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Abstract. In this proceedings contribution, we discuss recent developments in the per-
turbative determination of the Equation of State of dense quark matter, relevant for the
microscopic description of neutron star cores. First, we introduce the current state of the
art in the problem, both at zero and small temperatures, and then present results from two
recent perturbative studies that pave the way towards extending the EoS to higher orders
in perturbation theory.

1 Introduction

The cores of neutron stars contain some of the densest matter in our Universe, second only to the
interiors of black holes [1, 2]. Predicting the collective properties of this extreme form of matter is
a well-known problem in the realm of nuclear physics and QCD, but unfortunately still lacks a satis-
factory solution due to the absence of nonperturbative first principles methods applicable to it. With
lattice QCD suffering from the infamous Sign Problem [3] and the applicability of Chiral Effective
Theory (CET) extending only up to roughly the nuclear matter saturation density [4], there is an urgent
need to find complementary methods for tackling strongly coupled matter at the the highest densities
reached within the stars. This has motivated attempts to approach the problem using methods ranging
from the Functional Renormalization Group to phenomenological models and the holographic duality
[5–10], but they all come with their own systematic uncertainties and limitations.

In these conference proceedings, we describe recent efforts to approach the problem of quark mat-
ter using insights gained from the limit of very high densities, where a weak coupling approach is
guaranteed to be valid due to the asymptotic freedom of the underlying theory. It has been demon-
strated in a simple setup that such high-density information can be efficiently used to constrain the
behavior of strongly interacting matter at densities realized inside neutron star cores [11], and work is
currently underway to combine these insights with state-of-the-art Bayesian analyses taking into ac-
count all available input from astrophysical observations to low-density calculations [12]. To aid this
process, it is clearly imperative to vigorously work on improving the current state-of-the-art results
for the perturbative Equation of State (EoS) of dense quark matter.

This article is structured as follows. In section 2, we introduce the current state of the art for
the perturbative EoS of quark matter and briefly discuss applications of these results to neutron star
physics. In section 3, we then dwell into some recently completed work that generalized existing
zero-temperature EoS calculations to small but nonzero T , while in section 4 lay out a roadmap for
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Figure 1. A cartoon depicting the behavior of the neutron star matter EoS as a function of the (shifted) quark
chemical potential µ. The blue curve on the left is taken from [13, 14], the two red curves on the left from [4], the
red curves on the right from [15], and the green band from an interpolation performed in [11]. The figure itself is
taken from the last of these references.

extending the T = 0 EoS to the full next order in a weak coupling expansion. Brief concluding
remarks are finally made in section 5.

2 State of the art

In figure 1, we depict the current state of the art in our understanding of the EoS of cold and dense
QCD matter as relevant for neutron stars. Starting from the lowest densities on the left side of the fig-
ure, the EoS of the outer and inner crust regions is accurately described using well-established meth-
ods of nuclear physics, such as strongly constrained potential models [13, 14]. Difficulties emerge,
however, when we approach the outer core of the star, corresponding to densities close to the nuclear
matter saturation density ns. Here, the CET framework has turned out to be a highly valuable tool,
providing both access to densities somewhat beyond ns and a first-principles understanding of the
hierarchy between various types of operators composed of the nucleonic degrees of freedom in the
system (see e.g. [4] and references therein). However, even CET has its limitations, and proceeding
much beyond the saturation density with these medhods appears extremely nontrivial, although some
promising progress has been achieved very recently [16].

Starting from the opposite end of extremely high densities, the asymptotic freedom of QCD guar-
antees that a perturbative QCD (pQCD) approach to the problem be feasible. Unfortunately, the
sizable value of the strong coupling constant implies that one needs to go to a relatively high order in
the weak coupling expansion of the EoS in order to extend the applicability of the perturbative result
to a region of relevance for neutron star physics. This is well demonstrated in fig. 2, where the current
perturbative EoS of T = 0 quark matter is depicted as a function of baryon chemical potential. Un-
like in the case of high temperatures where the well-developed tools of resummed perturbative theory
have enabled a successful description of the EoS down to temperatures close to the (pseudo)critical

    
 

DOI: 10.1051/, 09011  (2017) 713709011137EPJ Web of Conferences epjconf/201
XIIth  Quark Confinement & the Hadron Spectrum

2



0 0.2 0.4 0.6 0.8
T [GeV]

0

0.2

0.4

0.6

0.8

1

P
/P

S
B

Free quarks and gluons

Bag model, B=(150MeV)
4

pQCD

Lattice

0 1 2 3 4 5 6
µ

B
  [GeV]

0

0.2

0.4

0.6

0.8

1

P
/P

S
B

Free quarks

Bag model, B=(150MeV)
4

pQCD

Figure 2. Left: the EoS of µ = 0 quark gluon plasma as a function of temperature, with state-of-the-art lat-
tice [17, 18] and pQCD [19] results plotted together with the prediction of the MIT bag model. Right: The
zero-temperature EoS of quark matter, obtained from the three-loop computation of [15]. In both cases, the per-
turbative bands are obtained by varying the renormalization scale by a factor of two around a midpoint value.
Both plots are taken from [20].

temperature of the deconfinement transition (left) [19, 21], the situation at zero temperature and high
density is still less than optimal (right). Here, the current state-of-the-art result is from a three-loop
computation including the effects of finite quark masses [15], which builds on a series of earlier works
[22, 23] and is visible as the rightmost red band in fig. 1.

Despite the difficulties in both the CET and pQCD approaches, it has been shown that taking the
state-of-the-art results from both methods, it is possible to efficiently constrain the behavior of the
neutron star matter EoS at all densities. An interpolating EoS, utilizing the results of [4, 15] and
constructed demanding only thermodynamic consistency, subluminality and the ability to support a
two-solar-mass star, is shown as the green band in fig. 1. This prediction has an uncertainty of only
ca. ±40% at worst, which is quite a remarkable result. In particular, the fact that the high-density
constraint is important even at densities realizable inside real life neutron stars is far from obvious, as
discussed at some length in [11] (cf. also the related work of [24]).

In order to gain a quantitative understanding of the neutron star matter EoS using only robust first
principles tools, vigorous work must clearly be performed to shrink the gap between the low- and
high-density results depicted in fig. 1. In the high-density regime, this implies extending the current
three-loop EoS of cold quark matter to the next perturbative order, i.e. to the full four-loop accuracy.
This is, however, a formidable task, and necessitates both the development of novel tools for multi-
loop diagrammatic calculations at finite density and gaining a better understanding of the soft sector
of QCD at high density. First steps in this direction have nevertheless already been taken, and in the
following two sections we review two recent advances in the field.

3 Cool quark matter

While old, quiescent neutron stars have cooled down enough to allow neglecting thermal effects, the
description of supernova explosions as well mergers of two neutron stars necessitate maintaining a
nonzero T in the determination of the EoS [25]. With the highest temperatures reached in mergers
estimated around 100 MeV, it becomes clear that the behavior of the system can in fact be radically
different from its Fermi sphere dominated counterpart at zero temperature. This makes it essential to
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Figure 3. The pressure of QCD at four fixed nonzero values of the temperature. The red band is again obtained
upon varying the scale parameter, and the dashed blue line shows the result at T = 0. The figure is from [27].

also revisit the perturbative determination of the EoS of dense quark matter, and try to merge the gap
between the T = 0 result and the regime of high temperatures.

Due to technical difficulties associated with the description of the IR sector of QCD at small but
nonzero temperatures, this region of the phase diagram was largely neglected for a long time. In
the high-temperature regime, characterized by T ≥ gµ, the weak coupling expansion of the EoS has
been worked out up to partial four-loop order, or O(g6 ln g) in the gauge coupling [23]. At the same
time, only an O(g3) calculation connected this result to the T = 0 limit until relatively recently [26].
Even then, the situation was first remedied in a rather cumbersome way by performing an explicit
resummation of an infinite class of Feynman diagrams in full QCD, which lead to an O(g4) result
applicable throughout the deconfined phase of the theory [26].

In a recent article [27], we revisited the problem of determining the EoS of deconfined QCD matter
at all temperatures, only this time from a somewhat different standpoint. We added and subtracted
to/from the QCD pressure a function that by definition represents the contributions of the IR sensitive
field modes that need to be resummed. This lead to the seemingly trivial identity, resembling a trick
used e.g. in [28],

pres
QCD = pres

QCD − pres
soft + pres

soft = pnaive
QCD − pnaive

soft + pres
soft , (1)

where ‘res’ refers to resummed expressions and ‘naive’ to ones evaluated in a strict loop expansion.
Despite its benign appearance, the step taken at the second equal sign is highly important: we have
noted here that the difference between the quantities pres

QCD and pres
soft is by definition IR safe, implying

that both functions can be computed in a naive weak coupling expansion. This is a tremendous
simplification, as it means that to order g4, the pressure of the full theory, pQCD, can be directly taken
over from the literature [23] and we only need to worry about the proper identification of the soft
sector of the theory and the correct determination of its contribution to the pressure.

The first question to address becomes now, what degrees of freedom constitute the soft sector of
QCD at different values of T and µ, and what is the effective theory that ought to be used to describe
them. It turns out that a choice sufficient for obtaining the pressure to order g5 at all temperatures and
densities is to apply the dimensionally reduced (DR) effective theory EQCD to the description of the
static bosonic sector of the theory [29–31], and to treat the soft non-static modes with k ∼ g using the
HTL effective theory [32, 33]. This leads to the result

pQCD = pnaive
QCD + pres

DR − pnaive
DR + pres

HTL − pnaive
HTL , (2)
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Figure 4. The pressure of QCD as computed in [27], compared with the known low- and high-T limits. See the
main text for a more detailed explanation. The figure is from [27].

where it should be noted that the HTL resummation is only applied to the non-static modes. The
physical nature and properties of each of these terms is discussed in quite some detail in [27]. Here,
we merely note that

• With the exception of the very last term, pnaive
HTL , each of the pieces in the above result can be obtained

directly from the literature, cf. e.g. [23, 34].

• All UV and IR divergences cancel between the above terms upon renormalization. The exact can-
cellation pattern is somewhat nontrivial, featuring both 1/ε terms, generated by dimensional regu-
larization, and logarithms of the temperature that diverge in the T → 0 limit.

In figs. 3 and 4, we display the behavior of the above results in two different ways. In fig. 3,
resembling fig. 2.b, we show the behavior of the pressure as a function of the baryon chemical potential
for four fixed nonzero values of the temperature. Note that the pressure is normalized here to that of
the non-interacting theory at T = 0, while the interacting T = 0 result is shown as the dashed blue
curves in the figures. To demonstrate the successful interpolation of our result between known limits,
in fig. 4 we next display the behavior of the pressure as a function of temperature at two fixed values
of T 2 + (µB/3π)2. We observe that at extremely small temperatures the behavior of the result can be
captured by the Hard Dense Loop results of [35, 36], while at larger values of T it quickly approaches
that of the high-T computation of [23].

4 Towards the four-loop EoS at zero temperature

Returning now back to systems, where thermal effects can be altogether neglected, we are faced
with the challenges laid out in sec. 2. In this context, an extremely challenging, yet realistic goal
is to attempt extending the EoS of T = 0 quark matter to the full four-loop order in perturbation
theory, including terms of orders g6 ln2 g, g6 ln g, and g6 in the coupling constant. This necessitates
solving two somewhat separate problems: first, how to organize the calculation in such a way that
the contributions of all momentum scales are properly accounted for, and second, how to efficiently
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perform high loop order computations at zero temperature and finite density. In the two subsections
below, we shall briefly address both of these issues.

4.1 Outline of the computation and soft contributions

Our starting point in the evaluation of the four-loop EoS of zero-temperature quark matter is again
eq. (2), but recalling now that the DR contribution vanishes at T = 0, producing the expression

pQCD = pnaive
QCD + pres

HTL − pnaive
HTL . (3)

While the first term here is conceptually simple — obtainable by evaluating all vacuum diagrams in
the theory up to the desired loop order — the HTL parts require a more careful consideration.

The Hard Thermal Loop effective theory is known to correctly capture the dynamics of the soft
scales of deconfined QCD at zero temperature and finite density, and thus a successful evaluation
of the partition function of this theory is sufficient for obtaining the soft contributions to the QCD
pressure. The beauty of eq. (3) above is that the HTL contribution enters in the form of the difference
of its resummed and naive forms, which guarantees that no double counting of contributions can
take place. Should some degrees of freedom in the effective theory not require resummation, their
contribution to the pressure becomes canceled in this difference. This fact may in fact be used to
simplify the evaluation of pHTL, and it can e.g. be shown that it is not necessary to consider high-order
fermion self energies or vertex functions in the HTL theory as long as one is only interested in the
pressure up to the g6 order.

Of the two terms to be computed, it suffices to consider the resummed version, as its naive coun-
terpart can be obtained from this expression in a straightforward manner. As we shall show in detail in
a forthcoming publication [37], the most nontrivial part of the calculation boils down to determining
the two-loop HTL gluon polarization tensor and the Next-to-Leading Order asymptotic mass param-
eter of the gluon field. This is, however, a substantial challenge that in particular requires carrying
out a separate computation in resummed perturbation theory. The details of this exercise are left to be
thoroughly explained in our later publication [37].

4.2 Hard contributions

Moving on to the first term of eq. (3), pnaive
QCD, we are faced with the challenge of evaluating all four-loop

vacuum diagrams of QCD at zero temperature and finite chemical potentials. This is a formidable
challenge and clearly requires an automated approach to become feasible — despite the fact that a
number of digrams can be discarded due to containing no fermion loops and thus no µ dependence.
A crucial aid in this process turns out to be an analytic tool dubbed ‘cutting rules’. These rules
were first discussed in [15] but fully proven only recently [38], and provide a systematic and easily
automatizable way of performing all q0 integrations in the individual graphs (see also a related result
presented in [39]). This procedure, which is summarized in fig. 5 and thoroughly explained in [38],
reduces the evaluation of a scalarized Euclidean Feynman diagram at finite chemical potential into
a number of three-dimensional phase space integrals over on-shell amplitudes, where the entire µ-
dependence resides in the 3d integration measure.

Using the cutting rules, the evaluation of the full set of four-loop Feynman diagrams in QCD is in
practice divided to the following list of steps:

1. Perform all Lorentz algebra and Dirac traces using programs of symbolic manipulation, such as
FORM.
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Figure 5. An illustration of the cutting procedure of [38] being applied to a two-loop vacuum graph. Here,
the solid line denotes a scalarized fermion propagator containing a chemical potential, the dotted line a boson
propagator, and the dashed line a fermion propagator evaluated at µ = 0. We have abbreviated here Ep ≡√

p2 + m2, with m being the mass of the corresponding line, and note that the amplitudes are to be evaluated
assuming the external momenta to be real-valued.

2. Perform all q0 momentum integrations with the help of the cutting rules.

3. Use Integration by Parts and other well-established tools of perturbative quantum field theory
to simplify the on-shell amplitudes produced by the application of the cutting rules.

4. Evaluate the remaining amplitudes analytically and use a combination of analytical and numer-
ical techniques to tackle the phase space integrations.

While the steps 1-3 here are in principle straightforward (albeit somewhat lengthy), the main challenge
is clearly the last step, which will likely require extensive efforts to be carried out.

5 Conclusions

In this conference proceedings contribution, we have briefly reviewed two recent results in the field of
perturbative finite-density QCD [27, 38]. The former generalized an existing three-loop EoS of zero-
temperature quark matter to nonzero temperatures, while the latter provided a novel computational
aid for perturbative calculations carried out at T = 0 and µ , 0. In the future, we plan to apply
this computational tool, dubbed cutting rules, to the determination of the four-loop, or O(g6), EoS
of zero-temperature quark matter. In this context, we discussed the general outline of the required
computations and in particular explained the procedure needed for accounting for the contributions of
the IR sensitive soft degrees of freedom to the pressure.

Even if successful, obtaining the four-loop EoS of quark matter is not guaranteed to dramatically
improve the precision of the neutron star matter EoS. Firstly, it is nontrivial to quantitatively estimate
in advance, how much obtaining the O(g6) contribution will decrease the uncertainty of the quark
matter EoS. Secondly, if the answer to this question is positive, we encounter the need to obtain a
better estimate for the pairing contributions to the EoS, which become sizable below µB ≈ 2 GeV
and are challenging to determine. And finally, even when equipped with an accurate quark matter
EoS, dramatically shrinking the magnitude of the green region in fig. 1, where an interpolating EoS
is needed, clearly requires advances also on the low-density side. Despite these potential problems,
we nevertheless strongly feel that the importance of the challenge being faced — obtaining an accu-
rate theoretical understanding of the bulk properties of neutron star matter using only first principles
machinery — is enough to warrant extensive efforts on the pQCD front.
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