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Abstract

In recent time, the demand for multimedia data services over wireless links has

grown up rapidly. Orthogonal Frequency Division Multiplexing (OFDM) forms

the basis for all 3G and beyond wireless communication standards due to its effi-

cient frequency utilization permitting near ideal data rate and ubiquitous coverage

with high mobility. OFDM signals are prone to high peak-to-average-power ra-

tio (PAPR). Unfortunately, the high PAPR inherent to OFDM signal envelopes

occasionally drives high power amplifiers (HPAs) to operate in the nonlinear re-

gion of their characteristic leading out-of-band radiation, reduction in efficiency of

communication system etc. A plethora of research has been devoted to reducing

the performance degradation due to the PAPR problem inherent to OFDM sys-

tems. Advanced techniques such as partial transmit sequences (PTS) and selected

mapping (SLM) have been considered most promising for PAPR reduction. Such

techniques are seen to be efficient for distortion-less signal processing but suffer

from computational complexity and often requires transmission of extra informa-

tion in terms of several side information (SI) bits leading to loss in effective data

rate.

This thesis investigates the PAPR problem using Partial Transmit Sequence

(PTS) scheme, where optimization is achieved with evolutionary bio-inspired meta-

heuristic stochastic algorithms. The phase factor optimization in PTS is used for

PAPR reduction. At first, swarm intelligence based Firefly PTS (FF-PTS) al-

gorithm is proposed which delivers improved PAPR performance with reduced

searching complexity. Following this, Cuckoo Search based PTS (CS-PTS) tech-

nique is presented, which offers good PAPR performance in terms of solution

quality and convergence speed. Lastly, Improved Harmony Search based PTS

(IHS-PTS) is introduced, which provides improved PAPR. The algorithm has sim-



ple structure with a very few parameters for larger PTS sub-blocks. The PAPR

performance of the proposed technique with different parameters is also verified

through extensive computer simulations. Furthermore, complexity analysis of al-

gorithms demonstrates that the proposed schemes offer significant complexity re-

duction when compared to standard PAPR reduction techniques. Findings have

been validated through extensive simulation tests.
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“Prediction is very difficult, especially if it’s about the future”.
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Chapter 1 Introduction

1.1 Prelude

“Everyone wants to go wireless”: the statement aptly describes the trend

in modern wireless communications. At the end of the nineteenth century, James

Clark Maxwell laid the initial foundation for electromagnetic radiation. He said,

“the energy, by the engagement of electric and magnetic waves could

be transported through materials and space at a finite velocity”. In

1888, Maxwell’s theory was supported by the experiments of Heinrich Hertz, who

proved that light and electromagnetic waves traveled with the same velocity. His

experiment with electromagnetic waves led to the development of wireless tele-

graph and the radio. Later in 1901, Guglielmo Marconi demonstrated the remark-

able transatlantic equipment, transmitting the letter S (three dots in Morse code),

over a distance of 1.8 miles. The efforts and inventions of such great scientists

laid strong foundation of wireless communication. The initial success of wireless

communications shortly began to be a reality, and further exploration was made

towards todays booming area of personal wireless communication systems.

Wireless communications, by any measure, is the fastest-growing segment of

the communications industry. It has become increasingly important not only for

professional applications but also for many other fields in our daily routine [2].

In the evolution of wireless communication systems, approximately a ten years

periodicity can be observed between consecutive system generations. Research

work for the second generation mobile communication systems (GSM) started in

Europe in 1980s, and the complete system was ready for market around 1990.

At that time, research activities had already started for the 3rd generation (3G)

mobile communication systems, which includes UMTS, IMT-2000. The transition

from second generation (GSM) to the third generation (3G) systems observed

around the year 2002 [3]. Compared to GSM networks, these UMTS systems
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provided much higher data rates, typically in the range of 64 to 384 Kbit/s, while

achieving a peak data rate for low mobility or indoor applications of 2 Mbit/s.

With the extension of High-Speed Packet Access (HSPA), data rates of up to 7.2

Mbit/s were available in the downlink. According to the current pace observed

in the mobile communications market, trends shows that the 3G systems will

not be the ultimate system solution. Consequently, general requirements for 4th

generation (4G) system have been considered in the process of the Long Term

Evolution (LTE) standardization.

Driven by enormous increase in mobile data traffic and flourishing user demands

beyond 2020, significant research has already started for 5G, that are designed to

meet new requirements, such as virtually zero latency to support tactile internet,

Machine-to-Machine (M2M) and augmented reality. Continuing growth in demand

for better mobile broadband experience is encouraging the industry to look ahead

at new networks that can be utilized to meet future extreme capacity and perfor-

mance demands. Efficient radio spectrum utilization for mobile networks is vital to

meet the increased capacity and coverage demands. Mobile broadband spectrum

resources are evolving, although the precise situation varies between countries and

region, there is a generic pattern across the globe. Recently, the Government of

India has initiated Digital India Program, which integrates the government de-

partments and people of India with high-speed internet networks with the vision

to transform country in to a digitally empowered society and knowledge economy.

Orhogonal Frequency Division Multiplexing (OFDM) technique has been adopted

in 3G and beyond networks. 4G technology offers many advancements to the wire-

less communication market including downlink data rates well over 100 Mbps, low

latency, efficient spectrum utilization and low cost implementation. OFDM tech-

nique employing multiple carriers applied in a wide-band radio channel has been

chosen as an air interface for the downlink in the framework of LTE standardiza-
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Figure 1.1: Mobility vs Bit rate for existing and future wireless communication
systems

tion due to its flexibility in the technical system design. OFDM technique provides

high user data rate transmission capability at a reasonable complexity and reli-

ability [4]. Today, this transmission technique is at a completely matured stage

to be applied to wideband communication systems integrated into a wireless com-

munications environment [5]. Figure 1.1 shows the mobility vs. bit rate regions

for different communication systems. Bandwidth, latency and range were always

the most significant inhibitors in 3G mobile networks. Limited by download and

upload speeds and slow response times, applications were stripped down to provide

essential functionality. With performance similar to that of a fixed-line network

and in many cases surpassing it, 4G opens the floodgates in terms of feature-rich

applications from High Definition (HD) video conferencing to web-based Customer
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Relationship Management (CRM) software, the wireless network no longer serves

as a bottleneck to the mobile workforce.

OFDM has gained a significant presence in the wireless market place. The

combination of high data capacity, high spectral efficiency, and its resilience to

interference as a result of multi-path effects means that it is ideal for the high data

applications that have become a major factor in today’s communication scenario.

Due to various advantages, OFDM was adopted for European standards to ter-

restrial stationary and hand-held video broadcasting systems (DVB-T, DVB-H)

Digital Audio Broadcasting (DAB), wireless LAN, Wi-MAX, 3GPP, LTE, smart

grid system etc. OFDM was chosen as transmission technique for 3GPP Long

Term Evolution (LTE) system and 4G. OFDM systems in spite of its superior

qualities are sensitive to receiver synchronization imperfections. The symbol tim-

ing synchronization error may cause Inter-block interference (IBI) and frequency

synchronization error is one of the sources for Inter-carrier interference (ICI). Thus

synchronization is a crucial issue in an OFDM receiver design.

The high PAPR in OFDM system is one of the biggest drawbacks.To generate

the OFDM signal, sub-carriers are added up with in-phase and quadrature com-

ponents. Due to this, peak power becomes greater than the average power of the

OFDM signal. These peaks can cause nonlinear distortion that introduce spectral

spreading, inter-modulation, and changes in the signal constellation resulting the

significant reduction in power efficiency of the system. Hence, efficient methods

for PAPR reduction is essential in all high-speed wireless communication systems.

Besides this, reduction in PAPR is also instrumental in the removal of non-linear

effect and improved efficiency of power amplifiers [1].
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1.2 Modulation Schemes for High Data Rate Ap-

plications

Wireless communication systems have seen explosive growth since the last decade

of 20th century with the success of Second Generation (2G) Digital Cellular Mobile

services, which uses single carrier modulation systems. The Third Generation (3G)

systems provided higher mobility with a reasonable data rate (up to 2 Mbps) to

meet the customer’s need. But, the ever increasing customer’s demand has drawn

the industries to search for the better solution to push data rate support up to tens

and hundreds of Mbps in Fourth Generation (4G) and Fifth Generation (5G) sys-

tems. The challenge to meet the high data rate requirement meets the challenges

of multipath fading, doppler effect, channel interference and intentional jamming.

Hostile wireless channels have also proved to be a bottleneck for combating all the

odds of wireless channels.

1.2.1 Single Carrier Modulation (SCM) Systems

In a traditional single-carrier modulation system as shown in Figure 1.2, the trans-

mitted symbols are pulse shaped by a transmit filter and then modulated with a

single carrier frequency. At the receiver, the same carrier frequency is used for de-

modulation, and a matched filter is employed to minimize the signal-to-noise ratio

(SNR) of the received data. For digital signals, the information is in the form of

bits that are modulated onto the carrier. At higher bandwidth, the duration of

one bit or symbol of information becomes smaller, and hence the system becomes

more susceptible to the loss of information from impulse noise, signal reflections,

and other impairments. These impairments may impede the ability of receiver

to recover the information sent. In addition, as the bandwidth used by a single

carrier system increases, the susceptibility to interference from other continuous

signal sources becomes greater.
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Figure 1.2: Basic model for a Single Carrier Modulation system

In a time dispersive multipath fading wireless channel, the conventional SCM

system introduces Inter Symbol Interference (ISI), which makes implementation

of equalization necessary. If the data rate is low, the symbol duration is large, and

if large enough as compared to the maximum delay spread of the channel, it is

possible to cope with the resulting ISI without any equalization. Severe ISI limits

the transmission data rate, and ISI problem is usually dealt by using complex time

domain channel equalizers. The limit is given by the computational complexity of

the equalizers. Moreover, achieving equalization at several Megabits per second

with compact and low-cost hardware is quite difficult in practice.

1.2.2 Multi Carrier Modulation (MCM) Systems

Multi-Carrier Modulation (MCM) is an elegant technique to combat the severe ISI

problem. MCM technique is used as a viable alternative to SCM, for high data

rate digital transmission over channels, which exhibit high-frequency selectivity

and strong multipath fading characteristics.

MCM was first used in analog military communications in 1950s. Recently,

MCM has attracted attention as a means of enhancing the bandwidth of digital

communications over media with physical limitations. The scheme is used in some

audio broadcast services. The technology lends itself to digital television, and is

used for obtaining high data speeds in Asymmetric Digital Subscriber Line (ADSL)

systems. MCM is also used in Wireless Local Area Networks (WLANs).
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1.2.3 Concept of MCM /OFDM

The basic concept behind the MCM technique is to divide the available spectrum

into several sub-bands/ sub-channels. Each sub-band is allocated a carrier and the

information is distributed among the sub-carrier/ sub-band. Each sub-carrier is

modulated separately, and the ensembled data is transmitted altogether with ap-

propriate frequency spacing. Each sub-carrier has a lower bit rate. A proper choice

of the basis function allows for sub-carrier overlapping leading to higher spectral

efficiency. As the number of sub-carriers increases, the spectrum shape becomes

asymptotically rectangular. MCM with frequency overlapping basis function is

properly called Orthogonal Frequency Division Multiplexing (OFDM) provided

that orthogonality is maintained between sub-carriers. OFDM is more popular in

the wireless context while in the wired environment such as DSL, the term Discrete

Multi-Tone (DMT) is generally used.

Figure 1.3 shows a simplified MCM system, where the original data stream at

rate R is split into N parallel sub-streams, each at rate R/N . Each sub-stream

is pulse shaped and modulated with a distinct sub-carrier in the transmitter. For

transmitting N sub-carriers are used and N matched filters are also used at the

receiver for the demodulation of the N sub-signals. Since the symbol duration of

each sub-carrier is increased by a factor of N , the ISI and the effect of multipath

fading are alleviated significantly.

1.2.3.1 Advantages of MCM Systems

In the last two decades, OFDM has gained a lot of interest in diverse applications.

This has been due to its favorable properties like immunity to impulse noise,

uniform average spectral density, capability of handling very strong echoes coupled

with advances in VLSI and signal processing techniques.

The advantages provided by MCM can be summarized as:
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Figure 1.3: Basic model for a Multi Carrier Modulation system

• efficient and effective techniques to handle ISI

• requirement of simple equalizer

• high spectral efficiency

• flat fading per sub-carrier due to low sub-channel bandwidth.

1.2.3.2 Challenges with MCM Systems

Though MCM offers many advantages over SCM, there have been following major

challenges:

• Compared to SCM systems, MCM exhibits a large Peak-to-Average Power

Ratio (PAPR).

• MCM systems posses higher sensitivity to carrier frequency offset and phase

error than SCM systems.

• Loss of orthogonality between sub-carriers leading to interference between

sub-carriers also called ICI.
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1.3 Need for PAPR reduction

Although, OFDM has proved as a powerful modulation technique for high data

rate applications, it has several issues. One of the major drawbacks of OFDM

system is its high Peak-to-average Power Ratio (PAPR). High PAPR is due to

the nature of the signal itself, where the peak magnitude would have a significant

high value whereas the average value might be quite small due to the destructive

interference between many sub-carriers.

High PAPR signals are undesirable as they usually strain the analog circuitry.

At the transmitter side, the High-power Amplifier (HPA) has to operate with large

back-off to maintain linearity, which increases the cost. Operating power ampli-

fiers in the non-linear region introduces signal distortion and Inter Modulation

(IM) resulting in in-band interference and out-of-Band power radiation, leading to

Bit Error Rate (BER) degradation and increase in Adjacent Channel Interference

(ACI). In the digital domain, the data converters (A/D and D/A converters) are

also required to accommodate large dynamic range of operations. To keep the

quantization noise within an acceptable range in the event of large PAPR, a high

precision converter is required, which increases the number of bits and hence the

increased complexity of data converters.

The OFDM signal is a sum of many independent signals modulated onto sub-

carriers. If the phase of each signal is the same, the sum reaches the maximum,

leading to high peak value. Evaluation of the variations in the envelope of OFDM

signal is done using PAPR [6]. A variety of PAPR reduction schemes are used in

OFDM systems, some of the popular techniques includes clipping [7], coding [8]

and multiple signal representation techniques such as partial transmit sequence

(PTS) [9], selected mapping (SLM) [10]. Among these techniques, PTS method has

been seen to be the most promising one. PTS achieves excellent PAPR reduction
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capability without significant restriction on the number of sub-carriers [11].

The main purpose of this thesis is to present an analytical study of the PTS

technique for PAPR reduction in the OFDM system and then to propose new

scheme which provide trade-off between the improved PAPR performance and

computational complexity as compared to different PAPR reduction schemes.

1.4 Motivation

The demand for higher data rate communication always provides the impetus for

research in the OFDM field. One of the challenging issues of OFDM system is high

PAPR. High PAPR forces the high power amplifier (HPA) to operate in the non-

linear region leading to degraded power efficiency and simultaneously resulting in

significant back-off power, introduction of ISI in OFDM system leading to degrade

the bit error rate (BER) performance.

Numerous techniques have been proposed during the period of 10 years for

reducing the PAPR. Out of them, Partial transmit Sequence (PTS) technique

was the most promising one, as it gives better PAPR performance without data

loss. The main issue with PTS techniques is its high computational complexity.

Different optimization techniques have been applied to PAPR reduction for phase

weight searches in PTS method so as to obtain the desirable PAPR reduction with

a low computational complexity [12]. These includes Particle Swarm Optimization

[13], Genetic Algorithm [14], Artificial Bee Colony Algorithm [15], Differential

Evolution algorithm [16], Harmony Search [17] etc. The optimization techniques

applied with PTS scheme have shown PAPR reduction performance for OFDM

systems, since it uses all the samples of each candidate signal for peak power

reduction [18].
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1.5 Problem Statement

Under the backdrop of the above motivation, work done in the thesis have been

broadly classified in to three objectives. They are as follows:

1. To conduct an extensive study of the techniques for PAPR reduction in

OFDM systems.

(a) Understanding the mathematical formulation and implementation of con-

ventional Partial Transmit Sequence (PTS) technique for PAPR reduc-

tion.

(b) Developing flexible simulation platform for analysis and performance

evaluation of the PTS technique for testing applicability to OFDM sys-

tems.

2. To investigate the scope of performance improvement of PTS technique and

to propose intelligent optimization techniques for PAPR reduction schemes.

3. To build up and derive improved, accurate and optimum phase weighing

factor optimization algorithm, which can provide trade-off between PAPR

performance and computational complexity compared to conventional PTS

technique considering following issues:

(a) Analyzing the impact of OFDM sub-carrier size, modulation order, the

number of sub-blocks in PTS technique .

(b) Evaluating performance of the optimization algorithm with respect to

computational complexity.
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1.6 Thesis organization

This thesis analyzes the PAPR problem in OFDM system and proposes intelligent

phase factor optimization techniques for PAPR problem. The thesis is organized

as follows:

The FIRST chapter of this thesis presents a brief introduction of the OFDM

and need for PAPR reduction. The motivation and problem statement of the

present research was included in this chapter. The chapter wise presentation of

the thesis is also dealt here.

The SECOND chapter is dedicated to the high PAPR problem in general and

different PAPR reduction techniques adopted in OFDM system. The definition

of PAPR, its effects on systems and PAPR performance parameter are described.

Following that, classifications of PAPR reduction techniques and analysis of one

of the PAPR reduction method i.e. partial transmit sequence (PTS) is described.

Finally literature review for PTS and different optimization algorithms with low

complexity for phase factor reduction are presented.

The THIRD chapter analyzes the application of swarm intelligence algorithm

for phase factor optimization. Here, the implementation of Firefly based PTS (FF-

PTS) algorithm is done, which is seen to reduce the PAPR significantly. Simulation

result shows that the proposed FF-PTS phase optimization technique can provide

better PAPR reduction performance as compared to conventional IPTS scheme

and at the same time works with lower computational complexity, when number

of sub-blocks are large compared to IPTS technique. Also, the parameters in FF-

PTS algorithm can be tuned to control the randomness as iterations proceed so

that convergence can also be speed up by tuning these parameters.

The FOURTH chapter contributes application of a bio-inspired meta-heuristic

phase optimization scheme based on Cuckoo Search (CS-PTS) algorithm. The
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scheme is seen to significantly reduce the PAPR of OFDM signals. The proposed

scheme searches a better combination of phase vectors and offers good performance

in terms of solution quality and convergence speed. Simulation results show that

the CS-PTS phase optimization technique can achieve better PAPR reduction per-

formance as compared to IPTS scheme at manageable computational complexity

even when number of sub-blocks are more than the conventional PTS technique.

The FIFTH chapter deals with a variant of harmony search algorithm called

improved harmony search based PTS algorithm (IHS-PTS) to search the optimum

combination of phase factor for OFDM signals. Compared to the PAPR reduction

optimization techniques like firefly algorithm, harmony search algorithm etc., the

IHS-PTS algorithm provides improved PAPR due to its simple structure and very

few parameters to adjust for larger PTS sub-blocks. Simulation results show that

it is an efficient and feasible method with capability to provide superior PAPR

performance.

Finally, the SIXTH chapter outlines the overall contributions of the thesis.

The achievements and limitations of the work are also discussed. An analysis of

further research work in the same area are also included in this chapter.

1.7 Summary

In this chapter, a brief introduction on SCM and MCM techniques are presented.

This chapter also systematically outlined the motivation behind this work and the

problem statement of the thesis. A concise presentation of research work carried

out in each chapter has been dealt. In essence, this chapter provides an overview

of the thesis in a comprehensive manner.
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CHAPTER2
PAPR for OFDM : An Overview

”When you want to know how things really work, study them when they’re

coming apart.”

-William Gibson
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Chapter 2 PAPR for OFDM : An Overview

2.1 Introduction

OFDM signals are characterized by high PAPR, thus necessitating the need for

PAPR reduction. This is essential to control non-linear distortion, which includes

in-band distortion and out-of-band radiation at High Power Amplifier (HPA). In

the analog domain, high PAPR requires the RF power amplifiers to operate in

high dynamic range, which leads to power inefficiency leading to low battery life

in mobile devices. A high PAPR is quite undesirable in digital domain, as it re-

quires significant word length in A/D and D/A converters to manage precision and

to manage quantization noise to an acceptable level, thereby increasing the com-

plexity of the data converters. Thus, PAPR makes the design and implementation

of A/D and D/A converters, HPA and RF amplifiers increasingly more complex.

These drawbacks of high PAPR may outweigh all the potential benefits offered by

OFDM. Hence, it is very much essential to reduce the PAPR of the OFDM signal.

2.2 Orthogonal Frequency Division Multiplexing

Single carrier modulation techniques are vulnerable to fading and multi-path prop-

agation, especially in the case of very high data rates. OFDM is a multi-carrier

transmission technique [19] having capability to achieve high data rate transmis-

sion in a multi-path fading environment also. This feature is achieved by trans-

mitting many narrow-band overlapping digital signals in parallel, inside single

wideband channel. The concept of using parallel data transmission employing Fre-

quency Division Multiplexing (FDM) was introduced in mid 60’s [20, 21]. OFDM

is an optimal version of multi-carrier transmission schemes. The idea was to use

parallel data streams and FDM with overlapping sub-channels to avoid the use of

complex equalization. The system also has capability of combating impulsive noise

with multi-path distortion and also utilizes the available bandwidth. In telecom-
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munication area, the terms of Discrete Multi-Tone (DMT), Multi-Channel Modu-

lation and Multi-Carrier Modulation (MCM) are widely used and interchangeable

with OFDM. In OFDM, each sub-carrier is orthogonal to all other sub-carriers. As

early as 1961, a Code Division Multiplexing (CDM) scheme was proposed where

sine and cosine functions were used as orthogonal signals [22]. Following which

an FDM system with a Discrete Fourier Transform (DFT) was realized [23]. A

complete OFDM system was proposed in 1971 [24], which included generating the

signal with an IFFT and adding guard interval in the case of multipath chan-

nels. In the further development, OFDM was seen to be a efficient technique for

flat and frequency selective fading channels [5, 25]. OFDM posses the property of

robustness against narrowband interferences [26], since they affects only a small

percentage of sub-carriers. OFDM is seen to be more sensitive to frequency and

phase noise [27,28] and it has a relatively large peak-to-average-power ratio [29].

Table 2.1: OFDM system standards

Standard HiperLAN/2 DAB 802.11 a/g DVB-T

No. of carriers 48 sub-carriers
1705

sub-carriers in
2k FFT

48 sub-carriers
in 64 FFT

1705/ 2k FFT,
6817/ 8k FFT

Modulation
Scheme

16 QAM/ 8PSK DQPSK 64-QAM 64-QAM

Capacity 25Mbps 2Mbps 54Mbps 12-24Mbps

Bandwidth 25 MHz 1.526 MHz 20 MHz
8 MHz RF
Channel

Spectral Region 5.2 Ghz
Band 3: 174-240
MHz, Band 4:

1452-1492 MHz

802.11a in 5.8
Ghz, 802.11b in

2.4 GHz

VHF/ UHF
band

Technology WLAN Broadcasting
Wireless

Technology
Broadcasting

The development of VLSI technology and digital signal processing has made

the OFDM technology not only possible but made it as a major milestone in the

field of wireless communications. Key features of some common OFDM based
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systems are presented in Table 2.1:

2.2.1 OFDM Technology

Orthogonal Frequency Division Multiplexing can be thought of as a modulating

technique as well as a multiple access scheme. As a modulation scheme, it is

well suited to handle adverse environmental conditions while, as a multiple access

scheme, it offers high spectral efficiency and diversity.

Figure 2.1 illustrates the difference between the conventional non-overlapping

multi-carrier technique and the overlapping multi-carrier modulation technique.

As shown here, the overlapping multi-carrier modulation technique can provide

nearly 50 percent of bandwidth reduction. While realizing the overlapping multi-

carrier technique, crosstalk between sub-carriers needs to be reduced, which can

be achieved by maintaining orthogonality between the individually modulated

sub-carriers. The word orthogonal indicates that there is a precise mathemati-

cal relationship between the frequencies of the carriers in the system [30]. This is

illustrated in Figure 2.2, which shows an example of OFDM signal spectra. With

perfect synchronization at the receiver, the information on each sub-carrier can be

detected without the interference from other sub-carriers.

2.2.2 OFDM Signaling

An OFDM symbol consists of N subcarriers, each separated by frequency spacing

of ∆f . Here, the total Bandwidth B is divided into N equally spaced sub-carriers.

All the sub-carriers are orthogonal to each other within a time interval of length

T = 1
∆f

. With this, subcarrier can be modulated independently with the complex

modulation symbol Xm,n, where m is a time index and n is a sub-carrier index.

Within the time interval T , signal of the mth OFDM block period can be described
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Figure 2.1: Concept of OFDM signal: (a) Conventional multi-carrier technique
and, (b) orthogonal multi-carrier modulation technique

Figure 2.2: Example of an OFDM signal spectra

as

xm(t) =
1√
N

N−1∑
n=0

Xm,ngn(t−mT ) (2.1)
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The total continuous time signal x(t) consisting of all the OFDM blocks is given

by

x(t) =
1√
N

∞∑
m=0

N−1∑
n=0

Xm,ngn(t−mT ) (2.2)

where x(t) is the time domain data sequence. Now, consider a single OFDM

symbol when m=0. Without loss of generality it can be shown, because there is

no overlap between different OFDM symbols, since m=0, Xm,n can be replaced by

Xn. Then the OFDM signal can be described as

x(t) =
1√
N

N−1∑
n=0

Xne
j2πn∆ft (2.3)

whereXn is the frequency domain data sequence and ej2πn∆ft constitute sub-carrier

frequency for n=0 ... N−1. If the bandwidth of the OFDM signal is B = N×∆f

and the signal x(t) is sampled at sampling time ∆t = 1
B

= 1
N∆f

, the OFDM signal

is in discrete time form and can be shown as

x(k) =
1√
N

N−1∑
n=0

Xne
j2πkn/N , k = 0, 1..., N − 1 (2.4)

where, n denotes the index in frequency domain and Xn is the complex symbol

in frequency domain [31].

2.2.3 Modulation and Demodulation Procedure

The block diagram of a generic OFDM system is presented in Figure 2.3. In this

figure, at the transmitter, the input bit stream is first coded by using an encoder.

Following this, the coded serial bit-stream is parsed into N parallel bit streams by

using the Serial-to-Parallel (S/P) converter. Each of these parallel bit streams are

subsequently converted to complex data symbols Xk. An IFFT converter is then

used to modulate the OFDM symbols to discrete-time OFDM signals one by one.

The data symbols in each OFDM block are then modulated by the different sub-
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Figure 2.3: The block diagram of OFDM system [1]

carriers. After adding the cyclic prefix, the discrete-time OFDM signal is converted

into a serial signal by using the Parallel-to-Serial (P/S) converter. The discrete-

time signal thus obtained is then transferred into the continuous-time domain for

transmission by using a Digital-to-Analog (D/A) converter. Finally, this signal is

amplified by using an HPA and is up-converted to the carrier frequency to facilitate

transmission in wireless channel.

At the receiver, the received analog signal is first down-converted to analog

baseband signal. After the Analog-to-Digital (A/D) conversion, the obtained dig-

ital signal is parsed into parallel data symbols, and cyclic prefix is removed. The

resulting data symbols are demodulated by using an FFT converter. The output

symbols are then converted back to a serial bit stream by the digital demodulation

and the P/S conversion. After decoding, the input bit stream is recovered at the

receiver end.

2.2.4 OFDM advantages and disadvantages

After having introduced the OFDM technology in the previous section, its major

advantages and disadvantages are as follows:
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2.2.4.1 OFDM advantages

OFDM has been used for many high data rate wireless communication systems

because of the advantages it provides. Some of these includes

• Immunity to selective fading: One of the main advantages of OFDM

is that it is more resistant to frequency selective fading compared to single

carrier systems because the signal divides the overall channel into multiple

narrow-band channels, that are affected individually as flat fading subchan-

nels.

• Protection against Intersymbol interference: The extended symbol

time (due to lower data rate per channel) makes the signal less susceptible

to affects of the channel such as multipath propagation which introduces

ISI. The use of a cyclic prefix between consecutive OFDM symbols helps

to eliminate ISI. It is less sensitive to sample timing offsets than the single

carrier system.

• Spectrum efficiency: Using close-spaced overlapping sub-carriers, a sig-

nificant bandwidth conservation is seen, which makes use of the available

spectrum more efficiently.

• Resilient to narrow-band effects: Using adequate channel coding and

interleaving it is possible to recover symbols lost due to the frequency selec-

tivity of the channel and narrow-band interference.

• Simple channel equalization: In a single carrier system, equalization is

necessary to make the channel frequency flat. But equalization amplifies

noise substantially. As a result, performance of the single carrier system

with low power signal is affected due to high attenuation in some bands, since

all used frequencies are given equal importance during equalization process.
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In OFDM systems, wide-band channels are divided into flat fading sub-

channels, thus reducing the equalization complexity in the receiver. It makes

it possible to use maximum likelihood decoding with reasonable complexity.

2.2.4.2 OFDM disadvantages

While OFDM has been widely used, and there are still a few disadvantages, that

needs to be addressed when considering its use.

• High Peak-to-average Power Ratio: Presence of a vast number of sub-

carriers with varying amplitude results in a high peak to average power ratio

(PAPR) of the system with large dynamic range. This in turn affects the

efficiency of the RF amplifier.

• Synchronization (timing and frequency) at the receiver: Symbol

Timing Offset (STO) and Carrier Frequency Offset (CFO) effects have major

impact on the performance of OFDM systems. Correct timing between FFT

and IFFT is essential at the receiver side. OFDM systems are highly sensitive

to Doppler shifts that affect the carrier frequency offset, resulting in Inter

Carrier Interference (ICI). Single carrier systems show lower susceptibility as

compared to multi-carrier systems.

2.3 Peak-to-Average Power Ratio (PAPR)

PAPR is measured by the envelope fluctuations of an OFDM signal. The PAPR

of the transmitted OFDM symbol x(t) is the ratio of peak instantaneous power to

the average power of the signal, which can be mathematically represented as

PAPR =
max

0≤t<NT
|x(t)|2

E[|x(t)|2]
(2.5)
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where

E
[
|x(t)|2

]
=

1

NT

NT∫
0

|x(t)|2dt (2.6)

where E [·] denotes expectation operator. However, PTS is applied on discrete-

time signals for PAPR reduction. For this reason, the discrete-time OFDM signal

representation can be considered as

x(k) =
1√
N

N−1∑
n=0

Xne
j2πnk
LN , (2.7)

where k = 0, 1, · · · , LN − 1. Oversampling factor is denoted by L. Since IFFT

is used to generate the OFDM signal, the resulting discrete-time OFDM signal

samples are obtained at the Nyquist-rate. The peak value computed using these

samples may not coincide with the peak value of the continuous-time OFDM sig-

nal [32]. Hence, oversampling by a factor greater than 1 is used to increase the

accuracy. It is found that the PAPR of the oversampled discrete-time signal offers

an accurate approximation of the PAPR of the continuous-time OFDM signal if

the oversampling factor is at least 4 [33]. Detailed discussion of the relationship

between the oversampled OFDM signals PAPR and the continuous signals PAPR

are represented in [34] and [35].

The performance measure for PAPR is presented using CCDF plot. The CCDF

shows the probability that the PAPR of a data block exceeds a given threshold

PAPR0 and is computed by Monte Carlo Simulation [36]. The CCDF of the

PAPR of N symbols of a data block with Nyquist rate sampling defined as

Pr(PAPR > PAPR0)= 1− Pr(PAPR ≤ PAPR0)

= 1−(1− e−PAPR0)N (2.8)

The CCDFs are usually compared in a graph such as Figure 2.4, which shows

the CCDF of the PAPR of an OFDM signal with different sub-carriers N for 16
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Figure 2.4: PAPR performance of 16QAM/ OFDM system when the number of
sub-carrier varies

Quadrature Amplitude Modulation (QAM) with 10,000 data blocks.

2.3.1 Effects of High PAPR

Radio systems use HPA on the transmitter side to obtain maximum output power

efficiency. The operating point of devices in HPA is normally at or near the satura-

tion region to maintain power efficiency. This leads to the nonlinear characteristics

of the HPA as shown in Figure 2.5, as they are very sensitive to the difference of the

signal amplitudes. This amplitude difference in the OFDM sample leads to high

PAPR enormously. So, high PAPR on the HPA introduces inter-modulation be-

tween different sub-carriers as well as interference into the OFDM system. This in-

terference decreases the Bit Error Rate (BER) performance. Also, this high PAPR
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Figure 2.5: Amplifier Characteristics

forces the amplifier to operate with huge back-off the power for linear amplification

of the signal. This type of linear amplifier has reduced power efficiency [11,37,38].

Digital-to-Analog Converters (DACs) should have sufficient dynamic range to

accommodate the massive peaks of the OFDM signals because of the high PAPR.

Even if, high precision DAC can supports high PAPR with low quantization noise,

it seems to be very expensive. On the other hand, low precision DAC is cheaper

with inferior quantization noise characteristics [11,37,38].

For systems with the large number of OFDM sub-carriers, OFDM signals follow

the Gaussian distribution. In such type of distribution average of the peak signal

rarely occur and uniform quantization by the Analog to Digital Converter (ADC) is

not desirable. If the signal is clipped, in-band distortion and out-of-band expansion

(adjacent channel interference) occurs [11,37,38]. The significant impact of a high

PAPR includes-

• Increased complexity in the ADC and DAC.

• Reduced efficiency of Radio Frequency (RF) amplifiers.
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2.4 Criterion for the selection of PAPR reduc-

tion techniques

There are many factors that should be considered before a PAPR reduction method

is employed. These factors include PAPR reduction capability, power increase

in the transmitted signal, computational complexity, BER performance of the

receiver, loss in data rate and other considerations [11]. These factors are described

briefly below:

• PAPR reduction capability: Careful attention must be given to the

fact that some techniques while reducing PAPR results in introducing other

harmful effects. The technique employed should not introduce in-band dis-

tortion and out-of-band radiation by applying the PAPR reduction tech-

niques.

• Low average power: Rise in the average power in process of PAPR reduc-

tion requires a high linear operation region in HPA and hence can degrade

BER performance.

• No BER performance degradation: The motivation of PAPR reduc-

tion is to get better system performance. The purpose of PAPR reduction

should be achieved with no BER performance degradation comparable to

the original OFDM system.

• Additional power: System power efficiency is very critical issue while con-

sidering the PAPR reduction. If the operation of the technique reduces

PAPR, but needs more additional power, then it can degrade the BER per-

formance when the transmitted signals are normalized back to the original

power levels.
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• No spectral spillage: Processing PAPR reduction technique should not

destroy the inherent feature (orthogonality) of OFDM signal.

• Computational complexity: Computational complexity is another im-

portant consideration in choosing a PAPR reduction method, since this can

pose a serious bottleneck in hardware implementation.

• Other considerations: Many of the PAPR reduction techniques do not

consider the effect on the other components in the transmitter such as the

transmit filter, digital-to-analog (D/A) converter, and transmit power ampli-

fier. In practice, PAPR reduction techniques can be used only after careful

performance and cost analysis for realistic environments.

2.5 PAPR Reduction Techniques

PAPR reduction methods can be generally classified into two domain methods:

frequency domain method and time domain method. The basic notion of fre-

quency domain method is to increase the cross-correlation coefficient of the input

signal before IDFT and decrease the output of the IDFT peak value or average

value. Selective Mapping (SLM), Partial Transmit Sequence (PTS), Precoding,

etc. schemes are the example of frequency domain method [39]. In time domain

method, PAPR is reduced by distorting the signal before amplification and addi-

tion of extra signals to increase the average power. Clipping and Filtering, Peak

windowing, etc. are examples of time domain methods. Time domain methods are

very simple method because they require very low computational time but intro-

duce distortion, increase out of band radiation and also degrade BER performance.

On comparing these two methods, frequency domain PAPR reduction technique

is the efficient one because of its ability to compress the PAPR without distorting

the transmitted signal, without in-band distortion and out-of-band radiation of
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Figure 2.6: PAPR reduction techniques

the OFDM signals.

Broadly PAPR reduction techniques are classified into four sections as shown

in Figure 2.6 [40].

2.5.1 Signal distortion techniques

The key concept behind this scheme is to identify high amplitude samples above

predefined threshold value in transmitted envelope. The most popular signal dis-

tortion techniques are companding [41], clipping and filtering [7], peak windowing

and peak cancellation [42]. These methods reduce envelope fluctuations signifi-

cantly, but they cause both in-band and out-of-band distortion which leads to a

rise in BER [38].
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2.5.1.1 Clipping and Filtering

It is the easiest signal distortion based PAPR reduction technique [7]. This method

employs a clipper that bounds the signal envelope to preset clipping level (C) if the

signal surpasses that level; otherwise, the clipper offers the signal without change,

defined by

B [x (n)] =

 x [n] if |x [n] ≤ C|

Cjφx[n] if |x [n] > C|
(2.9)

where C and φx[n] are the clipping level and angle of OFDM signal x[n].

Clipping is a non-linear process that directs to both in-band and out-of-band

distortions. The distortion causes performance degradation in terms of BER [43].

Filtering of the clipped OFDM signal can preserve the spectral efficiency by re-

jecting the out-of-band distortion, consequently, amending the BER performance

but may cause to peak power regrowth. The process repeated clipping and filter-

ing operations can be used to obtain a desirable PAPR at the cost of increased

computational complexity [28].

Clipping is however a simplest approach to reduce sudden peaks in OFDM

envelope to lower down PAPR significantly. But using a hard limit threshold in-

troduces distortion causing adjacent channel interface and poor BER performance.

Both of these problems are inevitable, rectifying these problems is a tedious task

involving high cost and complexity. So clipping is not a good candidate for PAPR

reduction [38].

2.5.1.2 Companding

The key idea of the companding PAPR reduction scheme is to transform the faded

signal into a uniformly distributed signal. The companding transform [44] is com-

monly used in speech processing. Companding includes compression and expan-

sion. Several companding methods are available in the literature [45]. Two stan-
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Figure 2.7: Block diagram of peak cancellation in OFDM transmitter

dard compression methods are A-law and µ-law. Companding increases smaller

signal power levels and keeps larger signal value fixed to increase signal quality [37].

Since average power of OFDM signal is enhanced to reduce PAPR value, it will

put additional burden on transmitter to transmit more power than before. This

is a major drawback with companding scheme, and reason why it is not in much

use.

2.5.1.3 Peak Cancellation and Windowing

In this technique, a peak cancellation waveform is appropriately generated, scaled,

shifted and subtracted from the OFDM signal at those segments that exhibit high

peaks [38]. The objective of method is to choose sample when the magnitude

exceeds a certain threshold level, shown in Figure 2.7.

The process of peak windowing is an interaction of window function to OFDM

symbols [42]. Unlike clipping where the predetermined threshold limits the am-

plitude, windowing uses weighting function to multiply with peak samples. Ham-

ming, Hanning and Kaiser are most commonly use window functions for PAPR

reduction.
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2.5.2 Pre-distortion techniques

Pre-distortion technique is based on reorientation or distributing the energy of data

symbol before taking IFFT [46]. The pre-distortion technique contains ability to

compensate the nonlinear effect of a high power amplifier (HPA) in OFDM systems.

In these methods, the constellation of OFDM signal is altered in such a way that

resultant OFDM signal have low PAPR value. These methods are discussed as

follows:

2.5.2.1 Tone Reservation

The key concept of tone reservation (TR) is to reserve the subset of tones for PAPR

reduction [47]. The statistical vector is added to OFDM symbol for optimizing

PAPR. This can be explained by following

x̂ [n] = x [n] + c [n] = IDFT (X + A) (2.10)

where X represent OFDM symbol and A is reserved tone. Here, frequency

domain processing is used for linear addition of reserved tone.

The parameter on which PAPR is testing

min
c
‖x+ c‖ = min

c
‖x+ IDFT (A)‖∞ (2.11)

With the TR technique, additional power is required for transmitting the peak

reduction tones (PRTs) symbols and the effective data rate decreases since the

PRT tones work as an overhead.

In TR scheme data rate loss incurs due to addition of PRTs, as due to low

signal-to-noise ratio (SNR) they do not carry information, thus can only solve the

purpose of PAPR reduction at the cost of low data rate especially for lower value of

sub-carriers N . Apart from this finding, an optimize set of PRTs increase the com-

plexity at the transmitter, however adding PRT increases required transmission
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Figure 2.8: Tone injection technique for 16-QAM constellation

power.

2.5.2.2 Tone Injection

The philosophy of tone injection (TI) technique is to enlarge the constellation size

so that every point in the original complex plane constellation is mapped onto

various other points in the expanded constellation prior to IDFT processing [48].

Figure 2.8 shows QAM constellation with the original constellation size as

C, and its points are spaced by d, then its equivalent points in the expanded

constellation should be

D = ρd
√
C (2.12)

with ρ ≥ 1, where D is a fixed constant.

D is an important parameter as it affects the transmission power as well as the
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BER. Higher value of D increases the average power but BER will be low, lower

value of D causes poor BER as constellation points come close to each other. Here,

Xn = X + pD + j.qD (2.13)

where p and q are integers as this describes how a symbol X is modified for trans-

mission with p and q being chosen to minimize PAPR. In TI scheme, unlike TR

scheme there is no data rate loss, no side information is required and only Mod-

D operation is required to decode the signal back. TI scheme also require high

transmission power due to addition of tones [49].

2.5.2.3 Active Constellation Extension

Active constellation extension (ACE) is a pre-distortion PAPR reduction tech-

nique [46]. The key idea of this method is to dynamically extend the outermost

signal constellation points of the modulated symbols towards outside of the origi-

nal constellation which leads to an alternative representation of the same symbol.

ACE however offers dual advantage of PAPR and BER reduction [11]. ACE scheme

do not require transmission of side information too, so there is no data rate loss

too. But the major disadvantage is the increase in transmission power. Thus, the

use of this scheme is limited to smaller constellation size only.

2.5.3 Signal scrambling (Probabilistic) techniques

The probabilistic (scrambling) technique is to scramble an input data block of the

OFDM symbols and transmit one of them with the minimum PAPR so that the

probability of incurring high PAPR can be reduced [50, 51]. While the technique

does not suffer from the out-of-band power, the spectral efficiency decreases and

the complexity increases as the number of sub-carriers increases [52]. Furthermore,

the technique fails to guarantee the PAPR below a specified level [53].

35



Chapter 2 PAPR for OFDM : An Overview

Figure 2.9: Constellation distribution of ACE PAPR reduction method

2.5.3.1 Partial Transmit Sequence

The partial transmit sequence (PTS) method developed by Muller and Huber

in 1996, presents an efficient method for phase factor computation [33, 36]. In

PTS technique, an input data block of length N is divided into M number of

disjoint sub-blocks [9]. Consequently, the IDFT is computed for each sub-block and

weighted by a phase vectors bm = ejφm , where φm ∈ (0, 2π) and m = 1, 2, · · ·M .

The check operation is performed with equal number of candidate sequence, to get

minimum PAPR symbol from original signal. The phase vectors are then optimized

such that the PAPR of the combined signal is minimized. The complexity of PTS

depends on the number of sub-blocks M and the allowed phase vectors. Section 2.6

depicts a block diagram of the OFDM transmitter with PTS technique. Therefore,

the search complexity increases with the number of sub-blocks. At receiver, the
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Figure 2.10: Block diagram of selective mapping (SLM) technique for OFDM
transmitter.

inverse phase vector is applied to recover the original sub-carrier sequence.

2.5.3.2 Selective Mapping

The key idea behind selective mapping (SLM) [10] is simple, that is to divide data

symbol into sub-blocks and multiply them with different phase rotation sequences.

Following this, the symbol having minimum peak power symbol among all sub-

blocks is selected [10,54]. Phase rotations U are generated as

pU = {pu (k) , k = 0, 1, · · · , N} , u = 0, 1, · · · , U − 1 (2.14)

where pu (k) = e(ϕu(k)), j =
√

(−1) and ϕu (k) ∈ [0, 2π]. The input data block

XNT is multiplied by pu to generate the signal Xu
NT

as

Xu
NT

= pu (k)XNT (k) (2.15)

After SFBC encoding the signal Xu
NT

are transformed into time domain signal
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xuNT , via the IFFT operation and the optimal set of lowest PAPR is chosen as

û = arg min
0≤u≤U−1

(
max
i=1,2

max
0≤n≤LN−1

|xui (n)|
)

(2.16)

Figure 2.10 shows the block diagram of SLM techniques. In general, the U

phase rotation sequence P u should be transmitted to the receiver as the SI with

log2U bits.

All the probabilistic techniques mentioned above are however distortion less

techniques, but all of them have some serious implementation issues. PTS and

SLM require transmission of side information causing reduced bandwidth efficiency

and data rate loss. All the above schemes also suffers from optimization problem

in scrambling the best PAPR candidate. Computational complexity also makes

implementation a tedious task.

2.5.4 Coding techniques

A coding technique is a method to employ some error correcting codes for PAPR

reduction [35]. Processing are applied before the generation of OFDM signal (be-

fore IFFT). When N signals are added with the same phase, they produce a peak

power, which is N times the average power. The basic idea of all coding schemes

for reduction of PAPR is to reduce the probability of occurrence of the same phase

of many signals. The coding methods select such code words that minimize or re-

duce the PAPR. The technique does not introduce distortion and does not create

out of band radiation, however the system suffers in terms of bandwidth efficiency

as the code rate decreases. This technique also suffers from the curse of complexity

to find the best codes and store large lookup tables for encoding and decoding,

especially when the number of sub-carrier is large. The error correcting codes like

block codes, cyclic codes, Golay complementary sequence, Reed-Solomon (RS)

code, Reed-Muller (RM) code, Hadamard code and Low Density Parity Check
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(LDPC) code can be used [8, 55–57].

Table 2.2: Comparison of features of different PAPR reduction techniques

Methods
Distortion-

less
Power

increase
Data rate

loss
Required processing at trans-
mitter (Tx) and receiver
(Rx)

Clipping [7] No No No Tx: Amplitude clipping, filtering
Rx: None

Tone
Reservation [47]

Yes Yes Yes Tx: IDFTs, find value of PRCs

Rx: Ignore non-data-bearing sub-
carriers

Tone
Injection [48]

Yes Yes No Tx: IDFTs, search for maximum
point in time, tones to be modi-
fied, value of p and q
Rx: Modulo-D operation

Active
Constellation

Extension
(ACE) [46]

Yes Yes No Tx: IDFTs, projection onto
”shaded area”

Rx: None
Coding [8] Yes No Yes Tx: Encoding or table search

Rx: Decoding or table search
Interleaving [58] Yes No Yes Tx: K IDFTs, (K − 1) interleav-

ings
Rx: Side information extraction,
inverse interleaving

Partial Transmit
Sequence

(PTS) [36]
Yes No Yes Tx: M IDFTs, WM−1 complex

vector sums
Rx: Side information extraction,
inverse PTS

Selective Yes No Yes Tx: U IDFTs
Mapping

(SLM) [10]
Rx: Side information extraction,
inverse SLM

Coding techniques suffer from a major problem of exhaustive search to find

a suitable code which can reduce PAPR but at the same time these methods

are limited to a small number of sub-carriers owing to high complexity of the
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Figure 2.11: Comparison of CCDF for different PAPR reduction techniques

encoder and decoders. These methods find it difficult to exploit the error correction

capability and PAPR reduction at the same time.

Figure 2.11 shows the comparison of CCDF for different PAPR reduction tech-

niques for OFDM system. In Table 2.2, we summarize the features of different

PAPR reduction techniques [11]. In all the above mentioned techniques, active

constellation extension (ACE) and partial transmit sequence (PTS) are found to

be most suitable for PAPR reduction especially in the latest technology such as

4G, LTE, WLAN and WiMAX systems. However, it also has certain issues such

as transmission power requirement, high computational complexity, and need of

side information.
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2.6 Partial Transmit Sequence Technique for PAPR

Reduction

Figure 2.12 shows the block diagram of the OFDM transmitter with the PTS tech-

nique. All of the techniques described below can be implemented by appropriately

changing the phase optimization block.

Figure 2.12: The block diagram of Traditional Partial Transmit Sequence tech-
nique

2.6.1 Ordinary Partial Transmit Sequence (OPTS)

The main idea of following scheme is describe as:

2.6.1.1 Partitioning of Sequence

In ordinary PTS technique, the input data block X of length N is partitioned in

to M disjoint sub-blocks Xm = [Xm,1, Xm,2, · · ·Xm,N ]T , where m = 1, 2...M , such

that
M∑
m=1

Xm = X (2.17)

41



Chapter 2 PAPR for OFDM : An Overview

and the sub-blocks are combined to minimize the PAPR in the time domain. The

L-times oversampled time-domain signal of Xm is denoted as xm, m = 1, 2, · · · ,M ,

is denoted as xm = [xm,1, xm,2, · · ·xm,NL]T , where m = 1, 2...M , which are obtained

by taking an IDFT of length NL on Xm concatenated with (L−1)N zeros. These

are called as the Partial Transmit Sequences (PTS).

2.6.1.2 Phase Optimization

Complex phase factors, bm = ejφm , where φm ∈ (0, 2π) and m = 1, 2, · · ·M , are

introduced to combine the partial transmit sequences. We shall write the set of

the phase factors as a vector b = [b1, b2, · · · bM ]T . The time-domain signal sample

after combining is given by

x′(b) =
M∑
i=1

bm · xm (2.18)

where x′(b) = [x′1(b), x′2(b), ..., x′NL(b)]T

2.6.1.3 Optimal Combination of Phase Factors

The goal of the PTS approach is to find an optimal phase-weighted combination

to minimize the PAPR. In general, the selection of the phase factors is limited to

a finite set of elements to reduce the search complexity. The set of allowed phase

factors can be represented as

P =
{
ej2πl/W |l = 0, 1, · · · ,W − 1

}
(2.19)

Where W is the number of possible phase factors. In addition, we can set b1

= 1 without any loss of performance. So, we perform an exhaustive search for

(M − 1) phase factors. Hence, WM−1 sets of phase factors are searched to find the

optimum set of phase factors. The search complexity increase exponentially with

the number of sub-blocks M [59].
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(a) Adjacent sub-block partitioning technique

(b) Interleaved sub-block partitioning technique

(c) Pseudo-random sub-block partitioning technique

Figure 2.13: PTS sub-block partitioning technique
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Sub-block partitioning is a method of division of sub-bands into multiple dis-

joint sub-blocks. There are three kinds of sub-block partitioning scheme pop-

ularly used: Adjacent, interleaved and pseudo-random partitioning [53]. For

the interleaved sub-block partitioning scheme, every sub-band signal spaced L

apart is allocated to a sub-block. In the adjacent scheme, N/L successive sub-

bands are assigned into one sub-block sequentially. Each sub-band signal is as-

signed into any one of the sub-blocks randomly in the pseudo-random scheme [60].

Of these, pseudo-random partitioning has been found to provide good perfor-

mance in terms of PAPR reduction [40]. For example, if we consider a signal

X = [c1, d1, c2, d2, c3, d3, c4, d4], then possible combination of sub-block partition-

ing in the PTS scheme are shown in Figure 2.13. If the number of sub-blocks M =

4 and the set of phase weighing factors is {1,-1} (i.e. W = 2), then all the phase

weighing factor sequences, identified by B1, B2, · · · , B8 are shown in Table 2.3. For

searching optimum combination of phase weighing factor, we need to multiply X1

with B1, B2, · · · , B8, similarly X2 with B1, B2, · · · , B8 and so on up to X4. After

that we will calculate PAPR of the signal [X1 · B1], [X1 · B2] and so on. Suppose

the signal [X1 ·B1], [X2 ·B1], [X3 ·B1] and [X4 ·B1] are having lowest PAPR value,

then transmitted OFDM signal x′ will be

x′ = [X1 ·B1] + [X2 ·B1] + [X3 ·B1] + [X4 ·B1]

The performance of PAPR reduction is directly proportional to the number of

phase weighting factors. However, when the number of phase weighting factors is

large, the number of parallel addition processor and the number of phase weighting

factor sequences need a complex computation to find the optimum set of phase

weighing factor and it leads to a heavy load for the system. The PAPR reduction

performance in PTS is governed by two factors - one is the sub-block partition style

and the other is the value of phase weighting factor set. Therefore, the sub-block
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Table 2.3: All the phase weighing sequences for W=2 and M=4

Phase weighing sequence Phase weighing sequence

B1 {1, 1, 1, 1} B5 {1,−1,−1,−1}
B2 {1, 1, 1,−1} B6 {1,−1,−1, 1}
B3 {1, 1,−1, 1} B7 {1,−1, 1,−1}
B4 {1, 1,−1,−1} B8 {1,−1, 1, 1}

Figure 2.14: Mapping of quaternary data to 16-QAM constellation using 4 phase
factors in PTS technique

partition style and the value of phase weighing factor set could be well designed to

obtain the candidate signals with reducing correlation to improve PAPR reduction

performance. An effective PAPR reduction technique could be investigated based

on the trade-off between the phase weighing factor and sub-block partitioning. [61].
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Table 2.4: Quaternary 16-QAM constellation mapping using phase rotation factors
(1, j, -1, -j)

Quaternary Initially Mapped Constellation points
data Quaternary data points after multiplication

to 16 QAM Constellation with phase factors in S
1 j -1 -j

0 3+3j 3+3j -3+3j -3-3j 3-3j
1 -3+j -3+j -1-3j 3-j 1+3j
2 -1-j -1-j 1-j 1+j -1+j
3 1-3j 1-3j 3+j -1+3j -3-j

2.6.1.4 Quaternery to 16-QAM mapping

In this scheme, the quaternary data points are initially mapped to four different

constellation points of 16-QAM using Table 2.4. It can be seen from Figure 2.14,

that quaternary data points (0, 1, 2 and 3) are initially mapped to four different

constellation points located at {3 + 3j, - 3 + j, -1- j, 1- 3j} and are denoted

by square, diamond, circle and star respectively. It is noteworthy that initially

mapped constellation points are lying in four different quadrants. The constellation

points {3 + 3j, - 3 + j, -1- j, 1- 3j} after multiplication with phase rotation factor

W={1, j, -1,-j}, are rotated by {0, π/2, π, 3π/2} as shown in Figure 2.14 and

covers all 16 points of 16-QAM constellation. Any initially mapped quaternary

data point after multiplication with phase factor {1, j, -1,-j} lies on the vertices

of a square. The constellation points are unique and can be de-mapped to obtain

the quaternary data signal using Table 2.5. Hence, as per Table 2.5, if any of the

data point is received as {3 + 3j, - 3 + 3j, - 3 - 3j or 3 - 3j}, {-3 + j, -1- 3j, 3 - j or

1+ 3j}, {-1- j, 1- j, 1+ j or -1+ j} or {1- 3j, 3 + j, -1+ 3j or - 3 - j} then it will be

de-mapped to constellation the constellation points {3 + 3j, - 3 + j, -1- j, 1- 3j}

respectively, and these are nothing but the four initially mapped quaternary data

points 0, 1, 2 or 3 respectively.

The de-mapping scheme does not require any side information (SI) about the
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Table 2.5: De-mapping of 16-QAM constellation symbols to quaternary data points

Demodulated Constellation symbols

De-mapped
Constellation Point

Recovered
Quaternary data

{3 + 3j, - 3 + 3j, - 3 - 3j or 3 - 3j} 3+3j 0
{-3 + j, -1- 3j, 3 - j or 1+ 3j} -3+j 1
{-1- j, 1- j, 1+ j or -1+ j} -1-j 2
{1- 3j, 3 + j, -1+ 3j or - 3 - j} 1-3j 3

phase rotation factors at the receiver, thus, eliminating the major constraints of

PTS technique. This approach extends the constellation size but does not result

any data rate loss because each quaternary data point corresponds to only one 16-

QAM symbol sent over each sub-carrier, which keeps the bandwidth requirement

unchanged.

The criteria for choosing the set of four points (out of eight) for initial mapping

of quaternary data may be stated as follows:

• Any constellation point (P) can be picked randomly out of eight available

points for mapping of quaternary data 0.

• For a chosen point P , the constellation point located at a phase angle of

π/2 radians is eliminated from the choices of initial mapping of remaining

three quaternary data points, because it results after multiplication of point

P with phase factor j.

• For a chosen point P , the constellation point located a π radians should be

chosen for initial mapping of any remaining quaternary data to avoid peak

formation as discussed above.

• Repeat the steps 2, 3 till all four quaternary data points initially map on the

16-QAM constellation.
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2.6.2 Iterative Partial Transmit Sequence (IPTS)

As shown in Figure 2.12, the conventional PTS scheme requires an exhaustive

search over all combinations of allowed phase weigh factors; leading to an ex-

ponential rise in the number of sub-blocks. Following this, the search complexity

increases exponentially with the number of sub-blocks. In the literature [52,62–64],

various schemes have been proposed to reduce this complexity.

In contrast for complexity reduction, a novel suboptimal Iterative Partial Trans-

mit Sequence (IPTS) as described in [9] is adopted in this thesis; which uses the

binary phase factors of {1,-1}. This technique can be summarised in the following

steps:

1. Partition the input data block in to M sub-blocks as in (2.17).

2. Set all the phase factors bi=1 for i=1 ...M . Find PAPR of equation 2.18,

and set it as PAPRmin.

3. Set i=2

4. Modify the first phase vector bi= -1 and recalculate the new PAPR with

equation 2.18.

5. If PAPR > PAPRmin, switch bi back to 1. Otherwise, update PAPRmin =

PAPR.

6. If i < M , increment i by one and go back to step 4. Otherwise, exit

this process and finally transmit the optimal phase sequence with minimum

PAPR.

The number of computations for (2.18) in this IPTS technique is equal to number

of sub-block M , which is much fewer than that required by the conventional PTS

technique.
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Figure 2.15: PAPR performance of 16QAM/ OFDM system with IPTS Technique
when the number of sub-block varies

Figure 2.15 shows CCDF of PAPR for a 16QAM/OFDM system using IPTS, as

the number of sub-block varies with sub-carriers N=256 and 3000 data blocks. It

can be seen that PAPR performance improves as the number of sub-block increases

with M= 1, 2, 4, 8, and 16. For 1 disjoint subset (i.e. M=1), the PAPR is

calculated around 10.9 dB at CCDF of 10−3 , for 2 disjoint subsets (i.e. M=2),

PAPR observed is approximately 9.8 dB at CCDF of 10−3, for 4 disjoint subsets

(i.e. M=4), the calculated PAPR is approximately 8.9 dB and for 8 disjoint

subsets (i.e. M=8), the calculated PAPR is approximately 8.2 dB at CCDF of

10−3. Similarly, for 16 disjoint subsets (i.e. M=16), PAPR) is 7.6 dB at CCDF

of 10−3. From the above simulation results, it can be deduced that, for more

subsets the PAPR is less. Alternatively, PAPR reduction capability increases with
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increasing number of sub-blocks [40].

2.7 Review of optimization algorithms for PTS

based PAPR reduction

The conventional PTS scheme is an efficient and distortion-less technique for PAPR

reduction, which optimally combines signal sub-blocks. The objective of the PTS

scheme is to implement an optimal phase vector for the sub-block set that min-

imizes the PAPR [36]. Design of the optimum phase factor from a set of known

solutions is challenging, because it is a complex, non-linear optimization problem.

The exhaustive search space for optimal phase factor rises exponentially with the

number of sub-blocks in PTS [65]. The two main demerits of the PTS are as

follows- First one is a high complexity. High complexity occurs when PTS search

for optimal phase factor. This technique needs a complete search over all combi-

nations of the allowed phase weighting factors. Furthermore, the searching process

increases exponentially with the number of sub-blocks. The second one is to trans-

mit the side information and to recover the side information at the receiver side

safely.

2.7.1 Evolutionary Algorithms based PTS Optimization

Evolutionary optimization techniques have attracted attentions of researchers in

the last two decades to obtain the desirable PAPR reduction with a low compu-

tational complexity [66–69]. Some of these techniques includes Particle Swarm

Optimization [13], Genetic Algorithm [14], Artificial Bee Colony Algorithm [15],

Differential Evolution algorithm [16], Harmony Search [17] etc. Although the op-

timization techniques to PTS methods have shown PAPR reduction performance

for OFDM systems, the technique uses all the samples of each candidate signal for

peak power reduction [18]. A novel sub-block partition scheme (SPS) for the PTS
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technique was proposed by Seong Geun Kang et al. in 1999 [60]. Partitioning of

sub-blocks are done by three methods: interleaved, adjacent and pseudo-random

partition. In the proposed method, each sub-block is formed by continuous copy

and concatenating signals. The proposed method is a combination of the the

pseudo-random and interleaved partition scheme. The PAPR reduction perfor-

mance of proposed method is almost same as the conventional pseudo-random

PTS, but the computational complexity is reduced significantly. This made the

scheme suitable for modern wireless communication. L. J. Cimini and N. R. Sol-

lenberger in 2000 [9] proposed a suboptimal scheme for combining the PTS with

{±1} weighting factors only. This suboptimal algorithm was based on iterative

flipping. This drawback of the ordinary PTS technique was removed via this

method as an optimization problem. In this technique, terminating threshold is

set so that PAPR can be easily reduced. After fixing this threshold level, the

process of searching is terminated as soon as PAPR drops below threshold rather

than searching all the combination. Another feasible algorithm for computing the

optimal PTS phase factors was proposed in 2005 by Ali Alavi, Chintha Tellambura

and Ivan Fair [70]. This algorithm searches only those phase vectors that guar-

antee that the PAPR is bounded. This algorithm was based on Shortest Vector

Problem (SVP) in a lattice that has to find the shortest non-zero vector in the

lattice. The premise of Fincke and Phost sphere decoder algorithm was used to

solve SVP.

In the next, Tao Jiang, Weidong Xiang, Paul C. Richardson, Jinhua Guo, and

Guangxi Zhu reported a Simulated Annealing (SA) method to search the phase

factors for PTS to obtain almost same PAPR as that of optimal PTS with low

complexity in 2007 [63]. Their PTS scheme utilized SA’s basic properties for global

optimization for massive combination problems. Global optimization accepts in-

creased trials to shun early convergence to local optimum solutions. In 2009, Jung
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Chien Chen [71] proposed Cross Entropy (CE) algorithm for PTS to reduce PAPR

at affordable computational complexity. The objective of CE algorithm was to find

phase factor optimally. According to this method, first a score function is defined

as the amount of the PAPR, following that, this score function is overset into a

stochastic approximation problem. Now, this problem could be solved efficiently.

The CE algorithm PTS method achieves almost same PAPR performance as com-

pared to conventional PTS method with low complexity as shown by simulation

results. Another lower complexity PAPR reduction technique was reported by

Jung Chien Chen in 2010 [65]. He proposed an Electromagnetism-like (EM) algo-

rithm for PTS, a stochastic optimization approach, to achieve considerable PAPR

reduction with low complexity. The EM algorithm has four processes: (1) ini-

tialization, which generates random samples within the boundary of number of

sub-blocks and iteration, (2) local search procedure is used to search optimum

phase factor, (3) calculation of total force procedure is used to calculate phase

factor that combine with subblocks for low PAPR and rejects others, (4) move-

ment of the particles procedure is used to update phase factor from number of

sub-blocks. A new approach to reduce the complexity of PTS scheme using a cost

function was proposed in 2010 by Sheng. Ju. Ku et al., [72]. In this scheme, a

new cost function was created which was defined as the sum of the power samples

after taking IFFT in each sub-block. The samples with the cost function that are

greater than or equal to a fixed threshold were selected. As a consequence, the

signal with lowest PAPR for transmission was chosen from the selected candidates.

This scheme could achieve approximately the same PAPR as of the CPTS scheme

with less computational complexity.

In 2010, Yajun Wang et al., [15] proposed an Artificial Bee Colony (ABC) al-

gorithm for reducing the phase complexity. For the high number of sub-blocks,

ABC algorithm reduced computational complexity effectively. The searching ca-
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pacity of the combination of phase factor is generally high. As the algorithm

had only three control parameters, it was easy to adjust. In the same year, Jung

Chien Chen proposed Quantum-inspired Evolutionary Algorithm (QEA) which

reduces the searching process for finding the optimal phase factors [73]. Like in

the evolutionary algorithms, the evolution function, and the population dynamics

parameters were used to characterize the QEA. Also, QEA follows the concept

of a generational population based search scheme in the same way as the genetic

algorithm. In the year 2011, three relevant works were reported for low complex-

ity PAPR reduction techniques. Jun Hou et al., [74] proposed a novel scheme

for PTS, the proposed scheme had potential to achieve the similar reduction in

PAPR as compared to the PTS scheme with lower computational complexity.

Lingyin Wang and Ju Liu [75] proposed a method that reduces the complexity

by combining Grouping Phase Weighting (GPW) and Recursive Phase Weighting

(RPW) methods. The combination of these two methods provided low complexity

for searching the phase factors than CPW and RPW individually. Also, it could

achieves same PAPR as conventional PTS. The third work was proposed by Poo-

ria Varahram and Borhanuddin Mohd Ali [76] for an optimal PTS method that

reduced the IFFT operations. In this technique, random phase factors was mul-

tiplied with the input signal. This method reduced the complexity by decreasing

the number of IFFT operation to about half. In 2012, Hojjat Salehinejad and Sia-

mak Talebi [17] introduced an approach for peak-to-average power ratio (PAPR)

reduction of such signals based on novel global harmony search (NGHS) and par-

tial transmit sequence (PTS) schemes. With respect to the fast implementation

and simplicity of NGHS technique, a significant reduction of PAPR was shown.

A modified ABC-PTS (artificial bee colony-partial transmit sequence) for PAPR

reduction was proposed by Xiangyu Yu, Shuai Li, Zhu Cong Zhu and Tao Zhang

in 2013 [77]. Inspired by the idea of the particle swarm optimization algorithm, a
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global best solution was introduced into the original ABC algorithm, and the up-

dating equation was modified with the introduction of a learning factor to consider

the balance between the ability of exploration and exploitation of the algorithm.

Simulation results have showed that the proposed approach has lower PAPR than

the traditional ABC-PTS algorithm with the same complexity while having lower

bit error rate.

Another novel scheme which was based on a stochastic optimization tech-

nique called modified differential evolution, to search the optimal combination

of phase factors with low complexity was proposed by Chien-Erh Weng, Chuan-

Wang Chang, Chuang-Hsien Chen and Ho-Lung Hung in 2013 [78]. Simulation

results showed that these schemes could achieve significant reduction in computa-

tional complexity while keeping good PAPR reduction. In 2014, Li Li, Daiming

Qu and Tao Jiang [79] proposed a joint decoding scheme to recover low-density

parity-check (LDPC) codeword and partial transmit sequence (PTS) phase factors,

for OFDM systems with a low peak-to-average power ratio (PAPR). Here, an op-

timization problem was formulated to improve the joint decoding performance by

optimizing the partition. Simulation results showed that the joint decoding scheme

with the proposed partition algorithms provided satisfactory error-correcting per-

formance for a larger number of PTS groups than does with the pseudo-random

partition. Wei Xiao, Honggui Deng, Fangqing Jiang, Kaicheng Zhu and Linzi Yin

proposed a partial transmit sequence (PTS) technique based on the combination

of a genetic algorithm (GA) and a hill-climbing algorithm (GH-PTS) to solve the

problem of high PAPR in 2015 [80]. GH-PTS is a modified PTS technique based

on GA-PTS. Simulation results showed that the optimized method could reduce

PAPR more efficiently without any loss of bit error rate performance than the

GA-PTS technique in VLC-OFDM system.
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Table 2.6: Major contribution to PTS based PAPR reduction in OFDM

Year Author(s) Contribution

1999 Seong Geun Kang et al.

[60]

Novel sub-block partition scheme (SPS) for

the PTS

2000 L. J. Cimini and N. R.

Sollenberger in 2000 [9]

Suboptimal scheme for combining the PTS

with iterative flipping

2005 Ali Alavi, Chintha Tel-

lambura and Ivan Fair

[70]

Computing the optimal PTS phase factors

based on Shortest Vector Problem (SVP)

2007 Tao Jiang, Weidong Xi-

ang, Paul C. Richard-

son, Jinhua Guo, and

Guangxi Zhu [63]

Simulated Annealing (SA) method for opti-

mal PTS with low complexity

2009 Jung Chien Chen [71] Cross Entropy (CE) algorithm for PTS to

reduce PAPR at affordable computational

complexity

2010 Jung Chien Chen [65] Electromagnetism-like (EM) algorithm for

PTS

2010 Yajun Wang et al. [15] Artificial Bee Colony (ABC) algorithm for

reducing the phase complexity

2010 Jung Chien Chen [73] Quantum-inspired Evolutionary Algorithm

(QEA) to reduce the searching process for

finding the optimal phase factors

2011 Lingyin Wang and Ju Liu

[75]

Combining Grouping Phase Weighting

(GPW) and Recursive Phase Weighting

(RPW) methods to reduce the complexity
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Table 2.6: Major contribution to PTS based PAPR reduction in OFDM

Year Author(s) Contribution

2012 Hojjat Salehinejad and

Siamak Talebi [17]

PAPR reduction based on novel global har-

mony search (NGHS) with PTS

2013 Xiangyu Yu, Shuai Li,

Zhu Cong Zhu and Tao

Zhang [77]

Modified ABC-PTS (artificial bee colony-

partial transmit sequence) for PAPR reduc-

tion

2014 Li Li, Daiming Qu and

Tao Jiang [79]

Joint decoding scheme to recover low-density

parity-check (LDPC) codeword for PTS

phase factors with low PAPR

2015 Wei Xiao, Honggui

Deng, Fangqing Jiang,

Kaicheng Zhu and Linzi

Yin [80]

PTS technique based on the combination of

a genetic algorithm (GA) and a hill-climbing

algorithm (GH-PTS) to solve the problem of

high PAPR

2.7.2 Recovering information without transmitting side in-
formation (SI)

In 2000, L. J. Cimini and N. R. Sollenberger [81] proposed a marking algorithm to

reduce PAPR and detection of marking algorithm procedure to recover the data

without transmission of side information at the receiver side. The BER perfor-

mance of this algorithm showed improvement by increasing number of tones per

sub-block. Another algorithm that inserts information into PTS-OFDM system

without affecting the reduced PAPR and improves BER performance was pro-

posed by A.D.S. Jayalath and C.Tellambura, 2003 [82]. This algorithm was a

modified form of [81]. Seon-Ae Kim and Heung-Gyoon Ryu proposed a method

that achieves a PAPR same as conventional PTS scheme and recovered side infor-

mation without transmitting phase factors in 2006 [83]. In this method, the phase
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of reference symbols was used to give information about rotation factors at the

receiver side. In the year 2011, L.Yang et al., [84] proposed a PTS method that

detects OFDM symbols without sending the side information. The main principle

of this detection scheme was to generate the required signals through circularly

shifting of each sub-block sequence in the time domain and combining them in a

recursive manner. So, by utilizing the diversity of phase constellation for different

required signals, the detector recovered the original signal. The BER performance

of the proposed scheme was similar to the conventional-PTS with perfect side

information.

2.7.3 Combined method of PTS with other techniques

Houshou Chen and Hsinying Liang proposed a combined method of PTS and bi-

nary Reed-Muller (RM) codes for reducing PAPR and correcting errors in 2007

[85]. Reed-Muller code is separated into two subcodes. The scrambling subcode

was used for reducing PAPR whereas the correcting subcode is used for encoding

information bits. OFDM sub-carriers were partitioned into different sub-blocks

according to natural and cyclic ordering. The achieved numerical and simulation

results showed that cyclic order provided better PAPR performance than natural

ordering. In 2008, Josef Urban and Roman Marsalek [39] proposed a combined

technique of PTS and clipping and filtering. PTS was applied before the IFFT

operation, and Clipping and Filtering are used after the IFFT operation. Clipping

and Filtering with bounded distortion reduce complexity. The obtained result of

the proposed method shows better PAPR and BER than each scheme. The year

2010 remarked two main contributions in the field of combined PTS methods.

Pooria Varahram, Wisam F. Al Azzo, and Borhanuddin Mohd Ali [52] proposed a

combined method that decreases the computational complexity of PTS. The pro-

posed method was combination of the Dummy Sequence Insertion (DSI) and PTS.
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As a comparison to the conventional PTS, this method had 0.5 dB lower PAPR for

same CCDF and also reduces the requirement of several IFFT operations. In 2010

itself, Abolfazl Ghassemi and T. Aaron Gulliver [86] proposed a technique that

employs error correcting codes (ECCs) to the partitioned sub-blocks of PTS. The

application of ECCs reduces the sub-carriers that repeat within the sub-blocks.

This technique utilizes the periodic auto-correlation function of the vectors in the

partitioned sub-blocks. This achieves the PAPR as to the conventional PTS as

well as significantly reduces the computational complexity.

2.8 Summary

In this chapter, a literature review on PAPR problem in OFDM system was pre-

sented. The chapter explains the occurrence of high PAPR in this system includ-

ing its definition and its measurement parameters as well as the consequences of a

high PAPR in amplifier. It also provides an overview of different PAPR reduction

techniques. PTS with low complexity for searching phase factor needs efficient

optimization methods that should be distortion-less techniques. In spite of good

performance than other methods, complexity is a challenging issue of these op-

timization techniques. From the literature survey of PTS, it can be concluded

that complexity arises mainly due to the selection of the weighting phase factors,

IFFT operations and transmission of bits of side information. The literature sur-

vey of current research scenario on the PTS method for reducing PAPR with less

complexity regarding the selection of phase factors, recovering the information

without transmitting side information and hybrid combine method of PTS with

others scheme have been presented. Literature surveys on different optimization

methods for reducing PAPR have been carried out. So, we are mainly concerned

with developing an optimization scheme based PTS that reduces the PAPR con-

siderably using only a few numbers of sub-blocks.
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CHAPTER3
Firefly assisted PTS (FF-PTS) for

PAPR Reduction in OFDM

” No problem can be solved from the same level of consiousness that created it”.

-Albert Einstein
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Chapter 3 Firefly assisted PTS (FF-PTS) for PAPR Reduction in OFDM

3.1 Introduction

Bio-inspired algorithms are gaining popularity in different fields of research. They

have the potential as an alternate technique to deal with different optimization

problems and non-linear optimization constraint problem [87]. Such algorithms

are based on natural biological phenomenon to provide a global optimal solution.

These techniques are population-based nature inspired algorithms where, a large

population of individual solution is randomly initialized. The quality of each

solution is then estimated using a fitness function. After this process, a selection

procedure is applied to form a new population. The searching process is biased

towards better individuals to increase their chances of being included in the new

population. The process is repeated until convergence criteria are met.

The Firefly (FF) algorithm is considered as a favorable optimization tool due

to the effect of the attractiveness function that is unique to the firefly behavior.

This algorithm not only includes a self-improving process within the current space,

but it also includes the improvement of its space from the previous stages. The FF

algorithm is seen to be very robust in solving non-linear optimization problems as

presented in literature [88–91]. Also, the parameters in FF-PTS algorithm can be

tuned to control the randomness as iterations proceed so that convergence can also

be sped up by optimizing these parameters. These advantages make it flexible to

deal with the different combinatorial optimization problems. In this chapter, we

propose a swarm intelligence algorithm for phase optimization in PTS technique.

The algorithm based on Firefly based PTS (FF-PTS) scheme, which can reduce

the PAPR significantly. The proposed scheme searches an optimum combination

of phase vectors and offers excellent performance in terms of PAPR reduction.

Simulation result show that the proposed FF-PTS phase optimization technique

can achieve superior PAPR reduction performance as compared to conventional
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PTS scheme requiring lower computational complexity for large number of sub-

blocks compared to conventional PTS techniques.

3.2 Firefly Algorithm

Fireflies are the most charismatic species among insects, and their spectacular

display have inspired poets, writers and scientists. Today more than 2000 species

of firefly exist, Flashing of the fireflies can be seen in the summer sky in the tropical

and temperate regions with warm weather and most active in the nights [92].

Fireflies produce short rhythmic patterns of flashing lights and these patterns of

flashes are unique from species to species, and the flashing light is produced by

a bio-luminescence process. Moreover, this flashing produced is understood to

attract their partners; the first signallers are flying males who try to attract the

females on the ground. In response females also emit flashing lights and move

towards the brightest firefly. However the flashing lights obey certain physical

rules, the light intensity I decrease with the increase of distance r according to the

term I ∝ 1/r2. Also, the flashing is produced for communication purpose among

each other and it also to attracts prey. The flashing behavior has been a topic of

discussion among scientists [92].

The Firefly Algorithm (FF) is a new nature-inspired algorithm developed by

Xin-She-Yang in the year 2009 [66], based on the flashing patterns and behavior

of fireflies. The flashing signifies the signal to attract other fireflies, where an ob-

jective function associated with the flashing light or the light intensity helps the

fireflies to move to brighter and more attractive locations to achieve an optimal so-

lution [91,93,94]. A comprehensive review of Firefly algorithms has been analyzed

by Fister et al [95].
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3.2.1 Structure of Firefly Algorithm

The firefly algorithm has three idealized rules or assumptions that have been de-

veloped to define the characteristics of fireflies [66]:

• All fireflies are unisex and they move towards the more attractive and brighter

one irrespective of their sex.

• The level of attraction of a firefly is proportional to the brightness that re-

duces with the increase in the distance between two fireflies since air absorbs

the light. If there is no other attractive firefly than a particular one, then

they move randomly.

• The brightness or light intensity is determined by the value of the objective

function of a given problem and it is proportional to the light intensity for a

maximization problem.

The flashing light can be formulated in such a way that it is associated with the

objective function to be optimized.

3.2.2 Characteristics of Firefly Algorithm

Proper designing of the firefly algorithm for any engineering application can be de-

fined on two important issues: the variation of the light intensity and the formula-

tion of the attractiveness [87]. For simplicity, it is assumed that the attractiveness

of a firefly is determined by its brightness, which in turn is associated with the

encoded objective function.

(a) Attractiveness: In the FF algorithm, the brightness I of a firefly at a par-

ticular location x can be chosen as I(x) ∝ f(x). However, the attractiveness

β is relative and judged by the other fireflies. Thus, it varies with the distance

rij between the firefly i and j. The light intensity I(r) varies according to

63



Chapter 3 Firefly assisted PTS (FF-PTS) for PAPR Reduction in OFDM

the inverse square law I(r) = Is/r
2, where Is is the intensity at the source.

In order to avoid the singularity at r = 0 in the expression I(r) = Is/r
2, the

combined effect of both the inverse square law and absorption can be approx-

imated by the function of the distance r between any two fireflies using the

following Gaussian form:

I(r) =I0e
−γr2 , (3.1)

where I0 is the original light intensity. Sometimes, we may need a function

which decreases monotonically at a slower rate. In this case, we can use the

following approximation:

I(r) =
I0

1 + γr2
(3.2)

At a shorter distance, the above two forms are essentially the same. This is

because the series expansions about r = 0

e−γr
2 ≈ 1− γr2 +

1

2
γ2r4 + . . . ,

1

1 + γr2
≈ 1− γr2 + γ2r4 + . . . (3.3)

are equivalent to each other up to the order of O(r3).

As a firefly’s attractiveness is proportional to the light intensity seen by adja-

cent fireflies, we can now define the attractiveness β of a firefly by

β(r) = β0e
−γr2 (3.4)

where, β0 denotes the maximum attractiveness (at r = 0) and γ is the light

absorption coefficient, which controls the decrease of the light intensity. As it

is often faster to calculate 1/(1 + r2) than an exponential function, the above

function, if necessary, can conveniently be replaced by β = β0
1+γr2

. In the

implementation, the actual form of attractiveness function β(r) of the fireflies
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varies according to the relation :

β(r) = β0e
−γrm ,m ≥ 1 (3.5)

(b) Distance: The distance between two fireflies i and j at positions pi and pj can

be defined by the euclidean distance in multidimensional space and calculated

as:

rij = ‖pi − pj‖ =

√√√√ d∑
k=1

(pi,k − pj,k)2 (3.6)

where pi,k is the k-th component of the spatial coordinate pi of i-th firefly and

d denotes the dimensionality.

(c) Movement: The movement of a firefly i is determined by the following form:

p′i = pi + β0e
−γr2ij (pj − pi) + α

(
rand− 1

2

)
(3.7)

where the first term pi is the current position of a firefly i, the second term

denotes a firefly’s attractiveness and the last term is used for the random

movement and rand is a random number, uniformly distributed in the range

(0,1).

The algorithmic parameters are fixed by trial and error for best performance.

The attractiveness co-efficient β0 (between zero and 1, default = 0.2) and

randomization parameter α (between zero and 1, default = 0.25) has been

considered in the simulation. As per FF algorithm, the randomization pa-

rameter and β0 should be less than 1 and it has been maintained in simu-

lations [66, 93, 103]. In practice the light absorption coefficient γ varies from

0.1 to 10. This parameter describes the variation of the attractiveness and its

value controls the convergence speed of the firefly algorithm.
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3.3 PAPR minimization using Firefly Algorithm

This section describes the process of phase vector optimization in the PTS tech-

nique using firefly algorithm. To process OFDM signals with an aim to achieve

minimum PAPR, a suboptimal combinatorial method based on the Firefly algo-

rithm (FF) is presented here. This design aims to solve the optimization problem

of the PTS technique. The FF-PTS algorithm can provide superior PAPR perfor-

mance as compared to the conventional IPTS algorithm.

The minimum PAPR for the PTS method can be considered as an optimization

problem:

Where the target is to minimize the function

f(b) =
max

[
|x′(b)|2

]
E
[
|x′(b)|2

] (3.8)

subject to

b ∈
{
ejφm

}M
(3.9)

where φm ∈
{

2πk
W
|k = 0, 1, ...,W − 1

}
; W is the set of allowed phase rotation

factors.

The Analogy between PTS parameters and FF algorithm parameters is pre-

sented using the Table 3.1. The algorithm explains in terms of PTS optimization

and maps the PTS parameters to FF parameters. The flowchart for the FF algo-

rithm is presented in Figure 3.1. The steps used to optimize the phase vectors in

the proposed FF-PTS algorithm are as follows:

• Parameter initialization:

In the FF-PTS algorithm, attractive (brighter) firefly position represents a

phase vector bi = [bi,1, bi,2, ...bi,M ], where i = 1, 2...Gn, where Gn denotes the

size of a randomly distributed initial population.
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Table 3.1: Analogy of Firefly optimization process with PTS

Firefly Analogy PTS Analogy
Aim= Selection of brightest firefly Aim= Optimize the objective function

Firefly Phase Vector
Population No of Solution
Generation Iteration

Random attractive firefly Random solution
while (Ij > Ii) Current Sol > Previous Sol

If true, next firefly is selected and
updated

Next is the solution

If false, current firefly is updated Current is the solution
Repeat this up to t < MaxGen Repeat this up to best solution
Best objective firefly after all

iterations
Best solution after all iterations

• Light intensity formulation of fireflies:

Initially the set of possible phase factor combinations is identified as the

available population of fireflies Gn. Light intensity I is formulated, so that

it is associated with the objective function f(b). Each row in the matrix is

a set of solutions by evaluating f(b) between lower and upper bound values

which results in randomly populating the solutions for each structure (i =

1, 2, ....Gn), the objective function f(b) is evaluated, which takes the value

from various combinations of bi.

• New solution construction:

The movement of a firefly bmini attracted to another more attractive (brighter)

firefly bmaxi is calculated by following relationship:

b′i = bmini + β(r)
(
bmaxi − bmini

)
+ α

(
rand− 1

2

)
(3.10)

where the first term bmini is the current position of a firefly i, the second term

denotes a firefly’s attractiveness and the last term is used for the random
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Figure 3.1: Flowchart for Firefly Algorithm

movement and rand is a random number, uniformly distributed in the range

(0,1). Here, β is the attractiveness co-efficient calculated by (3.4) and r is
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Algorithm 1 Firefly Algorithm for PAPR reduction (FF-PTS)

1: Define the fitness function f(b), b ∈
{
ejφm

}M
2: Set the input parameter of the firefly algorithm such as:

Maximum generation (Max Generation) (number of iteration cycles);
Population size (Gn) (number of fireflies);
Number of variables (d) (the d-dimensional search space);
The light absorption co-efficient (γ) (between zero and infinity, default = 1);
The attractiveness co-efficient (β0) (between zero and 1, default = 0.2);
The randomization parameter (α) (between zero and 1, default = 0.25);

3: for i = 1 : Gn

4: bi = rand(bi,1, bi,2, . . . bi,M), where i = 1, 2 . . . Gn; Create a set of random
solutions to the problem

5: f(bi); Calculate the fitness function
6: end for
7: Sort the solutions from best to worst (brightest to dimmest)
8: for counter= 1 to Max Generation
9: for min = 1 : Gn

10: for max = 1 : Gn

11: r0 = ‖bmini − bmaxi ‖ =

√
d∑

k=1

(
bmini,k − bmaxi,k

)2

12: if (Ij > Ii) then,
13: b′i = bmini + β0e

−γr20 (bmaxi − bmini ) + α
(
rand− 1

2

)
14: end if
15: end for(max)
16: end for(min)
17: end for
18: f(bi); Calculate the fitness function for the new firefly’s locations.
19: Sort the solutions from best to worst (brightest to dimmest).

the distance between two fireflies bmini and bmaxi and will be calculated by:

r0 =
∥∥bmini − bmaxi

∥∥ =

√√√√ d∑
k=1

(
bmini,k − bmaxi,k

)2
(3.11)

where bi,k is the k-th component of the spatial coordinate bi of i-th firefly

and d denotes the dimensionality.

A random walk process defined by a vector of random numbers drawn from
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a uniform distribution selects a new phase value with the value from the

combinations of phase vectors W . The discretization of b′i, i.e. selecting

the closed solution from the possible values of W will be explained by the

following expression:

bci+1,m = exp

j2π
[
W∠(b′i,m)

2π

]
W

 ;m ∈ 1, ...M

Where [.] denotes rounding to the nearest integer value. This generates

candidates bci+1 for iterations i+ 1 to ranking against the current solutions,

so that weakest can be removed.

The b′i values are as follows:

b′i =

 {±1} , if W = 2

{±1,±j} , if W = 4
(3.12)

The process is repeated with each iteration until the worst solution is replaced

by new phase factor values.

• New light intensity update:

The generation of top phase factor values (brighter firefly) is slightly different

from the lower one, depending upon the light intensity of firefly. First phase

factor with its PAPR value is compared with the PAPR of the randomly

chosen phase factor from the available phase factor combinations. If the

PAPR value is less than the existing PAPR, then it replaces the current

value. In case both the new and present values are same, the random walk

step is applied to choose the new phase factor value randomly and then it is

updated by following relationship:

b′i = bmini + β0e
−γr20

(
bmaxi − bmini

)
+ α

(
rand− 1

2

)
(3.13)

70



Chapter 3 Firefly assisted PTS (FF-PTS) for PAPR Reduction in OFDM

where bmaxi and bmini are two distinct vectors picked up randomly from the

current population and rand is a random number, uniformly distributed in

the range (0,1) and α ∈ (0, 1). Under this scheme, target solutions are

not always attracted towards the same best position found so far by the

entire population. This feature helps avoid premature convergence at local

optima. All the phase factors contributing to generating the new phase factor

combination via random walk process are used. The phase factor with the

best PAPR values are placed for the next generation.

• Stopping criterion:

The algorithm is repeated until the total number of function iterations K

is reached and according to the ranking of fireflies, the top phase factor

values are compared with the new phase factor values. The optimum phase

factor combination producing the smallest PAPR value, on completion of K

iterations is selected.

3.4 Simulation Results and Discussions

Simulation studies were conducted to evaluate the performance of the FF-PTS

algorithm for PAPR reduction in OFDM signals. To generate the CCDF of the

PAPR, 10,000 OFDM symbols with 16-QAM modulation were first generated from

random input data set b. Following this, the transmitted signal was oversampled

by a factor of 4 for accurate PAPR computation. The performance of the FF-PTS

has been evaluated over a variety of conditions.

3.4.1 Effect of algorithmic parameter variation on PAPR

It was observed that the FF algorithm has three control parameters. The Gn de-

notes the number of sample solutions, also termed as population size, α is a scale
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factor and γ the absorption coefficient. One of the important aspects is to deter-

mine the convergence speed of the iterative process. The parameters α and γ, are

stated to be related to the convergence speed and the priori information reliability

respectively, are more influential to the algorithms performance i.e.convergence.

The convergence speed of the FF-PTS method is slow at initial stage due to lack

of candidate samples to produce better samples in the next iteration [66]. At the

same time, the convergence speed of the FF-PTS algorithm is towards the optimal

solution of phase factor combination and decreases with increase in population

size [96]. Hence, it is important to select α and γ appropriately to achieve good

PAPR performance. All of these parameters affect the speed and robustness of

the search space.

3.4.1.1 Variation in α

To evaluate the effect of α on PAPR reduction using the FF algorithm, simulation

were conducted as stated in the previous section. The results of PAPR in the

form of a CCDF plotted against different PAPR values are presented in Figure

3.2. The results shows the PAPR performance comparison with increase in α for

the FF-PTS technique. It is seen that the FF-PTS algorithm converges close to

superior solution ability for better solution. The results shows that the PAPR

performance improves with an increase in α. When α is between 0.3 to 1 (0.3, 0.5,

0.8, 1 in the simulation), Pr(PAPR > PAPR0) terminates before reaching the

value 10−3. Considering that the number of OFDM symbol is 10,000, the number

of samples detected with requisite Pr is zero. This occurs when PAPR > PAPR0

for only one sample. In the instant 4 cases, none of the 10,000 samples have a

PAPR > PAPR0. It is possible to extend the simulations by order of 10 times

with 1,00,000 samples. This results in very long simulation time to the tune of

tens of hours per simulation.
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Figure 3.2: PAPR performance of FF-PTS algorithm with variation in α for M
=16, N = 256, Gn = 10 and γ =1.0

By adjusting parameter γ and α, the FF-PTS algorithm is seen to provide

superior performance compared to conventional PTS algorithm. The algorithm is

also able to find better global optima as well as local optima simultaneously and

efficiently [97]. This requires careful selection of α considering number of samples

available for training.

3.4.1.2 Variation in γ

The choice of γ which is typically regarded as only a fine tuning parameter is

initially recommended to be 0.1 ≤ γ ≤ 1.2 [93]. In this test, we suggested that

a good initial choice of α is 0.2 or 0.3 as per discussion in previous sub-section
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Figure 3.3: PAPR performance of FF-PTS algorithm with variation in γ for M=16,
N= 256, α =0.25 and Gn =10

with Gn = 10 and γ can be set to 0.8 or 1.2. Figure 3.3 presents the results of

PAPR in the form of CCDF against different values of γ. The results show the

range of γ from 0.8 to 1.2 provides good trade-off between convergence speed and

performance. So, the value of γ=1 has been considered for further simulation

studies. According to the simulation results, the selected strategies and parameter

settings exhibit distinct advantages. Thus, a change in the FF parameter changes

the effectiveness of the algorithm and tuning of these parameters highly affects

the performance of FF. Furthermore, linearly increasing and decreasing α during

iteration with γ proportional to various combinations of maximum values of the
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objectives at different iterations. The value of the control parameters for different

conditions provided in this section can guide the users to optimally use this algo-

rithm for further designs. From the two figures, it can be easily found that α=0.25

and γ=1.0 is a good choice in terms of the performance.

Based on the above analysis, the simulation parameters were fixed for an ex-

tensive study and shown in Table 3.2 for FF-PTS algorithm. The basic steps of

FF-PTS technique can be summarized by the pseudo code shown in Algorithm 1.

The search complexity of FF-PTS algorithm is equal to Gn
2K, where Gn represents

the population of fireflies and K is the total number of function iterations [98].

Table 3.2: FF-PTS Simulation Parameters

Simulation Parameters Type/Value
Number of sub-carriers (N) 128, 256, 512
Number of sub-blocks (M) 4, 8, 16
OFDM Blocks 10,000
Oversampling Factor (L) 4
Bits per symbol (b) 4
Phase rotation factors (W ) {+1,−1}
Dimensions of fireflies (d) 2
Population of fireflies (Gn) 10
Randomization parameter (α) 0.25
Firefly attractiveness co-efficient (β0) 0.20
Absorption coefficient (γ) 1
Constellation Size 16-QAM
No. of iterations (K) 10, 20, 50, 100

3.4.1.3 Variation in number of iterations K

Figure 3.4 illustrates the CCDF vs PAPR performance of 16-QAM OFDM-PTS

system as a function of iterations K. The system considers the number of sub-

carriers (N)= 256, number of sub-blocks (M)= 4 and phase factor (W )=2. When

the number of iterations is 5, then PAPR achieved by FF-PTS is 8 dB. After in-

creasing the iterations from 5 to 10, it gives a performance improvement of 0.3 dB.
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Figure 3.4: CCDF vs PAPR performance of 16-QAM FF-PTS system for K=5,
10, 50, 100 iterations, when N= 256, M=8, W=2, Gn=10

Any further increase in the number of iterations does not provide an observable

gain. As K increases, the FF-PTS technique provides almost same PAPR perfor-

mance but with much higher computational complexity. Due to large number of

iterations, processing time becomes longer, and the number of function evaluations

leading to computation complexity enhancement. The PAPR performance satu-

rates close to 7.75dB beyond 20 iterations. Considering this, further simulations

and result comparison were carried out with 10 iterations.

Figure 3.5 shows the evolution curve of FF-PTS technique, which represents

graph between mean of best cost function values i.e. PAPR and iteration num-

bers. It is well known that increasing the number of iterations causes increment

of searching complexity of the phase factor too. So, from descriptions, we can see
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Figure 3.5: Evolution curve of FF-PTS algorithm for population size Gn=10

that the FF-PTS is a useful technique for reducing the PAPR and has very little

improvement in increasing the number of iterations from 10 to 100.Hence K =10

for FF-PTS scheme has been used further, and it provides a good tradeoff between

the PAPR performance and computational complexity.

3.4.1.4 Variation in population size Gn

Following the effect of iterations, effect of population size Gn was investigated.

Figure 3.6 presents some results of the CCDF of the PAPR for FF-PTS technique

for various populations of the fireflies Gn. Here, N=256 sub-carriers with M=8

sub-blocks employing random partitions are used along with phase weight factor

W=2. For population Gn =40, it can be seen that the FF-PTS technique provides

improved PAPR performance, with CCDF requirements of 10−3. It can also be
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Figure 3.6: CCDF vs PAPR performance of 16-QAM FF-PTS system for firefly
population Gn=10, 20, 30, 40, 60, 100 when N= 256, M=8, W=2, K=10

seen that the PAPR performance gradually improves by increasing the population

size due to the wide choice of phase weighting factor. As the firefly population size

increases, the CCDF improves but the computational complexity also increases

related to square of the population size Gn [98]. Considering minor performance

gain with population Gn, an appropriate population number Gn =10 has been

chosen for acceptable PAPR performance and complexity. When a large number

of fireflies are used, the convergence of the algorithm can be achieved. Here,

the initial location of Gn fireflies is distributed uniformly in the entire search

space, and as the iterations K of the algorithm continues, fireflies converge to

all the local optimum points. The global optima is achieved by comparing the

best solution among all these possible combination of phase factors. By adjusting
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parameter γ and α, the FF-PTS algorithm is seen to outperform as compared to

conventional PTS algorithm. It can also find the global optima as well as local

optima simultaneously and efficiently.

3.4.2 PAPR performance analysis for OFDM system in-
dices

Sensitivity of the algorithmic parameters were discussed in the previous sub-

section. Following this, the performance of FF-PTS has been evaluated for different

number of parameters.

3.4.2.1 CCDF vs PAPR performance with variation in number of sub-
blocks M

Figure 3.7 illustrates CCDF vs PAPR performance of 16-QAM FF-PTS system

for M=4, 8 and 16 sub-blocks, when the number of sub-carriers (N)= 256 and

phase factor (W )=2 . It can be seen that the PAPR of the original OFDM signal

is around 11.1 dB with CCDF of 10−3. On use of PTS and FF-PTS technique for

M=4 sub-blocks, the PAPR reduces to 8.9 dB and 8.3 dB respectively. When M

= 8 and 16 sub-blocks, it is seen that FF-PTS scheme provides reduced PAPR as

compared to the IPTS technique. For M=8, the PAPR is 8.2 dB on applying IPTS

and, after performing FF-PTS, the PAPR of OFDM signal is seen to be 7.8 dB

result in 4dB. Similarly for M=16, the PAPR of PTS is around 7.6 dB, and when

FF-PTS used, PAPR reduced to approximately 7.2 dB. Optimum PTS (OPTS)

could not be supported for large number of sub-blocks due to high searching com-

plexity and very long simulation time, hence IPTS results are presented here for

comparative analysis. These simulation results indicate that the FF-PTS method

provides 0.5 dB of PAPR performance improvement and performs better than the

IPTS technique, when the number of sub-blocks varies from 4 to 16. Moreover,

it can also be seen that the performance of the PAPR reduction becomes better
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Figure 3.7: CCDF vs PAPR performance of 16-QAM OFDM-PTS system for M=
4, 8, 16 sub-blocks, when N= 256, W=2, Gn=10, K=10

as the number of sub-blocks and the set of phase weighting factors are increased.

But, this is achieved at increased processing time.

3.4.2.2 CCDF vs PAPR performance with variation in number of sub-
carriers N

Figure 3.8 presents simulation results of CCDF vs PAPR performance of 16-QAM

OFDM system for N= 128, 256 and 512 sub-carriers, when M=8 and W=2.

Simulation performance for original OFDM, IPTS and FF-PTS algorithm using

different number of sub-carriers are presented here. It is seen from the CCDF

plot that,the PAPR improves by increasing the numbers of sub-carriers due to the

limited phase weighting factor. As the number of sub-carrier increases, the PAPR
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Figure 3.8: CCDF vs PAPR performance of 16-QAM OFDM-PTS system for N=
128, 256, 512 sub-carriers, when M=8, W=2, Gn=10, K=10

also improves. It is also seen, when N= 128, M= 8 and W=2, the PAPR of

the IPTS scheme is approximately 7.8 dB, where as on applying FF-PTS, PAPR

reduced to approximately 7.2 dB with CCDF of 10−3. In continuation with this,

when N= 256, M= 8 and W=2, after applying IPTS and FF-PTS, PAPR are

observed to be 8.2 dB, 7.8 dB respectively with CCDF of 10−3. However with

N= 512 sub-carriers, the PAPR of the IPTS and FF-PTS are approximately 8.6

dB and 8.3 dB respectively. It is clear that a PAPR performance improvement of

0.5dB was provided by the FF-PTS method after increasing the sub-carriers from

128 to 512. So, it is observed that quantity improvement in PAPR are dependent

on the number of sub-carriers used for OFDM generation, and the optimization
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Figure 3.9: CCDF vs PAPR performance of FF-PTS system for W=2, 4 and 8,
when N= 256, M=8,Gn=10 and K=10

algorithms provide improvement in PAPR performance in each case. From the

above descriptions, we can see that FF- PTS is a effective technique for reducing

the PAPR of OFDM system, even with the large number of sub-carriers.

3.4.2.3 Effect of variation in number of phase factors W

The effect of number of phase factors W taken was analyzed next. The results

presented in Figure 3.9 compare the performance of FF-PTS technique for different

values of phase factors. It implies that the performance of PAPR reduction is

directly proportional to the factor of the number of phase weighing factor. As the

number of sub-blocks and phase weigh factors increases, PAPR reduction could

be improved. However, when the number of phase weighing factor is large one,
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Figure 3.10: FF-PTS performance for different modulation formats

the number of parallel addition processor and number of phase weighing factor

patterns needs a complex computation to find the optimum set of phase weighing

factors and it leads to a heavy load for the system. So, due to the fact the number

of phase factor W=2 has been considered for simulations in the thesis.

3.4.2.4 FF-PTS performance for different modulation formats

The FF-PTS algorithm was next analyzed for effect of modulation format on

PAPR. Figure 3.10 presents the PAPR performance of FF-PTS scheme for dif-

ferent modulation orders like QPSK, 8-QAM, 16-QAM, 32-QAM and 64-QAM.

Simulation parameters were considered as M=8 sub-blocks, N=256 sub-carriers,
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Figure 3.11: 16-QAM FF-PTS performance for different number of sub-carriers

W=2, K=10 iterations and α=0.25. The population size/ generations were con-

sidered from 10 to 100. It can be seen from results that FF-PTS provides linear

performance degradation with increase in modulation order. This performance

degradation is similar to performance degradation using OPTS and IPTS. At

Gn=100, PAPR performance of FF-PTS technique is close to OPTS, but at the

cost of very high complexity. So, a trade-off between PAPR performance and

complexity calculation in terms of population size is required for implementation.
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3.4.2.5 FF-PTS performance with varying number of sub-carriers

The effect of sub-carrier variation was analyzed next. The summarized results

are presented in Figure 3.11. Here, the 16-QAM FF-PTS performance for dif-

ferent number of sub-carriers in the range 32 to 512, when M=8, W=2, K=10

and α=0.25 is considered. It is seen from the results that performance degrades

with increase in number of sub-carriers. The FF-PTS also shows performance

trend similar to IPTS and OPTS. On increasing the sub-carrier from 32 to 512,

performance penalty close to 2 dB is observed.

3.4.3 Computational complexity analysis of FF-PTS tech-
nique

Firefly algorithms has two inner loops in training process which include the pop-

ulation Gn, and one outer loop for iteration K. So, the computational complexity

of the algorithm is calculated by O(Gn
2K) [98]. The computational complexity

here is represented by the number of addition and multiplication performed by

the optimization algorithm. So, in FF-PTS technique, the searching complexity is

given by the square of the number of fireflies Gn multiplied by the number of iter-

ations K. Similarly, for conventional OPTS technique, computational complexity

is calculated as WM−1, where W is the number of phase rotation vectors, and M

is represented by total number of sub-blocks.

Table 3.3 presents the CCDF vs PAPR Performance and Computational Com-

plexity analysis of PTS and FF-PTS techniques at CCDF of 10−2 for different

number of sub-carriers N , sub-blocks M and iterations K. The results shows that

the PAPR performance improves with an increase in the number of α for FF-PTS

technique but causes premature convergence. For α = 1.0, the improvement in

the PAPR performance is seen but it was limited up to CCDF = 10−2 and needs

more number of OFDM samples to find optimum search space. Similarly for α
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= 0.25 the Table 3.4 presents the results at CCDF = 10−3. When the number

of sub-blocks M = 8 and number of iterations K = 10 with phase vector W

=2, the search complexity for FF-PTS is 1,000, which is greater than the com-

putational complexity of OPTS, which is 128. But, on the other hand, when the

number of sub-blocks M is increased up to 16, then the computational complexity

of FF-PTS remains unchanged at 1,000, which is lower than the computational

complexity of PTS which is calculated to be 32768. FF-PTS suffers from higher

computational complexity for a small number of sub-blocks, but as the number

of sub-blocks increases, complexity remains constant but PAPR improves as com-

pared to conventional PTS schemes. From this table, i.e. comparative analysis

between conventional PTS and FF-PTS method it can be observed that FF-PTS

technique reduces the PAPR of original OFDM signal efficiently.

Table 3.3: Comparison of computational complexity of different methods at CCDF
= 10−2, Modulation format : 16-QAM

Methods Combinations
Computational

Complexity
PAPR
(db)

OPTS
M=8, N=256, W=2 (WM−1)= 128 6.4
M=16, N=256, W=2 (WM−1)= 32768 6.0

IPTS
M=8, N=256, W=2 (W ×M)= 16 8.4
M=16, N=256, W=2 (W ×M)= 32 7.4

FF-PTS

M=8, N=256, W=2,
Gn=10, K=10, α = 1.0

(Gn
2K)= 1000 6.6

M=16, N=256, W=2,
Gn=10, K=10, α = 1.0

(Gn
2K) = 1000 6.2

It is observed from the simulation results that the FF-PTS technique provides

higher accuracy when the population size is high. Although, the FF-PTS technique

has the advantage of being precise, robust, easy and parallel in implementation, it

has the disadvantage of possibility of local optima and no memory limitations.
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Table 3.4: Comparison of computational complexity of different methods at CCDF
= 10−3, Modulation format : 16-QAM

Methods Combinations
Computational

Complexity
PAPR
(db)

OPTS
M=8, N=256, W=2 (WM−1)= 128 6.5
M=16, N=256, W=2 (WM−1)= 32768 6.1

IPTS
M=8, N=256, W=2 (W ×M)= 16 8.6
M=16, N=256, W=2 (W ×M)= 32 7.6

FF-PTS

M=8, N=256, W=2,
Gn=10, K=10, α = 0.25

(Gn
2K)= 1000 7.8

M=16, N=256, W=2,
Gn=10, K=10, α =0.25

(Gn
2K)= 1000 7.2

3.5 Summary

FF-PTS algorithm to search for an optimum phase factor combination of OFDM

signals has been presented in this chapter. The results shows similar trends in

performance as seen in IPTS and OPTS for variation in number of sub-blocks,

sub-carriers and modulation format. The performance of the algorithm can be

summarized as:

• FF-PTS algorithm requires tuning of large amount of parameters termed as

α, β0, γ, K and Gn.

• Large value of α prevents the algorithm from converging too early, but at

the cost of requiring more iterations to settle on a solution and limiting the

system performance.

• The algorithm can be trained with very small number of iterations i.e. K=10.

• PAPR performance improves with increase in population size Gn leading to

higher complexity.

• Increasing the number of sub-blocks provides consistent performance gain,

which is similar to other algorithms.
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• The performance shows uniform degradation with increase in number of sub-

carriers. This is in agreement with the other techniques (IPTS and OPTS).

• For large number of sub-blocks i.e. M=16, more OFDM samples are required

for convergence.

• The performance of FF-PTS is always in between IPTS and OPTS for all

similar conditions across variation in all parameters.
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CHAPTER4
Cuckoo Search based PTS

(CS-PTS) for PAPR Reduction in
OFDM

”Nothing in life is to be feared, it is only to be understood. Now is the time to

understand more, so that we may fear less.”

Marie Curie
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4.1 Introduction

Cuckoo search (CS) algorithm is another heuristic algorithm that has been sig-

nificantly appears in many optimization problems. As the change in heuristic

algorithm affects the final optimal value of the objective funtion, so it becomes

imperative to attempt the use of CS algorithm for our problem. In this chap-

ter, we propose a bio-inspired meta-heuristic phase optimization scheme based on

Cuckoo Search (CS-PTS) algorithm, which has the capability to significantly re-

duce the PAPR of OFDM signals. An important advantage of this algorithm is

its simplicity. Compared to other population or agent-based meta-heuristic algo-

rithms like particle swarm optimization and harmony search, CS algorithm has

very few parameters to be adjusted. Therefore, it is easy to implement. In PAPR

minimization, this scheme searches for a better combination of phase vectors and

provides a solution that offers good performance in terms of solution quality and

convergence speed. Simulation results shows that the CS-PTS phase optimiza-

tion technique can achieve improved PAPR reduction in performance as compared

to conventional PTS schemes with low computational complexity even for larger

number of sub-blocks compared to other PTS techniques.

4.2 Cuckoo Search Algorithm

Cuckoo are fascinating birds, not only because of the beautiful sounds they make,

but also because of their aggressive reproduction strategy. Cuckoo Search (CS) is

a new meta heuristic search algorithm based on cuckoo birds behavior, which was

proposed by Yang and Deb in 2009 [67]. Cuckoo search is a population heuristic

algorithm for global optimization and it is one of the evolutionary techniques,

inspired by the reproduction strategy of cuckoos. At the basic level as per the

behavior of cuckoo bird, if a host bird discovers that the eggs are not their own, it
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will either throw the alien eggs away or simply abandon its nest and build a new

nest elsewhere. Recent studies indicate that CS is potentially far more efficient

than PSO and genetic algorithms [87,99].

For an optimization problem, the quality or fitness of a solution can simply

be proportional to the value of the objective function. Other forms of fitness can

be defined in a similar way as to the fitness function in genetic algorithms. For

simplicity, we can use the following simple representations that each egg in a nest

represents a solution, and a new cuckoo egg represent a new solution, the aim is

to use the new and potentially better solutions (cuckoos) to replace a not so good

solution in the nests. This algorithm can be extended to the more complicated

case where each nest has multiple eggs representing a set of solutions. In our work

described in this chapter, the simplest approach has been used, where each nest

has only single egg and there is no distinction between an egg, a nest or a cuckoo,

as each nest corresponds to one egg which also represents one cuckoo.

Furthermore, cuckoo search has two search capabilities: local search and global

search, controlled by a switching/discovery probability. The local search is very

intensive with about 1/4 of the search time (for ρd = 0.25), while global search

takes about 3/4 of the total search time. This allows that the search space can be

explored more efficiently on the global scale, and consequently the global optimality

can be found with a higher probability [100].

Another advantage of cuckoo search is that, its global search uses Lévy flights or

process [67], rather than standard random walks. Lévy process do not, in general,

have an infinite mean and variance. The CS can explore the search space more

efficiently than algorithms using standard Gaussian processes. This advantage,

combined with both local and search capabilities and guaranteed global conver-

gence, makes cuckoo search very efficient. Various studies and applications have

demonstrated that cuckoo search is an efficient technique for optimization prob-
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lems [98,101,102].

4.2.1 Structure of Cuckoo Search Algorithm

The Cuckoo Search optimization algorithm used here has three idealized rules:

• Each cuckoo lays one egg at a time in a random nest, which represents a set

of solution co-ordinates.

• A fraction of the nests containing the best eggs, or solutions are carried over

to the next generation.

• The number of nests is generally fixed and there is a probability that a host

can discover an alien egg. If this happens, the host can either discard the

egg or the nest and these results in building a new nest in a new location.

4.2.2 Characteristics of Cuckoo Search Algorithm

In cuckoo search, each egg can be regarded as a solution. In the initial process, each

solution is generated randomly. When generating ith solution in t+ 1 generation,

denoted by zt+1
i , a Lévy flight is performed as follows:

zt+1
i = zti + α⊕ Lévy(s, λ), (4.1)

where

Lévy (s, λ) =
λΓ(λ) sin (πλ/2)

π

1

s1+λ
, s >> s0 > 0 (4.2)

Here α > 0 is the step size s which should be related to the scales of the

problem of interests. In most cases, the value of α can be equal to 1. The product

⊕ means entry-wise multiplications. This entry-wise product is similar to those

used in PSO [99], but here the random walk via Lévy flight is more efficient in

exploring the search space as its step length is much longer in the long run [67].
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The above equation is essentially the stochastic equation for a random walk.

In general, a random walk is a Markov chain whose next state/location only de-

pends on the current location (the first term in the above equation (4.4)) and the

transition probability (the second term). However, a substantial fraction of the

new solutions should be generated by far field randomization and their locations

should be far enough from the current best solution; this will make sure that the

system will not be trapped in a local optimum.

As there are two branches in the updating formulas, the local search step only

contributes mainly to local refinements, while the main mobility or exploration is

carried out by the global search step. In order to simplify the analysis and also to

emphasize the global search capability, we now use a simplified version of cuckoo

search. That is, we use only the global branch with a random number r ∈ [0, 1],

compared with a discovery/switching probability ρd. Now we have zt+1
i ← zti if r < ρd

zt+1
i ← zti + α⊕ L(s, λ) if r > ρd

(4.3)

The CS algorithm is a stochastic search algorithm and can be summarize with

following key steps [103]:

1. Randomly generate an initial population of Gn nests at the positions, Z =

{z0
1 , z

0
2 · · · z0

n}, then evaluate their objective values so as to find the current

global best g0
t .

2. Update the new solutions/positions by

zt+1
i = zti + α⊕ Lévy(λ), (4.4)

3. Draw a random number r from a uniform distribution [0, 1]. Update zt+1
i if

r > ρd. Then, evaluate the new solutions so as to find the new global best

g∗t .
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Table 4.1: Cuckoo Search Analogy with PTS Analogy

Cuckoo Search Analogy PTS Analogy
Aim= Optimal reproduction of nest Aim= Optimize the objective function

Cuckoo Eggs Phase Vector
Population No of Solution
Generation Iteration

Random nests Random solution
while (Fi < Fj) Current Sol < Previous Sol

If true, previous nest is selected and
updated

Previous is the solution

If false, current nest is updated Current is the solution

Worst nest found with pd probability
Replace the solution with the other

random solution
Repeat this up to t < MaxIterK Repeat this up to best solution

Best objective nest after all iterations Best solution after all iterations

4. If the stopping criterion is met, then g∗t is the best global solution found so

far. Otherwise, return to step (2).

In the real world, a cuckoo’s egg is more difficult to be found when it is more

alike to the host’s eggs. So the fitness is related to the difference and that is the

main reason to use a random walk in a biased way with some random step sizes.

The analogy of PAPR parameters with CS parameters is explained using Table

4.1. The parameters considered are in terms of PTS optimization.

4.3 PAPR minimization using Cuckoo Search Al-

gorithm

In order to process the OFDM signals for minimum PAPR, a suboptimal combi-

natorial method based on Cuckoo Search algorithm (CS) is used here to solve the

optimization problem of PTS. CS-PTS algorithm has capability to provide better

PAPR performance as compared to conventional PTS algorithm.

The minimum PAPR for PTS method is relative to the problem and the aim is to
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Figure 4.1: Flow chart of Cuckoo Search algorithm

:

Minimize

f(b) =
max

[
|x(b)|2

]
E
[
|x(b)|2

] (4.5)
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subject to

b ∈
{
ejφm

}M
(4.6)

where φm ∈
{

2πk
W
|k = 0, 1, ...,W − 1

}
.

The original Cuckoo Search algorithm is only suitable for continuous numeri-

cal optimization problems, some modifications need to be applied on the original

Cuckoo Search algorithm to search for better combinations of phase factors for

PTS. We refer to the Cuckoo Search algorithm as CS-PTS.

From an implementation point of view, it has been considered that each egg

in a nest represents a solution i.e. various combinations of phase vectors, and

a cuckoo egg represents a new solution. The objective is to use the new and

potentially better solutions i.e. cuckoos to replace average solution in the nests.

In the simplest form, each nest has one egg. Here CS-PTS algorithm is applied to

search the optimum combination of phase factor for PTS.

Based on the above analysis, the basic steps of CS-PTS technique can be

summarized as the pseudo code shown in Algorithm 2.

The steps involved in CS-PTS algorithm are as follows:

• Parameter initialization :

In the CS-PTS algorithm, a cuckoo’s egg represents a phase vector bi =

[bi,1, bi,2, ...bi,M ], where i = 1, 2...Gn, where Gn denotes the size of a randomly

distributed initial population. The specified parameters to be initialized

include: Number of nests (or different solutions) Gn=16; Discovery rate of

alien eggs/solutions pd=0.25; Upper and lower search space limits is taken

as Upper bound (bmaxi ) = 1, Lower bound (bmini ) = -1 and stopping criterion

K.

• Host nests population initialization :

Initially the set of possible phase factor combinations is identified as the
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Algorithm 2 Cuckoo Search Algorithm for PTS based PAPR reduction (CS-PTS)

1: Objective function f(b), b ∈
{
ejφm

}M
2: Generate an initial population of host nests bi = [bi,1, bi,2, ...bi,M ], where i =

1, 2...Gn

3: while ( t < Max Iteration K) or (stop criterion)
4: Find new nests using Lévy flight as:
5: for i=1 to Gn (all nests)
6: for t= 1 to K
7: Set newnest[bi(t + 1)] ← currentnest[bi(t)] +stepsize(α) × Lévy

sample(λ)
8: end for
9: end for

10: Evaluate the new nests against the objective function and calculate their
quality/fitness:

11: Rank and keep the current best nest as:
12: for i=1 to Gn

13: if newnest[bi] is better than currentnest[bi]
14: replace currentnest[bi] by the new solution newnest[bi];
15: end if
16: end for
17: Replace a fraction (pd)of nests as:
18: Get two permutation random arrays [bmini ] and [bmaxi ] of Gn length;
19: for i=1 to Gn

20: for t= 1 to K
21: if randomsample() ≤ ρd
22: Set newnest[bi] ← randomsample() × (nest[bmaxi ]− nest[bmini ])
23: end if
24: end for
25: end for
26: Evaluate the best solutions (or nests with quality solutions) at new loca-

tions via Lévy flights;
27: Rank the solutions and find the fitness of current best new nests;
28: end while
29: Post-processing the results and visualization;

available nests. Each row in the matrix is a set of solution computed by

evaluating the objective function between lower and upper bound values

which results in randomly populating set of solutions computed by each
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structure (i = 1, 2, ....n), the objective function f(x) is evaluated, which

takes the value from the collection {+1,−1}.

• New solution (eggs) construction :

Generation of new solutions bi(t+ 1) for a cuckoo i in CS algorithm is based

on the Lévy flight and calculated by following formula,

bi(t+ 1) = bi(t) + α · Lévy(λ), (4.7)

where α > 0 is the step size which should be related to the scales of the

problem. Lévy flight is used to generate the new phase factor value using

Mantegna’s algorithm with step size A. Lévy flight elects a new phase value

with the value from the combinations of phase vectors bi. The b′i values are

as follows:

b′i = exp

(
j2πk

W

)
; k ∈ {0, 1, . . .W − 1} (4.8)

The process is repeated in each iteration until the bottom values are replaced

by new phase factor values.

• New nests update :

The generation of top phase factor values is slightly different from the bottom

nests. The first phase factor value with its PAPR value is compared with the

PAPR value of the randomly chosen phase factor value from the available

phase factor combination. If the new PAPR value is less than the existing

PAPR, then existing value is replaced by the new value. In case both the

new and existing values are same, the Lévy flight step is applied to choose

randomly the new phase factor value and then it is updated by following

formula:

bi = bmini + (bmaxi − bmini )× rand ∈ (0, 1) (4.9)

where bmaxi and bmini are the upper and lower search space limits respectively.
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Once all the phase factors contributing to generating the new phase factor

combination via CS Lévy flight are used, the phase factor with the best

PAPR values are used in the next generation. this is equivalent to replacing

the old eggs with new one.

• Stopping criterion :

Above Algorithm is repeated till the total number of function iterations K is

reached i.e. top phase factor values are compared with the new phase factor

values. The optimum phase factor combination producing least PAPR value

is obtained once the (Gn − 1) generations were completed. Thus, CS-PTS

algorithm efficiently reduces the computation complexity to optimize the

best PAPR with less computational complexity.

4.4 Simulation Results and Discussions

To evaluate the performance of CS-PTS algorithm in PAPR reduction of OFDM

signals, extensive simulations have been conducted. To generate the CCDF of

the PAPR, 10,000 OFDM symbols of 16 QAM modulated signals were randomly

generated. Following this, the transmitted signal was oversampled by a factor of

4 for accurate PAPR. The performance of CS-PTS was compared with conven-

tional PTS techniques. The process of signal generation was similar to the process

described in section 3.

4.4.1 CS-PTS algorithmic parameter variation for PAPR
performance

In CS optimization, there are three control parameters to be adjusted. These

include number of nests (Gn), maximum number of iterations (K) and probability

of an alien egg to be discovered (ρd) also termed as discovery rate. Among these
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Figure 4.2: CCDF vs PAPR performance of CS-PTS technique for different values
of ρd, when N= 256, M=16, W=2, Gn=16

parameters, the number of nest (Gn) and maximum number of iterations (K) were

fixed in advance depending on the considered systems.

4.4.1.1 Variation in discovery rate ρd

For small-scale systems like phase factor optimization with simple constraints, the

number of nest and maximum number of iterations can be set to small values in

the range 10 to 50. Selection of number of nests (Gn) and maximum number of

iterations (K) has been analyzed in subsequent subsections. The most important

parameter of the proposed method is the discovery rate, which is the probability

ρd has a large effect on the final solution. This parameter should be tuned since

it is a random number and generally there are no criteria for a proper selection.
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Table 4.2: Results by CS-PTS for PAPR values with different values of ρd

ρd
PAPR at

CCDF=10−2 (dB)
PAPR at

CCDF=10−3 (dB)

0.1 7.2 7.2
0.2 7.1 7.3
0.3 7.3 7.4
0.4 7.4 7.5
0.5 7.5 7.7
0.6 7.6 7.8
0.7 7.7 7.9
0.8 7.8 8.0
0.9 7.9 8.2

Therefore, the effect of ρd on the final solution by the CS-PTS method for each

test system has been analyzed with the value of ρd ranging from 0.1 to 0.9 with a

step size of 0.1. The result of effect of ρd as shown in Figure 4.2.

Table 4.2 presents the CCDF vs PAPR performance of CS-PTS system for

ρd = 0.1 to 0.9 with CCDF = 10−2 and 10−3, where N = 256, M=8, K=10

and W=2 is considered. From the result it is seen that, the PAPR performance

for ρd =0.1 has a different trend than other values of ρd. Initially the PAPR

performance for ρd =0.1 is inferior to all other values and later it improves with

a performance superior than others. Whereas, other values of ρd between 0.2 to

0.9 shown uniform characteristic. There is a minor change in PAPR performance

when ρd changes between 0.2 to 0.3. Higher than 0.3, the PAPR performance

degrades more. Considering these trends, ρd value was selected to be at midpoint

of 0.2 and 0.3 (which is 0.25) for further analysis.

4.4.1.2 Variation of population size Gn

Population size plays an important role in optimization of the algorithm. Figure

4.3 and 4.4 presents some results of the CCDF of the PAPR simulated for different
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Figure 4.3: CCDF vs PAPR performance of CS-PTS technique for different Gn,
when M=8, N= 256, W=2, K=10

number of host nests i.e. generations(Gn) for CS-PTS system with 256 sub-carriers,

in which M=8 and 16 sub-block employing random partition and the phase weight

factor W =2, uniformly distributed random variables are used for PTS technique.

It is clear from the simulation results that the CCDF of the PAPR shows improved

performance on increasing the numbers generations due to the limited number of

phase weighting factor. As the numbers of generations increases, the CCDF of the

PAPR also improves. For generation value Gn = 10, 20, 30 & 40, it is seen that

the CS based PTS technique is capable of attaining optimum performance gain of

0.4 dB between Gn = 10 to 20 as compared to IPTS technique with CCDF of 10−3.

On increasing the generation/population Gn from 20 to 40, a performance gain

of 0.2 dB is observed at CCDF of 10−3. Considering these, Gn =16 was selected
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Figure 4.4: CCDF vs PAPR performance of CS-PTS technique for different Gn,
when M=16, N= 256, W=2, K=10

for further analysis, since it is close to the mid-point. It may be noted that

higher values of Gn increases the complexity of search space leading to increased

computational complexity.

Various simulations were also performed to analyze the performance of number

of host nests (or the generationGn) and the probability pd for CS-PTS optimization

technique. We have used Gn = 5, 10, 15, 20, 30, 40, 50, 100, 150, 250, 500 and pd

= 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5. It can be seen from the simulation

results that Gn = 15 to 40 and pd = 0.25 provides optimum values for CS-PTS

optimization technique. Results and analysis also confirm that the convergence

rate is not sensitive to the parameters used up to some extent. This means that

104



Chapter 4 Cuckoo Search based PTS (CS-PTS) for PAPR Reduction in OFDM

the fine adjustment is not essential for CS-PTS optimization technique.

Table 4.3: CS-PTS Simulation Parameters

Simulation Parameters Type/Value
Number of sub-carriers (N) 128, 256, 512
Number of sub-blocks (M) 4, 8, 16
OFDM Blocks 10,000
Oversampling Factor (L) 4
Bits per symbol (b) 4
Phase rotation factors (W ) {+1,−1}
Population of host nests (Gn) 16
Scaling factor (β) 1.5
Discovery rate of alien eggs/solutions (pd) 0.25
Constellation Size 16-QAM
No. of iterations (K) 10, 20, 30, 40

For CS-PTS algorithm, simulation parameters are give in Table 4.3. It is further

seen that when these optimizations are applied to optimize the phase factor in PTS

method, the PAPR is reduced in each case.

4.4.1.3 Variation in number of iterations K

To analyze the effect of number of iterations K on PAPR reduction using CS algo-

rithm, simulation was carried out using parameters presented in Table 4.2. Figure

4.5 compares the CCDF vs PAPR performance of CS-PTS system as function of

number of iterations K with N= 256, M= 8 and W=2. When the number of

iterations are 5, then PAPR of CS-PTS is 8.15 dB. On increasing the number of

iterations, the PAPR for FF- PTS is approximately 8 db for 10, 50, 100 and 500

iterations as presented in Figure 4.8 at CCDF of 10−3. It is observed that the

number of iterations K has very little effect on the PAPR performance of CS-

PTS. However with increase in iterations, the processing time gets longer due to

increased function evaluation leading to increased computation complexity. From

results, it is observed that iterations beyond 10 do not yield any additional per-
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Figure 4.5: CCDF vs PAPR performance of CS-PTS technique for different itera-
tions, when N= 256, M=8, W=2, Gn=16

formance gain. Therefore, an appropriate iteration number K =10 was considered

for all further studies to achieve the best trade-off between the PAPR reduction

performance and complexity.

Figure 4.6 shows the evolution curve of CS-PTS technique, which represents

graph between mean of best cost function values i.e. PAPR and iterations. It

is well known that increasing the number of iterations will cause an increase in

searching complexity. So, from this description, we can see that the CS-PTS is

effective technique for reducing the PAPR and has very little improvement after

increasing the number of iterations from 10 to 100. So, we can take optimum value

of iteration number K =10 for CS-PTS scheme, which will provide good tradeoff

between the PAPR performance and computational complexity [60]. Simultane-
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Figure 4.6: Evolution curve of CS-PTS algorithm

ously , it introduces a PAPR threshold for terminating the searching dynamically

and avoids unnecessary searches. If the output result is higher than the threshold,

the population size can be increased to expand effective searching range and hence

improve the performance.

4.4.2 Effect of variation in OFDM system indices on PAPR
performance

Sensitivity of the algorithmic parameters were discussed in the previous sub-

section. Following this, the performance of CS-PTS has been evaluated for different

parameters.
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Figure 4.7: CCDF vs PAPR performance of CS-PTS technique for M= 4, 8, 16
sub-blocks, when N= 256, W=2, Gn=16, K=10

4.4.2.1 CCDF vs PAPR performance with variation in number of sub-
blocks M

Figure 4.7 illustrates CCDF vs PAPR performance of the CS-PTS system forM=4,

8 and 16 sub-blocks with N= 256 and W=2. The results have been compared

with the traditional PTS technique. It can be seen that, the PAPR of the original

OFDM signal is around 10.9 dB with CCDF of 10−3. On application of IPTS and

CS-PTS technique for M=4 sub-blocks, the PAPR achieved is around 8.9 dB and

8.6 dB respectively. Under same condition for M= 8 and 16 sub-blocks, it is seen

that CS-PTS scheme provides performance comparable to the IPTS technique.

For M=8, the PAPR is 8.2 dB after applying IPTS and, after performing CS-
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PTS, the PAPR of OFDM signal is 7.9 dB. Similarly for M=16, the PAPR of

IPTS and CS-PTS is approximately 7.6 dB and 7.5 dB respectively. Another issue

of complexity for PTS method is the number of sub-blocks which is addressed

in this result. As the partition of sub-blocks increase, the number of IFFTs to

be performed also increases. So, this proposed method obtains the better result

with fewer sub-blocks. It can be seen from the results that CS-PTS provides

performance gain of 0.4 dB as compared to IPTS for M=4 sub-blocks. Following

this, for M=16 sub-blocks, CS-PTS gives similar performance gain as IPTS. Since

better PAPR is obtained at minimum sub-blocks, not only the requirement of

more IFFT operation is reduced but also the number of side information to be

transmitted for recovering the original data block is also minimized.

4.4.2.2 CCDF vs PAPR performance with variation in number of sub-
carriers N

In order to investigate impact of number of sub-carriers on the efficiency of CS al-

gorithm, sub-carriers were varied in the range from 128 to 512. Figure 4.8 presents

the simulation results of CCDF vs PAPR performance of CS-PTS system for N=

128, 256 and 512 sub-carriers, where M=8 and W=2 is considered. The perfor-

mance has been compared with the original OFDM, IPTS and CS-PTS algorithm

for various sub-carriers. It is known that increase in sub-carriers degrades PAPR.

As we can see that the CCDF of the PAPR is gradually improves upon increasing

the numbers of sub-carriers due to the limited phase weighting factor. In simu-

lation results, when N= 128, M= 8 and W=2, the PAPR of the IPTS scheme

is around 7.8 dB. After applying CS-PTS, PAPR is approximately 7.4 dB with

CCDF of 10−3 and improvement of approximately 0.4 dB has been seen. In con-

tinuation with this, when N= 256, M= 8 and W=2, after applying IPTS and

CS-PTS, PAPR are 8.3 dB, 7.9 dB respectively with CCDF of 10−3. However

with N= 512 sub-carriers, the PAPR of IPTS and CS-PTS are approximately 8.6
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Figure 4.8: CCDF vs PAPR performance of CS-PTS technique for N= 128, 256,
512 sub-carriers, when M=8, W=2, Gn=16, K=10

dB and 8.4 dB respectively. So, it is observed that PAPR values are dependent on

number of sub-carriers used and the optimization algorithms based PTS provides

improvement in PAPR performance in each case w.r.t. conventional PTS schemes.

From above the descriptions, we can see that the CS- PTS an is effective tech-

nique for providing more performance difference for small number of sub-carriers

and yields lower PAPR performance even with a large number of sub-carriers in

an OFDM system.
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Figure 4.9: CS-PTS performance for different modulation formats

4.4.2.3 CS-PTS performance for different modulation formats

Figure 4.9 presents the PAPR performance of the CS-PTS scheme for different

modulation orders like QPSK, 8-QAM, 16-QAM, 32-QAM and 64-QAM. Simula-

tion parameters were taken as M=8 sub-blocks, N=256 sub-carriers, W=2, K=10

iterations and discovery rate ρd=0.25. The population size/ generations were con-

sidered from 20 to 100. It can be seen from results that CS-PTS provides linear

performance for different modulation formats. At Gn=100, PAPR performance of

the CS-PTS scheme is superior as compared to OPTS, but at the cost of very high

complexity. So, a trade-off between PAPR performance and complexity calculation

in terms of population size is required for simulation.
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4.4.2.4 CS-PTS performance for different number of sub-carriers

The summarized results presented in Figure 4.10 shows the 16-QAM CS-PTS

performance for different number of sub-carriers varied from 32 to 512, when M=8,

W=2, K=10 and ρd=0.25. It is clear from the results that PAPR performance of

the PTS technique will be increased after increasing the number of sub-carriers.

As discussed in the previous sub-section, proper selection of the population size

Gn is expected based on system requirements and available resources.
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4.4.3 Analysis of Computational Complexity

Table 4.4 shows the CCDF vs PAPR Performance and Computational Complexity

analysis of 16-QAM OFDM-PTS Technique with IPTS and CS-PTS for different

number of sub-carriers N , sub-blocks M , iterations K and generations(Gn).

Table 4.4: Comparison of computational complexity of different methods at CCDF
= 10−3, Modulation format : 16-QAM

Methods Combinations
Computational

Complexity
PAPR
(db)

OPTS
M=8, N=256, W=2 (WM−1)= 128 6.5
M=16, N=256, W=2 (WM−1)= 32768 6.1

IPTS
M=8, N=256, W=2 (W ×M)= 16 8.2
M=16, N=256, W=2 (W ×M)= 32 7.4

CS-PTS

M=8, N=256, W=2,
Gn=16, K=10

(Gn ∗ (Gn + 1))/2= 136 7.9

M=8, N=256, W=2,
Gn=40, K=10

(Gn ∗ (Gn + 1))/2= 820 7.1

M=16, N=256, W=2,
Gn=16, K=10

(Gn ∗ (Gn + 1))/2=136 7.4

M=16, N=256, W=2,
Gn=40, K=10

(Gn ∗ (Gn + 1))/2= 820 6.8

For CS-PTS , the searching complexity is given by (Gn ∗ (Gn + 1))/2. When

the number of sub-blocks M are 8 and number of generations(Gn) are 16 with

phase vector W =2, then searching complexity for CS-PTS is 136, which is greater

than the computational complexity of OPTS i.e. 128. But, in other case, when

number of sub-blocks M has been increased up to 16, then the computational

complexity of CS-PTS is 136, which is lower than the computational complexity

of OPTS i.e. 32768. In CS-PTS, more computational complexity is required

for a small number of sub-blocks, but after increasing the number of sub-blocks,

complexity as well as PAPR is less as compared to OPTS. When M = 16, N

=256, W = 2, then if Gn = 16 the performance of CS-PTS is not better than

IPTS, and incurs a higher computational complexity (of around a factor of 4). It
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is only when Gn is increased that the performance is better (by 0.6 dB), but with

a higher computational complexity (over 20 times higher than for IPTS). When

M = 8, then CS-PTS outperforms IPTS at Gn = 40, however the performance

improvement can be as little as 0.3dB for a computational complexity that is over

8 times higher. From this table i.e. comparative analysis between PTS and CS-

PTS method, it has been observed that CS-PTS technique reduces the PAPR of

original OFDM signal efficiently under certain conditions and performance has

been improved with some limitations.

4.5 Summary

In this chapter, Cuckoo Search algorithm PTS algorithm (CS-PTS) has been pro-

posed to search optimum combination of phase factor for OFDM signals. From

the comparison study of the performance of CS-PTS algorithm, it also shows that

CS-PTS algorithm in combination with Lévy flights is very efficient and proves to

be superior as compared to IPTS. The features of CS-PTS can be summarized as

under:

• CS-PTS is a simple structure algorithm requiring tuning of only 2 parameters

ρd and Gn.

• Only K=10 iterations are sufficient for training the network.

• CS-PTS performs better than IPTS for lower number of sub-blocks.

• The system requires close to Gn=20 generations to provide good perfor-

mance. Beyond this, the performance gain is marginal.

• Variation in modulation order from QPSK to 64-QAM show a performance

degradation of close to 1 dB for all techniques (CS-PTS, IPTS and OPTS).
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• Variation in sub-carrier also show similar performance degradation 32 to 512

sub-carriers.

• CS-PTS with 16 sub-block shows superior PAPR performance than OPTS

only when the number of population size Gn are high. When population size

is small, the performance of OPTS with 8 sub-blocks outperforms CS-PTS

with 16 sub-blocks. This can be considered as limitation of the algorithm.

• PAPR performance improves after increasing population size Gn but com-

plexity will be increases gradually.
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CHAPTER5
Improved Harmony Search based

PTS for PAPR Reduction

”To invent something is to find it in what previously exists”.

-Brian Arthur
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5.1 Introduction

Chapter 3 and Chapter 4 presented two bio-inspired techniques Firefly algorithm

(FF) and Cuckoo search algorithm (CS) respectively. In this chapter a variant

of HS algorithm termed as improved harmony search based PTS algorithm (IHS-

PTS) is applied to search for optimum combination of phase vectors for OFDM

signal. Compared to the PAPR reduction optimization techniques like conven-

tional PTS scheme, the IHS-PTS algorithm possesses the capability to provide

improved PAPR. Due to its simple structure, very few parameters need to be

adjusted for larger PTS sub-blocks. IHS algorithm is a derivative of HS algo-

rithm [104]. Simulation results of the IHS-PTS algorithm indicate that it is an

efficient and feasible optimization candidate for better PAPR performance.

To reduce the search complexity for optimum phase vectors in PTS, IHS based

PTS has been presented to search for phase vectors. For this, the problem can be

formulated as an optimization problem which will need a sub-optimal solution to

the problem capable of achieving a better trade-off between PAPR performance

and computational complexity. Due to the fact that the search for a better combi-

nation of phase factors in PTS can be formulated as a combinatorial optimization

problem with some constraints, a suboptimal combinatorial scheme derived from a

variant of the Harmony Search (HS) optimization algorithm termed the Improved

Harmony Search based PTS (IHS-PTS), is proposed to achieve good PAPR re-

duction with low number of trials. This chapter provides performance analysis for

PAPR reduction in OFDM using this improved harmony search algorithm which

is derived from HS-PTS [105].
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5.2 Harmony Search Algorithm

The Harmony Search (HS) algorithm developed by Geem et al. [106,107] belongs to

the group of stochastic search techniques. It is comparatively simpler method that

imposes fewer mathematical requirements. Similar to the other stochastic search

methods, it randomly selects candidate solutions to the optimization problem from

a set of discrete or continuous set of solutions. This selection is verified for its feasi-

bility. If it is found to be feasible, then it is inserted in to harmony search memory,

where each candidate solution is stored in a descending order. The method after

filling the harmony search memory matrix continuous selection of the new solu-

tions depending on two parameters, either from the harmony memory considering

rate (HMCR) or the pitch adjustment rate (PAR). Harmony Search algorithm is

comparatively simpler approach as compared to mathematical programming tech-

niques and it neither requires initial starting values for the decision variables nor

the derivative information of the objective function and constraints. This makes

the HS algorithm easy to implement in combinatorial optimization algorithms.

The basic idea behind the HS algorithm is similar to the ideas of all meta-

heuristic algorithms that are found in the paradigms of natural phenomena. Fol-

lowing the idea of meta-heuristic algorithms that they all seek a stable state, the

harmony search method derives its roots in the harmony of a musical performance

which exists in the nature. Music harmony is a combination of sounds considered

pleasing from an aesthetic point of view. Music harmony in nature is a kind of

beat phenomenon made by several sound waves, that have different frequencies.

Harmony Search algorithm is based on natural musical performance processes

that occur, when a musician searches for a better state of harmony, such as during

jazz operation. The analogy between improvisation and optimization is as follows:

1. Each musician corresponds to each decision variable;
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2. Musical instruments pitch range corresponds to the decision variables value

range;

3. Musical harmony at a certain time corresponds to the solution vector at a

certain iteration;

4. Audiences aesthetics corresponds to the objective function.

The sound for better aesthetic quality can be improved through practice after

practice, just as the values for better objective function evaluation or solution vec-

tor can be improved iteration by iteration. Musical performance and optimization

processes are shown in Table 5.1 [106].

Table 5.1: Analogy between Musical Performance and Optimization Process

Comparison Factor Performance Process Optimization Process
Best State Fantastic Harmony Global Optimum

Estimated by Aesthetic Standard Objective Function
Estimated with Pitches of instruments Values of Variables

Process Unit Each Practice Each Iteration

5.2.1 Structure of Harmony Search Algorithm

The harmony search algorithm idealizes the improvisation process by a skilled

musician. When a musician is improvising, the musician has three possible choices

[105]:

I. Play any famous piece of music (a series of pitches in harmony) exactly from

the memory which corresponds to harmony memory.

II. Play something similar to a known piece (thus adjusting the pitch slightly)

which corresponds to pitch Adjusting.

III. Compose new or random notes which corresponds to randomization.
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State of perfect harmony is reached by adjusting a combination of above three

parameters.

5.2.2 Characteristics of Harmony Search Algorithm

Harmony search algorithm has several characteristics that makes it one of the most

important meta-heuristic algorithms and distinguish it from other meta-heuristics.

Some of these includes,

• generation of a new vector after considering all the existing vectors, rather

than considering only two parent vectors;

• independent consideration for each of decision variable in a vector;

• the consideration of continuous decision variable values without any loss of

precision;

• it does not require decimal-binary conversions or a fixed number (2n) of

decision variable values; and

• it does not require suitable starting values of the decision variables nor does

it require complex derivatives as in gradient-based methods.

Based on the above characteristics, HS algorithm has four main steps illustrated

as a flow-chart in Figure 5.1 and described as follows:

I. The parameters of the HS to be initialized are: Harmony Memory Size (HMS)

(i.e. number of solution vectors in harmony memory); Harmony Memory

Considering Rate (HMCR), where HMCR ∈ [0, 1] ; Pitch Adjusting Rate

(PAR), where PAR ∈ [0, 1]; Distance bandwidth (bw) and Stopping Criteria

(i.e. number of improvisation (K)). More explanation of these parameters is

given in the next steps.
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II. Population of harmony memory by possible set of solutions or harmonies

randomly. It can be a matrix or vector as :

HM =


b1,1 b1,2 · · · b1,M

b2,1 b2,2 · · · b2,M

...
... · · · ...

bHMS,1 bHMS,2 · · · bHMS,M

 (5.1)

III. Harmony Improvisation by determining a new vector by adjusting three pa-

rameters i.e. memory consideration, pitch adjustment and random selection.

Memory Consideration determines whether the new vector will be generated

by harmony memory values or randomly.

IV. If the new Harmony is better than the worst fit harmony then it will be

replaced by the new harmony, otherwise step 2 is repeated until the total

number of function evaluations is reached.

5.2.3 Advantages of Harmony Search

The important strengths of HS are their improvisation operators, memory consid-

eration; pitch adjustment; and random consideration, all of which play a major

role in achieving the desired balance between the two major extremes for any

optimization algorithm, which include intensification and diversification. Essen-

tially, both pitch adjustment and random consideration are the key components of

achieving desired diversification in HS. In random consideration, the new vector

components are generated in random mode, thus having same level of efficiency

as in other algorithms that work with randomization. This property allows HS to

explore new regions that may not have been visited in the search space. While,

the pitch adjustment adds a new way for HS to enhance its diversification ability

by tuning the new vectors component within a given bandwidth. This is achieved
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by adding or subtracting a small random quantity to an existing component stored

in HM. This operator, pitch adjustment, is a fine-tuning process of local solutions

that ensures that good local solutions are retained, while it adds a new room for

exploring new solutions. Further, the pitch adjustment operator can also be con-

sidered as a mechanism to support the intensification of HS through controlling

the probability of PAR. The intensification in the HS algorithm is represented by

the third HS operator, memory consideration. A high harmony acceptance rate

means that good solutions from the history/memory are more likely to be selected

or inherited. This is equivalent to a certain degree of elitism. Obviously, if the

acceptance rate is too low, solutions will converge more slowly. Finally, the struc-

ture of the HS algorithm is relatively easy. This advantage makes it very flexible

to combine HS with other meta-heuristic algorithms.

5.3 PAPR minimization using Improved Harmony

Search Algorithm

This section describes the improved harmony search algorithm and its performance

for PTS technique. First, a brief overview of the harmony search based PTS (HS-

PTS) is provided and stated here. Harmony Search based PTS Algorithm was

discussed by Kermani et al in [17,108].

5.3.1 Harmony search based PTS algorithm (HS-PTS)

HS-PTS algorithm has five main steps illustrated as a flow- chart in Figure 5.1

and described as follows:

Step 1: Initialize the problem and HS parameters:

In the first step, the optimization problem is specified as the minimum PAPR for

PTS scheme is relative to the problem is initially modeled as:
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Figure 5.1: Flow chart of Harmony Search algorithm

Minimize

f(b) =
max

[
|x(b)|2

]
E
[
|x(b)|2

] (5.2)

subject to

b ∈
{
ejφm

}M
(5.3)

where φm ∈
{

2πk
W
|k = 0, 1, ...,W − 1

}
. The parameters of the HS algorithm re-

quired to solve the optimization problem are also specified in this step:

(a) The Harmony Memory Consideration Rate (HMCR), used in the improvi-

sation process to determine whether the value of a decision variable is to be

selected from the solutions stored in the harmony memory (HM).

(b) The Harmony Memory Size (HMS) is similar to the population size (Gn) in
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Algorithm 3 Harmony Search based PTS (HS-PTS) Algorithm

1: Define HMCR,PAR,HMS, bw
2: bi = bmini + rand ∈ (0, 1)× (bmaxi − bmini ), where i = 1, 2...HMS; {generate HM

solutions}
3: Calculate fitness function f(b), b ∈

{
ejφm

}M
4: Define Maximum number of iterations (K)
5: iter=0
6: while iter ≤ K do
7: for i = 1, 2...HMS
8: if rand ∈ (0, 1) ≤ HMCR then
9: choose a value from HM

10: bi ∈ [bi,1, bi,2, ...bi,HMS]; {memory consideration}
11: if rand ∈ (0, 1) ≤ PAR then
12: bi = bmini + rand ∈ (0, 1)× (bw); {pitch adjustment}
13: end if
14: else
15: choose a value from the possible solution collections:
16: bi = bmini + rand ∈ (0, 1)× (bmaxi − bmini ); {random consideration}
17: end if
18: end for
19: if f(b) < f(bworst) then
20: include b to HM
21: Exclude (bworst) from HM
22: accept the new phase factor and replace the worst one in HM with it
23: end if
24: iter = iter + 1
25: end while
26: best = find the current best solution

the Cuckoo Search algorithm.

(c) The Pitch Adjustment Rate (PAR), decides whether the decision variables

are to be adjusted to a neighboring value.

(d) The distance bandwidth (bw), determines the distance of adjustment in the

pitch adjustment operator.

(e) The Number of Improvisations (NI) corresponds to the number of iterations
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(K).

These parameters will be explained in more detail in the next steps. Note that the

HMCR and PAR are the two parameters which control the three operators of

HS algorithm (i.e., (i) memory consideration is controlled by HMCR, (ii) random

consideration is controlled by 1−HMCR, and (iii) pitch adjustment is controlled

by PAR).

Step 2: Initialize the harmony memory

The harmony memory (HM) is an augmented matrix of size M timesHMS which

contains sets of solution vectors determined by HMS (see (5.1)). In this step, these

vectors are randomly generated as follows:

bi = bmini + rand ∈ (0, 1)× (bmaxi − bmini ) (5.4)

where bmini and bmaxi are the lower and upper boundaries of the search space, re-

spectively; and rand ∈ (0, 1) is a random real number in the range [0, 1]. The

generated solutions are stored in HM in ascending order according to their objec-

tive function values.

Step 3: Improvise a new harmony

In this step, the HS algorithm will generate (improvise) a new harmony vector

from scratch, b ∈
{
ejφm

}M
, based on three operators: (i) memory consideration,

(ii) random consideration, and (iii) pitch adjustment.

i. Memory consideration

In memory consideration, the value of the first decision variable b′1 is randomly

selected from the historical values, bi ∈ [bi,1, bi,2, ..., bi,HMS], stored in HM

vectors. Values of the other decision variables, (b′2, b
′
3, · · · , b′M), are sequentially

selected in the same manner with probability (w.p.) HMCR where HMCR ∈

(0, 1). It is worth noting that the selection scheme in memory consideration

is random and that the natural selection principle is not used.
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ii. Random consideration

Decision variables that are not assigned with values according to memory con-

sideration are randomly assigned according to their possible range by random

consideration with a probability of (1−HMCR) as follows:

b′i ←

 b′i ∈ {bi,1, bi,2, · · · , bi,HMS} with probability HMCR

b′i ∈
{
ejφm

}M
with probability (1−HMCR)

(5.5)

iii. Pitch adjustment

Each decision variable b′i of a new harmony vector, (b′1, b
′
2, b
′
3 · · · , b′M), that has

been assigned a value by memory considerations is pitch adjusted with the

probability of PAR where PAR ∈ (0, 1) as follows:

Pitch adjusting decision for b′i ←

 Yes with probability PAR

No with probability (1− PAR)

(5.6)

If the pitch adjustment decision for b′i is Yes, the value of b′i is modified to its

neighboring value as follows:

b′i = bmini + rand ∈ (0, 1)× (bw) (5.7)

Step 4: Update the harmony memory

If the new harmony vector, (b′1, b
′
2, b
′
3 · · · , b′M), is better than the worst harmony

(bworst) stored in HM in terms of the objective function value (i.e., (bworst) =

(bHMS) in case HM is sorted), the new harmony vector is included to the HM ,

and the worst harmony vector is excluded from the HM . This is a greedy selection

scheme where the principle of natural selection is applied.

Step 5: Check the stop criterion

Step 3 and step 4 of HS algorithm are repeated until the stop criterion (maximum

number of iterations) is met. This is specified by K.
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Harmony search algorithm received attention of many researchers to solve vari-

ety of optimization problems in engineering and computer science areas [109]. Har-

mony Search based PTS Algorithm was presented by Kermani et al in [17,108].Con-

sequently, the interest in this algorithm led researchers to improve performance in

line with the requirements of problems that are to be solved [110,111]. The proper

selection of HS parameter values is considered as one of the challenging task for HS

algorithm as in other meta-heuristic algorithms. This difficulty is a result of differ-

ent reasons, and the most important one is the absence of general rules governing

this aspect. Actually, initializing parameter is problem dependent and therefore

the experimental trials are the only guide to the best values. However, this matter

guides the research into new variants of HS. These variants are based on adding

some extra components or concepts to make part of these parameters dynamically

adapted. These includes Improved Harmony Search (IHS), Global-best Harmony

Search (GHS), Differential-evolution Harmony Search (DHS), Novel Global Har-

mony Search (NGHS) etc. Various variants of harmony search algorithms have

been investigated in literature [108,109,112,113].

5.3.2 Improved Harmony Search Algorithm for PTS

Performance of any metaheuristic algorithm like harmony search depends upon

two factors: exploration and exploitation. Optimal and balanced combination

of these two contradicting factors determine the efficiency of the algorithm. An

improvement to HS was reported by Mahdavi et al that is termed as Improved

Harmony Search (IHS) algorithm [104].

The HMCR and PAR parameters introduced in Step 3 of HS-PTS algorithm

help to find globally and locally improved solutions, respectively. PAR and bw in

the HS-PTS algorithm are very important parameters in fine-tuning of optimized

solution vectors, and can be potentially useful in adjusting convergence rate of
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algorithm to obtain an optimal solution. So fine adjustment of these parameters

are of great importance. The traditional HS-PTS algorithm uses a fixed value for

both PAR and bw. In the HS-PTS method PAR and bw values are adjusted in the

initialization step (Step 1) and cannot be changed during new generations. The

key difference between IHS-PTS and traditional HS-PTS method is in the way of

adjusting PAR and bw. To improve the performance of the HS algorithm and

eliminate the drawbacks with fixed values of PAR and bw, IHS-PTS algorithm

uses variables PAR and bw in improvisation step (Step 3).

Improved Harmony Search Algorithm attempts to enhance accuracy and con-

vergence rate of harmony search by adjusting Pitch Adjusting Rate PAR and

distance bandwidth bw values. The PAR value is linearly increased in each itera-

tion of HS by using the following relationship:

PAR(k) = PARmin +

(
PARmax − PARmin

K

)
k (5.8)

The bandwidth (bw) value is exponentially reduced in each iteration of HS by

using the following equation:

bw(k) = bwmax exp

(
ln (bwmin/bwmax)

K

)
k (5.9)

Where k and K represents the current number of improvisations and maximum

number of improvisations respectively. As PAR and bw is initialized and fixed in

traditional Harmony Search Algorithm, it provides inferior performance as well as

more number of iterations are needed for finding the optimal Solution. Adjusting

PAR and bw in each improvisation step delivers better convergence rate leading

to optimal solutions. This gives suboptimal solution to enhance the performance

of the basic HS algorithm.

Based on the above analysis, the basic steps of IHS-PTS technique can be

summarized as the pseudo code shown in Algorithm 4.

129



Chapter 5 Improved Harmony Search based PTS for PAPR Reduction

Algorithm 4 Improved Harmony Search based PTS Algorithm (IHS-PTS)

1: Define HMS,HMCR,K, PARmin, PARmax, bwmin, bwmax
2: bi = bmini + rand ∈ (0, 1)× (bmaxi − bmini ), where i = 1, 2...HMS;

3: Calculate the Objective function f(b), b ∈
{
ejφm

}M
4: Define Maximum number of iterations (K)
5: Initialize HM
6: for bi = 1 : HMS do
7: Improvise new HM
8: for iteration ≤ K do
9: for bi ≤ no. of variable do

10: PAR(k) = PARmin +
(
PARmax−PARmin

K

)
k

11: bw(k) = bwmax exp
(

ln(bwmin/bwmax)
K

)
k

12: for (all variable) do
13: if rand ∈ (0, 1) ≤ HMCR then
14: choose a value from HM
15: bi ∈ [bi,1, bi,2, ...bi,HMS];
16: if rand ∈ (0, 1) ≤ PAR then
17: bi = bmini + rand ∈ (0, 1)× (bw);
18: end if
19: else
20: (Choose a random value of variable)
21: bi = bmini + rand ∈ (0, 1)× (bmaxi − bmini )
22: end if
23: end for
24: if new solution ≤ worst solution then
25: accept the new harmony and replace the worst in HM
26: end if
27: end for
28: end for
29: end for
30: best = best current solution

5.4 Simulation Results and Discussions

To evaluate the performance of IHS-PTS algorithm for OFDM PAPR reduction,

various simulations were conducted. To generate the CCDF of the PAPR, 10,000

symbols of 16-QAM, OFDM symbols were generated and the transmitted sig-
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nal was oversampled by a factor of 4 for obtaining accurate PAPR value. The

performance of IHS-PTS was compared with conventional PTS and other PAPR

reduction schemes.

5.4.1 Variation in parameteric constraints of IHS-PTS al-
gorithm

Harmony Search based PTS (HS-PTS) was presented by Kermani et al. [17, 108],

in which the value of HMCR and PAR were considered as 0.95 and 0.05 re-

spectively. Mahdavi et al proposed the Improved Harmony Search (IHS) algo-

rithm [104] and several examples for various problems analyzed the methods for

selection of the parameter. In the majority of applications, parameters are set by

trial and error for finding optimal performance of algorithm. In this work, sim-

ulations were performed to analyze the performance of PARmin, PARmax, bwmin

and bwmax for IHS-PTS optimization. These parameters are presented in Table

5.2 and 5.3. Table 5.2 represents the PAPR value after simulation with varia-

tion in PARmin and PARmax and considering the value of HMCR=0.95, Gn=16,

bwmin=0.2 and bwmax=0.5. Following this, Table 5.3 shows the simulation results

with variation in bwmin and bwmax after considering the value of HMCR=0.95,

Gn=16, PARmin=0.3 and PARmax=0.9. It can be seen from the results that

PARmin=0.3, PARmax=0.9, bwmin=0.2 and bwmax=0.5 provides optimum values

for IHS-PTS optimization. Selection of Gn, maximum number of iterations (K)

has been analyzed in next section. In these simulations, Gn = 16 and K = 10 was

used.

For HS-PTS algorithm, the parameters affecting performance include as: har-

mony memory size Gn which was set to 16, harmony memory consideration rate

(HMCR) set to 0.95, pitch adjustment rate (PAR) set to 0.05 and the band-

width of adjustment (bw) set to 0.2. The total number of iterations K was 10. To
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Table 5.2: Results by IHS-PTS for PAPR values with different values of PAR

HMCR PARmin PARmax Gn bwmin bwmax K
PAPR
(dB)

0.95 0.1 0.9 16 0.2 0.5 10 7.2
0.95 0.2 0.9 16 0.2 0.5 10 6.9
0.95 0.3 0.9 16 0.2 0.5 10 6.8
0.95 0.4 0.9 16 0.2 0.5 10 7.1
0.95 0.5 0.9 16 0.2 0.5 10 7.3
0.95 0.6 0.9 16 0.2 0.5 10 7.4
0.95 0.7 0.9 16 0.2 0.5 10 7.7
0.95 0.8 0.9 16 0.2 0.5 10 8.0

Table 5.3: Results by IHS-PTS for PAPR values with different values of bw

HMCR PARmin PARmax Gn bwmin bwmax K
PAPR
(dB)

0.95 0.3 0.9 16 0.1 0.5 10 6.8
0.95 0.3 0.9 16 0.2 0.5 10 6.8
0.95 0.3 0.9 16 0.3 0.5 10 7.1
0.95 0.3 0.9 16 0.4 0.5 10 7.5
0.95 0.3 0.9 16 0.1 1.0 10 7.3
0.95 0.3 0.9 16 0.2 1.0 10 7.4
0.95 0.3 0.9 16 0.3 1.0 10 7.8
0.95 0.3 0.9 16 0.4 1.0 10 8.0
0.95 0.3 0.9 16 0.1 4.0 10 8.1
0.95 0.3 0.9 16 0.2 4.0 10 7.4
0.95 0.3 0.9 16 0.3 4.0 10 7.7
0.95 0.3 0.9 16 0.4 4.0 10 8.2

improve the performance of algorithm, improved version of harmony search algo-

rithm called Improved Harmony Search (IHS) was applied, in which PAR and bw

were dynamically updated. When this algorithm was used with PTS (IHS-PTS),

the PAPR performance for OFDM signal was seen to be improved. For simula-

tion, the minimum and maximum value of PAR and bandwidth were considered as

PARmin=0.3, PARmax=0.9, bwmin=0.2 and bwmax=0.5 respectively. Both values
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Table 5.4: IHS-PTS Simulation Parameters

Simulation Parameters Type/Value
Number of sub-carriers (N) 128, 256, 512
Number of sub-blocks (M) 4, 8, 16
OFDM Blocks 10,000
Oversampling Factor (L) 4
Bits per symbol (b) 4
Phase rotation factors (W ) {+1,−1}
PAPR in db 4 to 12
Harmony Memory Size (Gn) 16
Harmony Memory Consideration Rate (HMCR) 0.95
Pitch Adjustment Rate (PAR) 0.05
Bandwidth of Adjustment (bw) 0.2
Minimum value of PAR (PARmin) 0.3
Maximum value of PAR (PARmax) 0.9
Minimum value of bandwidth (bwmin) 0.2
Maximum value of bandwidth (bwmax) 0.5
Constellation Size 16-QAM
No. of iterations (K) 5,10,20

were updated by using (5.8) and (5.9). When these methods were used to optimize

the phase factor in IPTS based PAPR reduction, the PAPR was observed to be

improved in each case (reduction in PAPR).

5.4.1.1 Variation in number of iterations K

At first,the effect on number of iteration K was analyzed. Figure 5.2 compares the

CCDF vs PAPR performance of IHS-PTS technique as function of various itera-

tions K in a system with 16-QAM modulation, N= 256, M= 8 and W=2. When

the number of iterations K are 10, then PAPR of original OFDM signal and IPTS

are 11.1 dB and 8.2 dB respectively. After applying HS-PTS and IHS-PTS, the

PAPR reduced to 7.3 dB and 6.8 dB respectively. When the number of iterations

K were enhanced to 20, then PAPR of HS-PTS and IHS-PTS were observed to

be 7.2 dB and 6.6 dB respectively. In continuation with this, when simulations
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Figure 5.2: CCDF vs PAPR performance of IHS-PTS technique for different iter-
ations, when N= 256, M=8, W=2, HMS=16

were conducted for 40 iterations, the PAPR of HS-PTS and IHS-PTS were ob-

served to be 7.1 dB and 6.4 dB respectively at CCDF of 10−3. As the number

of iterations was increased, the PAPR improved. However, increase in iterations

enhance processing time, since with larger number of iterations, the number of

function evaluation leading computation complexity also increases. Hence, it can

be seen that the optimization based PTS schemes delivers desirable trade-off be-

tween the PAPR performance and computational complexity. All these schemes

provide PAPR performance between IPTS and OPTS.
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Figure 5.3: CCDF vs PAPR performance of IHS-PTS technique for N= 128, 256,
512 sub-carriers, when M=8, W=2, HMS=16, K=10

5.4.2 Study on the effects of OFDM system parameters on
PAPR

Sensitivity of the algorithmic parameters were discussed in the previous sub-

section. Following this, the performance of IHS-PTS has been evaluated for dif-

ferent number of parameters.

5.4.2.1 Effect of variation in sub-carrier N

The performance of the algorithm was evaluated for different sub-carrier consid-

erations. In Figure 5.3, simulation results of CCDF vs PAPR performance of

16-QAM IHS-PTS system for different number of sub-carriers are presented, when
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M=8 and W=2. Simulation results are presented for original OFDM, IPTS, HS-

PTS and IHS-PTS algorithms. Uniformly distributed random variable were used

for phase weight factor b . From results, it can be observed that for a given

CCDF, increase in sub-carriers enhances PAPR. As the numbers of sub-carriers

are increased, there was improvement in PAPR performance. In simulation re-

sults, when N= 128, M= 8 and W=2, the PAPR achieved with IPTS scheme is

approximately 7.6 dB. After applying HS-PTS and IHS-PTS, PAPR of 7.8 dB and

7.1 dB were observed respectively for CCDF of 10−3. In continuation with this,

when N= 256, M= 8 and W=2, the PAPR of IPTS technique is around 8.2 dB.

After applying HS-PTS and IHS-PTS, PAPR observed were 7.2 dB and 7.1 dB

respectively with CCDF of 10−3. However with N= 512 sub-carriers, the PAPR

of IPTS are approximately 8.5 dB. The PAPR of OFDM signal after the HS-PTS

and IHS-PTS are 7.8 dB and 7.1 dB respectively with CCDF of 10−3. So, it is ob-

served that PAPR values are dependent on number of sub-carriers used for OFDM

generation and, the optimization algorithms based PTS gives the improvement in

PAPR performance in each case. From above the descriptions, we can see that

IHS- PTS is an effective technique for reducing the PAPR of OFDM system, even

with large number of sub-carriers. It is also important to note that for OFDM

signals with large number of sub-blocks, OPTS could not be implemented due to

extensive computational complexity.

5.4.2.2 Effect of variation in sub-block M

Figure 5.4 illustrates CCDF vs PAPR performance of 16-QAM IHS-PTS system

for different number of sub-blocks. It can be seen that, the PAPR of original

OFDM signal is around 11 dB at CCDF= 10−3. PAPR can be reduce to 8.8 dB

with CCDF of 10−3 for M=4 sub-blocks using IPTS with N= 256 and W=2. After

applying HS-PTS and IHS-PTS technique, the PAPR observed to be around 7.5
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Figure 5.4: CCDF vs PAPR performance of IHS-PTS technique for M= 4, 8, 16
sub-blocks, when N= 256, W=2, HMS=16, K=10

dB and 6.9 dB respectively. So, among all these three schemes, IHS-PTS provides

superior performance in reducing PAPR of the OFDM signal. Next simulation

was performed for M= 8 and 16 sub-blocks. It is seen that increase in number of

sub-bloks improves the performance. It can also be seen that, IHS-PTS scheme

provides reduced PAPR as compared to the HS-PTS algorithm. For M=8, the

PAPR of 8.3 dB was observed with IPTS. When the HS-PTS and IHS-PTS show

a PAPR of 7.2 dB and 6.6 dB respectively. Similarly for M=16, the PAPR of

IPTS is around 7.7 dB, Where as, with HS-PTS and IHS-PTS PAPR achieved is

7.1 dB and 6.2 dB respectively. Hence it is observed that the IHS-PTS scheme

performs better than the other two methods i.e. IPTS and HS-PTS for similar

137



Chapter 5 Improved Harmony Search based PTS for PAPR Reduction

4 5 6 7 8 9 10 11 12
10

−3

10
−2

10
−1

10
0

PAPR
0
(dB)

P
r(P

A
P

R
>

P
A

P
R 0)

 

 

Original OFDM
IPTS
OPTS
CS−PTS, K=20
FF−PTS, K=20
HS−PTS, K=20
ABC−PTS, K=20
IHS−PTS, K=20

Figure 5.5: Comparison of CCDF vs PAPR performance of IHS-PTS system with
different methods for N= 256, when M=8, W=2, HMS=16

conditions. Moreover, it can also be observed that, as the number of sub-blocks

and the set of phase weighting factor are increased, PAPR reduction improves but,

the processing time also increases because of complexity involved.

In order to investigate the performance of proposed algorithm with few state

of the art techniques, the performance were compared with ABC-PTS [15] and

HS-PTS [108]. Figure 5.5, presents the PAPR performance of the IHS-PTS with

the OPTS [36], IPTS [9], ABC-PTS [15], HS-PTS [108], FF-PTS and CS-PTS

for similar number of iterations. The performance of IHS-PTS with maximum

iteration number K = 20 with sub-blocks M = 8 were generated by random

partition with N= 256 and W=2 was presented at Figure 5.5. When Pr(PAPR >
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PAPR0) = 10−3, the PAPR of the original OFDM is 11.1 dB. The PAPR by the

IPTS [9] is 8.2 dB providing a 2.9dB PAPR gain. Compared to the PAPR achieved

by OPTS is approximately 6.45 dB, a PAPR improvement of 4.65dB. Using the

IHS-PTS with K =20, the PAPR is seen reduce to 6.7 dB constituting a 4.4dB

gain. The PAPR achieved by ABC-PTS with 20 iterations is approximately 6.8

dB and HS-PTS is 7.2 dB. In continuation with this the PAPR of CS-PTS and

FF-PTS schemes is approximately 7.9 dB and 7.8 dB respectively. It demonstrates

that as compared to the OPTS, the PAPR reduction by the IHS-PTS algorithm

has a performance penalty of less than 1 dB. Performance of IHS-PTS is superior

than other optimization techniques. The computational complexities issues are

analyzed in next subsection.

5.4.2.3 IHS-PTS performance for different modulation formats

The effect of modulation formats on PAPR was next analyzed for IHS-PTS al-

gorithm. Figure 5.6 presents the PAPR performance of HS-PTS and IHS-PTS

scheme for different modulation orders like QPSK, 8-QAM, 16-QAM, 32-QAM

and 64-QAM. Simulation parameters were taken as M=8 sub-blocks, N=256 sub-

carriers, W=2, K=10 iterations. The population size/ generations were consid-

ered from 10 to 20 only. It can be seen from results that IHS-PTS provides linear

performance for different modulation formats. At Gn=20, PAPR performance of

IHS-PTS scheme approximately close to OPTS, but at the cost of higher com-

plexity. So, a trade-off between PAPR performance and complexity calculation in

terms of population size is required for implementation.

5.4.2.4 IHS-PTS performance with varying number of sub-carriers

The summarized results presented in Figure 5.7 shows the 16-QAM HS-PTS and

IHS-PTS performance for different number of sub-carriers varied in the range 32

to 512, when M=8, W=2, K=10. It can be seen from the graph that the perfor-

139



Chapter 5 Improved Harmony Search based PTS for PAPR Reduction

8.1

8.4

8.6

8.8

9

6.9

7.2

7.4

7.9

8.1

6.4

6.6

7.1
7.2

7.6

6.2

6.4

6.7

7

7.3

6.1

6.3

6.5

6.9

7.1

5.9

6.1

6.4

6.7

7

5.5

6

6.5

7

7.5

8

8.5

9

9.5

QPSK 8-QAM 16-QAM 32-QAM 64-QAM

P
A

P
R

 (
d

B
)

Modulation order

IPTS

HS-PTS, Gn=10

HS-PTS, Gn=20

IHS-PTS, Gn=10

HIS-PTS, Gn=20

OPTS

Figure 5.6: IHS-PTS performance for different modulation formats

mance of IHS-PTS scheme was very close to OPTS at very less number of genera-

tions/population size i.e. Gn=20. It is also clear from the results that performance

of the PTS technique degrades with the increase in number of sub-carriers.

5.4.3 Analysis of the Computational Complexity

Following the IHS based PAPR performance, the computational complexity is

discussed here. Table 5.5 presents the CCDF vs PAPR Performance and the

associated computational complexity analysis for 16-QAM OFDM-PTS Technique

with various optimization methods like CS-PTS, FF-PTS, HS-PTS and IHS-PTS

with different number of sub-blocks M=8 and 16 are summarized.
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For harmony search method, the searching complexity is given by number of

sub-blocks M multiplied by number of iterations K and number of phase vector

W . When the number of sub-blocks M is 8 and number of iterations K is 10

with phase vector W =2, then searching complexity is 160, which is similar as

the complexity of OPTS i.e. 128. For improved harmony search based PTS, the

PAPR performance is superior with same computational complexity as compared

with HS-PTS. The FF-PTS uses searching complexity given by square of number

of fireflies Gn multiplied by number of iterations K.

From this table, it can be observed that partial transmit sequence method

with various optimization techniques reduces the PAPR of original OFDM signal
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Table 5.5: Comparison of computational complexity of different optimization al-
gorithms at CCDF = 10−3, Modulation format : 16-QAM

Methods Combinations
Computational

Complexity
PAPR
(db)

OPTS
M=8, N=256, W=2 (WM−1)= 128 6.5
M=16, N=256, W=2 (WM−1)= 32768 6.1

IPTS
M=8, N=256, W=2 (W ×M)= 16 8.6
M=16, N=256, W=2 (W ×M)= 32 7.6

FF-PTS

M=8, N=256, W=2,
Gn=10, K=10

(Gn
2K)= 1000 7.8

M=16, N=256, W=2,
Gn=10, K=10

(Gn
2K) = 1000 7.2

CS-PTS

M=8, N=256, W=2,
Gn=16, K=10

(Gn ∗ (Gn + 1))/2= 136 7.9

M=16, N=256, W=2,
Gn=16, K=10

(Gn ∗ (Gn + 1))/2=136 7.4

HS-PTS

M=8, N=256, W=2,
Gn=10, K=10

M ∗W ∗K= 160 7.3

M=16, N=256, W=2,
Gn=10, K=10

M ∗W ∗K= 320 7.1

IHS-PTS

M=8, N=256, W=2,
Gn=10, K= 10

M ∗W ∗K= 160 6.6

M= 16, N=256, W=2,
Gn=10, K=10

M ∗W ∗K= 320 6.2

efficiently and improved performance has been observed, when the number of iter-

ations of optimization method are increased. Increasing the number of iterations

results in increment of searching complexity of phase factor too. In a nutshell,

the performance of three techniques analyzed in this work is presented in Table

5.6. From above the descriptions, it can be seen that the IHS-PTS is an effective

technique for reducing the PAPR of OFDM system.

5.5 Summary

In this chapter, a variant of harmony search algorithm i.e. improved harmony

search has been applied to PTS algorithm (IHS-PTS) to search optimum com-
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Table 5.6: Performance comparison of different optimization tecniques analyzed
in this work

Methods Merits Limitations

FF-PTS

• Moderate structure

• Can be trained with very
small number of iterations
i.e. K=10

• Increasing the number of
sub-blocks provides consis-
tent performance gain

• Requires tuning of large
number of parameters
termed as α, β, γ, K and
Gn

• Large value of α prevents
the algorithm from converg-
ing too early, but at the cost
of requiring more iterations
to settle on a solution and
limiting the system perfor-
mance.

• For large number of sub-
blocks i.e. M=16, more
OFDM samples are re-
quired

CS-PTS

• Very simple structure

• Requires tuning of only 2
parameters ρd and Gn.

• Only K=10 iterations are
sufficient for training the
network

• PAPR performance im-
proves after increasing
population size Gn but
complexity will be increases
gradually.

• Performance of OPTS with
8 sub-blocks outperforms
CS-PTS with 16 sub-blocks.

IHS-PTS

• Provides the best perfor-
mance campared to other
candidate algorithms

• Lower computational com-
plexity compared to FF-
PTS and CS-PTS

• Complex structure

• Needs large number of pa-
rameter adjustments
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bination of phase factor for OFDM signals. Compared to the PAPR reduction

optimization techniques like firefly algorithm, harmony search algorithm etc., the

IHS-PTS algorithm provides improved PAPR performance. The performance of

the algorithm can be summarized as:

• Simulation results indicate that IHS-PTS provides the best performance

among the 3 candidate algorithms used.

• IHS-PTS is having complex structure and needs large number of parameter

adjustments which includes HMCR, PARmin, PARmax, bwmin, bwmax and

Gn.

• IHS-PTS has lower computational complexity compared to FF-PTS and CS-

PTS. It also has lower complexity compared to OPTS with 16 sub-block. The

complexity is higher than IPTS.

• Variation in number of sub-carriers and modulation format show similar

trends in performance as compared to OPTS.

Simulation results show that it is an efficient and feasible method to provide

better PAPR performance.
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CHAPTER6
Conclusions and Future Work

”I read what I write over and over and make corrections and improvements, until

I reach the conclusion that the material deserves to stand on its own.”

-Siegfried Lenz

Contents
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Scope for Future Work . . . . . . . . . . . . . . . . . . . 147

145



Chapter 6 Conclusions and Future Work

6.1 Conclusions

Currently, OFDM is considered to be the de-facto standard for high-speed wired

and wireless data communication. OFDM systems are inherently spectrally effi-

cient. With demand for mobility in communication, power consumption and bat-

tery life have become a critical issue. Efficient PAPR reduction techniques improve

power efficiency in mobile devices. Considering multiple candidate techniques,

PTS seems to be the most promising, since it offers superior PAPR performance

without data loss. However, PTS suffers from computational complexity, hence

efficient implementation demands optimization of parameters leading to reduced

performance..

Phase factor optimization in PTS has been attempted by researchers in the

current decade. Some of the techniques that have been attempted includes Par-

ticle Swarm Optimization [13], Genetic Algorithm [14], Artificial Bee Colony Al-

gorithm [15], Differential Evolution algorithm [16] and Harmony Search [17]. The

work reported in this thesis investigated three new algorithms for the same prob-

lem. FF-PTS, CS-PTS and IHS-PTS based optimization techniques have been ap-

plied to the problem and performance investigated. Extensive simulation studies

demonstrate the efficacy of the algorithm to the specified problem. These algo-

rithms along with their performance have been discussed in detail in Chapter 3, 4

and 5. The optimum solution to PAPR reduction using PTS cab be achieved by

using OPTS technique. Implementation of OPTS requires PAPR using sub-blocks.

The complexity of the system is exponentially related to the number od sub-block

used. It is feasible to implement OPTS using up to 8 sub-blocks. Sub-blocks

beyond 8 i.e. 16, 32 and higher becomes impossible for practical implementation

due to high computational complexity requirements which rise exponentially. The

investigation made in the thesis and results there to can be summarized as under:
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i. Among the three techniques investigated, the IHS-PTS provides the best per-

formance in terms of PAPR. This has a performance close to OPTS. Consider-

ing the computational complexity, 16 sub-block IHS-PTS is feasible and is far

less complex than OPTS. The system has a demerit of a large set of parameter

adjustments. IHS-PTS in contrast to HS-PTS [17] provides the advantage of

superior PAPR performance with same complexity.

ii. FF-PTS has a moderately complex structure but provides quick training. The

performance is inferior to IHS-PTS and OPTS. The algorithm can be consid-

ered for implementation when the number of sub-block are higher. One of the

major drawbacks of the scheme is that large value of α prevents the algorithm

from converging too early at the cost of requiring more iterations to settle on

a solution and limiting the system performance.

iii. CS-PTS has been inspired by CS algorithm. The algorithm is simple and

requires training of few parameters only. Its qualitative performance is low-

est among the three investigated techniques. It is attractive considering its

computational complexity.

iv. All the techniques investigated provide uniform performance penalty with the

change in modulation order and number of sub-carriers.

Although investigation of different optimization based techniques proposed in

the literature and the work reported in the thesis shows that no single technique

performs best, but under limiting circumstances and constraints some algorithm

outperform others.

6.2 Scope for Future Work

In the present scenario, the PAPR problem is still a challenging issue mostly for the

devices where the minimization of linear range of power amplifier is importance.
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In this thesis, intelligent optimization algorithms with PTS technique to reduce

the PAPR of OFDM system was presented. The proposed systems can be made

more reliable by implementing techniques to recover the original signal in multi-

path environment without transmitting side information. Further enhancement

on improving the complexity of the searching phase factors can be considered.

Different optimized phase factors searching algorithm as presented in the litera-

ture survey chapter can be applied. Furthermore, window functions like Discrete

Fourier Transform (DCT), Modified Bartlett-Hanning (MBH), Discrete Hartley

Transform (DHT), Zadoff- Chu Transform (ZCT) etc can be applied to generate

the precoding matrix. The proposed PAPR reduction technique can be applied

with multiple input multiple output (MIMO) OFDM system.

The research work on different phase factor optimization techniques for PAPR

reduction in OFDM systems are presented in the thesis can be further extended

in following ways.

• Low complexity algorithm for evaluating the PAPR without IFFT.

All sign-selection algorithms must calculate the time-domain samples and

evaluate the PAPR of a large number of sign-sequence candidates. In this

thesis, we proposed a fast algorithm to calculate the PAR without comput-

ing the magnitudes of all the time-domain samples. However, calculating the

time-domain samples of a sign sequence still requires an IFFT. This require-

ment is costly because of the need to calculate a large number of candidates.

A low complexity algorithm for evaluating the PAPR without IFFT would

allow us to use more sign-sequence candidates to find a larger PAR reduction.

Such an algorithm would also facilitate the use of clipping-based algorithms

because they also require FFT/IFFT to compute the clipping noise in the

time and frequency domains.
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• Peak reduction criteria using a more appropriate measure than the PAPR.

The purpose of peak reduction is to minimize the in-band distortion and

out-of band radiation caused by the non-linearity of HPA. A small PAPR

does not always imply a small in-band distortion and out-of-band radiation.

Peak-reduction criteria using other measures observed that, when nonlinear

amplification is allowed to some extent, the distribution of the envelope,

rather than that of the PAPR, is a more relevant measure. A theoretical

analysis and comparison of different peak-reduction criteria would help to

develop more efficient peak-reduction algorithms.

• Bit loading algorithm for OFDM with PAPR optimization

Bit loading is a technique used in multicarrier communication system (e.g.

OFDM) to assign bits efficiently based on sub-channel quality. It allows more

bits to be transmitted within higher quality sub-channel and less bits within

lower quality sub-channels. Such kind of algorithms would provide better

PAPR reduction with any heuristic optimization technique with trade-off in

channel capacity and computational complexity.
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