
ed

)
Fa
gu

s
gr
an

di
fo
lia

Eh
rh
.

0.
34

0.
21

99
1.
51

3
4.
5

7.
5

12
3.
1

82
.0
5

Ts
ug

a
ca
na

de
ns
is
(L
.)
C
ar
r.

0.
36

0.
21

D
uk

e,
N
C
(D
FH

)
35

°9
7′

79
°1
0′

16
8

So
ut
he

rn
ha

rd
w
oo

d
(B
rL
)

Li
rio

de
nd

ro
n
tu
lip
ife
ra

L.
0.
12

0.
21

10
6

1.
33

6
5.
6

15
.2

10
6.
2

�9
.0
5

Ca
ry
a
to
m
en
to
sa

L.
0.
20

0.
46

Fl
ag

st
af
f
U
nm

an
ag

ed
fo
re
st
,A

Z
(F
U
F)

35
°0
9′

11
1°
76

′
21

80
Se
m
ia
rid

Po
nd

er
os
a
pi
ne

(C
on

)
Pi
nu

s
po

nd
er
os
a

D
ou

gl
.e
x
P.
La
w
s.

0.
95

10
0

0.
19

8
1.
2

8.
7

56
.2

�5
0.
1

H
ar
va
rd
,M

A
(H
F)

42
°5
4′

72
°1
7′

34
0

Te
m
pe

ra
te

de
ci
du

ou
s
(M

ix
ed

)
Q
ue
rc
us

ru
br
a
L

0.
41

0.
36

80
1.
33

3
4.
9

8.
1

11
4.
6

44
.2

Ts
ug

a
ca
na

de
ns
is
(L
.)
C
ar
r.

0.
34

0.
13

H
ow

la
nd

,M
E
(H
O
W
)

45
°2
0′

68
°7
4′

60
Tr
an

si
tio

na
le
ve
rg
re
en

bo
re
al

(C
on

)
Pi
ce
a
ru
be
ns

Sa
rg
.

0.
82

0.
41

10
9

1.
38

2
5.
7

6.
3

75
.8

28
.4

Ts
ug

a
ca
na

de
ns
is
(L
.)
C
ar
r.

0.
16

0.
29

M
or
ga

n
M
on

ro
e,

IN
(M

M
)

39
°3
2′

86
°4
1′

27
5

M
ix
ed

te
m
pe

ra
te

de
ci
du

ou
s

(B
rL
)

A
ce
r
sa
cc
ha

ru
m

M
ar
sh
.

0.
17

0.
17

70
1.
83

6
4.
9

12
.6

11
0.
8

13
.8

Li
rio

de
nd

ro
n
tu
lip
ife
ra

L.
0.
17

0.
17

N
iw
ot

Ri
dg

e,
C
O
(N
R)

40
°0
3′

10
5°
55

′
30

50
Su

ba
lp
in
e
fo
re
st
(C
on

)
A
bi
es

la
si
oc
ar
pa

(H
oo

k.
)

N
ut
t.

0.
22

0.
46

10
5

1.
06

3
4

2.
4

64
.9

0.
4

Pi
nu

s
co
nt
or
ta

D
ou

gl
as

ex
Lo

ud
on

0.
49

0.
26

Si
la
s
Li
tt
le
,N

J
(S
L)

39
°9
1′

74
°6
0′

30
M
ix
ed

pi
ne

la
nd

(M
ix
ed

)
Q
ue
rc
us

pr
in
us

L.
0.
25

0.
25

10
0

1.
27

9
4.
8

11
.7

10
7.
7

10
.7

Pi
nu

s
ec
hi
na

ta
M
ill
.

0.
55

0.
11

W
ill
ow

C
re
ek
,W

I(
W
C
r)

45
°8
1′

90
°0
8′

51
5

Te
m
pe

ra
te
/b
or
ea
ld

ec
id
uo

us
fo
re
st
(B
rL
)

A
ce
r
sa
cc
ha

ru
m

M
ar
sh
.

0.
80

0.
43

90
1.
66

6
5.
4

5.
9

77
.0

10
.4

Ti
lia

am
er
ic
an

a
L.

0.
12

0.
33

W
in
d
Ri
ve
r,
O
R
(W

R)
45

°8
2′

12
1°
95

′
37

1
Te
m
pe

ra
te

ev
er
gr
ee
n

Ts
ug

a
he
te
ro
ph

yl
la

(R
af
.)

Sa
rg
.

0.
40

0.
53

45
0

1.
28

9
8.
2

9.
5

19
1.
2

10
8.
7

Ps
eu
do

ts
ug

a
m
en
zi
es
ii

(M
irb

.)
Fr
an

co
0.
21

0.
08

a W
e
re
po

rt
ed

th
e
an

nu
al
m
ea
n
te
m
pe

ra
tu
re

(T
a
)a
nd

pr
ec
ip
ita

tio
n
(P
a
)c
al
cu
la
te
d
ov

er
th
e
in
ve
st
ig
at
ed

ye
ar
s,
as

re
po

rt
ed

in
Ta
bl
e
2
(a
ls
o
se
e
Ta
bl
e
S1
).
A
ge

of
th
e
fo
re
st
an

d
LA

Iw
er
e
ob

ta
in
ed

by
th
e
bi
ol
og

ic
al
an

d
an

ci
lla
ry

da
ta

av
ai
la
bl
e
on

lin
e
at

th
e
A
m
er
iF
lu
x
ne

tw
or
k
se
rv
er
.T
he

fr
ac
tio

n
of

ea
ch

of
th
e
tw

o
do

m
in
an

t
sp
ec
ie
s
w
as

de
riv

ed
fr
om

(a
)
ca
m
er
a-
po

in
t
qu

ad
ra
t
m
ea
su
re
m
en

ts
ca
rr
ie
d
ou

ti
n
6–

12
pl
ot
s
ar
ou

nd
ea
ch

fl
ux

to
w
er
,e
xc
ep

tf
or

A
C
M
F
an

d
N
R,
w
hi
ch

w
er
e
ba

se
d
on

ba
sa
la
re
a
da

ta
,a
nd

(b
)A

m
er
iF
lu
x
bi
ol
og

ic
al
da

ta
av
ai
la
bl
e
fo
rt
he

in
ve
st
ig
at
ed

si
te
s.
Th

e
di
ff
er
en

ce
be

tw
ee
n
pr
ec
ip
ita

tio
n
(P
a
)a
nd

po
te
nt
ia
le
va
po

tr
an

sp
ira

tio
n
(P
ET
)i
s
he

re
us
ed

as
a
pr
ox
y
of

m
oi
st
ur
e
st
re
ss
co
nd

iti
on

s:
va
lu
es

ne
ar
an

d
be

lo
w
ze
ro

in
di
ca
te

xe
ric

si
te
s.
In
th
e
fo
re
st
ty
pe

(F
T)
co
lu
m
n,

co
ni
fe
r,
m
ix
ed

,a
nd

br
oa

dl
ea
ff
or
es
ts
ar
e
in
di
ca
te
d
as

co
n,

m
ix
ed

,a
nd

Br
L,
re
sp
ec
tiv

el
y.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003415

GUERRIERI ET AL. ET AND WUE SCALED WITH CANOPY NITROGEN 2613



Martin, 2001] was used to determine the contribution of each species to the total canopy mass to derive
species-weighted, plot-level whole canopy N concentration (as described in section 2.2.2). Foliar samples
for analysis of %N and stable isotopes were obtained from the middle and upper canopies of 5 to 10 of
the 2 most dominant tree species within the tower footprint (~500m) using the same method as described
above. Sampling took place between 2002 and 2006 for nine sites as described in Ollinger et al. [2008] and
between 2013 and 2014 for the remaining two sites and four of the previously sampled sites (Table S1 in
the supporting information).

2.2. Ecosystem-Level Data
2.2.1. Carbon and Water Fluxes and Micrometeorological Data
We compiled flux and micrometeorological observations from each of the 11 EC flux sites (Figure 1a and
Table 1). We considered half-hourly, level 4 standardized fluxes, i.e., GPP and ET, the former gap filled with
the artificial neural network method [Moffat et al., 2007], and micrometeorological data (temperature [T],
vapor pressure deficit [VPD], annual precipitation [Pa], and incoming global radiation [Rg]). We considered
years where L4 data were available at most of the sites, i.e., 2001–2004, with the exceptions of BEF, FUF,
and SL (Table S1). Data were acquired from the AmeriFlux data archive (http://ameriflux.ornl.gov/) or from site
investigators (i.e., at SL and FUF).

Half-hourly data were aggregated to daily values (08:00 A.M. to 04:00 P.M.) for the calculation of growing sea-
son (May–August) GPP (g Cm�2 grs�1) and ET (kgH2Om�2 grs�1). For the same time window we calculated
the averages of micrometeorological parameters: T (Tgrs), VPD (VPDgrs), Rg (Rggrs), and precipitation (Pgrs). We
only considered fluxes obtained during dry canopy conditions, i.e., with no precipitation event, to avoid error
introduced from canopy evaporation after a precipitation event [Beer et al., 2009; Keenan et al., 2013]. WUEe
was calculated as the ratio between GPP and ET:

WUEe ¼ GPP
ET

(1)

We also determined the rain use efficiency (RUE) as the ratio between GPP and Pa:

RUE ¼ GPP
Pa

(2)

Micrometeorological data were filtered to obtain the daily maximum values of VPD and T, by considering the
time window between 11:00 A.M. and 02:00 P.M., where Rg was higher than 800–1000Wm�2 depending on
the sites. The maximum Rg (Rgmax) was assessed using the daily trend of Rg over the years included in
the study.

Finally, we used potential evapotranspiration (PET) and the difference between Pa and PET to identify xeric
and mesic sites. In this study we used the PET values as derived from the water balance model and available
online (http://eos-earthdata.sr.unh.edu/data/data20.jsp). The model simulates soil moisture variations,
evapotranspiration, and runoff on single-grid cells using biophysical data sets that include climatic drivers,
vegetation, and soil properties and it derives PET by using the Penman-Monteith method.

With the exception of Pa, the cross-site climate gradient was well defined in terms of Ta and Tmax, VPDmax,
Rggrs, and Rgmax (Figure 1b). PET decreased with increasing latitude, while the difference between annual
Pa and PET decreased, with values near or below zero (i.e., ACMF, FUF, DFH, and NR sites), indicating xeric
conditions (Figure 1b).
2.2.2. Canopy N Concentration
Oven-dried and ground foliage was scanned on a benchtop visible and near-infrared spectrophotometer
(Foss NIRSystems 6500) to determine foliar %N according to methods described by Bolster et al. [1996].
Plot-level whole canopy %N (gN per 100 g foliar biomass) was calculated as the mean of foliar N concen-
trations for individual species in each plot, weighted by the fraction of canopy foliar mass per species
[e.g., Smith et al., 2002]. This was determined by combining proportional leaf area from the camera-point
quadrat observations with leaf mass per area measurements (see Smith and Martin [2001] for description
of methods).

For comparison to WUEe, estimates of foliar %N were obtained for a 500m area roughly representative of the
tower footprint, as reported in Ollinger et al. [2008]. These estimates were derived from NASA’s Airborne
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Visible/Infrared Imaging Spectrometer and EO-1 Hyperion imagery as part of several previous investigations
[Martin et al., 2008; Ollinger et al., 2008]. Exceptions included SL and FUF, which were not part of the previous
studies and where cloud-free remotely sensed imagery was not available for the time period during which
foliage was collected. For these sites, we assumed that the average of all plot-level canopy %N we measured
around the flux tower generally represented the range of canopy %N within the flux tower footprint and
hence the ecosystem conditions captured by the flux tower data. This assumption could introduce error in
ecosystem-scale %N estimates, but this error should be small given the relatively homogenous canopies at
these two sites.

Uncertainty could arise from the remotely sensed estimates of foliar %N, which stem from prediction
error in the calibration models (which is generally within 10–20% of the mean) and spatial heterogeneity
in the flux tower footprints. These have been treated in detail in previous papers [Martin et al., 2008;
Ollinger et al., 2008; Lepine et al., 2016]. However, we observed good agreement between foliar %N (deter-
mined from elemental analysis) for the two dominant species at each site and both plot-level (whole
canopy) %N derived from the camera-point quadrat method and remotely sensed canopy %N, with most
of the values close to the 1:1 line (Figure S1 in the supporting information). This gives gave us confidence
that leaf- and tree-level foliar %N for the two dominant species are generally representative of the N
status of the site.
2.2.3. Diversity Index and Leaf Area Index
Tree species diversity at each site was measured with Shannon’s diversity index (SH),

H ¼ ∑
s

i¼1
pilnpi (3)

where s is the number of species observed at the site and p is the proportion of the ith species to the total
canopy mass or stand basal area, as calculated from the canopy point-quadrat sampling or forest stem
map data, respectively. LAI was obtained from the Biological and Ancillary data file available online for each
of the AmeriFlux sites considered.

2.3. Tree-Level Measurements
2.3.1. Stable C and O Isotopic Compositions and Foliar N Concentration
Foliar samples collected from 5 to 10 trees of two dominant species at each site were oven dried at 70°C and
then ground to a fine powder. An amount of 2–2.5mg of the sample was weighed in tin capsules and con-
verted to CO2 and N2 with an elemental analyzer (ECS 4010, Costech Analytical, Valencia, CA) coupled to a
continuous flow isotope ratio mass spectrometer (Delta PlusXP, ThermoFinnigan, Breman, Germany) to deter-
mine δ13C, δ15N, and %N. An additional 0.3–0.5mg of each sample was weighed in silver capsules, converted
to CO with a pyrolysis elemental analyzer (TC/EA, ThermoFinnigan, Breman, Germany), and analyzed for δ18O
with a continuous flow isotope ratio mass spectrometer (Delta PlusXP, Thermofinnigan, Breman, Germany).
Carbon and oxygen isotope ratios were expressed in per mil (‰) relative to the Vienna Peedee belemnite
and Vienna SMOW international standard, respectively. The 2 sigma uncertainties of the isotope results were
0.5‰ and 0.4‰ for δ13C and δ18O, respectively. All isotope analyses were carried out at the Stable Isotope
Core Laboratory (Washington State University, USA).
2.3.2. Determination of Leaf WUE
iWUE was derived from δ13C, based on the well-established theory linking leaf ci/cawith Δ13C [Farquhar et al.,
1982, 1989]:

Δ13C ¼ δ13Ca � δ13Cp

1þ δ13Cp
¼ aþ b� að Þ ci

ca
(4)

where δ13Ca is the carbon isotope composition of atmospheric CO2, δ
13Cp is the carbon isotope composition

of plant tissue, a is the isotope fractionation during CO2 diffusion (4.4‰), and b is the isotope fractionation
during fixation by Rubisco (27‰). Atmospheric CO2 concentrations and δ13C were obtained from Mauna
Loa records (http://www.esrl.noaa.gov/gmd/dv/ftpdata.html). iWUE (μmol CO2mol�1 H2O) was then calcu-
lated using the following equation:

iWUE ¼ A
gs

¼ ca � ci
1:6

¼ ca
1:6

b� Δ13C
b� a

� �
(5)
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where 1.6 is the molar diffusivity ratio of CO2 to H2O (i.e., gCO2 = gH2O/1.6). The iWUE as derived from
equation (5) assumes VPD to be 1molmol�1. We also derived the instantaneous WUE, i.e., A/E
(μmol CO2mol�1 H2O), by using the following equation and given that E= gs×VPD [Farquhar and
Sharkey, 1982]:

WUE ¼ A
E
¼ ca

b� Δ13C
1:6 VPD

� �
(6)

Both intrinsic and instantaneous WUEs were converted from μmol CO2mol�1 H2O to g C/kg H2O to better
compare the leaf and ecosystem WUE. Henceforth, we will refer to intrinsic and instantaneous WUEs in con-
verted units as WUEvpd1 and WUEvpd, respectively.
2.3.3. Combination of Foliar Δ13C and δ18O in a Dual-Isotope Conceptual Model
We combined the two isotopes in a conceptual model [Scheidegger et al., 2000] (and its further modification
by Grams et al. [2007]) to examine the degree to which foliar WUE was influenced by A versus gs. An assump-
tion of the dual-isotope model is that δ18O of atmospheric and soil water is similar for the two species, which
is likely true for the two dominant species at each site. We used Δ13C to derive changes in ci/ca (cf. equation
(4)) and δ18O to assess qualitative changes in gs, assuming a negative relationship between δ18O and gs
[Grams et al., 2007]. Here we modify the dual-isotope conceptual model by including tree species’ functional
traits related to CO2 uptake (foliar %N) and transpiration (hydraulic strategies and wood anatomy).

Tree species have been classified in two main categories, according to the role of stomatal control on their
strategy of water use: isohydric and anisohydric species [Tardieu and Simonneau, 1998; Martínez-Vilalta
et al., 2014]. Isohydric species display a water-conserving strategy, with tight stomatal regulation to maintain
stable leaf water potential. Conversely, anisohydric species have less strict stomatal control and exhibit a
water-spending behavior, enabling them to maintain C assimilation for longer periods of time under condi-
tions of reduced water availability. Wood anatomical features significantly affect tree hydraulic conductivity
and stomatal responsiveness. Indeed, previous studies reported isohydric behavior for conifer and diffuse
porous species, while anisohydric for ring porous species [Carnicer et al., 2013; Meinzer et al., 2013].

Directional changes in Δ13C and δ18O for species X (higher Δ13C–higher ci/ca) versus species Y (lower Δ13C–
lower ci/ca) were used to assess the most likely scenario explaining observed differences between the two
species (if any) in terms of A and/or gs, after taking into account also differences between the two species
in term of foliar %N (which is directly linked to A) and hydraulic strategies and wood anatomy (supporting
differences in gs).

For conifer sites having codominant isohydric species, we hypothesized the two species to show differences
in the Δ13C but not δ18O, suggesting similar gs, as supported by similar wood anatomy and hydraulic strate-
gies. By contrast, for mixed forest sites having dominant species with diverging hydraulic strategies and
wood anatomical features, we predict anisohydric (broadleaf) species to show greater variability in Δ13C
and δ18O, reflecting higher gs to sustain the higher A (supported by the higher foliar %N) compared to the
more water-saving isohydric (conifer) species. Finally, for broadleaf forests we expect to find a similar scenario
as mixed forests, despite the two species having similar wood anatomical features, mostly explained by the
differences in foliar %N between the two codominant species, which lead to difference in A.

2.4. Statistical Analyses

Analysis of variance and Tukey’s multiple comparisons were used to examine differences in the mean values
for fluxes and leaf/ecosystem WUE across the different sites. Independent sample t tests were employed to
test for differences between the two dominant species within each site for foliar %N, Δ13C, δ18O, and
WUEvpd1. Pearson’s correlation coefficients and simple regression analyses were used to examine the rela-
tionship between the leaf level (i.e., WUEvpd1, WUEvpd, Δ

13C, δ18O, and %N) and ecosystem level (GPP, ET,
WUEe, and canopy %N) parameters. Stepwise multiple regression analyses were used to assess which of
the environmental (i.e., Tgrs, Rggrs, Pgrs, VPDgrs, Tmax,VPDmax, and Rgmax) and biological (i.e., LAI, canopy %N,
and SH) variables accounted for most of the cross-site variation in forest fluxes. We started with the “satu-
rated” model, which included all the predictors, and then we used the Akaike information criterion-based
backward elimination to select the best model. We also calculated the variance inflation factor (VIF) to ensure
that all the predictors in the final model had a VIF less than 4, indicating minimal multicollinearity. For WUE,

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003415

GUERRIERI ET AL. ET AND WUE SCALED WITH CANOPY NITROGEN 2616



GPP, and ET, individual years were considered as replicates for each site, and hence, we included in the
model the meteorological factors concurrent with measured fluxes (Table S1). The level of significance of
all statistical tests was set as p ≤ 0.05. R project statistical computing [R Core Team, 2014] was used for all
the analyses.

3. Results
3.1. Spatial Variabilities of C and H2O Fluxes and Relationship with Biological and
Environmental Factors

In Table 2 we summarize main values of C and H2O fluxes and WUEe calculated over multiple years for 11
AmeriFlux sites along a distinct environmental gradient, as described in Figure 1. We observed a high varia-
bility across sites in the case of GPP, with values ranging from 900–800 g Cm�2 grs�1 at the MM, WCr, DFH,
and HF sites to 300 g Cm�2 grs�1 at the ACMF and FUF conifer-dominated forest sites. By contrast, changes in
the ET were less pronounced among the different sites, with values ranging between 100
and 300 kgH2Om�2 grs�1.

GPP (F= 30.4, p< 0.001) and WUEe (F=18.4, p< 0.001) were significantly lower at the xeric sites (ACMF, FUF,
and NR) than the mesic sites (Table 2). The highest ET values were found at the two broadleaf-dominated for-
ests, MM and DFH, which also showed among the highest GPP values. The rest of the sites, including themore
xeric ones, showed similar ET values (Table 2).

One of our goals was to assess whether C and H2O fluxes and their ratio were related to canopy %N. Simple
regression analyses revealed that both GPP and ET were positively correlated with canopy %N (R2 = 0.65,
p< 0.01 for GPP and R2 = 0.40, p< 0.05 for ET; Figures 2a and 2b). Similarly, WUEe and rain use efficiency
(RUE) increased with increasing canopy%N (Figures 2c and 2d), although the relationship was significant only
for RUE (R2 = 0.39, p< 0.05).

Multiple regression analyses showed that the relationship between fluxes and canopy %N were still signifi-
cant when other variables were taken into account. Both GPP and WUEe increased with latitude, while
ETgrs decreased. GPP andWUEe were positively correlated with Tgrs, while for ET we found a negative relation-
ship with Tgrs, although the slope coefficient was not significant (Table 3). When we used the maximum
values of the environmental parameters in the statistical analysis, VPDmax and Rgmax were the only significant
environmental variables for GPP and ET, respectively (Table 3). Of the biological factors included in the statis-
tical model, SH and canopy %Nwere associated with both GPP and ET, showing a positive slope. GPP showed
a significant relationship with LAI but only when including the maximum values for climate variables in the
model (Table 3). Overall, the final models for GPP and WUEe explained a high proportion of the variance, i.e.,
>80 and 70%, respectively, while the final ET model only explained 48–49% of the variance.

Table 2. Mean (±SE) of GPP, ET, and WUEe Calculated over Multiple Years (see Table S1) at the 11 EC Sites Across North
America a

Ecosystem WUE Leaf WUE

GPP SE ET SE WUEe SE WUEvpd1 SE WUEvpd SE
Site (g Cm�2 grs�1) (kg H2Om�2 grs�1) (g C/kg H2O) (g C/kg H2O) (g C/kg H2O)

ACMF 346.45 c 57.37 226.11 b 8.64 1.57 d 0.30 5.09 cd 0.12 2.32 d 0.07
BEF 708.27 ab 28.68 206.27 b 13.88 3.46 ab 0.26 4.59 de 0.11 4.00 c 0.10
DFH 848.93 a 14.74 333.52 a 2.84 2.55 bc 0.03 4.38 cde 0.35 2.49 d 0.20
FUF 351.36 c 26.63 184.82 b 8.66 1.90 cd 0.11 7.30 a 0.12 3.67 c 0.06
HF 823.81 a 61.39 226.60 b 11.43 3.82 a 0.25 4.39 e 0.10 4.00 c 0.10
HOW 777.76 ab 20.54 202.90 b 9.92 3.85 a 0.14 4.68 de 0.13 3.84 c 0.14
MM 978.11 a 23.69 301.06 a 3.53 3.25 a 0.07 4.71 cde 0.21 3.51 c 0.16
NR 407.43 c 13.94 226.02 b 5.93 1.80 d 0.05 6.09 b 0.15 6.68 a 0.23
SL 868.09 ab 209.61 b 4.13 a 4.65 cde 0.07 4.68 b 0.07
WCr 806.57 a 38.29 230.72 b 16.57 3.59 a 0.32 5.46 bc 0.18 6.24 a 0.21
WR 604.30b 43.34 152.39 b 20.63 3.45 a 0.22 4.88 cde 0.23 2.41 c 0.11

aMean (±SE) of leaf WUE as derived from δ13Cmeasured in 5 to 10 trees of the twomost dominant species as reported
in the Table 1. The different letters indicate the significant differences among values, as tested with ANOVA and Tukey’s
post hoc test.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003415

GUERRIERI ET AL. ET AND WUE SCALED WITH CANOPY NITROGEN 2617



We also explored patterns in WUEe based on the correlation between GPP and ET. We found that GPP and ET
were significantly correlated (Figure 3), with the slope of the relationship indicating the gram of carbon
uptake per kilogram of water lost by ET.

3.2. WUE at Leaf and Ecosystem Scales

WUE differed significantly across sites (Table 2), but the nature and magnitude of these differences varied
between leaf- and ecosystem-scale measurements. WUEvpd1 showed the highest values at two of the xeric
sites, FUF and NR, followed by WCR, while the remaining sites showed similar values (F=48.85, p< 0.001;
Table 2). When considering WUEvpd, the sites clustered into three groups, with WCR and NR showing the
highest WUEvpd, while WR, ACMF, and DFH had the lowest; the remaining sites showed similar (intermediate)
values (F=100.9, p< 0.001; Table 2).

WUE for the three northeastern sites (HOW, BEF, and HF) showed similar values (≈4 g C/kg H2O), regardless of
the scale (leaf and ecosystem) or whether we took into account VPD in the leaf-levelWUE calculation (Table 2).
However, this was not the case for other sites, i.e., ACMF, FUF, NR, WCr, and WR, where values of leaf WUE
were higher than those measured at the ecosystem scale (Table 2).

Leaf and ecosystem WUEs were significantly related to each other only in the case of WUEvpd1, with the two
parameters showing a negative correlation (Figure S2). Furthermore, the leaf ci/ca and ci, as derived from δ13C,
were both positively associated with ecosystem GPP (Figure S3).

Figure 2. Relationship between (a) GPP (y = 135.5 + 380.9x; R2 = 0.65, p< 0.01), (b) ET (y = 129.5 + 67.9x; R2 = 0.40, p< 0.05),
(c) rain use efficiency (RUE) (y = 0.31 + 0.32x; R2 = 0.39, p< 0.05), and (d) WUE (y = 1.69 + 0.93x; R2 = 0.23, p = 0.13) versus
remotely sensed derived (with the exception of SL and FUF, cf. main text) canopy %N for 11 AmeriFlux sites in the U.S.
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As observed at the ecosystem scale, the
slope of the relationship between
WUEvpd1 and foliar %N was positive,
although the relationship was not signifi-
cant (Figure 4). We observed a clear dis-
tinction in the relationship between
WUEvpd1 and foliar %N among forest
types (FT: conifer and mixed+ BrL),
although the difference in the slope
between FT was not significant. When
we considered each site separately, the
relationship between leaf WUEvpd1 and
foliar %N within tree species was not
consistent: WUEvpd1 was positively
related to foliar %N in the case of HF
(β =0.66, p< 0.01), MM (β =2.1, p< 0.05),
and WCR (β = 0.89, p< 0.05), while for
HOW the relationship was negative
(β =�3.18, p< 0.0001; data not shown).

3.3. Species-Specific Difference in Foliar
Δ13C, δ18O, and %N

At most of the sites (with the exception of
NR, WR, BEF, and DFH), Δ13C and/or δ18O differed significantly across the two dominant species. With the
exception of conifer-dominated forests, we observed differences in foliar %N between the two dominant
species (Table 4).

Figure 5 describes the shifts in the two isotopes according to the dominant species’ hydraulic strategies
and wood anatomy features as described in Table S2. At the two conifer-dominated forests (Figure 5a),
we found that the two isohydric species, i.e., Tsuga canadensis and Picea rubens at HOW and Pinus

palustris and Pinus elliottii at ACMF, dif-
fered for Δ13C but not for δ18O and foliar
%N. Even though the two species at
HOW showed different Δ13C, we found
similar values for WUEvpd1, whereas at
ACMF P. palustris had a significant higher
WUEvpd1 than P. elliottii. At broadleaf for-
ests dominated by diffuse porous species
(Figure 5b), Acer saccharum (isohydric)
had a lower foliar %N, higher Δ13C and
δ18O, but lower WUEvpd1 than the
codominant species, Liriodendron tulipifera
at MM and Tilia americana at WCr; both
of them considered as intermediate iso-
hydric (Table S2). Finally, in the case of
the mixed forests (HF and SL), we found
that the conifer species had a higher
Δ13C, lower foliar %N, and lower WUEvpd1
than the broadleaf species (Figure 5c).
However, Pinus echinata had a lower δ18O
than the Quercus prinus at SL, while in
the case of HF the T. canadensis had a
higher δ18O than the Quercus rubra.

Figure 3. Relationship between GPP and ET across the study sites
(R = 0.61; R2 = 0.36, y = 35.4 + 2.8x, p< 0.05). Each point represents
the mean (±SE) over multiple years of fluxes monitoring (Table S1).

Figure 4. Relationship betweenWUEvpd1 and foliar %N for 11 forests
in the U.S. Each point represents the mean (±SE) of values obtained
from 5 to 10 trees per species at each site.
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4. Discussion
4.1. Relationship Between Canopy %N and ET and WUEe: Implications for Vegetation-Climate
Interactions

Our findings provide new insight into the influences of plant N status on C-H2O fluxes and WUE. We
showed that both C and H2O fluxes were significantly correlated with canopy %N even when other bio-
logical and environmental variables were taken into account. Earlier studies, focusing mostly on C fluxes,
showed a positive effect of canopy %N on forest carbon assimilation [e.g., Kergoat et al., 2008; Ollinger
et al., 2008] and GPP [e.g., Fernández-Martínez et al., 2014a], explained by the positive link between foliar
%N and A [Evans, 1989; Ollinger et al., 2008; Wright et al., 2004]. Moreover, our observations for the first
time provided evidence that forests with high canopy %N also have higher ET, which has important impli-
cations for hydrologic cycling and climate. The enhancement of ET to support GPP could affect climate in
two ways: (1) higher ET increases water vapor in the atmosphere, and water vapor acts as a greenhouse
gas and thereby contributes to warming [Bright et al., 2015], or (2) higher ET enhances cloud formation,
which in turn could increase planetary albedo, leading to a cooling effect. Furthermore, enhanced cloud
formation could lead to an increase in precipitation at regional scale. The relationship that we observed
between ET and canopy %N suggests also that factors affecting canopy %N (e.g., N deposition, distur-
bances, and forest management) have the potential to influence not only N and C cycling but also water
and energy exchanges with the atmosphere.

WUEe is key moderator that could accentuate or offset the vegetation effects on climate, depending in part
on the plant N status. For instance, we can argue that when GPP and ET vary with similar magnitude at xeric
N-limited sites (e.g., ACMF and FUF), WUEe will be close to 1 g C/kg H2O, resulting in a neutral effect on cli-
mate. Conversely, on highly productive, N-rich, mesic forest sites (e.g., MM and HF), the positive effect of
the high GPP on climate (i.e., by removing CO2 from the atmosphere) could be partially offset by the increase
in ET (i.e., cooling effect) to sustain the C gain. Clearly, only a modeling approach, which includes both C and
H2O fluxes and their relationship with canopy %N, can help elucidate the applicability of this suggested cou-
pling between the two canopy fluxes and their feedback to climate across a broader range of sites along
moisture and nutrient availability gradients.

Table 4. Mean (±SE) of Foliar Δ13C, δ18O, WUEvpd1, and %N Measured for the Two Most Dominant Species at Each Sitea

Site Species Δ13C (‰) δ18O (‰) WUEvpd1 (g C/kg H2O) %N

ACMF Pinus eliottii (piel) 21.01 (0.33)** 25.74 (0.33) 4.48 (0.24)** 0.68 (0.02)
Pinus palustris (pipa) 19.72 (0.57) 25.56 (0.82) 5.40 (0.09) 0.68 (0.08)

BEF Fagus grandifolia (fagr) 20.68 (0.20) 26.45 (0.23) 4.74 (0.14) ***
Tsuga canadensis (tsca) 21.14 (0.22) 26.62 (0.10) 4.42 (0.16) 1.26 (0.04)

DFH Carya tomentosa (cato) 20.23 (0.53) 29.40 (0.60) 4.09 (0.81) 1.98 (0.08)**
Liriodendron tulipifera (litu) 20.47 (0.33) 28.60 (0.23) 4.61 (0.22) 2.44 (0.09)

FUF Pinus ponderosa (pipo) 17.17 (0.16) 29.70 (0.40) 7.30 (0.12) 1.20 (0.05)
HF Quercus rubra (quru) 20.75 (0.19)*** 24.31 (0.30) 4.71 (0.13)*** 1.91 (0.09)**

Tsuga canadensis (tsca) 21.72 (0.18) 26.16 (0.20) 4.04 (0.16) 1.18 (0.03)
HOW Picea rubens (piru) 20.38 (0.29)* 25.24 (0.22) 4.97 (0.15) 0.97 (0.03)

Tsuga Canadensis (tsca) 21.20 (0.30) 25.48 (0.13) 4.36 (0.21) 1.03 (0.05)
MM Acer saccharum (acsa) 20.99 (0.44)* 29.04 (0.35)* 4.33 (0.30)* 1.70 (0.06)**

Liriodendron tulipifera (litu) 19.71 (0.19) 25.51 (0.26) 5.20 (0.14) 2.01 (0.06)
NR Abies lasiocarpa (abla) 18.74 (0.34) 26.18 (0.36) 5.83 (0.14) 1.00 (0.04)

Pinus contorta (pico) 18.06 (0.24) 25.64 (0.45) 6.29 (0.17) 0.96 (0.04)
SL Pinus echinata (piec) 21.04 (0.11)*** 23.11 (0.17)* 4.46 (0.08)*** 1.26 (0.15)*

Quercus prinus (qupr) 20.53 (0.14) 24.42 (0.19) 4.83 (0.10) 1.93 (0.12)
WCr Acer saccharum (acsa) 20.08 (0.25)*** 26.23 (0.25)*** 4.99 (0.17)*** 1.69 (0.10)***

Tilia americana (tiam) 18.72 (0.23) 23.21 (0.16) 5.94 (0.16) 2.41 (0.12)
WR Pseudotsuga menziesii (psme) 19.88 (0.40) 25.83 (0.50) 5.11 (0.28) 0.87 (0.05)

Tsuga heterophylla (tshe) 20.52 (0.53) 25.51 (0.17) 4.66 (0.37) 0.90 (0.02)

aThe asterisks indicate the significant differences between the two species for the leaf physiological parameters
included in the table as assessed through independent sample t test.
*p< 0.05.
**p< 0.01.
***p< 0.001.
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4.2. Other Variables Controlling the Spatial Variations in GPP, ET, and WUE

Latitude, temperature, and species diversity exerted the most control over C and H2O fluxes in our ana-
lysis. Forest C uptake and WUE increased with latitude, while H2O lost through ET declined with latitude.
Although several previous studies also reported clear latitudinal patterns for C and H2O fluxes and WUE
across sites at both regional [Xiao et al., 2013] and global [Luyssaert et al., 2007; Tang et al., 2014; Zhang
et al., 2009] scales, other studies did not find clear relationships between GPP and latitude [Law et al.,
2002; Magnani et al., 2007; Valentini et al., 2000]. We found that temperature was the main climate factor

Figure 5. Shifts in foliar Δ13C versus δ18O for the two dominant species at sites with significant differences between the two species for both isotopes (cf. Table 4).
Each value is the mean (±SE) calculated over 5–10 trees per species. We distinguish three main cases, according to the species’ hydraulic strategies (HyS) and wood
anatomies (Table S2): (a) coniferous and both isohydric species; (b) diffuse porous species with isohydric and intermediate isohydric strategies; and (c) coniferous
versus ring porous species, with isohydric and anisohydric hydraulic strategies, respectively. We also indicated species with higher (+N), lower (�N), and similar (O)
foliar %N. The directionality in the shifts from species X to species Y goes from high to low Δ13C and low to high foliar N. Interpretation of the Δ13C-δ18O shifts in term
of the most likely scenario for changes in A and/or gs, based on the Scheidegger et al. [2000] and its modification by Grams et al. [2007], is provided in the plots on the
right. As an example, at SL, Quercus prinus (qupr) showed a higher δ18O and lower Δ13C than the codominant Pinus elliottii (piel). The lower Δ13C, indicating lower
ci/ca ratio, could be related to an increase in A being similar gs or a reduction in gs, under similar A. Based on the δ18O themost likely scenario would be a reduction in
gs under similar A. However, the higher foliar %N would suggest that divergence between the two species could be also attributed to differences in A, with Quercus
likely having higher A than the Pinus species. Moreover, the higher photosynthetic capacity for the Quercus implies greater stomatal opening, facilitated also by its
anisohydric strategy, meaning that the species can keep stomata open, even under moderate water stress, in order to maximize C uptake. Thus, the most likely
scenarios would be that both A and gs are higher in the Quercus than the Pine species. In this particular case our most likely scenario (i.e., higher A and gs for Quercus
compared to Pinus species) does not agree with the one derived from the Scheidegger model, which is indicated with red symbols in the diagram. Anisohydric,
isohydric, and intermediate-isohydric species are indicated as A, I, and I*, respectively.
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controlling spatial variation in GPP and WUE, but not ET, corroborating findings from previous studies [Chen
et al., 2013; Fernández-Martínez et al., 2014b; Law et al., 2002; Luyssaert et al., 2007; Reichstein et al., 2007;Wang
and Dickinson, 2012; Xu et al., 2014]. It should be noted that the majority of the above-mentioned studies
were based on annual fluxes, while we focused only on May–August months during the growing season.
Temperature exerts a strong control on GPP through its influence on leaf photosynthesis [e.g., Berry and
Bjorkman, 1980; Sage and Kubien, 2007]. We caution that the relationships between latitude/temperature
and fluxes observed in our analysis may also reflect the influence of geographical distributions of forests
and intrinsic related features. For instance, the highly productive broadleaf or mixed forests in our analysis
(e.g., HF, BEF, and MM) are located at more northern latitudes, as opposed to less productive pine-dominated
forests at southern latitudes. Moreover, at a given latitude, there may be different environmental conditions
and disturbances (e.g., fires and forest management), which consequently shape the forest-type distribu-
tions. As an example, at the same latitude we move from a xeric, low N availability site dominated by Pinus
ponderosa at FUF in the southwestern U.S. to a more mesic forest dominated by broadleaf species—DFH—
in the southeastern U.S. (Figure 1a). This can partially explain the nonlinear relationship between temperature
and fluxes relative to GPP (Figure S4): GPP showed a linear increase up to 25°C, and thereafter, it declined.
However, the lower GPP at Tgrs> 25°C refers to the pine-dominated forests at ACMF, a xeric site with sandy
and low N-available soil [Clark et al., 2004], which is reflected in the low canopy %N. Lastly, we also acknowl-
edge that the approach of considering GPP during May–August at all sites has the limitation of not taking into
account differences across sites in the duration of the growing season. This could lead to an underestimation
of fluxes for the sites at southern latitudes, where (i) the duration of growing season can be longer than sites
at northern latitudes and (ii) drought conditions during summer can impair C uptake of forests at xeric versus
mesic forests. Despite these shortcomings, we used the fixed time window approach because it allowed us to
minimize differences in seasonality between conifer and deciduous species and focus instead on differences
in physiological capacity. In addition, our analysis was intended to examine broad-scale patterns of C and
H2O fluxes in relation to canopy %N, rather than to assess specific predictors for GPP, ET, and WUE across
the investigated sites.

The significant effect of Shannon’s diversity index (SH) on GPP and ET (but not WUEe) suggests that diversity
may have an influence on land-atmosphere exchange that is typically not considered in regional- to global-
scale analyses. A number of studies demonstrate a significant and positive effect of biodiversity on forest pro-
ductivity by using intensive forest inventory data in North America [Liang et al., 2016; Paquette and Messier,
2011; Potter and Woodall, 2014] and China [Liang et al., 2016]. Kunert et al. [2012] reported a linear increase
of stand transpiration with tree species richness in an experimental plantation in central Panama, where
monocultural andmixed-species plots were established. Baldocchi [2005] reported a significant, but negative,
relationship between ET normalized by the rate of equilibrium evaporation and the number of dominant spe-
cies, although that analysis was based on data from only six EC broadleaf forests in the U.S. However, because
species diversity is known to covary with a number of factors that also affect ecosystem functioning, addi-
tional research is needed before a causal relationship can be established.

4.3. Reconciling Leaf and Ecosystem WUE Estimates

Leaf and ecosystem WUE showed opposing trends with higher WUEvpd1 and lower WUEe at the more xeric
(Figure S2 and Table 2) compared to mesic sites, while no significant relationship was found between
WUEvpd and WUEe. The pattern observed for WUEvpd1 suggests stomatal closure to prevent H2O loss as
the main underlying mechanism of changes in leaf WUE under drier conditions [Farquhar and Sharkey,
1982; Niinemets and Keenan, 2014, and reference therein]. At the ecosystem scale, variability in forest struc-
ture, LAI, canopy architecture and associated aerodynamic resistance, species composition, and convergence
or divergence in the species-specific responses to environmental conditions can all influence canopy ET
[Baldocchi, 2005] and consequently WUE. The lower WUEe observed at the xeric versus mesic sites may be
explained by soil water deficit coupled with high VPD leading to a reduction in gs, even though ET did not
show a clear pattern across the investigated sites (Table 2). The lower gs would downregulate A more than
E, resulting in a stronger reduction in the case of GPP compared to ET. Moreover, high temperature and satu-
rated irradiance can affect the Rubisco specificity for CO2 and O2 and favor photorespiration [Farquhar, 1980;
Valentini et al., 1995] and mitochondrial respiration [Atkin et al., 2007] over photosynthesis, thus contributing
to reducing C uptake and WUEe.
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The two approaches agreedwhenwe considered theΔ13C and hence the ci/ca andGPP. Indeed, we found that
theci/cawaspositively correlatedwithGPP:a lowerci/caat the lowerGPP(andcanopy%N)measuredat thexeric
sites implies agreater stomatal limitationonCO2assimilation [Farquhar et al., 1989] andconsequentlyGPP. This
suggests thatΔ13C can be considered among the physiological traits to assess forest productivity [Bonan et al.,
2012], as has been observed in a dendro-isotopic study at Harvard forest [Belmecheri et al., 2014].

Differences in the WUE trends observed at the leaf versus ecosystem scales may also, in part, be due to the
uncertainties associated with the two approaches. A limitation of the stable isotope approach used in this
study is that the effect of mesophyll conductance (gm) on Δ13C was not taken into account, which could
be particularly important for trees subjected to drought [Grassi and Magnani, 2005; Warren, 2008]. For
instance, not including gm in equation (3) underestimates the ci/ca ratio, which in turn could lead to an over-
prediction of iWUE [Flanagan and Farquhar, 2014; Seibt et al., 2008]. Moreover, as gm also affects the CO2 con-
centration in the chloroplast and N use efficiency [Buckley and Warren, 2014], its exclusion could also help
explain the lack of a significant relationship between foliar WUE and %N (Figure 4).

Another limitation in our study was that stable isotopes were measured in bulk foliar tissue, which comprises
a combination of different compounds (e.g., protein, lignin, and cellulose), each having a specific isotopic sig-
nature reflecting different metabolic pathways and turnover rates [Badeck et al., 2005; Cernusak et al., 2009],
thus confounding estimates of ci/ca from δ13C. For instance, Scartazza et al. [2014] found that WUE derived
from δ13C measured in leaf soluble sugars were more similar to values of EC-derived WUEe compared to
the estimate from δ13C in bulk foliar samples. The authors attributed these results to the different time per-
iods during which distinct C pools were assimilated rather than to inherent differences in the chemical com-
position, in agreement with results obtained by Brugnoli et al. [1988]. Similarly, Ponton et al. [2006] found
good agreement between WUE estimated from EC and ecosystem-respired δ13C measurements.
Conversely, studies in which leaf WUE was derived from δ13C in foliar bulk samples [Monson et al., 2010] or
leaf gas exchange measurements [Niu et al., 2011] reported difference between leaf and ecosystemWUE esti-
mates. In addition, it should be noted that, for conifer species, we pooled multiple-year needles, which reflect
the contribution of different C pools (i.e., newly assimilated carbon in the current year and carbon fixed in the
previous years).

The difference between results from leaf and ecosystem scale approaches may also be due in part to differ-
ences in the temporal and spatial resolutions of the measurements; EC provides almost instantaneous and
continuous measurements during the growing season, while the foliar δ13C signal is integrated over the
growing season and/or multiple years (e.g., when considering conifers). The δ13C in this study reflects the
physiological signal as expressed by Sun leaves collected at the top of the canopy, whereas canopy A,
expressed by GPP, reflects the contribution of both Sun and shade leaves and is affected by canopy structure
and associated changes in the leaf properties [Baldocchi et al., 2002].

Lastly, the incongruence between leaf- and canopy-scale WUE estimates may be partly associated with
errors and uncertainties in the C and H2O fluxes [Desai et al., 2008; Loescher et al., 2006; Papale et al.,
2006; Post et al., 2015] as well as with differences in the ecosystem components contributing to the ET
estimates. Uncertainties in EC measurements can result from random errors caused by measurement
instruments and footprint heterogeneity [Richardson et al., 2006] and systematic errors caused by subop-
timal conditions for micrometeorology or terrain [Baldocchi, 2003]. The EC technique relies on specific bio-
physical conditions (e.g., turbulence in the boundary layer and steady state conditions of the
meteorological variables) to derive C and energy fluxes. Error and uncertainty are introduced when these
conditions are not met; in particular, measurement of nighttime NEE fluxes—which are used to derive
both RE and GPP—can be challenging due to low nighttime turbulence [Reichstein et al., 2005]. EC esti-
mates can also be affected by variability in the flux tower measurement footprint due to the patchiness
of the forest structure, canopy roughness, complex terrain, and the temporal variability of wind direction.
Moreover, for forests at northern latitudes (e.g., HOW) and high elevation (e.g., NR), the duration of snow
cover or timing and variability of snowmelt could affect both soil water and energy balance [Monson
et al., 2010], thus affecting ET estimates. Additional error that can include both random and systematic
components can be introduced by filling data gaps and partitioning of NEE into GPP and RE [Wehr
et al., 2016]. Finally, cross-site synthesis studies such as the one presented here can also include error
associated with differences in data processing among sites. Although many of these errors cannot be
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eliminated, we minimized their influence by using the same quality-type data (level 4), based on the same
procedures for both gap filling and partitioning of C fluxes at all sites.

In addition to error associated with individual measurements, differences between leaf- and ecosystem-scale
estimates could also be due to differences in the ecosystem components represented. Whereas leaf-level
stable isotope measurements can only capture patterns of individual leaves, EC-derived ET and GPP data
include both canopy and understory fluxes and in the case of ET, evaporation from soils. The contribution
of the understory to ecosystem ET becomes progressively more important in low LAI ecosystems, particularly
the southern conifer forests. For example, ACMF is characterized by a dense understory dominated by saw
palmetto, which was shown to contribute to C fluxes [Powell et al., 2008] and likely also to ET. At FUF, the
understory vegetation is sparse (LAI = 0.06 [Dore et al., 2008]) and is mostly characterized by herbaceous spe-
cies, suggesting that soil evaporation contributed to the ET. Moreover, seasonal changes in LAI, especially in
mixed forests, could lead to variations in canopy roughness and aerodynamic resistance, which affect the tur-
bulence in the boundary layer and, consequently, the exchange of carbon, energy, and water between cano-
pies and the atmosphere [Davin and de Noblet-Ducoudré, 2010].

4.4. Incorporating Species’ Functional Traits in a Conceptual Model to Interpret Foliar Δ13C and δ18O

Species functional traits can directly affect the response of plant C and H2O fluxes to climate change at the
regional and/or global scale but are seldom included in model parameterization or cross-site comparisons
of canopy fluxes. For instance, foliar %N is an important determinant of A [Wright et al., 2004], which in turn
affects the ci/ca ratio and hence the Δ13C. On the other hand, wood anatomy and hydraulic strategies play a
significant role in regulating the tree water transport and stomatal regulation, which affects the oxygen iso-
topic signature in leaf water and the organic matter formed in it.

In this study we modified the original dual-isotope conceptual model proposed by Scheidegger et al. [2000]
and further developed by Grams et al. [2007] by incorporated species’ physiological traits related to wood
anatomical features, hydraulic strategies, and foliar %N to improve model representation of A and gs, as
derived from Δ13C and δ18O, respectively. As we expected, within two coniferous forests where the two domi-
nant species can both be classified as isohydric, HOW in the Northeast and ACMF in the Southeast, we found
differences between codominant species in Δ13C but not δ18O. This suggests that differences in the ci/ca
could likely be attributed to differences in A (Figure 5a), which, however, lead to a difference in the
WUEvpd1 between the two species only in the case of ACMF. Given that foliar %N was similar between the
two conifer species, we can also infer that differences in A could be related to differences in mesophyll con-
ductance and/or nonstomatal limitations, i.e., those related to the light use efficiency (electron transport), or
Rubisco activity [Grassi and Magnani, 2005; Flexas et al., 2014], particularly at the more xeric site in
Florida (ACMF).

In forests characterized by the codominance of tree species with contrasting hydraulic strategies (foliar %N,
isohydric versus anisohydric, or isohydric versus intermediate isohydric) we observed differences in both
Δ13C and δ18O between the two species, which indicate differences in both A and gs (Figures 5b and 5c).
The lower ci/ca for L. tulipifera at WCr and MM and Q. rubra at HF could be related either to higher A at similar
gs or lower gs at similar A compared to the codominant species. However, according to the dual-isotope
model, the direction of change in δ18O (Figure 5b) suggests both a higher A and a higher gs as the most likely
scenario explaining the differences between the two species in WUEvpd1. This interpretation is further sup-
ported by the higher foliar %N and the anisohydric strategy of Q. rubra and intermediate isohydric L. tulipifera
compared to the corresponding codominant species for each site (HF: T. canadensis and MM: A. saccharum,
respectively). This is also consistent with the results from gas exchange data reported in previous studies.
Indeed, Roman et al. [2015] reported a lower A and gs for A. saccharum versus L. tulipifera at MM. Leaf gas
exchange measurements at HF confirmed that T. canadensis had lower gs and also lower photosynthetic rate
compared to the Q. rubra [Catovsky and Bazzaz, 2002]. Moreover, direct measurements of sap flux on A. sac-
charum and T. americana showed that the latter maintained higher transpiration rates than the former in a
northern Wisconsin forest [Ewers et al., 2007] near the WCr site, suggesting a higher gs and likely A.

In contrast to these cases where our modified conceptual model provided additional supporting evidence for
the interpretations obtained using the original Scheidegger model and its further development by Grams
et al. [2007], our results diverged for the SL site. The mixed forest at SL grows on a deep, sandy soil with
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limited water and nutrient-holding capacity [Renninger et al., 2014]. At this site, Q. prinus (anisohydric) exhib-
ited a lower Δ13C, δ18O, and ci/ca compared to the codominant P. echinata (isohydric). The lower ci/ca
together with the higher foliar %N would suggest that divergence between the two species are attributed
to differences in A, with oak likely having higher A than the pine. However, the higher photosynthesis for
the Quercus species implies greater gs than the codominant isohydric Pinus species, likely facilitated by its
hydraulic strategy: anihysodric species with ring porous xylem vessels, which can more rapidly transport
water and supply it to the canopy to sustain photosynthesis. In this case, the Scheidegger model would pre-
dict a reduction in gs with no change in A (Figure 5), which we excluded as the most likely scenario given the
differences between the two species in their hydraulic strategies and foliar %N.

We acknowledge that this conceptual model should be used with cautions [Roden and Farquhar, 2012; Roden
and Siegwolf, 2012], especially when interpreting qualitative changes in the integrated gs from δ18O.
Furthermore, tree species can show a hydraulic strategy, which can be intermediate along isohydric and ani-
sohydric gradients [Martínez-Vilalta et al., 2014]. However, our observations suggest that a more robust and
physiologically based prediction of A and gs could be gleaned from the conceptual model by taking addi-
tional functional traits into account, particularly foliar %N.

5. Conclusion

Several conclusions can be drawn from our results. First, we demonstrated that, in addition to GPP, ET and
WUE were significantly and positively correlated with canopy %N, even when environmental variables were
taken into account. Whereas feedback of C, N, and H2O fluxes to climate tend to be assessed separately, these
findings suggest that understanding the role of forests in mitigating climate change requires a more holistic
approach [Betts, 2007]. Second, leaf and ecosystem WUE showed opposing trends, with higher WUEvpd1 at
the more xeric compared to mesic sites suggesting stomatal closure to prevent H2O loss as the main under-
lying mechanism of changes in leaf WUE. Nevertheless, the significant positive relationship we observed
between GPP and the foliar ci/ca is a promising result that helps reconcile the two scales and approaches.
This suggests that Δ13C (and the derived ci/ca) could be useful as predictors of GPP, especially when
species-specific contributions are of interest. Third, the dual-isotope approach revealed that highly produc-
tive forests were characterized by the presence of dominant species that diverged in their physiological traits,
regardless of plant functional type. Indeed, species having anisohydric (HF and SL) or intermediate isohydric
(MM and WCr) strategies may play a key role in ecosystem functioning, i.e., by allowing loss of water in order
to maximize C gain. We showed that the dual-isotope approach can be improved by integrating foliar %N,
wood anatomical, and hydraulic strategies as input, in order to gain a more robust interpretation of Δ13C
and δ18O in terms of A and gs so to link leaf and ecosystem C and H2O fluxes.

References
Anav, A., et al. (2015), Spatiotemporal patterns of terrestrial gross primary production: A review, Rev. Geophys, 53, 785–818, doi:10.1002/

2015RG000483.
Atkin, O. K., I. Scheurwater, and T. L. Pons (2007), Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at

moderate, but not high, growth temperatures, New Phytol., 174, 367–380, doi:10.1111/j.1469-8137.2007.02011.x.
Badeck, F. W., G. Tcherkez, S. Nogues, C. Piel, and J. Ghashghaie (2005), Post-photo synthetic fractionation of stable carbon isotopes between

plant organs—A widespread phenomenon, Rapid Commun. Mass Spectrom., 19, 1381–1391.
Baldocchi, D. D. (2003), Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present

and future, Global Change Biol., 9, 479–492.
Baldocchi, D. D. (2005), The role of biodiversity on the evaporation of forests, in Forest Diversity and Function: Temperate and Boreal Systems,

edited by M. Scherer-Lorenzen, C. H. Körner, and E. D. Schulze, Springer, Berlin.
Baldocchi, D. D. (2008), Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement

systems, Aust. J. Bot., 56, 1–26.
Baldocchi, D. D., et al. (2001), FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water

vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82, 2415–2434.
Baldocchi, D. D., K. B. Wilson, and L. Gu (2002), How the environment, canopy structure and canopy physiological functioning influence

carbon, water and energy fluxes of a temperate broad-leaved deciduous forest-an assessment with the biophysical model CANOAK, Tree
Physiol., 22(15–16), 1065–1077.

Barbour, M. M. (2007), Stable oxygen isotope composition of plant tissue: A review, Funct. Plant Biol., 34, 83–94.
Barbour, M. M., R. A. Fischer, K. D. Sayre, and G. D. Farquhar (2000), Oxygen isotope ratio of leaf and grain material correlates with stomatal

conductance and yield in irrigated, field-grown wheat, Aust. J. Plant Physiol., 27, 625–637.
Barbour, M. M., J. S. Roden, G. D. Farquhar, and J. R. Ehleringer (2004), Expressing leaf water and cellulose oxygen isotope ratios as enrichment

above source water reveals evidence of a Péclet effect, Oecologia, 138, 426–435, doi:10.1007/s00442-003-1449-3.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003415

GUERRIERI ET AL. ET AND WUE SCALED WITH CANOPY NITROGEN 2626

Acknowledgments
This study was supported by the
National Aeronautics and Space
Administration (NASA) through the
Terrestrial Ecology Program (award
NNX12AK56G) and the Carbon Cycle
Science Program (award NNX14AJ18G).
We thank the PIs and research
personnel of eddy covariance flux sites
for making the flux data available. In
particular, R.G. thanks K. Clark (SL),
T. Kolb and S. Dore (FUF), T. Martin and
R. Braccho-Garrillo (ACMF), R. Oren and
J.C. Domec (DFH), and K. Novik and
Roman T. (MM) for their support during
fieldwork and data analysis. We
acknowledge the University of New
Hampshire, EOS-WEBSTER Earth Science
Information Partner, for making avail-
able the PET data. R.G. thanks M. Martin
for her support with processing flux
data with R; M. Day for the assistance in
the field; and E. Hobbie, K. Jennings, and
M. Mencuccini for the useful comments
on the manuscript. Finally, we thank the
Editor andthe twoanonymous reviewers
for their useful comments and sugges-
tions on the earlier versions of our
manuscript. Flux data used in this paper
for theyear reported in the Table S1were
obtained from http://ameriflux.ornl.gov.
Mean values of fluxes and foliar %N and
isotope data are reported in Tables 2 and
4, respectively. Canopy %N data can be
obtained from the previously published
paper by Ollinger et al. [2008], Proc Natl
Acad Sci, 105 (49), 19336–19341. Foliar
%N and isotope data for individual trees
at each site can be requested to the
corresponding author.

http://dx.doi.org/10.1002/2015RG000483
http://dx.doi.org/10.1002/2015RG000483
http://dx.doi.org/10.1111/j.1469-8137.2007.02011.x
http://dx.doi.org/10.1007/s00442-003-1449-3
http://ameriflux.ornl.gov


Barnard, H. R., J. R. Brooks, and B. J. Bond (2012), Applying the dual-isotope conceptual model to interpret physiological trends under
uncontrolled conditions, Tree Physiol., 32(10), 1183–1198.

Beer, C., et al. (2009), Temporal and among-site variability of inherent water use efficiency at the ecosystem level, Global Biogeochem. Cycles,
23, GB2018, doi:10.1029/2008GB003233.

Belmecheri, S., R. S. Maxwell, A. H. Taylor, K. J. Davis, K. H. Freeman, and W. J. Munger (2014), Tree-ring δ
13
C tracks flux tower ecosystem

productivity estimates in a NE temperate forest, Environ. Res. Lett., 9, 074011, doi:10.1088/1748-9326/9/7/074011.
Berry, J., andO. Bjorkman (1980), Photosynthetic response and adaptation to temperature in higher plants,Ann. Rev. Plant Physiol, 31, 491–543.
Betts, R. (2007), Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation andmitigation, Tellus B,

59, 602–615, doi:10.1111/j.1600-0889.2007.00284.x.
Bolster, K. L., M. E. Martin, and J. D. Aber (1996), Determination of carbon fraction and nitrogen concentration in tree foliage by near infrared

reflectances: A comparison of statistical methods, Can. J. For. Res., 26, 590–600.
Bonan, G. B. (2008), Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320(5882), 1444–1449.
Bonan, G. B., K. W. Oleson, R. A. Fisher, G. Lasslop, and M. Reichstein (2012), Reconciling leaf physiological traits and canopy flux data: Use of

the TRY and FLUXNET databases in the Community Land Model version 4, J. Geophys. Res., 117, G02026, doi:10.1029/2011JG001913.
Bright, R. M., K. Zhao, R. B. Jackson, and F. Cherubini (2015), Quantifying surface albedo and other direct biogeophysical climate forcings of

forestry activities, Global Change Biol., 21, 3246–3266.
Brugnoli, E., K. T. Hubick, S. von Caemmerer, S. C. Wong, and G. D. Farquhar (1988), Correlation between carbon isotope discrimination in leaf

starch and sugars ofC3plants and the ratioof intercellular andatmosphericpartial pressures of carbondioxide,Plant Physiol.,88, 1418–1424.
Buckley, T. N., and C. R. Warren (2014), The role of mesophyll conductance in the economics of nitrogen and water use in photosynthesis,

Photosynth. Res., 119(1), 77–88.
Canadell, J. G., C. Le Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and G. Marland (2007),

Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, Proc. Natl.
Acad. Sci. U. S. A., 104(47), 18,866–18,870.

Carnicer, J., A. Barbeta, D. Sperlich, M. Coll, and J. Penñuelas (2013), Contrasting trait syndromes in angiosperms and conifers are associated
with different responses of tree growth to temperature on a large scale, Front. Plant Sci., 4, 409, doi:10.3389/fpls.2013.00409.

Catovsky, S., and F. A. Bazzaz (2002), Contributions of coniferous and broad-leaved species to temperate forest carbon uptake: A bottom-up
approach, Can. J. For. Res., 30, 100–111.

Cernusak, L. A., et al. (2009), Why are non-photosynthetic tissues generally
13
C enriched compared to leaves in C3 plants? Review and

synthesis of current hypotheses, Funct. Plant Biol., 36, 199–213.
Chen, Z., et al. (2013), Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian

region, Agric. For. Meteorol., 182–183, 266–276.
Clark, K. L., H. L. Gholz, and M. S. Castro (2004), Carbon dynamics along a chronosequence of slash pine plantations in north Florida, Ecol.

Appl., 14, 1154–1171.
Craig, H., and L. I. Gordon (1965), Deuterium and oxygen-18 variations in the ocean and the marine atmosphere, in Proceedings of Conference

on Stable Isotopes on Oceanographic Studies and Paleotemperatures, edited by T. Tongiorgi, pp. 9–130 , Lischi and Figli, Pisa, Italy.
Davin, E. L., and N. de Noblet-Ducoudré (2010), Climatic impact of global-scale deforestation: Radiative versus nonradiative processes,

J. Clim., 23, 97–112.
Desai, A. R., et al. (2008), Cross-site evaluation of eddy covariance GPP and RE decomposition techniques, Agric. For. Meteorol., 148(6–7),

821–838.
Dickinson, R. E., et al. (2002), Nitrogen controls on climate model evapotranspiration, J. Clim., 15, 278–295.
Dongmann, G., H. E. Nurnberg, H. Forstel, and K. Wagener (1974), On the enrichment of H2

18
O in the leaves of transpiring plants, Radiat.

Environ. Biophys., 11, 41–52, doi:10.1007/BF01323099.
Donovan, L. A., and J. R. Ehleringer (1994), Carbon isotope discrimination, water-use efficiency, growth and mortality in a natural shrub

population, Oecologia, 100, 347–354.
Dore, S., T. E. Kolb, M. Montes-Helu, B. W. Sulivan, W. D. Winslow, S. C. Hart, J. P. Kaye, G. W. Koch, and B. A. Hungate (2008), Long-term impact

of a stand-replacing fire on ecosystem CO2 exchange of a ponderosa pine forest, Global Change Biol., 14, 1801–1820, doi:10.1111/j.1365-
2486.2008.01613.x.

Evans, J. R. (1989), Photosynthesis and nitrogen relationships in leaves of C₃ plants, Oecologia, 78, 9–19.
Ewers, B. E., D. S. Mackay, and S. Samanta (2007), Interannual consistency in canopy stomatal conductance control of leaf water potential

across seven tree species, Tree Physiol., 27(1), 11–24.
Farquhar, G. D. (1980), Carbon isotope discrimination by plants: Effects of carbon dioxide concentrations and temperature via the ratio of

intercellular and atmospheric CO2 concentration, in Carbon Dioxide and Climate: Australian Research, edited by G. I. Pearman, pp. 105–110,
Aust. Acad. of Sci., Canberra.

Farquhar, G. D., and J. Lloyd (1993), Carbon and oxygen isotope effects in the exchange of carbon dioxide between plants and the atmo-
sphere, in Stable Isotope and Plant Carbon–Water Relations, edited by J. R. Ehleringer, A. E. Hall, and G. D. Farquhar, pp. 47–70 , Academic
Press, New York.

Farquhar, G. D., and T. D. Sharkey (1982), Stomatal conductance and photosynthesis, Annu. Rev. Plant Physiol., 33, 317–345.
Farquhar, G. D., M. H. O’Leary, and J. A. Berry (1982), On the relationship between carbon isotope discrimination and intercellular carbon

dioxide concentration in leaves, Aust. J. Plant Physiol., 9, 121–137.
Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick (1989), Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Physiol. Plant Mol.

Biol, 40, 503–537.
Federer, C. A., C. J. Vörösmarty, and B. Fekete (1996), Intercomparison of methods for potential evapotranspiration in regional or global water

balance models, Water Resour. Res., 32, 2315–2321, doi:10.1029/96WR00801.
Fernández-Martínez, M., et al. (2014a), Nutrient availability as the key regulator of global forest carbon balance, Nature, 4, 471–476.
Fernández-Martínez, M., S. Vicca, I. A. Janssens, S. Luyssaert, M. Campioli, J. Sardans, M. Estiarte, and J. Peñuelas (2014b), Spatial variability and

controls over biomass stocks, carbon fluxes, and resource-use efficiencies across forest ecosystems, Trees, 28(2), 597–611.
Flanagan, L. B., and G. D. Farquhar (2014), Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to

water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland, Plant Cell Environ., 37(2), 425–438.
Flexas, J., A. Diaz-Espejo, J. Gago, A. Gallé, J. Galmés, J. Gulías, and H. Medrano (2014), Photosynthetic limitations in Mediterranean plants: A

review, Environ. Exp. Bot., 103, 12–23.
Gessler, A., E. Brandes, C. Keitel, S. Boda, Z. E. Kayler, A. Granier, M. Barbour, G. D. Farquhar, and K. Treydte (2013), The oxygen isotope

enrichment of leaf-exported assimilates—Does it always reflect lamina leaf water enrichment?, New Phytol., 200, 144–157.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003415

GUERRIERI ET AL. ET AND WUE SCALED WITH CANOPY NITROGEN 2627

http://dx.doi.org/10.1029/2008GB003233
http://dx.doi.org/10.1088/1748-9326/9/7/074011
http://dx.doi.org/10.1111/j.1600-0889.2007.00284.x
http://dx.doi.org/10.1029/2011JG001913
http://dx.doi.org/10.3389/fpls.2013.00409
http://dx.doi.org/10.1007/BF01323099
http://dx.doi.org/10.1111/j.1365-2486.2008.01613.x
http://dx.doi.org/10.1111/j.1365-2486.2008.01613.x
http://dx.doi.org/10.1029/96WR00801


Gessler, A., J. P. Ferrio, R. Hommel, K. Treydte, R. A. Werner, and R. K. Monson (2014), Stable isotopes in tree rings: Towards a mechanistic
understanding of isotope fractionation and mixing processes from the leaves to the wood, Tree Physiol., 34, 796–818.

Grams, T. E. E., A. R. Kozovits, K. H. Haberle, R. Matyssek, and T. E. Dawson (2007), Combining δ
13
C and δ

18
O analyses to unravel competition

CO2 and O3 effects on the physiological performance of different-aged trees, Plant, Cell Environ., 30, 1023–1034.
Grassi, G., and F. Magnani (2005), Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought

and leaf ontogeny in ash and oak trees, Plant Cell Environ., 28, 834–849.
Guerrieri, R., M. Mencuccini, L. J. Sheppard, M. Saurer, M. P. Perks, P. Levy, M. A. Sutton, M. Borghetti, and J. Grace (2011), The legacy of

enhanced N and S deposition as revealed by the combined analysis of δ
13
C, δ

18
O and δ

15
N in tree rings, Global Change Biol., 17,

1946–1962.
Heimann, M.,and M. Reichstein (2008), Terrestrial ecosystem carbon dynamics and climate feedbacks, Nature, 451, 289–292.
Jennings, K. A., R. Guerrieri, M. A. Vadeboncoeur, and H. Asbjorsen (2016), Response of Quercus velutina growth and water use efficiency to

climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA, Tree Physiol., 36, 428–443,
doi:10.1093/treephys/tpw003.

Keenan, T. F., D. Y. Hollinger, G. Bohrer, D. Dragoni, J. W. Munger, H. P. Schmid, and A. D. Richardson (2013), Increase in forest water-use
efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499, 324–327.

Keitel, C., M. A. Adams, T. Holst, A. Matzarakis, H. Mayer, H. Rennenberg, and A. Gessler (2003), Carbon and oxygen isotope composition of
organic compounds in the phloem sap provides a short term measure for stomatal conductance of European beech (Fagus sylvatica L.),
Plant Cell Environ., 26, 1157–1168.

Kergoat, L., S. Lafont, A. Arneth, V. Le Dantec, and B. Saugier (2008), Nitrogen controls plant canopy light-use efficiency in temperate and
boreal ecosystems, J. Geophys. Res., 113, G04017, doi:10.1029/2007JG000676.

Kunert, N., L. Schwendenmann, C. Potvin, and D. Hölscher (2012), Tree diversity enhances tree transpiration in a Panamanian forest plan-
tation, J. Appl. Ecol., 49, 135–144.

Law, B. E., et al. (2002), Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation, Agric. For. Meteorol.,
113, 97–120.

Lee, E., B. S. Felzer, and Z. Kothavala (2013), Effects of nitrogen limitation on hydrological processes in CLM4-CN, J. Adv. Model. Earth Syst., 5,
741–754, doi:10.1002/jame.20046.

Leonelli, G., G. Battipaglia, R. T. W. Siegwolf, M. Saurer, U. M. di Cella, P. Cherubini, and M. Pelfini (2012), Climatic isotope signals in tree rings
maskedby air pollution: A case study conducted along theMont Blanc Tunnel access road (WesternAlps, Italy),Atmos. Environ., 61, 169–179.

Lepine, L., C. S. V. Ollinger, A. P. Ouimette, and M. Martin (2016), Examining spectral reflectance features related to foliar nitrogen in forests:
Implications for broad-scale nitrogen mapping, Remote Sens. Environ., 173, 174–186.

Lévesque, M., R. Siegwolf, M. Saurer, B. Eilmann, and A. Rigling (2014), Increased water-use efficiency does not lead to enhanced tree growth
under xeric and mesic conditions, New Phytol., 203, 94–109, doi:10.1111/nph.12772.

Liang, J., J. V. Watson, M. Zhou, and X. Lei (2016), Effects of productivity on biodiversity in forest ecosystems across the United States and
China, Conserv. Biol., doi:10.1111/cobi.12636.

Loescher, H., W. B. E. Law, L. Mahrt, D. Y. Hollinger, J. Campbell, and S.,. C. Wofsy (2006), Uncertainties in, and interpretation of, carbon flux
estimates using the eddy covariance technique, J. Geophys. Res., 111, D21S90, doi:10.1029/2005JD006932.

Luyssaert, S., et al. (2007), CO2 balance of boreal, temperate, and tropical forests derived from a global database, Global Change Biol., 13,
2509–2537, doi:10.1111/j.1365-2486.2007.01439.x.

Magnani, F., et al. (2007), The human footprint in the carbon cycle of temperate and boreal forests, Nature, 447, 848–850.
Martin, M. E., L. C. Plourde, S. V. Ollinger, M.-L. Smith, and B. E. McNeil (2008), A generalizable method for remote sensing of canopy nitrogen

across a wide range of forest ecosystems, Remote Sens. Environ., 112, 3511–3519.
Martínez-Vilalta, J., R. Poyatos, D. Aguadé, J. Retana, and M. Mencuccini (2014), A new look at water transport regulation in plants, New

Phytol., 204, 105–115, doi:10.1111/nph.12912.
Meinzer, F. C., D. R. Woodruff, D. M. Eissenstat, H. S. Lin, T. S. Adams, and K. A. McCulloh (2013), Above- and belowground controls on water

use by trees of different wood types in an eastern US deciduous forest, Tree Physiol., 33, 345–356, doi:10.1093/treephys/tpt012.
Meir, P., P. Cox, and J. Grace (2006), The influence of terrestrial ecosystems on climate, Trend Ecol. Evolution, 21(5), 254–260.
Michelot, A., T. Eglin, E. Dufrêne, C. Lelarge-Trouverie, and C. Damesin (2011), Comparison of seasonal variations in water-use efficiency

calculated from the carbon isotope composition of tree rings and flux data in a temperate forest, Plant cell Environ., 34, 230–244.
Moffat, A. M., et al. (2007), Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes, Agric. For. Meteorol.,

147, 209–232.
Monson, R. K., M. R. Prater, J. Hu, S. P. Burns, J. P. Sparks, K. L. Sparks, and L. E. Scott-Denton (2010), Tree species effects on ecosystem water-

use efficiency in a high-elevation, subalpine forest, Oecologia, 162(2), 491–504.
Moreno-Gutiérrez, C., T. E. Dawson, E. Nicolás, and J. I. Querejete (2012), Isotopes reveal contrasting water use strategies among coexisting

plant species in a Mediterranean ecosystem, New Phytol., 196, 489–496.
Niinemets, Ü., and T. Keenan (2014), Photosynthetic responses to stress in Mediterranean evergreens: Mechanisms and models, Environ. Exp.

Bot., 103, 24–41.
Niu, S., X. R. Xing, Z. Zhang, J. Y. Xia, X. H. Zhou, B. Song, L. H. Li, and S. Q. Wan (2011), Water-use efficiency in response to climate change:

From leaf to ecosystem in a temperate steppe, Global Change Biol., 17(2), 1073–1082.
Ollinger, S. V., and M.-L. Smith (2005), Net primary production and canopy nitrogen in a temperate forest landscape: An analysis using

imaging spectroscopy, modeling and field data, Ecosystems, 8, 760–778.
Ollinger, S. V., et al. (2008), Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and

potential climate feedbacks, Proc. Natl. Acad. Sci. U.S.A., 105(49), 19,336–19,341.
Pan, Y., et al. (2011), A large and persistent carbon sink in the world’s forests, Science, 333, 988–993.
Pan, Y., S. H. Tian, S. R. S. Dangal, Q. Yang, J. Yang, C. Lu, B. Tao, W. Ren, and Z. Ouyang (2015), Responses of global terrestrial evapotran-

spiration to climate change and increasing atmospheric CO2 in the 21st century, Earth’s Future, 3, 15–35, doi:10.1002/2014EF000263.
Papale, D., et al. (2006), Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique:

Algorithms and uncertainty estimation, Biogeosciences, 3, 571–583.
Paquette, A., and C. Messier (2011), The effect of biodiversity on tree productivity: From temperate to boreal forests, Global Ecol. Biogeogr., 20,

170–180.
Ponton, S., L. B. Flanagan, K. P. Alstad, B. G. Johnson, K. Morgestern, N. Kljun, T. A. Black, and A. G. Barr (2006), Comparison of ecosystem water-

use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques, Global Change
Biol., 12, 294–310, doi:10.1111/j.1365-2486.2005.01103.x.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003415

GUERRIERI ET AL. ET AND WUE SCALED WITH CANOPY NITROGEN 2628

http://dx.doi.org/10.1093/treephys/tpw003
http://dx.doi.org/10.1029/2007JG000676
http://dx.doi.org/10.1002/jame.20046
http://dx.doi.org/10.1111/nph.12772
http://dx.doi.org/10.1111/cobi.12636
http://dx.doi.org/10.1029/2005JD006932
http://dx.doi.org/10.1111/j.1365-2486.2007.01439.x
http://dx.doi.org/10.1111/nph.12912
http://dx.doi.org/10.1093/treephys/tpt012
http://dx.doi.org/10.1002/2014EF000263
http://dx.doi.org/10.1111/j.1365-2486.2008.01675.x


Post, H., H. J. Hendricks Franssen, A. Graf, M. Schmidt, and H. Vereecken (2015), Uncertainty analysis of eddy covariance CO2 flux measure-
ments for different EC tower distances using an extended two-tower approach, Biogeosciences, 12, 1205–1221.

Potter, K. M., and C. W. Woodall (2014), Does biodiversity make a difference? Relationships between species richness, evolutionary diversity,
and aboveground live tree biomass across U.S. forests, For. Ecol. Manage., 321, 117–129.

Powell, T. L., H. L. Gholz, K. L. Clark, G. Starr, W. P. Cropper, and T. A. Martin (2008), Carbon exchange of a mature, naturally regenerated pine
forest in north Florida, Global Change Biol., 14, 2523–2538, doi:10.1111/j.1365-2486.2008.01675.x.

R Core Team (2014), R: A language and environment for statistical computing, R Foundation for Statistical Computing Vienna, Austria.
[Available at http://www.R-project.org.]

Reichstein, M., et al. (2005), On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved
algorithm, Global Change Biol., 11(9), 1424–1439.

Reichstein, M., et al. (2007), Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites,
Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880.

Renninger, H. J., N. Carlo, K. L. Clark, and K. V. R. Schäfer (2014), Physiological strategies of co-occurring oaks in a water- and nutrient-limited
ecosystem, Tree Physiol., 34(2), 159–173.

Richardson, A. D., et al. (2006), A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes, Agric. For.
Meteorol., 136, 1–18.

Ripullone, F., M. R. Guerrieri, M. Saurer, R. Siegwolf, M. Jäggi, R. Guarini, and F. Magnani (2009), Testing a dual isotope model to track carbon
and water gas exchanges in a Mediterranean forest, iForest Biogeosci. For., 2, 59–66.

Roden, J., and G. Farquhar (2012), A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope
ratio variation in tree rings, Tree Physiol., 32(4), 490–503.

Roden, J., and R. Siegwolf (2012), Is the dual-isotope conceptual model fully operational?, Tree Physiol., 32(10), 1179–1182.
Roden, J., A. Kahmen, N. Buchmann, and R. Siegwolf (2015), The enigma of effective path length for

18
O enrichment in leaf water of conifers,

Plant Cell Environ., 38(12), 2551–2565.
Roman, D. T., K. A. Novick, E. R. Brzostek, D. Dragoni, F. Rahman, and R. P. Phillips (2015), The role of isohydric and anisohydric species in

determining ecosystem-scale response to severe drought, Oecologia, 179(3), 641–654.
Sage, R. F., and D. S. Kubien (2007), The temperature response of C3 and C4 photosynthesis, Plant Cell Environ., 30, 1086–1106.
Scartazza, A., F. P. Vaccari, T. Bertolini, P. Di Tommasi, M. Lauteri, F. Miglietta, and E. Brugnoli (2014), Comparing integrated stable isotope and

eddy covariance estimates of water-use efficiency on a Mediterranean successional sequence, Oecologia, 176, 581–594.
Scheidegger, Y., M. Saurer, M. Bahn, and R. T. W. Siegwolf (2000), Linking stable oxygen and carbon isotopes with stomatal conductance and

photosynthetic capacity: A conceptual model, Oecologia, 125, 350–357.
Schulze, E.-D. (2006), Biological control of the terrestrial carbon sink, Biogeosciences, 3(2), 147–166.
Seibt, U., A. Rajabi, H. Griffiths, and J. A. Berry (2008), Carbon isotopes and water use efficiency: Sense and sensitivity, Oecologia, 155, 441–454,

doi:10.1007/s00442-007-0932-7.
Siegwolf, R. T. W., R. Matyssek, M. Saurer, S. Maurer, M. S. Günthardt-Georg, P. Schmutz, and B. J. Burcher (2001), Stable isotope analysis reveals

differential effects of soil nitrogen and nitrogen dioxide on the water use efficiency in hybrid poplar leaves, New Phytol., 149, 233–246.
Smith, M. L., S. V. Ollinger, M. E. Martin, J. D. Aber, R. A. Hallett, and C. L. Goodale (2002), Direct estimation of aboveground forest productivity

through hyperspectral remote sensing of canopy nitrogen, Ecol. Appl., 12, 1286–1302.
Smith, M. L., and M. E. Martin (2001), A plot based method for rapid estimation of forest canopy chemistry, Can. J. Forest Res., 31, 549–555.
Song, X., M. M. Barbour, G. D. Farquhar, D. R. Vann, and B. R. Helliker (2013), Transpiration rate relates to within- and across-species variations

in effective path length in a leaf water model of oxygen isotope enrichment, Plant Cell Environ., 36, 1338–1351.
Sullivan, P. F., and J. M. Welker (2007), Variation in leaf physiology of Salix arctica within and across ecosystems in the High Arctic: Test of a

dual delta C-13 and delta O-18 conceptual model, Oecologia, 151, 372–386.
Tang, J., P. V. Bolstad, B. E. Ewers, A. R. Desai, K. J. Davis, and E. V. Carey (2006), Sap flux-upscaled canopy transpiration, stomatal conductance,

and water use efficiency in an old growth forest in the Great Lakes region of the United States, J. Geophys. Res., 111, G02009, doi:10.1029/
2005JG000083.

Tang, X., et al. (2014), How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?, Sci. Rep., 4, 7483, doi:10.1038/
srep07483.

Tardieu, F., and T. Simonneau (1998), Variability among species of stomatal control under fluctuating soil water status and evaporative
demand: Modelling isohydric and anisohydric behaviours, J. Exp. Bot., 49, 419–432.

Valentini, R., D. Epron, P. De Angelis, G. Matteucci, and E. Dreyer (1995), In situ estimation of net CO2 assimilation, photosynthetic electron
flow and photorespiration in Turkey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply, Plant Cell Environ., 18,
631–640, doi:10.1111/j.1365-3040.1995.tb00564.x.

Valentini, R., et al. (2000), Respiration as the main determinant of carbon balance in European forests, Nature, 404, 861–865.
Wang, K., and R. E. Dickinson (2012), A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic

variability, Rev. Geophys., 50, RG2005, doi:10.1029/2011RG000373.
Warren, C. R. (2008), Stand aside stomata, another actor deserves centre stage: The forgotten role of the internal conductance to CO2

transfer, J. Exp. Bot., 59(7), 1475–1487.
Wehr, R., J. W. Munger, J. B. McManus, D. D. Nelson, M. S. Zahniser, E. A. Davidson, S. C. Wofsy, and S. R. Saleska (2016), Seasonality of tem-

perate forest photosynthesis and daytime respiration, Nature, 7609(534), 680–683.
Wright, I. J., et al. (2004), The worldwide leaf economics spectrum, Nature, 428, 821–827.
Xiao, J. F., et al. (2013), Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China, Agric. For. Meteorol.,

182(183), 76–90.
Xiao, J. F., et al. (2014), Data-driven diagnostics of terrestrial carbon dynamics over North America, Agric. For. Meteorol., 197, 142–157.
Xu, M., et al. (2014) Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous

plantation in subtropical China, PLoS One 9(1), e85593, doi:10.1371/journal.pone.0085593.
Zhang, Y., M. Xu, H. Chen, and J. Adams (2009), Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type,

geographical location and climate, Global Ecol. Biogeogr., 18, 280–290, doi:10.1111/j.1466-8238.2008.00442.x.
Zhu, J., and X. Zeng (2015), Comprehensive study on the influence of evapotranspiration and albedo on surface temperature related to

changes in leaf area index, Adv. Atmos. Sci., 32, 935–942.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003415

GUERRIERI ET AL. ET AND WUE SCALED WITH CANOPY NITROGEN 2629

http://dx.doi.org/10.1111/j.1365-2486.2008.01675.x
http://www.R-project.org
http://dx.doi.org/10.1029/2006GL027880
http://dx.doi.org/10.1007/s00442-007-0932-7
http://dx.doi.org/10.1029/2005JG000083
http://dx.doi.org/10.1029/2005JG000083
http://dx.doi.org/10.1038/srep07483
http://dx.doi.org/10.1038/srep07483
http://dx.doi.org/10.1111/j.1365-3040.1995.tb00564.x
http://dx.doi.org/10.1029/2011RG000373
http://dx.doi.org/10.1371/journal.pone.0085593
http://dx.doi.org/10.1111/j.1466-8238.2008.00442.x

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	10-17-2016

	Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in U.S. forests
	Rossella Guerrieri
	Lucie C. Lepine
	Heidi Asbjornsen
	Jingfeng Xiao
	Scott V. Ollinger
	Recommended Citation


	Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in U.S. forests

