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Abstract 

 

Radio Detection And Ranging, RADAR, is a system that is used to detect and track a target 

at distant location with its other features (like velocity, direction etc.). The system uses 

various techniques to enhance its efficiency in terms of different physical parameters. Pulse 

compression technique provides the radar designers with an ability to combine the benefits 

of low power transmitters and the larger pulse wavelength to maintain the energy content 

of the pulse, in turn, the process elevates the range detection ability of high duration pulses 

and the resolution capacity of short pulses. To enhance the bandwidth of the high duration 

pulses so that better range resolution capability can be achieved, modulation in frequency 

and phase is done. Frequency or phase modulation is employed to a long duration pulse 

before it is transmitted and the received pulse is then passed through a filter to get its energy 

accumulated into a short pulse.  

Usually, matched filter is a common choice for pulse compression. Due to the high sidelobe 

peaks associated with the mainlobe in the matched filter output, which is simply an ACF 

of the input pulse, they have the possibility of masking the weaker targets near the stronger 

ones. So, the high sidelobes are needed to be suppressed to avoid such circumstances. 

Normally, the matched filter output has the sidelobe level of -13.5dB which can be 

improved by the use of the techniques like adaptive filtering, weighting through the use of 

windows etc. The windowing technique, besides suppressing the sidelobe also reduces the 

SNR which leads to reduction in rate of false alarm rate. A stepped frequency train of LFM 

pulses is an efficient method to enhance the overall bandwidth of the signal and 

maintaining the instantaneous bandwidth at the same time. But they are associated with the 

ambiguous peaks whose peak value is similar to the mainlobe peak and are also known as 

the grating lobes which have the potential of masking the smaller targets. So, it becomes 

necessary to suppress or nullify them by proper adjustment of the design parameters.  

 

Keywords: Pulse compression, Barker code, LFM, PSLR, ACF, AF
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Chapter 1 

1. Introduction 

1.1 Background  

RADAR, that is, Radio Detection and Ranging is a system, based on the principle of 

electromagnetism used to detect and locate the distant objects like aircraft, ships, vehicles, 

missiles etc. It works on the theory of transmission of energy in space and reception of the 

reflected echo from the distant object. It can work in any physical conditions like rain, snow, 

fog, darkness etc. The technology has got its initiation during the World War II. And, the 

post war period had seen a tremendous development in its features [1]. 

The ability to detect the target and its respective features like range, velocity etc. in all 

weather conditions with greater accuracy is its most important feature. Its antenna and 

tracking system play an important role in determining the target’s angle and direction from 

the echo obtained from the target after getting reflected from it [1],[2]. The range of the 

target is the function of the delay in the reception of the transmitted pulse whereas the 

target’s velocity is the function of the Doppler shift of the received signal. 

Though the peak power of the transmitted pulse is generally in megawatts, it keeps on 

increasing high and high so that the range detection can be enhanced. This increase in the 

transmitted peak power imposes economic burden as well as technical limitation. Even with 

the increase in power the accuracy and the target resolution become repugnant. It was 

Siebert who found out that range to which a radar can detect the target is associated only 
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with the ratio of the energy of the received signal to that of the power spectral density of the 

noise and is quite independent of the waveform [3]. This is why, most of the radar designers 

have shifted their endeavor from designing of the transmitters with high power to the design 

of the pulses with higher duration so that the requirements of the range resolution and 

accuracy can be fulfilled. 

So, radar signal processing integrates various attributes of the transmitted waveforms with 

radars, performance evaluation, detection theory and the connected circuitry to the displays 

and antenna or the processing units involved. The radar design to signal processing is similar 

to the communication system to the modulation theory, where both strive to achieve better 

communication so that maximum information can be extracted and the effects of the noise 

or interference can be minimized 

Out of various components of the radar system development, waveform design is an 

important part. Waveform used in radar systems play pivotal role in determination of the 

range resolution and the maximum detection capability (detection range) of the radar [4]. 

Range resolution is defined as the ability to separate two closely placed targets with different 

ranges but with same bearing angle, which has inverse proportionality with the bandwidth 

of the transmitted signal i.e. the signal with higher bandwidth has better range resolution 

than the signal with low bandwidth [1]. The mathematical relation between the range 

resolution and the corresponding bandwidth is: 

2
r

C
R

B
                                                                                                                                    (1.1) 

Here, C is the velocity of the light and B is the signal’s bandwidth. 

Also, for a signal with pulse duration of T and without modulation, the bandwidth is given 

by: 

1
B

T
                                                                                                                        (1.2) 

A signal with short pulse duration will have higher bandwidth and hence has a better (high) 

range resolution, thus finds an important place in various radar applications. But, the short 

pulse duration signals have limitations too. As the signal’s bandwidth is inversely 

proportion to the pulse duration, the short pulse have higher bandwidth. And, the high 

bandwidth signals make the systems very complex. Also, short duration pulses requires 

more peak power so that it can furnish enough energy required for its transmission to far 

distances. Now, to generate the short pulses with very high peak power, it requires high 
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power receivers and transmitters which are very difficult to design as the components have 

to withstand high power. 

This is a serious problem to sort out. One way to enhance the energy of the short pulses is 

by modulating the short pulses into longer ones so that the bandwidth of the longer pulses 

can be enhanced lest the resolution capacity of the radar system should not be compromised 

and the technique that is employed to achieve this goal is termed as the Pulse Compression 

[3], [9]. This technique is of immense use in the radar application where it is undesirable to 

use high peak power. 

In 1950s, the radars had been developed practically with the technology called pulse 

compression. The technique comprises of the transmitted signal having phase modulated or 

frequency modulated and the signal after reception is processed through the matched filters 

[5], [6]. Initially, it was tough to realize the matched filters with the help of traverse filters 

as there is a lack of delay line having enough bandwidth. Recently, there are many refined 

filters used instead of the matched filters. 

1.2 Pulse Compression 

The energy in the transmitted pulse(signal) should be high lest the received reflected echo 

must have the sufficient energy as the maximum detection range of the radar depends on 

the strength of the received pulse(echo). The transmitted pulse gets attenuated by the 

environmental factors in the course of its transmission before and after being reflected from 

the target. The energy of the pulse is determined by the product of the peak power and the 

duration of the corresponding pulse. The short duration pulse with high peak power has the 

equivalent energy as that of the pulse with high pulse duration and low peak power. 

Achieving high peak power requires complicated hardware setup and also the cost of the 

setup goes high.  

Thus, a transmitted pulse should be a low peak power pulse with long duration to enhance 

the range detection capability of the radar but at the receiver end it requires to be a pulse of 

short duration so that the range resolution capability should get refined [7]. As the range 

resolution of the radar is given by the relation,
2

r

C
R

B
 , where B and C are the bandwidth 

of the transmitted pulse and velocity of the light. 

Now, to amalgamate the advantages of the high range resolution capability of the short 

duration pulse, as they have higher bandwidth, and the high detection range capability of 

the long duration pulse, as they have high energy, the process of pulse compression is used 
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[8], [10]. Generally, the modulation techniques like frequency and phase modulation 

techniques are used to achieve the goal of higher bandwidth so that the range resolution is 

enhanced. The modulation techniques are applied to the long duration pulses prior to their 

transmission and the reflected echo, after reception, is processed in the matched filter that 

agglomerates the energy of the echo into a very small time duration. 

 

 

The measure of the compression with respect to the uncompressed pulse is represented in 

terms of the factor called Pulse Compression Ratio (PCR) [1].  

𝑃𝐶𝑅 =
𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ 𝐵𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ 𝐴𝑓𝑡𝑒𝑟 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
                                                    (1.3) 

The PCR is the figure of merit of the pulse compression system which is equal to the Time-

Bandwidth product (TBWP) of the signal. 

1.3 Matched Filter  

The target’s features are extracted from the received reflected pulse in the radar processing.  

As obvious, the reflected echoes are highly affected by the noise. The most exclusive feature 

of the matched filter is that it maximizes the achievable SNR at its output when a corrupted 

signal(with additive white noise ) is given as its input. Higher is the SNR, higher will be the 

probability of detection of the respective target by the radar. Thus, as pointed out by Siebert 

[3], it becomes necessary for the radar system to maximize the energy of the received pulse 

by maximizing the SNR rather perpetuating the signal’s shape. The matched filter is quite 

apt to be used at the receiver’s side of the radar system as it has the property of accumulating 

the energy of the input signal, which is here the received echo from the target, by matching 

Figure 2.  Plot showing pulses with different duration and same energy 



Chapter 1   Introduction  

 

5 

 

the receiver’s transfer function to that of the received pulse. Experiments have shown that 

regardless of the waveform used the output of the matched filter is always twice the ratio of 

the energy of the input pulse to the noise power [2]. The transmitted pulse with the Additive 

White Gaussian Noise(AWGN) becomes the input to the matched filter as shown in the 

block diagram . The white noise has the power spectral density of 0

2

N
. The input for the 

matched filter can be represented by: 

1( ) ( ) ( )i ix t s t t n t                                                                                (1.4) 

 

 

where, 1t  being the time delay proportional to the target’s range and ( )in t is the input white 

noise whose corresponding autocorrelation and Power Spectral Density is given by:  

0( ) ( )
2in

N
R t t                                                                                          (1.5) 

0( )
2in

N
S                                                                                                     (1.6) 

where, 0N is constant. 

Now, the output of the matched filter can be descripted as: 

1( ) ( ) ( )o oy t s t t n t                                                                            (1.7) 

where,  

( ) ( ) ( )o is t s t h t                                                                                      (1.8) 

( ) ( ) ( )o in t n t h t                                                                                      (1.9) 

here,   denotes the convolution and ( )h t is the impulse response of the matched filter. And 

the filter is assumed to be time invariant and linear [2]. 

From (3) and (4), and assuming ( )mR t  to be the matched filter autocorrelation function, the 

autocorrelation of the output noise is given by: 

 

Figure 3. Block Diagram for Matched Filtering 
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( ) ( ) ( )
o in n mR t R t R t   

         0 ( ) ( )
2

m

N
t R t   

        0 ( )
2

m

N
R t                                                                                      (1.10) 

And, the Power Spectral Density of the output noise is given by:  

2
( ) ( ) ( )

o in nS S H    

           
20 ( )

2

N
H                                                                                 (1.11) 

where,  ( )H  is the Fourier transform of the filter impulse response, ( )h t . 

More precisely, the total average output noise power, evaluated at 0t  , is given by: 

20(0) ( )
2on

N
R h u du





                                                                                  (1.12) 

The output signal of the matched filter is given by: 

0 1 1( ) ( ) ( )is t t s t t u h u du





                                                                             (1.13) 

The aim is to design the filter with such impulse response that maximizes the output SNR 

i.e. 

2

1( )
( )

(0)
o

o

n

s t t
SNR t

R


                                                                                             (1.14)  

Substituting Eq. (11) and (12) in the (13), will become, 

 

2

1

20

( ) ( )

( )

( )
2

is t t u h u du

SNR t
N

h u du









 







                                                            (1.15) 

Now applying Schwartz inequality and simplifying the expression (14), we get: 

2 2

1

20

( ) ( )

( )

( )
2

is t t u du h u du

SNR t
N

h u du

 

 





 


 


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2

1

0

2 ( )is t t u du

N





 




                                                                                          (1.16) 

which is valid only under the condition, 
0 1( ) ( )ih u k s t t u    , and k can be taken as equal 

to 1. Thus the maximum SNR will be: 

2

1

0

0

2 ( )

( )

is t t u du

SNR t
N





 




                                                                   (1.17) 

which can be further simplified using Parseval’s theorem into, 

2

1( )iE s t t u du





                                                                                          (1.18) 

where, E  is the energy of the input signal to the matched filter. Hence, the expression for 

the SNR of the output signal of the matched filter will become: 

0

0

2
( )

E
SNR t

N
                                                                                                           (1.19) 

Hence, it can be concluded that the peak instantaneous SNR is dependent only on the signal 

energy and the input noise power and is independent of the waveform utilized by the radar 

system. 

 

 

Figure 4. Plot showing compressed chirp signal using matched filter with zero delay 
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1.4 Ambiguity Function 

The ambiguity function of the radar is used to examine different waveforms. It provides an 

insight to the designer that how various waveforms are suitable for different applications in 

the radar system. The radar ambiguity function is used to represent the matched filter output. 

It denotes the interference caused by the range and Doppler shift of the target when 

compared to the reference target of equal radar cross section [1]. It gives the range and the 

Doppler resolution for the given radar waveform. While detecting closely placed targets 

with varying radial velocity, the radar receiver’s filter are matched not only to the 

transmitted signal but also with the various Doppler shifted versions of the signal lest the 

targets with different radial velocity can be uniquely identified. In these kind of cases, the 

different targets will produce the peaks at different Doppler shifted matched filter and hence 

it becomes necessary to examine the output of the matched filter in two different dimensions 

i.e. the time delay, , and the Doppler shift, . Precisely, the ambiguity function expresses 

the output of a matched filter when a signal with finite energy having a time delay of an 

interval  and a Doppler shift of   is passed through it, as compared to the expected values 

of the filter’s matched response. Mathematically, it is denoted as [1]:  

Figure 5. Plot showing compressed chirp signal using matched filter with delay of 100 

samples 
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2

2 2( , ) ( ) ( ) j tX s t s t e dt  




                                                                     (1.20) 

where, ( )s t is the signal’s complex envelope.   being positive means that the target is 

farther from the radar and for the Doppler shift,  , being positive means the target is moving 

towards the radar and being negative means that the target is moving away from the radar. 

The ambiguity function is the mathematical tool for analyzing the radar waveform behavior 

[11].  

1.3.1 Ambiguity Function Characteristics 

The ambiguity function has the following characteristics [1], [11]: 

A. The ambiguity function has its maximum value at the origin i.e. at ( , ) (0,0)   and is 

always equal to 24E .  

2 2 2max{ ( , ) } (0,0) 4X X E                                                                                      (1.21) 

and,
2 2

( , ) (0,0)X X                                                                                                    (1.22) 

B. The ambiguity function is symmetric about the origin. 

( , ) ( , )X X                                                                                                              (1.23) 

C. The ambiguity function has constant overall volume. 

2 2( , ) (2 )X d d E                                                                                                          (1.24) 

D. For any signal ( )u t with a complex envelope has the ambiguity function ( , )AF X   , 

the linear frequency modulation or quadratic phase modulation has the given response: 

( ) ( , )u t X                                                                                                                    (1.25) 

2( )exp( ) ( , )u t j kt X k                                                                                      (1.26) 



Chapter 1   Introduction  

 

10 

 

 

 

 

 

 

 

 

 

   Figure 7. Plot for Barker coded signal ambiguity function 

Figure 6. Plot for LFM signal ambiguity function 
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1.4 Radar Signals 

A continuous signal with fixed frequency and a long time duration of T is not apt for radars 

as it is unable to resolve the range of the targets because of its narrow bandwidth, 
1

B
T

 . 

Due to the above reason, modulation techniques in frequency or phase are implied which 

broadens the spectrum of the waveform and becomes capable of producing higher range 

resolution. Pulse compression methods are then implemented using the various 

mechanisms, where generally matched filter is used that compresses the signal into a 

duration of 
1

B
. 

1.4.1 Frequency Modulated Signals 

Frequency modulation is the means for widening the spectrum of the pulse [2]. Linear 

Frequency Modulation(LFM) is the most famous method for achieving the frequency 

modulation of the pulse. In LFM, the instantaneous frequency of the signal varies linearly 

across the bandwidth B during the whole time duration T . Mathematically, the envelope of 

a normalized linear frequency modulated pulse is denoted by:  

   21
exp

t
u t rect j kt

TT


 
  

 
                                                                          (1.27) 

here, 
B

k
T

  . k is the slope with which the frequency is changing through the whole time. 

‘+’ denotes the positive slope while ‘-’ denotes the negative slope. 

The phase at any instant of time is: 

   21
2

t kt                                                                                                                       (1.28) 

Thus, the frequency at any instant of time can be easily found out by differentiating the 

instantaneous phase with respect to time. 

   
d

f t t kt
dt
                                                                                                             (1.29) 

Thus, from the Eq. (1.28), it is clearly inferred that the frequency of the LFM is a linear 

function of time. Figure 10. depicts the matched filter response of the fixed frequency signal 

and the LFM signal. 

The figure of merit for the pulse compression system is the measure of the peak sidelobe 

with respect to the mainlobe peak and the term used for this purpose is peak sidelobe ratio, 

given by: 
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𝑃𝑆𝐿𝑅 =
1010log

𝑃𝑒𝑎𝑘 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑖𝑑𝑒𝑙𝑜𝑏𝑒

𝑃𝑒𝑎𝑘 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑎𝑖𝑛𝑙𝑜𝑏𝑒
                                                                     (1.30) 

 

 

 

 Figure 8. Plot for LFM component and its spectrum 

Figure 9. Plot for Autocorrelation Function of single LFM Pulse 
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The term PSLR is generally expressed in dB and hence the pulse compression systems are 

required to be designed in the same terms and expected to produce the least possible PSLR 

value. It can be clearly observed from Figure 10. that the output of the matched filter for the 

LFM pulse provides a quite high range resolution because of having a narrow mainlobe 

width. Beside the narrow mainlobe width, the output has also ambiguous sidelobes which 

hampers the detection of the weaker and nearby targets. For better detection lower sidelobes 

are favorable. The sidelobe with highest peak except the mainlobe peak are the peak 

sidelobes of the autocorrelation function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.2 Pulse with Phase Modulation 

As the phase coding pulse techniques are one of the initial methods employed for the 

compression in the radar signal processing. Here, a long time,T , duration pulse is divided 

into sub-pulses of equal duration, /bt T N , with N bits each, and each of the bits are then 

given a different phase value. The general complex envelope of any pulse with phase 

modulation is given by: 

 
1

( 1)1 N
b

n

n b

t n t
x t x rect

tT 

  
  

 
                                                                            (1.31) 

 

Figure 10. Autocorrelation Spectrum for unmodulated and 

linearly frequency modulated pulse 
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Where,  expn nx j and  1 2 3, , ,........,n N     are phase codes for  x t . Though 

there is a huge possible numbers of ways of generating a phase code but one most favorable 

ones are those which produce the optimal solution for the various conditions [2]. Desirable 

frequency spectrum, ease of implementation and the robustness in resolution properties of 

the pulse are the key points to select any phase code. In a most simple fashion, the binary 

phase shift keying technique shows the pulse compression by phase modulation, as in that  

 

case the code constitutes of n bits that are either 0 i.e. in phase or 180 i.e. out of phase with 

the reference bit. Figure 11. depicts the output of a binary phase coded signal of length 5 

bits when pulse compressed using a matched filter. The sequence taken here is [1 -1  1  1 -

1]. 

1.5 Discussion 

The process of pulse compression provides the radar designer with an ability to enhance the 

range resolution of the radar systems using a transmitter of low power by improving the 

overall bandwidth of the signal. It also reduces the bulkiness of the system but increases the 

complexity of the transceiver. Though LFM signal has a diverse role to play in the pulse 

compression, it also has few disadvantages. The LFM signal enhances the bandwidth of the 

transmitted signal resulting into betterment of the range resolution of the system. The range 

resolution is enhanced by a factor of the time-bandwidth product of the signal. The problem 

 
Figure 11. Autocorrelation spectrum for Unmodulated and 

Phase Modulated Signal 
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with the LFM signal is that it has high sidelobe value which are potential of masking the 

small targets.  

To overcome the high sidelobe level of the LFM signal few measures are there, like 

weighting in time domain and in frequency domain or the use of the NLFM signal. While 

using the amplitude modulation in time domain, the SNR of the transmitted signal goes low 

and hence the transmitted power is diminished which is undesirable. Also, if the weighting 

is done in the frequency domain the mainlobe width gets broadened which as a result 

decreases the range resolution but enhances the detection amplitude.
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Chapter 2 

 

2. Sidelobe suppression for Barker Code 

2.1. Pulse Compression for Phase Coded Signals 

Phase coded signals are formed by the division of a long duration pulse with a time duration 

of T into sub-pulses of N numbers where each sub-pulse has the width of τ. In the pulse 

compression of these signals the bandwidth of the signals is increased by varying the phase 

of the corresponding sub-pulse [2]. Each of the sub-pulse is having the phase of either 0 

radian or π radians. 

Here also, for the simple pulse compression, a matched filter is used. This matched filter 

produces the output of a spike with duration τ and an amplitude of N and the length of the 

output is the convolution length of the corresponding pulse. It has the compression ratio of 

T/τ ≈ BT, as B ≈ 1/ τ is the bandwidth of the signal. The waveform at the output of the 

matched has the length of N spanned to the either side of the peak or the central lobe. The 

lobes excluding the peak are called as the side-lobes of the output. 

 

2.2. Barker codes 

Generally, random choices are made for the binary states of 0 or π phases for each of the 

sub-pulse, constituting a barker code. Among those random choices, some of the random 

combinations are better than the others for a particular type of radar application. The primary 

goal while making such random combinations is that the autocorrelation of those phase 

coded pulses must have their side-lobes equal [12]. These codes are called barker codes only 

when they produce equalized side-lobes after being passed through the matched filter. For 

illustration, Figure 12. is used that shows a barker code of length 13 and Figure 13. shows 

its output of the matched filter when that signal is provided as the input to the matched filter. 

The auto-correlation output has six side-lobes of equal amplitude at the either side of the 

Figure 12. A Barker code with length 13 
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main-lobe that are 22.28 dB less than the main-lobe amplitude. The barker code with the 

length 13 is the longest one in its category.  

The barker codes are binary phased code in which the codes have the phase value of 0 or π 

and its autocorrelation generates side-lobes of equal magnitude. X. Wu and J. S. Fu have 

given an adaptive filtering method that enhances the PCR and suppresses the side-lobes 

using LMS and RLS method [14]. The signal to sidelobe ratio (SSR) of the output is 

improved but it has low Doppler tolerance. A filter is proposed by B. Zrnic, A. Zezak and 

I. Simik that is based on the modified RLS algorithm using self-clutter suppression method 

shows better results compared to its counterpart i.e. the RLS algorithm [15]. 

 

 

Figure 13. Output of the Matched Filter 
 

2.3 Matched filter response of the Barker codes 

As discussed in the previous chapter, the matched filter simply maximizes the peak signal 

to noise ratio (SNR) of the input signal at its output, which in turn helps in maximizing the 

detectability of the target by the radar system [13]. The system response of the matched 

filter is proportional the complex conjugate of the spectrum of signal at its input terminal. 

Mathematically, it is  

     2 mH f KS f exp j ft                                                                            (2.1) 

here, K is the proportionality constant, mt  is the time at which the matched filter produces 

maximum output,  S f
is the conjugate of the complex envelope of the received pulse 

which acts as the input to the matched filter.  
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Also, 

     2 mS f s t exp j ft dt




                                                                           (2.2) 

Thus the output of the matched filter is given as the cross-correlation of the replica of the 

transmitted waveform and the received pulse. While transmitting a rectangular pulse, the 

matched filter used is characterized by bandwidth, B , which is nearly reciprocal to the pulse 

width, , or can be approximated as 1B  . 

As a figure of merit, Peak to Side Lobe Ratio (PSLR) term is used which, mathematically, 

is given by:  

𝑃𝑆𝐿𝑅 = 1010log
𝑃𝑒𝑎𝑘 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑖𝑑𝑒−𝑙𝑜𝑏𝑒 

𝑃𝑒𝑎𝑘 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑎𝑖𝑛−𝑙𝑜𝑏𝑒 
  

 

Table 2.1 Barker Code List with PSLR 

 

 

 

2.4 Adaptive Filter Implementation 

Besides using a matched filter, an adaptive filter with N-tap can be used for better PSLR 

[14]. This can be done by taking barker code of length 13 as the input to the filter a desired 

output which produces a result only at the desirable instant of time. Also, the weights of the 

adaptive filter is trained by using the respective algorithm.  

In the new age, adaptive filtering techniques are very powerful mechanism for signal 

processing applications as they have the ability of operating sufficiently good even in the 

unfamiliar conditions and trail the time variations of the input signal. They have been of 

Barker Code Length Code phase Peak To Side-lobe Ratio  (dB) 

         2                    + - - 6.00 

         3                  + + - - 9.50 

         4                + + - + - 12.00 

         5              + + + - + - 14.00 

         7            + + + - - + -   - 16.90 

        11        + + + - - - + - - + -  - 20.80 

        13    + + + + + - - + + - + -+ - 22.28 
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immense importance in various diversified fields such as biomedical engineering, radar and 

sonar applications, communication processes etc [17], [18]. The general architecture of an 

adaptive filtering procedure is shown below.  

 

The above Figure 14. depicts an adaptive filter as a linear combiner. The adaptive filters 

have the input vector kx  and the desired response kd are employed to calculate the error 

vector ke which in turn manipulates the weights of the filter via the adaptive algorithms used. 

The filter coefficients are adjustable as per the requirement of the environmental conditions.  

 

2.4.1 Least Mean Square (LMS) Algorithm 

The least mean square algorithm is one of the most used adaptive filtering techniques in 

adaptive signal processing area. The ease of computation and the simplicity in 

implementation makes it one of the most favored algorithm as the repetition of data and 

gradient estimations for off-line cases are not required in this methodology [19]. Now, 

considering an arbitrary input vector provided to the filter be

Figure 14. Adaptive Filtering Architecture 
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 1 2 2 1, , ,...., ,k k k k k N k NX x x x x x       and initially the tap weight vector for the filter be

 0 1 2 2 1, , ,...., ,k N NW w w w w w  .  

The output
ky for the linear combiner architecture will be: 

T

k k ky X W                                                                                                                            (2.3) 

The instantaneous error at any time k will be: 

k k ke d y                                         

   T

k k kd X W                                                                                                                         (2.4) 

here, 
kd is desired response at any time index k . 

While developing LMS algorithm, the square of the error vector, 2

ke , is considered for the 

estimation of the gradient. Thus, the estimation for the gradient vector in each of the 

iterations is found by: 

2

0

2

1

.

ˆ .
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k

k

k

N

e

w

e

w 

 
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 
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 
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  
 
 
 

  

 

       2 k ke X                                                                                                                         (2.5) 

The Eq. (2.5) calculates the derivative of the error vector with respect to the corresponding 

tap weights estimated in Eq. (2.4). 

As the steepest descent algorithm expresses the iterative tap weight vector as: 

1
ˆ

k k kW W                                                                                                                       (2.6) 

here  is the step size regulating element called the gain constant. 
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Now, substituting the value of gradient, ˆ
k , from Eq. (2.5) into Eq. (2.6), the tap weight 

update expression for LMS is found to be: 

1 2k k k kW W e X                                                                                                                     (2.7) 

 

The dimension of the gain constant is reciprocal to the signal power. The process involves 

the weight update in each iterations till the error vector gets optimized and the gradient 

estimation is minimized. 

 

2.4.2 Recursive Least Square(RLS) Algorithm 

The development of the RLS algorithm was done on the basis of the matrix inversion 

lemma. Though the algorithm has the drawback of increase in the computational 

complexity, it provides a faster convergence rate with respect to its counterpart, the LMS 

algorithm. The convergence rate is however dominates the increase in the computational 

complexity, which in turn make the RLS algorithm more preferable [15], [16].  

Considering  1 2 2 1, , ,...., ,k k k k k N k NX x x x x x      as the input vector, the initial tap weight 

vector of the filter as  0 1 2 2 1, , ,...., ,k N NW w w w w w  , kd as the desired response of the filter 

and the assumption that the autocorrelation matrix kR is having its inverse possible, the 

algorithm follows the following steps to reach the optimal solution [15], [20]:  

A)  ,k kX d  are accepted as new samples. 

Figure 15. Plot showing LMS filter output 
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B) 
kX  is formed by shifting its elements into information vector. 

C) Priory output is calculated as: 

   0

0

T

ky k W X k                                                                                (2.8) 

D) Computing priory error as: 

     0 0e k d k y k                                                                       (2.9) 

E) Filtered information vector is computed as: 

   1

kZ k R X k                                                                                 (2.10) 

F) Computing normalized error power as: 

   Tq X k Z k                                                                                       (2.11) 

G) Gain constant is given by: 

1

1
v

q



                                                                                                   (2.12) 

H) Normalized information vector is computed by: 

   Z k vZ k                                                                                               (2.13) 

I) Optimal filter tap weight vector is modified from 0

kW to 0

1kW 
at each iteration by: 

   0 0

1 0k kW W e k Z k                                                                         (2.14) 

J) The inverse correlation matrix is updated after every iteration as: 

   1 1

1

T

k kR R Z k Z k 

                                                                                  (2.15) 

Prior to start the iteration, the autocorrelation matrix 1

kR is initiated as: 

1

k NR I                                                                                                  (2.16) 
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Here, NI being the identity matrix of order N N and  is the constant initialized with a 

large number such as 310 or 410 . 

 

 

2.5 Simulated Results and Discussion 

The matched filter is capable of performing pulse compression but is associated with 

sidelobes that are potential of masking the smaller targets and suffers with degradation in 

the noisy working conditions. The adaptive filters are better options to be used as they are 

robust while working in noisy conditions. 

 

Table 2.2 Comparison of PSLR values for different filters 

Filter Used PSLR Obtained(dB) 

1. Matched Filter - 22.28 

2. LMS Filter - 23.96 

3. RLS Filter - 25.76 

 

A filter of 13-tap is taken and trained in adaptive manner using the algorithms LMS and 

RLS. A shifted version of the barker codes are given as the input to the filter. The desired 

Figure 16. Plot showing RLS filter output 
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signal output is modeled in a way that it has only mainlobe and the sidelobes be zero. The 

adaptive filter is trained in a way to minimize all the side lobes so that the ratio of the 

mainlobe peak to sidelobe gets minimized. The peak lobe power to sidelobe power is 

compared in the table below. 

 

The table compares the PSLR obtained from matched filter, LMS filter and the RLS filter. 

It shows that the RLS filter outworks the matched and LMS filters.
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Chapter 3 

3.Sidelobe suppression in LFM pulse 

using windows 

Traditional radars have the problem of optimizing the peak power requirement for the 

transmitted pulse and the range resolution of the same. Pulse compression technique has 

overcome that problem as it facilitates the combination of both features, peak power 

requirement and resolution, of the Radar. Simple pulse compression can be achieved by the 

use of the matched filter. But, the process has the demerit of high peak to sidelobe ratio 

(PSLR) of the observation spectrum of the received pulse. So various methods are used to 

subsidize the PSLR so that the detection can be proper and robust. This paper enquires about 

the application of the windows in maximizing the PSLR Matched filter’s transfer function 

in frequency domain is the complex conjugate of the input signal’s spectrum [1], [13]. It has 

the ability to concentrate the pulse energy. As the shorter pulse width signal has the higher 

range resolution but is quite inefficient towards attaining high range measurements due to 

low power content. So, pulse compression technique has overcome that problem as it 

facilitates the combination of both features, peak power requirement and resolution, of the 

Radar. But the matched filter compression suffers with the high PSLR that are potent of 

masking small targets. To maximize the PSLR, windowing is used [21], [24]. 

3.1 Window Functions  

The sidelobes in the autocorrelation function of the transmitted pulse and the received pulse 

can be attenuated to a good extent by using the windowing functions. The windows are 

known to be mathematical functions that have pass band only to some selected range of time 

or frequency and outside that range the values are zero. There are many types of windows 

known. When a window function is multiplied with the other function, they gives zero value 

outside the pass band range which is the defined interval for window [23]. The windowing 

functions are also known as the weighting functions, which can be applied on any side of 

the processing unit viz. either on the transmitter side or the receiver side. But, the 

implementation of the weighting functions on the transmitter side results in the loss of the 

transmitted power and is beneficial to employ on the receiver side of the processing unit. 

Some of the window functions used in the simulation here are:
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A) Hamming Window: This window minimizes the maximum side lobe in an optimized 

fashion. The mathematical expression of this type of window is:  

 
2 1

0.54 0.46cos ,         
1 2

0,                                               otherwise

hamm

n N
n

w n N

  
    

  



                                                        (3.1) 

B) Hanning Window: These windows have zero value outside the pass band. 

Mathematically, it is given by: 

 
2 1

0.50 0.50cos ,         
1 2

0,                                               otherwise

hann

n N
n

w n N

  
    

  



                                                          (3.2) 

C) Blackman Window: This window is expressed as: 

 
2 4 1

0.42 0.50cos 0.0768cos ,         
1 1 2

0,                                                                                otherwise

blackman

n n N
n

w n N N

     
       

     



              (3.3) 

D) Flattop Window: This window has partly negative value and in frequency domain it 

has flat top. They are quite helpful in measurement of amplitude of sinusoidal 

frequency components. It is given as: 

 

2 4
1 1.93cos 1.29cos

1 1

6 8 1
          0.388cos 0.028 ,

1 1 2

0,                                                                     otherwise

flattop

n n

N N

n n N
w n n

N N

 

 

    
    

    
    

        
    





                             (3.4) 

E) Bartlett Window: It is also known as the triangular window which can be formed by 

the convolution of two equal length rectangular window. It is expressed as: 

 

1
12   1-  

2

2

0,                          otherwise  

bartlett

N
n

N
n

Lw n

 
 

 
 




                                                                      (3.5) 



Chapter 3            Sidelobe suppression in LFM pulse using windows 

27 

 

3.2 Linear Frequency Modulated Pulse 

LFM signals are generally used in RADARs because of their easy generation and have the 

compressed pulse shape that are insensitive to the Doppler shifts. 

 

 

LFM signal is denoted by: 

 

     cos sin
j t

e t j t


                                                                                         (3.6) 

where,  t is the instantaneous phase of the LFM pulse, given by: 

  2

0

1
2

2
t f t kt 

 
  

 
                                                                                                     (3.7) 

 

Figure 17. Plot for instantaneous Frequency v/s Time for LFM signal 

Figure 18. Plot showing positive and negative Frequency-Time slope of LFM pulse 
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3.3 Windowing of the LFM  

Windows are applied through the weighting functions in the process of maximization of the 

PSLR. The basic building block of the process is as follows [25]: 

 

The FFT is the basic building block for sidelobe suppression while compressing the LFM 

pulse on the receiver side. While calculating the FFT of the pulse, it is assumed that the 

pulse is periodic. But, it is not the case that prevails always. For the signal being non-

periodic, its frequency spectrum is affected with the leakage which further results into the 

smearing of the frequency components over a wide range and hence the frequency 

identification of the signal becomes tough. The windows are quite helpful in limiting the 

frequency range and thus also prohibits the leakages [22],[23]. Multiplying the window 

function with the non-periodic signal makes the signal periodic and also suppresses the 

sidelobes to a good extent. This can be done in both, time and frequency domain. Here it 

has been applied in time domain. 

3.4 Simulation Results 

For an LFM, the peak-to-sidelobe-ratio when compressed using the matched filter is -13.54 

dB. The received signal, in time domain, is multiplied with the window function and then 

passed through the matched filter to get the output and the result is compared with the 

received signal passed through the matched filter without being multiplied with the window 

function. The PSLR is calculated using the Eq. (1.30). 

The outputs of the different windowing operations are plotted and found that there is good 

improvement in the PSLR value of the compressed pulses but that is compensated by the 

widening of the main lobe width. As for the good range resolution, besides low side lobes, 

narrow mainlobe width is also required. Narrow main lobes are more efficient in detecting 

closely placed targets.  

Figure 19. Block diagram depicting sidelobe suppression of LFM pulse 
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Figure 20. Sidelobe Suppression Using Hamming Window 

Figure 21. Sidelobe Suppression Using Hanning Window 
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Figure 22. Sidelobe Suppression Using Bartlett Window 

Figure 23. Sidelobe Suppression Using Flattop Window 
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Figure 20 and Figure 21 show the Hamming and Hanning widowed output, respectively. 

As both the window functions are raised cosine functions, they exhibits the similar 

frequency characteristics. But, the Hamming window has better suppression for initial 

sidelobes while the Hanning window gives better suppression for distantly placed 

sidelobes.  

Figure 22, Figure 23 and Figure 24 show the outputs of Bartlett, Blackman and Flattop 

windows respectively. The width of the mainlobe of the Flattop windowed signal is highest 

among all but it also provides the maximum compression for the sidelobes. Because of its 

highest mainlobe width, the amplitude accuracy is maximum but has the poorest resolution.  

 

 

 

 

Table 3.1 PSLR obtained for different Windows 

 

           Types of Window used                   PSLR(dB) 

                      Hamming                     -42.90 

                      Hanning                     -31.54    

                      Bartlett                     -26.53 

                      Blackman                     -58.23 

                      Flattop                     -84.90 

 

Though the windows are providing suppressed sidelobes, they have the common demerit of 

increase in mainlobe width. But, they are used in different applications as per the 

requirement. Lowest maximum sidelobe level windows are required in strongly interfering 

signals in the vicinity of the frequency of interest. For narrow placed targets, the widow with 

lowest possible mainlobe width is required. If the high accuracy in the measurement of 

Figure 24. Sidelobe Suppression Using Blackman Window 
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amplitude is needed then the window with highest mainlobe width is required. Because of 

the higher mainlobe width of the flattop window, its resolution is lowest and it is also tough 

for this window to determine the exact frequency components of the received signal. The 

Bartlett window shows better resolution because of narrow bandwidth and hence is capable 

of detecting the closely spaced target signals.  

The results shows the suppression of the sidelobes is possible by using the window function 

for weighting the received signals. For an LFM pulse without the use of the window function, 

the PSLR value is -13.54dB, which is enhanced to different higher values with the use of the 

different window function. But, before choosing the window for a purpose it is necessary to 

look into its various related attributes like mainlobe width, compressed pulse width, PSLR 

provided etc. so as to use them more effectively.
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Chapter 4 

4. Suppression of grating lobes in stepped 

frequency train of LFM pulse 

4.1 Stepped frequency train of LFM pulse 

The range resolution of the linear frequency modulated radar signal can be enhanced by 

employing stepping of frequency between two consecutive transmitted pulses. By doing so, 

the total bandwidth of the signal is increased. This is done by using coherent train of stepped 

frequency pulses. In this method, the overall bandwidth of the signal gets enhanced while 

the transmitted pulses have a low instantaneous bandwidth. Moreover, the duration between 

the stepped pulses can be efficiently used by the radar system to accommodate the narrow 

frequency change between the consecutive pulses. If the stepping frequency is large then a 

large overall bandwidth is achieved [27], [28]. 

But this approach of achieving a large overall bandwidth is associated with the occurrence 

of the ambiguous peaks, also known as the ‘grating lobes’, when the product of the stepped 

frequency and the pulse duration becomes greater than unity. It is also noticed that the 

grating lobes can be reduced by using the LFM pulses instead of continuous frequency 

signals. The LFM pulses are stepped with frequency f  to reduce the effect of those grating 

lobes. The ACF of the train of pulses have the grating lobes while the ACF of the single 

LFM pulse has side lobes and nulls [31].  

4.2 AF for stepped frequency train of LFM pulses 

As the range resolution and the signal bandwidth are inversely related for a radar system, 

the stepped frequency train of LFM signal is an efficient procedure to enhance the total 

bandwidth of the transmitted pulse. Besides the procedure provides the system to adjust the 

center frequency between the consecutive pulses, it also produces grating lobes along with 

the mainlobe [30]. 

An LFM has a complex envelope denoted as [31]: 

   21
exp

pp

t
u t rect j kt

TT


 
   

 

                                                                                       (4.1)
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The LFM denoted by Eq. (4.1) has the unit energy as it is multiplied by the term
1

pT
, and 

k is the frequency slope present in the pulse given by: 

p

B
k

T
                                                                                                                                       (4.2) 

‘+’ and ‘-’ signs represent the positive and negative frequency slope of the LFM pulse 

respectively. The AF of a single pulse LFM is given by: 

   , 1 sinc 1 ,         p p

p p

X T k T
T T

 
    

    
           

     

                                            (4.3) 

Thus, a uniform train of the N number of such LFM pulses with unit energy can be written 

as: 

   
1

0

1 N

N r

n

u t u t nt
N





                                                                                                    (4.4) 

Each of the LFM pulse is supposed to be separated by the duration rt , which is the pulse 

repeating  time and is always greater than the twice of the pulse duration i.e. 2r pt T . 

Now, for any delay  less than the pulse duration 
pT , the AF of the single pulse and the 

train of coherent pulses are related as: 

   
 

 

sin
, , ,           

sin

r

N p

r

N t
X X T

N t


    


                                                                 (4.5) 

Now, adding LFM to the whole train of pulses with different frequency slopes sk , it 

becomes: 

     

   

2

1
2

0

exp

1
           exp

train N s

N

s r

n

u t u t j k t

j k t u t nt
N










 
                                                                              (4.6) 

where, ,  0s

r

f
k f

t


    , is the frequency step which can be either positive or negative 

depending on the sign ‘+’ or ‘-’ respectively.  

Again, according to the LFM property of the AF as discussed in Eq. (1.26) of Section 1.3.1, 

the addition of the LFM pulse will modify the AF of the train signal as: 

   
  
  

sin
, , ,           

sin

s r

train s p

s r

N k t
X X k T

N k t

  
     

  


  


                                 (4.7) 
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Now, using Eq. (4.3) in Eq. (4.7), we get 

    

  
  

, 1 sinc 1

sin
                                        ,      

sin

train p s

p p

s r

p

s r

X T k k
T T

N k t
T

N k t

 
   

  


  

    
           

     


 



                                              (4.8) 

Here, the slope 
sk is added to get the frequency step which adds up to the original slope k of 

the single LFM pulse making the overall bandwidth as [29]: 

s pB k k T                                                                                                                           (4.9) 

So, using the Eq. (4.9) in Eq. (4.8), we will get the AF of the stepped frequency train of 

LFM pulses as: 

 , 1 sinc 1

sin

                                        ,           

sin

train p

p p p

r

r

p

r

r

X T B
T T T

N f t
t

T

N f t
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  


 




 

     
            

      

  
   

   
  

   
  

                                      (4.10) 

4.3 Nullifying Condition for Grating lobes 

To nullify the grating lobes, it is assumed that there is a zero Doppler shift in the received 

pulse. So, applying zero Doppler cut i.e. putting 0  into Eq. (4.10), which is ACF 

expression of the train of LFM pulses, yields [29], [30], [31]:  

 
 

 

sin
1 sinc 1 ,       

sin
p

p p

N f
R B T

T T N f

  
  



     
                

                                         (4.11) 

Eq. (4.11) can be seen as a product of two components - (a) The first component is because 

of an increased slope single LFM pulse: 

 1 1 sinc 1 ,           p

p p

R B T
T T

 
  

    
          

     

                                                             (4.12) 

and (b) The second component gives rise to the grating lobes: 

 
 

 
2

sin
,           

sin
p

N f
R T

N f


 




 


                                                                                   (4.13) 
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                                                                                          (4.14) 

By Eq. (4.14), as  2R  is the ratio of two sinc functions, it produces peak at the instants 

when  sinc f has a null or zero value [31] i.e. when  

    

,    where 0, 1, 2,....., p

f n

f n n T f

 



 

        
                                                                  (4.15) 

or, 
lobes

n

f
 


                                                                                                                     (4.16) 

As of now, the overall AF of the train of LFM pulse has two components, the grating lobes 

produced by  2R  can be nullified if the nulls of  1R   coincide with them. For doing so, 

the first two grating lobes and nulls are coincided while in some cases it nullifies all the 

grating lobes. If a fixed frequency pulse is used then the grating lobes are more prominent 

and they can’t be nullified [31], which is depicted in Figure 25. 

 

 

Figure 25. Top: AF for stepped frequency train of fixed frequency and Bottom: 

Partial ACF(in dB).(N=8, Tp∆f=5, TpB=0) 
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4.4 
pT f -

pT B  relationship for grating lobe nullification 

The generalized relation between 
pT f and 

pT B is found in two parts [30]: 

A. Case I – 3pT f  : When the number of grating lobes is not more than three. In such 

case, there is a symmetry about 
2

pT
  in the sine argument of Eq. (4.12) i.e. 

1
p

B
T


 

 
  

 

. The position of the first grating lobe can be found by the relation: 

1
p

B
T


  

 
   

 

                                                                                                                    (4.17) 

1
1 1

p

B

f T f

 
      

                                                                                                               (4.18) 

 
2

1

p

p

p

T f
T B

T f


 

 
                                                                                                                 (4.19) 

Now, for 1 2pT f   , the first grating lobe is present in the second half of the pulse 

duration. So, for the situation,1 2pT f  
1 1

1
2 2

p

p p

T
T f T

f
      


and finally

2

p

p

T
T  , which implies that if a null is placed on it then it will also place a null in the 

first half of the spectrum where there is no grating lobe. Thus, matching the first grating 

lobe is not possible in this case but to match a null at any location of the single grating lobe 

is possible. 

Similarly, for specific values 2pT f   and 4pT B  , the nulls at first two consecutive 

position coincide with each other at 
2

pT
making the first grating lobe to match at the same 

position while the third null at 
pT matches with the second grating lobe.  
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Again, when 2 3pT f   , there will be a pair of symmetric nulls in both half of the pulse 

duration and the condition: 
 
 

2

2 2

p

p

p

T f
T B

T f




 
, must hold true so that the second null and 

the second grating lobe matches. 

B. Case II - 3pT f  : in this case the number of grating lobes appear is more than or 

equal to three. Considering the thm and thn nulls of  1R  , where n m , are exactly 

at thq and thr , where r q , grating lobes of  2R  . So using the generalized cases 

of n , m , q and r ,  1R  and  2R   will give the relations: 

1
p

q q
B m

f T f
 

 
     

                                                                                                      (4.20) 

1
p

r r
B n

f T f
 

 
     

                                                                                                      (4.21) 

Equating the above Eq. (4.20) and Eq. (4.21) simultaneously, 

1 1
p p

q q r r

m T f m T f

   
            

                                                        

2 2

p

mr nq
T f

mr nq


  


                                                                                                          (4.22) 

Thus for nullifying the first two grating lobes i.e.  

2 2

1, 2

4

2
p

q r

mr nq m n
T f

mr nq m n
 

  
   

  
                                                                                        (4.23) 

Now, as n m , r q and are all positive. Also, 
pT f    shows the number of the grating 

lobes produced, it must be positive and greater than r .  

The time bandwidth product, TBWP, for a valid 
pT f is: 
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                                                                                                       (4.24) 

And, like as above, for the first two grating lobes 
pT B  becomes: 

 
  
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                                                                                       (4.25) 

 

Now, the overlap ratio 
B

f
 will be equal to: 

 

 
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                                                                                                                  (4.26) 

For the first two lobes, the overlap ratio becomes: 

 
 

2 2

1, 2

4
      =

2

q r

mr nqB

f qr r q

m n

 

 
 
  
 

 
 
 

                                                                                                      (4.27) 

The overlap ratio must be less than the total number of pulses in order to achieve a 

significant raise in the bandwidth.  

As of now, the parameters 
pT B , 

pT f and 
B

f
are denoted in terms of m, n, r and q, the ACF 

can be written in terms of 
pT B  and 

pT f as: 
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                                                               (2.28) 

4.5 Simulation results and discussions 

Table 4.1 presents some of the possible valid values of the parameters m, n, r and q that 

shows the nullification of the grating lobes in the assumed case. For all the simulations, the 

number of pulses taken is 8 i.e. N=8.  

 

Table 4.3 Few valid values for nullification of first two grating lobes 

 

 

m n r q 
pT f  

pT B  B

f
 

1 1 2 1 3 4.5 1.5 

2 3 2 1 5 12.5 2.5 

3 4 2 1 4 16 4 

4 7 2 1 9 40.5 4.5 

 

Figure 26. Plots showing suppression of grating lobes in SFT of LFM pulses 

with N=8, Tp∆f=5, TpB=12.5(above) 



Chapter 4        Suppression of grating lobes in stepped frequency train of LFM pulse 

41 

 

 

 

 

 

Figure 28. Plots showing suppression of grating lobes in SFT of LFM pulses 

with N=8, Tp∆f=3, TpB=4.5(above) and Partial ACF in dB 

Figure 27. Plots showing suppression of grating lobes in SFT of LFM pulses 

N=8, Tp∆f=4, TpB=16(above) and Partial ACF in dB (below) 
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Simulation plots verify the fact that the nulls of  1R  are at the symmetrical location 

around the point 
2

pT
  and their number is the smallest integer value greater than 

2

pT B
i.e. 

2

pT B 
 
 

. The number of the peaks appear in the plot of  2R  is equal to 
pT f   . Table 4.1 

shows only four possible combinations of the values n, m, r, q, Tp∆f, TpB and 
𝑇𝑝

∆𝑓
 , though a 

lot more combinations are possible.  

Thus the overall bandwidth of the signal can be increased by employing the stepped 

frequency process to the train of LFM pulses which improves the range resolution of the 

signal. Though the constructed signal suffers with the grating lobe but that can be nullified 

by using proper values of the parameters 
pT B and 

pT f .
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Chapter 5 

5. Conclusion and Future work 

5.1 Conclusion 

Sidelobes in the spectrum of the radar signal is undesirable because of its potential to mask 

the smaller targets. They are meant to be minimized to a maximum level. This thesis looks 

into the various ways to find the minimum possible value of the sidelobes. Phase and 

Frequency modulation techniques to achieve the maximum value of PSLR is studied and 

simulated. Windowing or weighting of the received signal is done to suppress the sidelobes 

so that range resolution can be enhanced to acceptable level. 

Barker coded signals produces lower sidelobes when processed adaptively and also they are 

more robust to operate in the noisy conditions. 

Frequency stepping is also studied as it is one of the method to enlarge the overall bandwidth 

of the radar signal. It involves a number of narrow band pulses to achieve the goal. But, it 

is also associated with some ambiguous peaks, known as the ‘grating lobes’ which can be 

minimized by choosing proper design parameters of the signal. The stepped frequency LFM 

signal produces lower sidelobes if designed in a proper fashion but the mainlobe width 

becomes higher as they give more weightage to the center frequencies. 

 

5.2 Future Work 

Radar signal processing is one of the most diverse area of research. In future, I would like 

to work on some of the parametric measures to subsidize the sidelobes and maximize the 

range resolution of the system. Apart from barker coded signal and LFM, NLFM signal are 

interesting field of research. To diminish the complexity of the NLFM generation system is 

one of the area to work upon.  

Besides these, I want to work on the processes involving the signals to make them more 

Doppler tolerant.    
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