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Abstract 
 

Contingency analysis (CA) has always been an in integral part of power system security analysis. 

CA is a useful tool at disposal of operation personnel to see effects of future outages on the system. 

The overload Performance Index (PI) is a good index for ranking the contingencies as per their 

severity. The PI requires “n” number of DC analysis to create a complete index, where n is no of 

lines. And for a larger network having a higher multitude of lines, it is time consuming. A new 

approach has been discussed for ranking the contingencies. This method requires one DC analysis 

and line outage distribution factor, which is constant for a particular unchanged transmission 

network.  

Keywords: Contingency analysis, Performance index, Line sensitivity factor, Power system 

security. 
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Chapter 1 INTRODUCTION 
 

1.1 Introduction 
 
Power generation and transmission together form a very complex network and called electric 

power system. Its primary purpose is to provide electrical power in an uninterrupted fashion to the 

customer ends and that also within particular set limits of voltage and frequency. No doubt with 

the exploitation of electric power system the problem of voltage stability and voltage collapse calls 

for profound attention. 

 

 Power System Security is characterized as the capacity of the power system to stay secure without 

any serious disturbance in the system to any pre-selected credible contingencies. The most well-

known operational issues are transmission line overloads and low voltage violation at system 

buses. The procedure of distinguishing, whether the system is operating in the secure or insecure 

state, is called power system security analysis. The secure state suggests that the system working 

under prescribed voltage limit and transmission line violation is absent and within the sight of 

unforeseen contingencies. In the wake of any violation of any security related inequality pushes 

the system to an insecure state, thereby remedial actions to be taken to get the system back to 

secure state. 

 

 At any point in time, it is highly unlikely that the power system would be totally or completely 

secure. And it is very much possible that any particular chain of events can lead to total or partial 

failure of the system. Single contingencies are more observed than multiple contingencies. Power 

system security represents an essential issue in planning and operation of a power system. Security 

analysis, fundamentally, manages to assess the capacity of the system to keep on providing 

uninterrupted power in case of an unforeseen contingency. Routine strategy for security 

assessment includes comprehending full AC load flow studies along with transient stability 

analysis. 

 

In planning, design and operation stages of any electric power systems security analysis is a major 

factor. Security analysis comprises three aspects i.e. static, transient and dynamic. The traditional 
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method of static security analysis involves the solution of full AC load flow equations for each 

and every contingency, which is highly time-consuming and not practical for real-time 

applications. Security assessment should analyze whether, and to what extent, the system is 

practically safe from severe interference to its operation.  So if system security analysis is not put 

into assessment beforehand then any occurrence of certain severe interference or disturbance may 

lead the system to go to an undesirable emergency state. Therefore, for the effectiveness of the 

control of power system, quickness in security evaluation of their operating states are required. 

And it is seen that the conventional method falls short on the front that it uses a lot of computer 

resources and also takes a long time which is inadequate for real-time application. 

 

As discussed earlier Security assessment should analyze whether, and to what extent, the system 

is practically safe from severe interference to its operation. The system operator’s job involves 

maintaining the system in a normal state and to take immediate control actions in the wake of any 

severe disturbances that may cause the system to get into emergency state. Post application of the 

control action the system should operate in normal state. Therefore, the effectiveness of control of 

power systems suggests quickness in security evaluation of their operating states. 

 

In this thesis, we have dealt with the Line MVA limit violation or Line contingency. Line 

contingency occurs whenever the line MVA rating exceeds a given rating. One way to design 

credible line contingencies of an electric power system is to take one line out or modeling a line 

outage and then studying its effects on the other lines of the system. Then we would like to know 

how much a particular line outage might affect the whole power system and for that we can use 

Performance Index [2]. Then ranking PIs of the line outages would give us a particular idea how 

a particular contingency is more severe than other contingencies i.e. the largest valued PI is most 

disturbing of them all. But calculation of these PIs takes time as well as considerable computer 

resources if the system is vast comprising of hundreds of buses and transmission lines. An 

alternative method or some other index from where the operation personnel can know how much 

a particular line contingency is affecting the system and that too in a quicker fashion can be handy 

at the personnel end to allow them for monitoring and reliable operation. Line outage distribution 

factor (LODF) [2] is used to derive a new Index which is faster to calculate and requires only the 

values obtain after a complete AC load flow analysis of the system at normal state.   
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 1.2 Literature Review  
 

For the past several years digital computers are being used for the power-flow or load-flow studies 

and this can be attributed to the high-speed processing of these. Basically they assist the operator 

or personnel in evaluating real time performance of the system and formation of planes for system 

improvement. These computers can very efficiently study different cases without any intervention 

in between them. Nowadays contingency analysis (CA) plays an important role in energy 

management system. CA is one of the major aspect in the planning and operation of power system. 

It provides the personnel tools which can be employed for the managing, creating, analyzing and 

reporting lists of contingencies and related violations [5]. The CA is being used as both off line 

and on line tool for analyzing the contingency events and to provide with a tool for operators to 

show effects of future outages.   

 As the increment of load demand is inevitable and to meet this demand the present systems are 

lacking proper investments in its generation and transmission. Which in turn have affected the 

stability, so a more reliable and faster tool is required [2, 6, 7].  

 For faster estimation of system stability just after a certain outage the CA involves efficient 

calculation of system performance from a set system conditions. Computer program has been 

developed for testing the performance of a particular power system in presence of line and 

transformer contingencies [1] which is based on the specified maximum capacity of the line and 

transformer.   

The traditional approach of steady-state contingency analysis requires testing of all contingencies 

sequentially to evaluate system’s operation and reliability [8].  This requires simulation of outages 

of one or more transmission lines to study their effects and for this purpose various fast 

computational techniques are being used such as Stott’s Fast Decoupled load flow [5]. Since 

exhaustive contingency analysis becomes impractical due to its long running time an alternative 

method for selecting line contingencies has been given in this paper. According to the new method 

all credible line contingencies are ranked so if a contingency happened in real time we can know 

the severity of that. If it is among the top cases then we can employ a full AC load flow analysis 
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for complete assessment of the system. Since a full AC load flow analysis is time consuming for 

a larger system we should use it judiciously.   

1.3 Motivation 

Day by day in the world the consumption of electric power is increasing so the main objective of 

the provider has always been to deliver consumer uninterrupted power in economical and reliable 

ways. A single line outage pushes the transmission circuits of the system to take up the flow on 

the line (outage line) which is now opened. And if one of the line gets opened due to relay operation 

due to heavy loading, thereby causing even more load on the remaining lines and causing a 

cascading outage. Most of the system are designed with much redundancy in its transmission 

network to avoid cascading failure but due to the presence of large possible system conditions a 

new contingency selection index might be handy at the operation personnel end and it can also be 

used in pre-screening of all single line outage contingency of a system.  

 

1.4 Objective 
 

The objective of the thesis are: 

a. To design a faster method to rank all possible single line contingencies of a given 

system. 
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Chapter 2 CONTINGENCY ANALYSIS 
 

2.1 Introduction 
 

One of the major aspect in today’s Energy Management System (EMS) is contingency analysis. 

The purpose of contingency analysis or simply CA is to identify overloads and problems which 

may arise due to any contingency. 

2.2 Contingency Analysis 
 

Modern day power system is made of up a large number of electrical equipment and any failure of 

these may lead the system to failure by pushing the system parameters beyond its operating point. 

Thus there will be an obstruction in its secure operation and reliability also suffer. For the power 

system to operate securely it is imperative that no limit is violated like bus voltage and line MVA 

flow and if not there will be blackouts or equipment damage. 

“Contingency” means any unpredictable events in a power system and this can lead the system to 

instability or total failure also. It affects the system’s security, reliability and continuity. A 

temporary suspension of the power can be referred as an outage. While contingencies also refer to 

an outages or circumstances which are possible in a given system but cannot be predicted with 

confidence. And contingency analysis (CA) is the study of the system conditions by modeling 

different possible outages like generator, transformer or line outages. 

The power engineer are responsible for efficient, cost effective and efficient power dispatch to the 

consumer’s end and that too in an uninterrupted method. But the ever growing demand and rapid 

growing of the network pose a great challenge for the engineers. 

At a power utility control center CA is used as a security analysis application. Its purpose is to 

assess the power system in order to identify any possible violation or overloading which can arise 

in wake of any contingency. Basically CA is an abnormal condition in the power system which 

put the whole network under pressure. It may occur due to sudden outage of a transmission link or 

line, generator outage, sudden change of load demand. 
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CA is proved to be a good study tool for the operation personnel due to its ability to use both as an 

off line and as an on line tool. As an off line tool to study various system characteristics for various 

contingencies and as an on line tool to help the operator to know effects of future outages.   

o System security can be determined by the capability of the system to withstand credible 

contingencies. 

o The weak elements of the system are those which can present further overload in the 

system in wake of a certain contingency. 

o The standard approach for CA simulation is to perform or model outage taking one line 

out. 

o Then ranking is done on basis of severity of all the CA simulation. 

o CA is therefore used as a basic tool for maintenance plans and the corresponding outage 

schedules. 

CA consists of simulation of the outages and investigation of the change on the system’s steady 

state operating characteristics like bus voltages, line power flows. Various computational 

techniques like Fast Decoupled Load Flow [8] is used in it. There are mainly two types of 

contingencies more pronounced in power generation or transmission system i.e. Line 

contingency and Generator contingency. These contingency mainly causes two types of system 

violations. 

2.2.1 Low voltage Violation 
 

This is basically seen at the buses when the voltage at any bus is less than the specified voltage 

level. Generally the operating voltage of buses ranges from 0.95 p.u. to 1.05 p.u. until and unless 

mentioned otherwise. So if any bus voltage falls below the 0.95 p.u. mark or the specified limit it 

is said that the bus has a low voltage. And if it is above the 1.05 p.u. mark or the specified limit 

the bus is said to have a high voltage problem. It is realized that in the power system network large 

reactive power is the actual reason behind the voltage issues. Thus on account of low voltage issues 

reactive power is supplied to the bus to build the voltage profile at the bus. In the instance of the 

high voltage reactive power is injected at the busses to keep up the system normal voltage. 
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2.2.2 Line MVA limits violations 
 

This kind of possibility happens in the system when the MVA rating of the line surpasses given 

rating. This is for the most part because of the expansion in the increment in current’s amplitude 

in that line. The lines are planned in a manner that they should have the capacity to withstand 

150% of their MVA limit. In view of utility practices, if the current crosses the 80-90 % of the 

limit, it is declared as an alarm situation. 

2.3 Use of CA as a tool 
 

In any security assessment of a power system CA is one of the prominent issue and since 

infrastructure is getting more complex with little or no extensive development in electric power 

station, more increment in demand cannot be handled by the system. Since system is expanding 

day by day it is required that contingency analysis should be effective. 

 

The contingency analysis involves simulation of the individual contingency for a given power 

system. The contingency analysis comprises of three steps. There as follows: 

 

1) Contingency creation: The first stage of the analysis. It comprises of all contingencies viable to 

occur in a power system.  The process make a list of all possible contingency at the end of it 

execution. 

 

2) Contingency selection: In this second stage of contingency analysis selection of the severe 

contingencies make it to a list. The list shows those contingencies which can lead to line MVA 

and bus voltage violation. The list is minimized by eliminating the cases which are less severe and 

only emphasizing on the most severe cases. After this by help of any of the index calculation the 

ranking of the cases are done. 
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3) Contingency evaluation: The third step involves the most important aspect as this involves 

necessary control actions and necessary security action to be taken in order to mitigate effects of 

the most severe case of the list for a given power system. 

 

 

The method used is Performance index (PI) for the quantifying the severity and ranking those 

contingencies in the order severity. 

 

Various iterative methods can be employed for calculation the performance indexes. 

 

2.4 Power Flow solution 
 

For the control a planning operation of a power system Power flow studies are required. It also 

used in planning for future expansion of the network. Power flow is basically the computational 

procedure necessary for calculating the steady state operating characteristic of a proposed network.  

Basically power flow studies or load flow studies gives steady state operating condition of a 

proposed network for a given set of bus-bar loads. According to economic dispatching the active 

powers generations are mentioned. Generation voltage magnitude is kept at a specified voltage 

level by automatic voltage regulators on the machine excitation side. Loads are basically specified 

in terms of constant active and reactive power requirements. And it is assumed that the loads are 

unaffected by little variation of frequency and voltage which is expected during normal steady 

start operation.  

Some prior assumption are made as, power system is a single phase model and it is operating under 

balanced condition. Those are voltage magnitude “|V|”, phase angle “ ”, real power “P” and 

reactive power “Q”. 

Since direct analysis of a given network is not possible because the loads are given in terms of 

complex power instead of impedances and also the generator acts more like power source. The 

information obtained by power flow/load flow study are: 

 voltage magnitude “|V|”, phase angle “ ” of load buses 
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 Reactive powers “Q” and voltage p0hase angles at Generaor buses 

 Real “P” and reactive “ Q” power flow on transmission link/line 

 Finally power “S” at reference bus 

The system buses are divided into three categories as follows: 

 

 

 

2.4.1 SLACK BUS: 
 

The slack bus or swing bus is basically a bus with a generator where the voltage magnitude and 

phase angle are known firsthand. The difference between scheduled loads and generated powers 

is found by this bus which are caused by the power losses in the network. 

 

2.4.2 LOAD BUSES: 
 

For these buses the voltages and phase angles are unknown. Only the active and reactive power is 

mentioned. These buses are also known as PQ buses. 

 

2.4.3 P-V BUSES: 
 

The P-V buses are known as voltage controlled buses or the generator buses. The voltage 

magnitudes and real powers are mentioned here. So the phase angle and reactive power has to be 

determined. 

Power flow or the load flow problem results into nonlinear algebraic equations in mathematical 

formulation which can only be solved by iterative method. 

There are various iterative techniques. 

  Gauss Siedel power flow solution: 

  Fast decoupled power flow solution: 

  Newton Raphson load flow solution: 



10 

 

 

 

 

2.5 Fast Decoupled Power Flow Solution: 
 

An important and useful property of power system is that the change in real power is primarily 

governed by the charges in the voltage angles, but not in voltage magnitudes. On the other hand, 

the charges in the reactive power are primarily influenced by the charges in voltage magnitudes, 

but not in the voltage angles. To see this, let us note the following facts: 

 

a. Under normal steady state operation, the voltage magnitudes are all nearly equal to 1.0.  

b. As the transmission lines are mostly reactive, the conductances are quite small as compared 

to the susceptances (Gij << Bij). 

c. Under normal steady state operation the angular differences among the bus voltages are quite 

small ( 0i j   ) (within5 10  ). 

d. The injected reactive power at any bus is always much less than the reactive power consumed 

by the elements connected to this bus when these elements are shorted to the ground (𝑄𝑖 ≪

 𝐵𝑖𝑖𝑉𝑖
2). 

We have two equations [9]: one is to solve for change in bus angle and one is to solve for the bus 

voltage which are solved alternatively and always updating with most recent values obtained from 

these two equations.  

                                      [ '][ ]
P

B
V


 

   
 

                               (2.1) 

                                      [ ''] ]  [  
Q

B V
V

 
   

 
                              (2.2) 

Where  

[ ']B has elements -𝐵𝑖𝑘(i=2,3,…..NB and k=2,3,….NB) of 𝑌𝐵𝑈𝑆 matrix. 

[ '']B  has elements -𝐵𝑖𝑘(i=NV+1, NV+2,….,NB and k=NV+1, NV+2,,…,NB) of 𝑌𝐵𝑈𝑆 matrix.  

 

Further simplification of this method can be achieved by:  
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a. Omitting that elements of [ ']B that mainly affect reactive power flow, i.e. shunt reactances 

and transformer off-nominal in-phase taps. 

b. Omitting from [ '']B  the angle shifting effect of the phase shifter that mainly affects reactive 

power flows. 

c. Also omitting the series resistance in calculating the elements of [ ']B , which then will 

become the dc approximation of the power flow matrix. 

 

2.5.1 Fast Decoupled Load Flow Algorithm [4] 
 

I. Read data 

NB (total number of buses); NV (total number of PV buses). 

𝑉1, 𝛿𝑖 for slack bus, 𝑃𝑖
𝑆(𝑖 = 2,3, … . 𝑁𝐵) for PQ and PV buses. 

𝑄𝑖
𝑆 (𝑖 = 𝑁𝑉 + 1, 𝑁𝑉 + 2, … … , 𝑁𝐵) for PQ buses,  V𝑖

𝑆 (𝑖 = 2,3, … . . 𝑁𝑉 𝑓𝑜𝑟 𝑃𝑉 𝑏𝑢𝑠𝑒𝑠). 

𝑉𝑖
𝑚𝑖𝑛, 𝑉𝑖

𝑚𝑎𝑥  (𝑖 = 𝑁𝑉 + 1, 𝑁𝑉 + 2, … … , 𝑁𝐵) for PQ buses. 

𝑄𝑖
𝑚𝑖𝑛, 𝑄𝑖

𝑚𝑎𝑥 (i=2,3,….NV) for PV buses, R (the maximum number of iterations), ∈ 

(tolerance of convergence) 

 

II. Form  𝑌𝐵𝑈𝑆 as explained in and form [ ']B  and  [ '']B  matrices. 

 

III. Assume initially, voltage magnitudes and voltage angles 

|𝑉𝑖| (𝑖 = 𝑁𝑉 + 1, 𝑁𝑉 + 2, … … , 𝑁𝐵)  and  i  (i = 2,3,…..N B) 

 

IV. Set the iteration count r to 0 or r =0. 

 

V. Compute the active and change in active power (𝑃𝑖 & ∆𝑃𝑖) of buses except for the slack or 

swing bus 

 

   
1

cos sin

 

NB

i i k ik i k ik i k

k

P V V G B   


        (i = 2, 3…NB)          (2.3) 

S
i i iP P P     (i=2, 3…NB) 
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VI. Compute maxP = maximum {  Pi  (i = 2, 3…..NB) }. 

If maxP  p  then go to step 9. 

 

VII. Compute i  ( i=2,3,…..NB ) using the equation 

[ '][ ]
P

B
V


 

   
 

 

                         

 

 

VIII. Modified i  is calculated as  

 

                i i i        (i=2, 3…NB) 

 

IX. Calculate iQ  and iQ  using the formula 

   
1

sin cos
NB

i i k ik i k ik i k

k

Q V V G B   


        (i = NV+1, NV+2… NB)  (2.4) 

S
i i iQ Q Q    (i = NV+1, NV+2… NB) 

 

X. Compute maxQ -maximum { iQ  (i = NV+1, NV+2 …NB)}. 

If ( maxQ q  and  maxP  p ) then go to step 14. 

 

XI. Calculate iV  (i NV+1, NV+2… NB ) using the equation 

 

                     [ ''][ ]
Q

B V
V

 
   

 
     

XII. Modify |𝑉𝑖| as  

 

i i iV V V    (i = NV+1, NV+2 …NB) 
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XIII. Advance the count r = r + 1. 

 

XIV. Compute slack bus active and reactive power from the following equations  

 

   1 1 1 1 1 1

1

cos sin
NB

k k k k k

k

P V V G B   


             (2.5) 

   1 1 1 1 1 1

1

sin cos
NB

k k k k k

k

Q V V G B   


             (2.6) 

 

XV. Calculate line flows from the following data 

 

* * * * *

0[{( ) ( ) } ( ) ]c c c c
ik i i k iik ikS V V V y V y            (2.7) 

* * * * *

0[{( ) ( ) } ( ) ]c c c c
ki k k i kki kiS V V V y V y             (2.8) 

 

Where (cos sin )c
i i i iV V j       (2.9) 

 

XVI. Stop. 

 

 

2.6 AC power flow method of contingency analysis 
 

Simplest contingency analysis using AC power flow method consist of running a full AC 

power flow analysis for every possible contingency be it is generator, transmission line, and 

transformer outage. This procedure can determine the line overloads and voltage limit violation 

accurately. But it suffers from a major drawback as full AC power flow requires a long time 

to execute and also takes a huge amount of computer memory. Thus we require certain index 
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to rank the contingencies based on their severity and use full AC power flow for some severe 

cases only. Because most of the power flow results do not show any violation [2].  

 

 

2.7 Performance index 
 

To know how much a particular outage might affect the power system Performance Index or 

PI is useful. Overload PI can be defined as follows: 

                                           PI =  

2

max

l

n

flowl

all branches
l

P

P

 
  

 
      (2.10) 

Where  

                flowlP  is the MW flowing on the line “l” 

                
max

lP is the MW limit of the line “l” 

                 n=1 for exact calculation 

Calculation can be made if n=1 and then making a table of all PI values, one for each line in 

the network. Then the selection can be done by ordering the PI table from largest to least value. 

 

 

The PI uses DC load flow model for ranking the different cases using the real power flow on 

line. After the table is made the security analysis starts by executing full power flows for the 

case at the top of the list and then solve the case which is second and so on until a threshold is 

reached or when the cases do not give problems.  
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Chapter 3 A NEW METHOD FOR LINE CONINGENCY 

RANKING 
 

3.1 Introduction 
 

In PI procedure one need to take each line out or model a line outage for each line. This also 

need the active power flows or MW (megawatt) flows of all the lines after a particular outage 

except for the, obviously, opened line. In this paper we have proposed a new method that uses 

MW flows on the line before it is cut from the network and sensitivity factors called as the 

“Line outage distribution factor”, which values are constant for a particular transmission 

network. 

 

3.2 Line outage distribution factor 
 

Line outage distribution factors are applied for overload testing when transmission line or 

circuit are lost. From the basic definition of line outage distribution factor is: 

0,

l

l k

k

f
d

f


                                        (3.1) 

Where,  

,l kd = line outage distribution factor while monitoring line l when there is an outage on line 

“k”  

l
f = change in the MW flow on line “l” 

0

k
f  = MW flow on line “k” before it was outaged 
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The flow on line “l” when line “k” is out can be determined if power on line “l” and “k” is 

known by using the “d” factors as follows 

  
0 0

,l kl l k
f f fd


                                      (3.2) 

Where, 

0

k
f  and 

0

l
f  is the preoutage flows on line k and l, respectively 

l
f


 is the flow on line k when line k is out 

 

3.2.1 Calculation of line outage distribution factor 
 

In a network a line outage can be modeled by means of adding two power injections at both 

ends or buses without actually the line be cut from the system. If line “k” which in between 

bus “n” and “m” is to be opened by circuit breaker, no current will flow on the line. This is 

modeled as two injections while the circuit breaker is still closed as shown in fig 3.2 while  

  

FIG 3.1 in normal condition 

fig 3.1 shows normal condition. In fig 3.2 we can see that two injections nP = 𝑃𝑛𝑚
′
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FIG 3.2 Modelling of line outage of k line 

 

mP = - 𝑃𝑛𝑚
′   at bus n and m respectively. 𝑃𝑛𝑚

′  is flow on line when line k is out.  

Standard matrix calculation for DC power flow is given as: 

 X P                                   (3.3) 

Where   is the change in bus phase angle,  X is inverse of the matrix [ ']B  and P  is change 

in bus injection. 
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Now,                                             

.

.

.

.

n

m

P
P

P

 
 
 
 

   
 
 
 
 

 

Then we get   

n nn n nm mX P X P                         (3.4) 

m mn n mm mX P X P                         (3.5) 

We previously know that for the outage modeling nP  and mP  equal the power flowing on the 

line k after it is out i.e. 

'

nmP n mP P                                     (3.6) 

where 

' ' '1
( )nm n m

kx
P                                           (3.7) 

and 

( )

( )

n nn nm n

m mm mn n

X X P

X X P





   

                                    (3.8) 

and  

'

'

n n n

m m m

  

  

 

 
                                                 (3.9) 

 

Now from 3.7 we have 
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' 1
( 2 )nn mm nm nnm nm

k

P P X X X P
x

                                (3.10) 

 

 

or 

1

1
1 ( 2 )

n nm

nn mm nm

k

P P

X X X
x

 
 

   
   
 

                                (3.11) 

Now a sensitivity factor   can be defined as the ratio between phase angle change “ i ” at any 

bus “i” to the original real power flow nmP  on line “k” before the outage: 

                                          ,

i

i nm

nmP





                                              (3.12) 

When neither of “n” or “m” is the reference two bus injections are made as shown in fig. 3.2. Thus 

change in phase angle at bus “i” is given by  

i in n im mX P X P                         (3.13) 

Then using the relationship between nP  and mP , we have  

 
,

( 2 )

in im k

i nm
k nn mm nm

X X x

x X X X





  
             (3.14) 

In case of “n” or “m” being the system reference bus, only one injection be made because phase 

angle of reference bus does not change. 
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,

in k

i nm
k nn

X x

x X
 


           if “m” is the reference bus 

                                    

im k

k mm

X x

x X





          if “n” is the reference bus               (3.15) 

In case of bus “i” being the reference bus, then ,i nm will be zero since reference bus angle is 

constant. 

Now the line outage distribution factor while monitoring line “l” (between bus “i” and “j”) after 

line “k” (between bus “n” and “m”) can be written as 

 
, 0 0

1
i j

ll
l k

k k

f xd
f f

  


   

                                 = , ,

1
( )i nm j nm

lx
                      (3.16) 

If neither of bus I or j is a reference bus then 

           ,l kd

1
( )

( 2 )

in jn im jm

l

k nn mm nm

X X X X
x

x X X X

  


  
              (3.17) 

For the calculation of line distribution factors the transmission network structure has to be known 

previously. The lodf (line outage distribution factor) is stored for a given known transmission 

network. 

 

3.3 New method for line contingency selection 
 

The lodf table can be used to derive a new system parameter, which works similar to the PI 

contingency selection method. It needs only one DC analysis while the system is at normal or 

steady state condition as compared to “n” analysis in the PI contingency selection method, where 
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n is number of total line. In PI contingency selection method one DC analysis is required for each 

modeled line outage. 

From Eq. 3.2 we have 

0 0

,l kl l k
f f fd


   

then we can write 

0 0

,l l l k kf f d f


                          

If we take rms of 

0

,

max

l k k

l

d f

P
 (

max

lP  is the max MW limit on line l) for all line “l” when there is an 

outage on line “k”, we would have a new system parameter. Let’s name it as “effective change in 

MW flow on all the lines taken together when line “k” is out” or
,eff kP  , which is given as: 

,eff kP =

2
0

,

max
1

1 n no of lines
l k k

l l
l k

d f

n P






 
  
 

               (3.18) 

,eff kP  like PI does not necessarily indicate which bus voltage or line flow violation is happening 

in the system. What it does is rather compare between other contingencies on the basis of severity. 

The lines at the top of the 
,eff kP  list are the candidate for the short list. 

If a contingency does happen the operation personnel will have a choice to run a full AC load flow 

for the case if the case is placed in the short list. 

 

3.4 Using ,eff kP  in contingency selection/screening: 
 

 The 
,eff kP method can comprises of two stages for selection of line contingency. Firstly, sorting 

the list according to the 
,eff kP values of particular line outages. Secondly, further shortlisting on 
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the basis of the threshold set by the operator. Let the threshold value be some p% of the top member 

in the 
,eff kP table. Then on completion of the two stages in the end full AC load flow will be run 

for the shortlisted members only and if any line violation is seen, the personnel will be alarmed. 

Setting of particular threshold values is totally depends on the personnel. A more conservative 

approach will be the setting of threshold to lower value in case the personnel does not want to miss 

out on any possible violations. 
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Chapter 4 RESULTS AND DISCUSSION  

 

4.1 Introduction 
 

For the validation of the method proposed in this thesis 
,eff kP is compared to the already pervasive 

in the field of CA, PI for two systems viz. IEEE 9 bus system and a 6 bus system (Appendix).  

4.2 IEEE 9 bus system  
 

IEEE 9 bus system is taken for the study of comparison between PI and
,eff kP . 

Table 4.1: Pre contingency MW line flows of IEEE 9 bus system 

Serial number Line between buses MW Line flow (in p.u.) % of capacity of 

line MW 

1 6-4 0.303281  30.437 

2 7-5 -0.863178  87.277 

3 9-6 -0.60478  60.708 

4 7-8 -0.753267 75.975 

5 5-4 0.426727 48.517 

6 8-9 0.229736 27.096 

 

Table 4.1 shows the actual line flows on the lines prior to any contingency and also depicts % 

loading of lines. Normally a line has capacity to withstand 150% of its MVA limit. Fast Decoupled 

power flow method has been implied to get the line flow on all the lines.  
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Table 4.2: LODF of 9 bus system 

lines  k=1(6-4) k=2(7-5) k=3(9-6) k=4(7-8) k=5(5-4) k=6(8-9) 

l=1 

(6-4) 

 0.999994 -1 -1 0.99998 -0.99999 

l=2 

(7-5 

1  0.999995 0.999986 -0.999985 1 

l=3 

(9-6) 

-

1.00001 

0.999993  -0.999999 0.999979 -0.99999 

l=4 

(7-8) 

-

1.00001 

0.999986 -1  0.99972 -1.00001 

l=5 

(5-4) 

1 -0.999998 0.999993 0.999984  1 

l=6 

(8-9) 

-1 0.999998 -0.999994 -1 0.999984  

 

Where line l=1 and k=1 is between bus 6 and 4. 

 

Using table 4.2 the calculation of
,eff kP table is done and compared with PI in table 4.3. 

 

 

 

 

 

 

 

 

 

 

 



25 

 

Table 4.3: Comparison between PI and 
,eff kP  for IEEE 9 bus system 

 

Line outage ordered by PI (use of six load 

flow analysis for sorting the index) 

Line outage ordered by 
,eff kP (use of one dc 

analysis for sorting the index) 

Performanc

e index 

Ordere

d Lines 

Overloa

d lines 

% of 

capacit

y of 

line 

MW 

,eff kP = 

2
0

,

max
1

1 n no of lines
l k k

l l
l k

d f

n P






 
  
 



 

Ordere

d Lines 

Overloa

d lines 

% of 

capacit

y of 

line 

MW 

7.08181 

 

 

7-5 

 

 

9-6 

7-8 

5-4 

147.49

2 

157.63

4 

133.06

2 

0.787965 7-5 9-6 

7-8 

5-4 

147.49

2 

157.63

4 

133.06

2 

4.29623 7-8 7-5 155.64

5 

0.687632 7-8 7-5 155.64

5 

3.74672 9-6 7-5 149.34

9 

0.552084 9-6 7-5 149.34

9 

3.28952 5-4 7-5 148.13

5 

0.389539 5-4 7-5 148.13

5 

2.85392 6-4 7-8 106.29

3 

0.276857 6-4 7-8 106.29

3 

2.52984 8-9 7-8 100.44

1 

0.20972 8-9 7-8 100.44

1 
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Both PI and 
,eff kP are calculated for each contingency and ranked. And then Fast decoupled power 

flow method has been implied to see the line flow for each contingency. 

 

4.3 6 bus system 
 

6 bus system is taken for study of comparison between PI and
,eff kP . 

 

Table 4.4: Pre contingency MW line flows of 6 bus system 

Serial number Line between bus MW Line flow (MW 

in p.u.) 

% of capacity of line 

MW 

1 1-2 0.268694 89.564 

2 1-4 0.437055 87.411 

3 1-5 0.357339 89.334 

4 2-3 0.0207664 10.383 

5 2-4 0.361676 90.418 

6 2-5 0.167112 83.556 

7 2-6 0.269556 89.852 

8 3-5 0.210448 105.224 

9 3-6 0.478777 79.796 

10 4-5 0.0403673 20.183 

11 5-6 0.00921748 4.608 

 

Table 4.4 shows the actual line flows on the lines prior to any contingency and also depicts % 

loading of lines of 6 bus system. Similar to the 9 bus system. 
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Table 4.5: LODF for 6 bus system 

line k=1 (1-

2) 

k=2 (1-

4) 

k=3 (1-

5) 

k=4 (2-

3) 

k=5 (2-

4) 

k=6 (2-

5) 

k=7 (2-

6) 

k=8 (3-

5) 

k=9 (3-

6) 

k=10 (4-

5) 

k=11 (5-

6) 

l=1 (1-

2) 

 0.63 0.54 -0.11 -0.50 -0.21 -0.12 -0.13 0.01 0.009 0.13 

l=2 (1-

4) 

0.59  0.45 -0.03 0.61 -0.06 -0.03 -0.04 0.003 -0.32 0.03 

l=3 (1-

5) 

0.40 0.36  0.14 -0.10 0.27 0.15 0.17 -0.01 0.31 -0.17 

l=4 (2-

3) 

-0.10 -0.03 0.17  0.12 0.22 0.46 -0.39 -0.52 0.17 0.13 

l= 5 (2-

4) 

-0.58 0.76 -0.17 0.15  0.29 0.17 0.19 -0.019 -0.67 -0.18 

l=6 (2-

5) 

-0.18 -0.05 0.32 0.22 0.22  0.23 0.26 -0.026 0.31 -0.25 

l=7 (2-

6) 

-0.12 -0.03 0.21 0.50 0.14 0.26  -0.19 0.58 0.20 0.44 

l=8 (3-

5) 

-0.11 -0.03 0.20 -0.3 0.14 0.25 -0.17  0.47 0.19 -0.42 

l=9 (3-

6) 

0.014 0.004 -0.02 -0.62 -0.01 -0.032 0.63 0.60  -0.024 0.55 

l=10 (4-

5) 

0.006 -0.23 0.28 0.12 -0.38 0.23 0.13 0.15 -0.01  -0.14 
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l=11 (5-

6) 

0.10 0.03 -0.18 0.11 -0.12 -0.23 0.36 -0.40 0.41 -0.17  

 

Where line l=1 and k=1 is between bus 1 and 2. 

 

Using table 4.5 the calculation of
,eff kP table is done and compared with PI in table 4.6. 

 

Table 4.6: Comparison between PI and 
,eff kP  for 6 bus system 

Line outage ordered by PI (use of 11 load 

flow analysis for sorting the index) 

Line outage ordered by 
,eff kP  (use of 1 load flow 

analysis for sorting the index) 

Performance 

index 

Ordered 

Lines 

Overload 

lines 

% of 

capacity 

of line 

MW 

,eff kP = 

2
0

,

max
1

1 n no of lines
l k k

l l
l k

d f

n P






 
  
 

  

Ordered 

Lines 

Overload 

lines 

% of 

capacity 

of line 

MW 

14.9823 3-6 2-6 

3-5 

5-6 

2-3 

1-2 

209.694 

198.713 

113.434 

101.993 

100.199 

0.656401 3-6 2-6 

3-5 

5-6 

2-3 

1-2 

209.694 

198.713 

113.434 

101.993 

100.199 

12.2679 1-4 2-4 

1-5 

3-5 

194.308 

135.321 

105.456 

0.427948 1-4 2-4 

1-5 

3-5 

194.308          

135.321 

105.456 
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12.2099 1-5 3-5 

2-5 

1-4 

2-6 

158.764 

150.283 

123.652 

118.015 

0.375744 1-5 3-5 

2-5 

1-4 

2-6 

158.764 

150.283 

123.652 

118.015 

8.26889 2-4 1-4 

3-5 

     2-5 

2-6 

137.389 

132.471 

123.458 

106.471 

0.361161 2-4 1-4 

3-5 

     2-5 

2-6 

 

137.389 

132.471 

123.458 

106.471 

7.73214 2-6 3-6 

2-5 

1-5 

114.331 

113.666 

100.2 

0.292895 2-6 3-6 

2-5 

1-5 

114.331 

113.666 

100.2 

7.23619 2-5 3-5 

2-6 

1-5 

2-4 

132.739 

104.82 

101.235 

101.096 

0.2242256 3-5 2-5 

2-4 

114.125 

100.417 

6.81605 1-2 3-5 

1-5 

115.088 

100.579 

0.207225 1-2 3-5 

1-5 

115.088 

100.579 

6.65373 3-5 2-5 

2-4 

114.125 

100.417 

0.142659 2-5 3-5 

2-6 

1-5 

2-4 

132.739 

104.82 

101.235 

101.096 

6.57988 4-5 3-5 109.179 0.0369401 4-5 3-5 109.179 

6.48895 2-3 3-5 100.7 0.019 2-3 2-3 100.7 
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6.45791 5-6 3-5 103.656 0.009 5-6 5-6 103.656 

 

Both PI and 
,eff kP are calculated for each contingency and ranked. And then Fast decoupled power 

flow method has been implied to see the line flow for each contingency. 

 

 

4.4 Discussion 
 

As most of the AC power flow analysis does not indicate any line flow or voltage limit violation. 

Because the system is designed with such redundancy to withstand most of the contingency. The  

,eff kP  method of contingency selection is time efficient and required only one DC or AC load 

flow analysis for ranking the contingency whereas the PI contingency selection method required 

analysis equal to no of lines. It means that 
,eff kP  method requires less calculation although the 

lodfs or line outage distribution factors should be known and stored for a particular transmission 

network. Any significant change in the network will change the lodfs considerably. The lodf is 

constant and load invariant so 
,eff kP can be calculated much faster than PI. 

One way to improve the decision making of an operator whether to run a full AC load flow to a 

particular contingency can be achieved if a threshold value is set in selecting the cases among the 

already sorted table in according to
,eff kP values. Suppose the operation personnel wants to get 

informed out of the sorted table which cases might be the problematic ones (let 150 % of MW be 

the limit of a line), he can set a threshold so that below that value no case will need a full load flow 

analysis. If the threshold value be 50 % of the top member in 
,eff kP table, then from table 4.2 (9 

bus system) and table 4.4(6 bus system) we are getting three and four cases respectively. Then 

instead of performing analysis for all the lines for a particular system (9 bus or 6 bus) we have 

only three cases in 9 bus system and four cases in 6 bus system where a full analysis is needed. 
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Chapter 5 CONCLUSION & FUTURE SCOPE 
 

5.1 Conclusion 
 

In the study, a C++ program has been executed on IEEE 9 bus and the given 6 bus system to 

compare the overload Performance index (PI) and the new 
,eff kP  or “effective change in MW 

flow on all the lines taken together when line “k” is out”. It is seen that 
,eff kP requires less 

calculation than PI for ranking different cases. As 
,eff kP requires the values of one DC/AC load 

flow analysis and line outage distribution factor which is constant for a particular transmission 

network, it can be employed as an alternative for PI, 

5. 2 Future Scope 
 

The 
,eff kP method can be used on various system at different system conditions to study it 

effectiveness in ranking the cases. This can be applied as contingency screening and only 

focusing on the bad cases skipping the non-violation cases. This method can be tested on real 

power system and comparison with the traditional PI could give a clear picture about its 

effectiveness and correctness.    
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Appendix  

A) IEEE 9 Bus system 
 

A.1 IEEE 9 Bus system Figure 
 

 

IEEE 9 bus system fig. 
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A.2 IEEE 9 bus Data sheet 
 

Bus Data:- 

 

 

 

 

 

 

Line Data:- 

 

S.I. 

No 

Frm bus To 

bus 

R in pu X in pu Fl line chrgng adm Capacity MVA Shunt 

G 

Shunt B 

1 6 4 0.01700 0.09200 0.15800 100 0.0000 0.0000 

2 7 5 0.03200 0.16300 0.30600 100 0.0000 0.0000 

3 9 6 0.03900 0.17000 0.35800 100 0.0000 0.0000 

4 7 8 0.00850 0.07200 0.14900 100 0.0000 0.0000 

5 5 4 0.01000 0.08500 0.17600 100 0.0000 0.0000 

6 8 9 0.01190 0.10080 0.20900 100 0.0000 0.0000 

S.I. 

number 

Bus 

code 

Rated 

bus 

voltage 

(K V) 

Active 

pwr. 

Gen. 

(MW) 

Reactive 

pwr. Gen. 

(MVAR) 

Active 

pwr. 

Dem.(MW) 

Reactive 

pwr. 

Dem. 

(MVAR) 

Voltage 

magnitude(p.u.) 

Phase 

angle 

Bus 

type 

1 Bus-

1 

165.00 74.600 27.000 0.000 0.000 1.0400 0.000 1 

2 Bus-

2 

180.00 163.00 6.7000 0.000 0.000 1.0000 0.000 2 

3 Bus-

3 

138.00 85.000 -10.90 0.000 0.000 1.0000 0.000 2 

4 Bus-

4 

132.00 0.0000 0.0000 0.000 0.000 1.0000 0.000 3 

5 Bus-

5 

132.00 0.0000 0.0000 125.0 50.00 1.0000 0.000 3 

6 Bus-

6 

132.00 0.0000 0.0000 90.00 30.00 1.0000 0.000 3 

7 Bus-

7 

132.00 0.0000 0.0000 0.000 0.000 1.0000 0.000 3 

8 Bus-

8 

132.00 0.0000 0.0000 100.0 35.00 1.0000 0.000 3 

9 Bus-

9 

132.00 0.0000 0.0000 0.000 0.000 1.0000 0.000 3 
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Transformer Data:- 

 

S.I. No Frm 

bus 

To bus R in 

p.u. 

X in 

p.u. 

Capacity 

(MVA) 

Incre. 

tap sett. 

Min. 

tap sett. 

Max. 

tap sett. 

Curremt 

Tap 

Pos. 

Tap 

ratio 

1 2 7 0.0000 0.06250 200 1.25 -8 8 0 1 

2 4 1 0.0000 0.05760 100 1.25 -8 8 0 0.98 

3 3 9 0.0000 0.05860 100 1.25 -8 8 0 1 

 

PV Bus data:- 

 

S.I. No PV bus 

no 

Min. act. 

Pwr.(MW) 

Max. act. 

Pwr. 

(MW) 

Min. 

rect. 

Pwr. 

(MVAR) 

Max rect. 

Pwr.(MVAR) 

Specfd. 

Voltage 

(p.u.)  

Min. 

Voltage 

(p.u.)  

Max. 

Voltage  

(p.u.) 

1 2 10 200 -20 100 1.025 0.9500 1.0500 

2 3 10 200 -20 100 1.025 0.9500 1.0500 

  

Slack Bus data:- 

S.I. No Slack bus no Min. act. Pwr. 

(MW) 

Max. act. 

Pwr. (MW)  

Min. rect. 

Pwr. 

(MVAR) 

Max. rect. 

Pwr. 

(MVAR) 

Specified 

voltage (p.u.) 

1 1 10.000 200.000 -10.000 100.000 1.04 
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B) 6 Bus System 
 

B.1 6 Bus system figure 
 

 

6 bus system fig. 
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B.2 Data sheet 
 

Bus data:- 

 

 

Line data:- 

S.I. 

No 

Frm bus To 

bus 

R in pu X in pu Half total line 

charging suseptance 

Capacity MW 

(p.u.) 

Shunt 

G 

Shunt B 

1 1 2 0.10 0.20 0.02 0.30 0 0 

2 1 4 0.05 0.20 0.02 0.50 0 0 

3 1 5 0.08 0.30 0.03 0.40 0 0 

4 2 3 0.05 0.25 0.03 0.20 0 0 

5 2 4 0.05 0.10 0.01 0.40 0 0 

6 2 5 0.10 0.30 0.02 0.20 0 0 

7 2 6 0.07 0.20 0.025 0.30 0 0 

8 3 5 0.12 0.26 0.025 0.20 0 0 

9 3 6 0.02 0.10 0.01 0.60 0 0 

10 4 5 0.20 0.40 0.04 0.20 0 0 

11 5 6 0.10 0.30 0.03 0.20 0 0 

 

 

S.I. 

number 

Bus 

code 

Rated 

bus 

voltage 

(p.u.) 

Active 

pwr. 

Gen. 

(p.u.) 

Reactive 

pwr. Gen. 

(p.u.) 

Active 

pwr. 

Dem.(p.u.) 

Reactive 

pwr. 

Dem. 

(p.u.) 

Voltage 

magnitude(p.u.) 

Phase 

angle 

Bus 

type 

1 Bus-

1 

1.05 --- ---- --- --- 1.05 0.000 1 

2 Bus-

2 

1.05 0.5 0 0.000 0.000 1.05 0.000 2 

3 Bus-

3 

1.07 0.6 0 0.000 0.000 1.07 0.000 2 

4 Bus-

4 

1 0.0000 0.0000 0.7 0.7 1 0.000 3 

5 Bus-

5 

1 0.0000 0.0000 0.7 0.7 1 0.000 3 

6 Bus-

6 

1 0.0000 0.0000 0.7 0.7 1 0.000 3 


