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ABSTRACT: R-parity violation modifies the phenomenology of supersymmetric models con-
siderably. We study a version of NMSSM, which contains right-handed neutrinos and in
which spontaneous R-parity violation is possible. We study the ensuing effects of sponta-
neous breaking to the Higgs decay modes, taking into account the measured mass of the
Higgs boson and experimental constraints, including rare decays. We find that a possible
light scalar, dominantly a sneutrino, helps to increase the Standard Model (SM) Higgs-like
scalar mass to the measured value. At the same time, a lighter stop than in the MSSM
is allowed. The Higgs decay rates in the studied model can somewhat differ from the SM
expectations, although the most prominent difference is a universal suppression in the cou-
plings due to the mixing of doublet scalars with singlets. The charged, pseudoscalar, and
other than the two lightest scalar Higgses are typically heavier than 1 TeV in the parameter
region where R-parity is spontaneously broken.
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1 Introduction

Supersymmetry (SUSY) remains as the best motivated extension of the Standard Model
(SM). However, so far all direct searches for superpartners have failed and thus there is no
direct evidence for SUSY. The big discovery in the Large Hadron Collider (LHC) experi-
ments, at CMS [1] and at ATLAS [2], is a Higgs boson, which has mass compatible with the
expectations for the lightest CP-even Higgs in supersymmetric models. Most interestingly,
the Higgs branching ratios may help to understand physics beyond the Standard Model.
The statistics is not enough to make definite conclusions yet, but the branching ratios do
not show big deviations from the SM. The only branching ratio, which has been measured
to be clearly different from the Standard Model, is the Higgs decay to two photons [3, 4],
although the latest results both from ATLAS [5] and from CMS [6] are consistent with the
Standard Model at one sigma level. It is well known that in the minimal supersymmetric
standard model (MSSSM) it is necessary to have either a heavy stop or large mixing between
the stops to achieve the measured mass for the Higgs boson. This raises questions about
fine tuning in the MSSM.

A long lasting problem in the SM and in the MSSM has been the neutrino mass gener-
ation. In MSSM neutrinos remain massless similar to the SM, so extensions to the MSSM
are necessary. One possible way to explain the nonvanishing neutrino masses is to discard
the assumption of exact conservation of the R-parity [7-10], Rp = (—1)387L+25 where
B is baryon number, L is lepton number, and s is spin of the particle. Phenomenological
implications of R-parity violation have been extensively studied, see [11]. If R-parity is not



required, the MSSM superpotential breaks both baryon and lepton number conservation
and leads to a much too fast proton decay unless couplings are tiny. However, there are
models in which the R-parity breaking can naturally happen via breaking only the lepton
number and thus the proton life time is not affected. This is the case when R-parity is
spontaneously violated [12-15]. Also in this case the phenomenology and constraints on
parameters have been studied, see e.g. [16]. The R-parity violation (RPV) allows terms
which can generate neutrino masses [17-20]. Another much studied method to generate
small neutrino masses is by the seesaw mechanism [21-28] when right-handed neutrinos are
included in the model. The next-to-minimal supersymmetric standard model, NMSSM, is
a simple extension of the MSSM, including an extra scalar compared to the MSSM and
with a Zs symmetry imposed. An example of an NMSSM-type model with right-handed
neutrinos where the seesaw mechanism with spontaneous R-parity breaking can produce
the measured neutrino mass differences and mixing angles is given in [29-31]. In this work
we will use an NMSSM-type model with right-handed neutrinos as our framework.

When R-parity is broken, the commonly studied candidates for cold dark matter,
namely the neutralino and the right-handed sneutrino, see [32-36] for NMSSM, are not
stable and thus neither can be the SUSY candidate for cold dark matter because of the
couplings to the SM particles. If the gravitino were the lightest supersymmetric particle
(LSP), it could have a lifetime longer than the age of the Universe due to the Planck scale
suppressed couplings, see [37-40]. Gravitino is the LSP in gauge mediated supersymmetry
breaking models, but their characteristic feature is small A-terms. As is shown later, large
A-terms are necessary both to lift the lightest Higgs boson mass to the measured value and
to break R-parity spontaneously in the model considered in our work. However, recently
it was proposed that in a nonminimal model for gauge mediation large A-terms can be
generated [41]. One may also assume that a completely unknown sector is responsible for
the dark matter.

The experimental limits for sparticle masses differ for R-parity conserving and violating
cases, since many of the methods of the R-parity conserving SUSY searches do not apply
for RPV case. In particular, the missing energy is significantly softened compared to the R-
parity conserving model, since the LSP decays either through couplings to the SM particles
or through mixing with the SM particles, and missing energy is not anymore one of the
important characteristics of the model, see e.g. [42-45]. When R-parity is violated, both
electric and color charges are possible for the LSP.

In this work we concentrate on the Higgs sector in the case of spontaneous R-parity
breaking. We study the neutral scalar particles and their decays in a model with sponta-
neous R-parity violation, where R-parity violation is generated by a VEV of one or several
sneutrino fields. The spontaneous breaking affects a number of couplings in the model.
Thus, contrary to the explicit breaking, it is not possible to choose one of the couplings to
be the dominant one, but the couplings are determined by the sneutrino VEV and other
parameters together. This makes it necessary to check strict constraints from rare decays.
Similarly the constraints from experimental mass limits need to be satisfied.

We first review the relevant features of the model in section 2, including the scalar
sector of the model in general. The minimization conditions are found, and we discuss the



scalar masses, as well as consider constraints coming from fermion masses. In section 3 we
scan over the relevant parameter space of the model, discuss constraints from rare decays
and consider the possible decay modes for the scalar with 125 GeV mass in the model. This
may be the lightest scalar, or there may be one or two lighter scalars, dominantly singlets.
We compute the 125 GeV Higgs production and subsequent decay to two photons. We find
that it is possible to have larger branching ratios than in the Standard Model, especially
when the top coupling is enhanced, or bottom coupling is reduced from the Standard Model
value. This, however, is not the typical situation in our scanned points. Even in the cases
when the branching ratio is large compared to the SM, the rate is only moderately affected
because of the simultaneous suppressed production. In section 4 we conclude.

2 The model

There are several models, which allow vacua with broken R-parity [15, 46-53]. All viable
ones introduce lepton number violation. If a global symmetry as lepton number is violated,
the particle spectrum will have a Goldstone boson, called Majoron [55, 56]. In this work
we add explicitly lepton number violating terms to the superpotential which make the
pseudo-Majoron massive.

We consider a model which has a superpotential [29-31]

W= Z( (i Qo)Dy + b (Hla- L) By + 1 (Qs - )T )

)\(I) 3
298 (21
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The first three terms are the MSSM superpotential without the so-called u-term. The N;
fields are the neutrino singlet superfields (L=—1) and d is a scalar singlet (L=0) superfield.
The VEV of ® produces the pu-term of the superpotential as usual in the NMSSM, and the
Majorana mass term for the right-handed neutrinos.

This superpotential does not introduce anything but a minimum number of fields
necessary to break R-parity spontaneously' and to have only trilinear couplings. From
the fourth term in the superpotential, it is obvious that when the right-handed sneutrino
develops a VEV there will be a term that mimics the explicitly R-parity violating bilinear
term proportional to LH. The N2&-term breaks explicitly the lepton number, but not
R-parity. In this model the pseudo-Majoron will be mostly singlet-like, so even if it were
relatively light, it would not have been seen in Z boson decays.

Following the ref. [29] we assume that the possible domain wall problems will be
removed by nonrenormalizable terms or inflation. A Zs symmetry has been imposed to the
superpotential so that all couplings are dimensionless. When Z3 is spontaneously broken,
a potential problem with cosmological domain walls appears [57, 58]. Solutions to the
problem have been proposed. One possibility is that the symmetry is explicitly broken

HIf explicit R-parity violation is allowed, one may have sneutrino VEVs without the L = 0 singlet also,
see [54].



by non-renormalizable terms so that a preferred vacuum exists. In general this will create
huge tadpole terms to the singlet fields so that the generation of a u-term with correct
size requires fine-tuning. It was shown in [59-61] that assuming a new discrete symmetry,
which holds also for the non-renormalizable terms, only a tadpole term with a size of
the supersymmetry breaking scale is generated for the singlet scalar. The single resulting
parameter in the softly supersymmetry breaking Lagrangian is denoted by £. Thus, there
are the following soft supersymmetry breaking terms in the Lagrangian

— Leoft = *‘Cé\gﬁSM/ + Zm%VZ‘NlF + m<21>|(1)‘2 + ZAIZ/](i’Z ’ HU)NJ
‘ 1,J

7

1 ~ 1
+ Ay (Hy H)®+ > 5ANJ\QQ@ + 6Aq><1>3 +&8d+hel, (22

where Eé\gﬁSMl contains the MSSM soft terms without the H, and H; mixing bilinear term.

The model introduces new fields and couplings (a total of 13 new complex parameters
in the superpotential compared to the MSSM) but compared to explicit R-parity violation
(48 new complex parameters in the superpotential) the model is economical.

2.1 Neutral scalar potential

Let’s first study the situation with only one generation of SM fermions and singlet neutrinos.
In this case the scalar potential for the neutral scalars may be written as

V =Vp + Vr + Veott,

where
Vo= (6% +97) (1HP — [HYP ~1oP)’, (23)
Vi = ‘AHHgHS + %)\NNQ 4 %Aq@? W HORT £ g OB (2.4)
+ ANN® + W HOi|? + |hWON + Ay HI®|?,
and

Viott = miy, |Hy|? +miy, |HJ? +m2|5* +m% | N> + mg| 2
~ 1 ~ 1
+ [A,,HS:JN + AgHIHY® + 5ANJ\f?q) + 6A<1,<1>3 +&0 4 he|. (2.5)

The tadpole term is linear in ® so that (®) # 0, and a p-term is always generated.

When the electroweak symmetry is broken, (H) = v, /v/2, (HY) = v4/+/2, either both
or neither of the sneutrinos will get a VEV, since if one of them will have a VEV, there
will be linear terms in 7 and N. The minimization conditions are given in the appendix.
Neglecting the quartic term for v, we get an equation for the left-handed sneutrino VEV

RY (ANUNVUu Ve + AHUNVaVS + V20,0, 0N)
m2Z cos 23 + Zm%

v, = —

7 (2.6)



where terms proportional to (h*)? have been neglected in the denominator and a, = A, /h”
has been defined. The expression in parentheses in the numerator is of the order of TeV?
if we assume a,, Mgisy, and the singlet VEVs to be around a TeV. The denominator is
twice a soft tree-level mass squared, of the order of TeVZ.

It is known that large A-terms can lead to a charge or color breaking minimum in
the MSSM [62]. The deepest minimum of the potential is achieved when the field with
the smallest Yukawa coupling acquires a VEV [29]. In order to avoid a charged or colored
vacuum, we require that the VEV is generated for a neutral field, in our model for a
sneutrino. Thus, the Yukawa coupling A must be smaller than h®. Even if tan g is large,
using m. = 511 keV we need h¥ < 107, so (#) is at most around 100 MeV. With moderate
values of tan 3, values of h¥ < 1075 and (7) < 10MeV are required. Hence v, will be
smaller than all other VEVs. There will be stricter constraints to v, from neutrino masses,
as discussed later.

2.2 Scalar masses at tree-level

In the mass-squared matrix for CP-even scalars the left-handed sneutrino practically de-
couples from the other scalars as all its mixing terms are proportional to h” or A,. The
other four CP-even scalars may have large mixings. Minimizing the tree-level potential
gives five conditions, which can be used to eliminate the soft scalar masses m?, with
i = H,, Hy, L, N, ®. We have given the conditions in the appendix. For the nondecou-
pled fields, we use the basis (HY, Hg, D, N) and neglect terms proportional to h¥, A, or
vy, since they are small in all entries of the mass matrix. The mass matrices for CP-odd
scalars are given in the appendix.

The 4 x 4 -mass matrix for CP-even neutral scalars is given by

1
mi; = mysin® § — §(AHU<1>/\/§~I— A\?V?) cot 3, (2.7)
1
m3, = m7 cos” § — §(AHU<I>/\/§ + A*V?) tan 3, (2.8)
=3
2 § 1 2 92 1
mis = ————— + — g3 + —=Aovsp, 2.9
33 vq>/\/§ 5ol 2\/§<1>q> (2.9)
1
miy = AR (2.10)
1 1
miy = i(Apr/ﬂ—i- NV2) — §(m22 — A%0?%)sin 233, (2.11)
1 v
2 d 2
= ;A= 2.12
miz = 5An NG + AUV + Ag AUV, (2.12)
1
miy = M ANVAUN, (2.13)
1 v
mg?) = §AH7U§ + Ag AU Ve + )\%{v(ﬂ)@, (2.14)
1
m3y = QAH)\N'UUUN7 (2.15)
1 v 1
2 _ N 2 2
mszy = 2AN\/§ + ZANAq)UNUcp + ANUNVP. (2.16)



The notations v? = v2 4+ v = (246 GeV)?, A\2V? = IAg(Anvd + Aov3) and 53 =
£+ iANv]QV + %AHvuvd have been used. All of the parameters have been assumed real
for simplicity. From the mass matrix, egs. (2.7)—(2.8) we see that negative Ap-term is
preferred to get a positive-definite mass matrix. We will use in our numerical calculations
one common A, multiplied by the corresponding coupling, and we will assume that A
is negative.

One can use the minimization conditions (A.1)—(A.5) together with the potential,
egs. (2.3)—(2.5) to find whether the R-parity breaking minimum is below the R-parity
conserving minimum after EWSB. At tree-level this leads to the condition

éA%Vu?V + E(AQAN +2)\%)v3 + i)\H/\NUQ sin 23 + \}iANmI> > 0. (2.17)
The R-parity violating minimum is below the R-parity conserving minimum in a large
part of the parameter space even when A-terms are negative. In fact, if the couplings
and VEVs are assumed positive, the value of Ay must be negative in order to make the
diagonal element of eq. (A.9) in the CP-odd mass matrix positive.

The scalar sector is essentially the MSSM Higgs sector with additional two singlets. It
has the NMSSM Higgs structure as a subset of the full scalar sector, but it is not possible
to saturate the NMSSM limit [63], computed from the 2 x 2 matrix of H, and Hy, for
the lightest scalar mass. In the NMSSM the limit is saturated by decoupling the singlet
from the doublets. One can decouple ® from the doublets by making it heavy choosing |¢|
large and choosing Ay so that the mixing terms (2.12) and (2.14) are small. N cannot be
decoupled this way in the R-parity violating case since making )\?\,v%\, /2 large makes also
the mixing terms (2.13) and (2.15) large.

Assuming @ is decoupled, we take the 3 x 3 mass matrix without the elements involving
® and then compute the determinants of m3, 5 and m3,; — m%. One gets

Det(m3,3) = mzA%vi |\ v (sin? B cos? B — 1/4)
—i—%(AHv@/\/ﬁ + A2V?) cot 28 cos 25} (2.18)
Det(m3, 5 — m%) = m%(A\v% + A0% — 2m%) | A4 v?sin? B cos® 8
—(Agve/V2 + N2V?) sin § cos /B} . (2.19)

Eq. (2.18) is a product of three masses squared, and thus needs to be positive in a stable
vacuum. If one wishes to have the lightest scalar mass heavier than my, one must have
M43 > 2m% (see eq. (2.10)), so in order to have the lightest mass above myz, both of
the expressions in square brackets in eqs. (2.18)—(2.19) need to be positive. However, they
cannot be made positive simultaneously, so at least one eigenvalue is below my, if the
vacuum is stable. It is easy to saturate this limit by taking? tan 8 > 1 so that the right-

hand side in (2.19) becomes zero and thus m?% is an eigenvalue. Therefore the lightest scalar

2In addition all the diagonal elements must be greater or equal to m?%.



mass is constrained similarly than in the MSSM. If eq. (2.19) is chosen to be positive, the
vacuum is not stable. This indicates that if one tries to push the lightest scalar mass above
my one arrives at an R-parity conserving vacuum. If one assumes R-parity conservation,
the sneutrino state decouples and hence the tree-level limit is the same as in the NMSSM,
which can be clearly above my.

Similarly than in the MSSM, one could rely in the spontaneously R-parity violating
NMSSM (SRPV-NMSSM) on the large radiative corrections on the scalar masses to achieve
a Higgs boson with mpy =125 GeV. Alternatively, one or two of the lightest scalars can be
mainly singlet and the 125 GeV Higgs boson is a heavier scalar, which may have a tree-level
mass above my. Unless the soft tadpole term is small, the lighter than 125 GeV scalar is
sneutrino-like, and the other singlet dominated Higgs is rather heavy.

The mass of the SM-like (H,-dominated) Higgs is usually not much above my at tree-
level. The only exception is the combination of large A7, small vy and tan 5 — 1. As can
be seen from eq. (2.18) the tree-level mass of the lightest CP-even scalar goes to zero in
this limit. With small values of vy the sneutrino-like state remains lighter than the lighter
doublet state and will be the one whose mass tends to zero. In that case for large Ag the
SM-like Higgs mass can be lifted very much like in the R-parity conserving (RPC) NMSSM.

Since the eigenvalue equation is of the third (or fourth) order, the analytical form
of the eigenvalues is not illuminating. The expression may be simplified only in certain
limiting cases. For illustration we shall compute one case. We shall take new combinations
of the doublet Higgses, h = sin BHY + cos ﬁHg and H = cos BH? — sin BHg. The h-state
has the same VEV than the SM Higgs and hence also the same couplings. We shall look
at the mixing between h and N in the case when H is so heavy that it decouples. The
tree-level mass matrix in the basis (h, H, N) is

m% + \4v?sin? 23 —2(m% — A\30%/2) sin4p AHANUNU SID 2[5
—3(m?, — )\%{vQ/Q) sindf —(Ag :’/‘% + )\QVz)w M v?sin? 28 AgAnunvcos 23
AgANUNVU SIN 23 AHANUNV COS 23 %/\?VUJQV
(2.20)

We look at the 2 x 2 submatrix formed by h and N, whose eigenvalues can be solved
exactly. The eigenvalues are

1
§(m22 + A% v?sin? 26 4 %03 /2)

1
+ \/4(m22 + A4 u?sin? 28 — A30%,/2)% + A4 A3 0208 sin? 268, (2.21)

If M30%/2 < m% 4+ A%40?sin? 28 and we assume the last term inside the square root to
be small (e.g. in the limit of large tan ) compared to (mZ )\ v?sin? 25 — )\?VU]QV/Q)Z we
can expand the square root and get

1 A% 020l
2 2 92 NVTUN L2
mys = —ANUN — sin® 243, 2.22
N T gnNEN m? + A4v2sin? 28 — A3v JQV/Q b (2.22)
DYDY
m% = m% + \%v?sin® 28 + N vty sin?28.  (2.23)

m2 + A4v2sin? 28 — A3 03, /2

From these expressions one sees that it is possible to get a Higgs-like state heavier than my.



The approximations leading to eq. (2.21) are valid if the H-state can be decoupled
from the other states. This is the case when either tan 8 or cot g is large. The tree-level
mass of the second lightest scalar increases at values of tan 3 close to one, but in that limit
the approximations done here are not reliable.

The CP-odd scalar mass matrix is given in the appendix. Among the CP-odd scalars
there is one Goldstone with the composition cos BIm(H9) — sin SIm(HY), as expected. In
the limit Ay, Ay — 0 with vy # 0 also the CP-odd component of N becomes massless,
since it is the pseudo-Majoron, as explicitly demonstrated in [31].

If two more generations are included in the model, the difference to the above is that
all mass matrices are larger in size and there are more neutral scalars that acquire VEVs.
However one can always choose such a linear combination of the singlet sneutrinos that
only one of them has a VEV. This combination is very close to one of the physical states,
since all the mixing terms with other neutral scalars for the combinations without a VEV
include h”. Thus the essential features of the full model are similar to the model with one
generation. All three left-handed sneutrinos decouple from the rest of the scalar sector and
the mixing at tree-level between the doublet scalars and singlet sneutrino combinations
without a VEV comes only through the tiny neutrino Yukawa term. The singlet sneutrinos
which do not get a VEV will get their masses from the soft SUSY breaking terms and from
the VEVs of other scalars via the generalization of the first terms of equation (2.4).

2.3 Constraints from fermion masses

Neutrino mass generation in a similar model but with three neutrino generations was
considered in [29-31]. It was found that mass differences and mixing angles compatible
with experimental results can be generated. The tree-level mass matrix for neutral fermions
with one generation in our model is

0 hV’Uu/ﬂ 0 thUN/\/i 0 _glvu/ﬂ gvu/ﬂ
R vy /V2 Anve/2V2 0 hYv, /V2 Anun/V2 0 0

0 0 0 Agve/V2 Apve/vV2 —g'va/V2 gua/V?2
RYun/V2 WY, /V2 Agve/V2 0 Agva/V2  gug V2 —gu/V2 |, (2.24)

0 )\N?)N/\/i )\H?)u/\/? )\H’Ud/\/i )\@’U@/Qﬂ 0 0
—g'v,/v2 0 —9'va/V2 g'vu/V2 0 M, 0
guu/\V2 0 gua/V2 —gu,/V2 0 0 M

where the basis (v, N, ﬁg,ﬁg,é,éo,ﬁ/o) and the convention v2 + vfl + 02 ~ 02 + vﬁ =
(246 GeV)? is used.

The left-handed neutrino will get a mass via the seesaw mechanism and the sneutrino
VEVs according to the usual seesaw relation. If vy < vg the seesaw mass from the upper
left-corner is m, = v/2(h*v,)%/Anvs. Since Ay is the measure of explicit lepton number
violation, the pseudo-Majoron mass depends on it (see [31]). If the left-handed neutrino
mass is m, ~ 0.1 eV, we must have ve ~ (h)? x 10'2 TeV. On the other hand the effective
p-parameter is A\gve and to avoid the fine-tuned cancellation with the Z-boson mass, we
need to have A\gvg around the weak scale. If vg is large, we need | Ay | < 1. We will assume



here |\g| close to one and h, < 1075, The singlet sneutrino VEV vy also contributes to
the neutrino mass. The contribution is significant only if v < vy. In that limit the
type-I seesaw mass matrix is of a pseudo-Dirac form and contributes little due to the small
Yukawa coupling. The sneutrino VEV generates effective bilinear R-parity violating terms,
which generate neutrino masses. For values of h” of the order of 1079, viable neutrino
masses require bilinear R-parity violating terms around 10MeV or smaller [64], which
constrain vy < 10TeV. Thus all VEVs and therefore all the masses are at a scale of at
most ten TeV’s.

The order of vy and vg is also relevant when inspecting the second-lightest neutral
fermion. If vp < vy, the second lightest neutral fermion is a neutralino having also a
significant singlino component. If vy < ve the second-lightest neutral fermion is mainly a
mixture of the singlet neutrino and singlet higgsino. The mixture depends on the gaugino
mass parameters as well. If vy and vg are both large compared with M; or Ms, and |Ay]
is small the second-lightest fermion is a neutralino with a large gaugino component.

The left-handed sneutrino VEV is constrained by the neutrino mass constraints. The
terms gv, can give the neutrino a mass via the gaugino seesaw mechanism [29]. The gaugino
seesaw gives the neutrino a mass of g?v2/2Ms. This constrains v, to be 1 MeV or less if
we assume for the gaugino mass parameter My = 1TeV. In our numerical calculations we
will require the tree-level neutrino masses to be in the range 0.05eV < m, < 0.5€eV.

The charged fermion mass matrix is of the form

y
(e s wHym | i, (2.25)

where the mass matrix is
hfvy —hYvy 0
M= | =h, —Agve —gu, | - (2.26)
—guy,  —gvg Mo

The experimental lower limit on the chargino mass, when R-parity is conserved, is around
103 GeV. This may change when R-parity is broken. Assuming pure wino and leptonic R-
parity breaking, and only one dominant coupling of LLE type, the limit becomes around
540 GeV for neutralinos lighter than the wino and heavier than 300 GeV, and around
500 GeV for neutralinos between 100 and 300 GeV [65]. One has to note that usually
the experimental bounds are derived assuming a single RPV coupling to dominate. In
SRPYV there are both LQD- and LLE-type operators which can make the signal and the
limits different from that of a single RPV coupling. In our numerical calculations we will
require that the effective p-parameter is > 103 GeV, and we choose for our gaugino mass
parameters M1=300 GeV, M>=600 GeV, and M3=1.5TeV.

3 Numerical results

We consider the model with one generation in detail, since the two singlet sneutrinos which
do not have VEVs will not mix with the other neutral scalars. Therefore, the results will
be similar for three generations.



Parameter | Minimum value | Maximum value
tan g3 1 30
AN 0.1 0.8
Ao 0.05 0.25
g 0.1 0.6
h, 1078 1076
A -6000 -1000
£ -3500 -500
Vo 600 2500
UN 50 4000
v, 106 51074
MG, inbn 700 1700

Table 1. The minimum and maximum values for the parameters of the random scan. Parameters
which have dimensions are given in GeV’s. The gaugino mass parameters are fixed and chosen to
be M; = 300 GeV, My = 600 GeV and M3 = 1.5TeV.

We calculate the Higgs boson mass in the model with the effective potential approach
including one-loop corrections from top-stop and bottom-sbottom loops. We then perform
a random scan over the model parameters. The minimum and maximum values for the
parameters in the random scan are given in table 1. The values for the trilinear couplings are
computed by multiplying the corresponding coefficient in the superpotential by a common
parameter A, e.g. Ay = AMly. Values of |A| less than 1TeV do not produce any RPV
minima. As discussed before, negative A is preferred. Also the sign of & needs to be
negative if v is chosen positive, because 9V /0® = &3 when all fields have zero values and
hence a negative value of £ implies a minimum for positive (®). The minima of the ranges
for soft squark masses are chosen to give stop and sbottom masses which are compatible
with RPV squark searches [67].

The condition for an RPV minimum, eq. (2.17), with Ay negative, implies that either
vy or ve must be sizable to have an RPV vacuum. These parameters in turn largely
determine the singlet-dominated scalar masses. Hence typically at least one of the singlets
is heavy. If the sneutrino-like state is heavy, we have the NMSSM but with a more stringent
tree-level bound on the lightest scalar mass as discussed earlier. We choose the parameters
so that the NMSSM-like singlet is usually heavy and let the sneutrino mass vary over a
larger range. We will later comment on enlarging the range for vg.

We check whether the potential gets a value below the symmetric vacuum (v; = 0 for
all fields) when @ is given a VEV, @, HY and Hg are given a VEV or when all of the scalar
fields develop VEVs. When & < 0 almost always vg # 0 produces a vacuum with a smaller
energy than with vg = 0. With our choices of parameters spontaneous R-parity violation
produces a lower vacuum energy in more than 85 % of the data points. With 500000 initial
points the number of points satisfying each criterion are given in table 2.

The parameter ranges are chosen so that the probability to have an R-parity violat-
ing vacuum satisfying the other constraints would be high. We made also some other
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Total number of points 500 000

Mu-term generated (vgp # 0) 484 397
EW symmetry broken (v, vg # 0) 457 508
R-parity broken (vy, v, # 0) 438 802
Neutrino mass within limits 90 303

A CP-even scalar within LHC mass limits
and LEP limits for the lightest Higgs 13 750

Table 2. The number of points satisfying the criteria listed. The tree-level neutrino mass is required
to be between 0.05-0.5eV and the CP-even scalar mass between 120-130 GeV. Each of the listed
event numbers satisfy also the limits mentioned before.

scans with less points satisfying the criteria. In particular, we took smaller values of v
(100...600 GeV) and got about one third of the points compared to the main data set.
One reason is that for ve < 200 GeV the bound on the chargino mass is very restrictive.
Qualitatively the biggest change in the spectrum is that the lightest CP-odd scalar be-
comes lighter, to around one third of the value in our main data set. This will result in
more points discarded by Bs — pp constraint than in the case of the main data set, to be
discussed later.

3.1 Neutral scalar sector

Taking into account the experimental limits for the Higgs sector, i.e. a scalar with my, ~
125 GeV and the other scalars satisfying LEP and LHC limits, the distribution of the
lightest CP-even scalar is given in figure 1. We assume that the 125 GeV particle found
by LHC is a CP-even scalar that is responsible for electroweak symmetry breaking. With
tan 8 > 1 the dominant component of such a scalar is H.. This scalar can be the lightest
CP-even scalar in our model. Since we have computed the mass matrices only to one-loop

3 we accept all

accuracy and restricted ourselves to third sector squark-quark corrections,
such points where the lightest CP-even scalar has a mass between 120 GeV and 130 GeV.

The second option is that the lightest CP-even scalar is below 120 GeV but it is mainly
a singlet so that the LEP limits for the hZ Z-coupling [69] are satisfied.* The second lightest
CP-even scalar in our model can then be mainly H? and in the mass range between 120 GeV
and 130 GeV. The mass of the SM-like Higgs can be quite large, up to 135 GeV if the lightest
scalar is between 80 and 120 GeV. With our choice of parameters the particle that can be
lighter than the SM-like Higgs is usually mostly a sneutrino. It is also possible that there is
another scalar below 120 GeV, which is mainly a singlet. In our data set there was a single
data point with two light singlets. In the data set with vg (100...600 GeV) the sneutrino
dominated scalar remains as the lighter singlet, but the portion of ® singlet in the lightest
scalar can rise to about 5 %, whereas it is negligible with larger values of vg.

3The right-handed neutrino-sneutrino contribution to the Higgs mass can be a few GeVs [68].
4The constraints we use for the lightest CP-even scalar are that the doublet component must be below
4% if m < 80 GeV and below 25% if 80 GeV < m < 120 GeV.
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Figure 1. The masses of the lightest CP-even scalar as a function of tan 8 using the one-loop
effective potential. The largest component of the lightest scalar is H, (blue crosses, 12217 points),
H, (red diamonds, 4 points) or N (green squares, 1531 points). The red dashed line is at 125 GeV.
These points have an R-parity violating stable vacuum and satisfy the experimental constraints on
the Higgs masses from LEP and LHC.

In the case of NMSSM the Higgs mass can be lifted due to the mixing between the
doublets and the singlet ® [70]. In the model with spontaneous R-parity violation, the
doublet-sneutrino mixing is essential in lifting the SM-like Higgs mass, even by some 8 GeV.
In figure 2 we plot the sneutrino component of the SM-like Higgs as a function of the Higgs
mass. The largest Higgs masses require significant Higgs-sneutrino mixing.

To estimate the size of the mixing effect to the masses we show in figure 3 the rela-
tionship between the tree-level masses and Higgs-sneutrino mixing. We take the sneutrino
components from the one-loop corrected mass matrix so that comparison to figure 2 is easy.
The interpretation of the plot is not straightforward. If the sneutrino-dominated state at
one-loop is below 80 GeV the mixing can lift the SM-like Higgs mass to around 95 GeV.
This is compatible with the results at one-loop level. In the mass matrix, eq. (2.20), the
top-stop loop corrections increase the value of the (1, 1)-element but do not affect the (3, 3)-
element. Hence at tree-level the (1,1)-element can be smaller than the (3, 3)-element even
if the opposite is true at one-loop level. If at tree-level the SM-like Higgs is lighter than
the sneutrino-like state, the mixing brings the mass of the Higgs-like state down instead
of lifting it, which can be seen in figure 3. At tree-level the diagonal elements of the mass
matrix are closer to each other than when loop corrections are taken into account. This
tends to overshoot the mixing effect, which is why it looks as if the masses can increase by
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Figure 2. The sneutrino component of the SM-like Higgs as a function of the Higgs mass. Blue
crosses are points where the SM-like Higgs is the lightest scalar, red diamonds have a lighter scalar
below 80 GeV and green asterisks have a lighter scalar between 80 and 120 GeV. The highest masses
require relatively large Higgs-sneutrino mixing.

more than 20 GeV by mixing, whereas the actual enhancement of one-loop masses is less
than 10 GeV.

It is well known that in the MSSM it is necessary to have either a heavy stop, m; ~
O(1TeV), or large mixing between the stops, in order to lift the Higgs mass to the measured
value. When the SM-like Higgs is the lightest scalar the situation is similar to the MSSM.
However, if there is a lighter scalar than the 125 GeV Higgs the stops can be significantly
lighter than in the MSSM. With our choice of parameters the stop masses are dominated
by the soft SUSY breaking masses. The SM-like Higgs mass has been plotted as a function
of the lighter stop mass in figure 4. From figure 4 we note that the observed Higgs mass
can be found with stops well below 1 TeV. The lighter stop usually has a mass somewhere
between 700 GeV and 1500 GeV. In our data set there are points where a 125 GeV Higgs
mass is obtained with stop mass around 700 GeV and a 120 GeV Higgs mass is obtained
with stop mass as light as 400 GeV. The mixing between the stops is large due to the
large A-terms needed for spontaneous RPV, and the mass difference between the stops is
typically around 200 GeV.

Assuming stop decay to a top quark and a neutralino® and the neutralino subsequently
decaying to leptons, the latest CMS searches for stops with RPV decays give lower mass
limits of the order 800-1000 GeV [67]. The upgraded LHC with 3000 fb~! may reach to
stop masses close to 2 TeV in models with leptonic R-parity violation [71]. Hence, with the

®Note that with R-parity violation the decay modes may be very different, e.g. stop could be the LSP [66].
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Figure 3. The sneutrino component of the SM-like Higgs as a function of its tree-level mass. The
color coding is the same as in figure 2. See the text for explanation.

mentioned assumption, the LHC should be able to find the stop in the region where the
Higgs mass is lifted by the Higgs-sneutrino mixing.

The two subsets (125 GeV Higgs the lightest/second lightest) are distributed quite
uniformly in the parameter space. The main differences between the two categories are
that in the case where the 125 GeV scalar is the lightest one, vy and |A| are larger than
in the other category. These can be understood as follows. If vy is small, the tree-
level contribution from equation (2.10) to the sneutrino mass is small and the light scalar
becomes mostly a sneutrino. If a light sneutrino exists in the model, the tree-level bound
of myz does not apply any more to the doublet Higgs mass and thus smaller |A|-terms can
lift the Higgs mass to ~ 125 GeV. This is shown in the lower plot of figure 4.

In a large number of the sample points there is an almost pure singlet scalar and an
almost pure sneutrino. In that case the doublet Higgses will look like those of the MSSM.
With our choice of the range for £ the singlet ® dominated Higgs tends to be the heaviest
of the CP-even scalars. It almost never has a large mixing with the doublet Higgses but
may mix with the right-handed sneutrino. The state with the largest sneutrino component
has a mass that is driven by the tree-level contribution from equation (2.10). Since we let
the parameters Ay and vy vary over a wide range of values, this scalar may be light or
heavy. If both Ay and vy are small, it is the lightest state. In most of our parameter sets,
it is the second lightest after the lighter (SM-like) doublet Higgs. The large values of | A|
usually make the second doublet Higgs mass rise up to more than 1 TeV.

The lightest CP-odd scalar mass as a function of Ay is plotted in figure 5. In the
CP-odd sector the lightest state is usually the pseudo-Majoron. It gets its mass from the
explicitly lepton-number violating terms. Hence it is essentially a mixture of the singlets
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figure 2.

(usually sneutrino-dominated) and its mass depends mostly on Ay and vg. With large
values of these parameters even the lightest CP-odd scalar may be above 1TeV. The large
values of |A| make the MSSM-like CP-odd Higgs heavy, almost always more than a TeV.
However at large values of Ay we have some points where the lightest CP-odd Higgs is
the MSSM-like one and it can be rather light. We will return to the explanation of this

phenomenon in section 3.3.
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Figure 5. The lightest CP-odd Higgs boson mass as a function of A\y. Blue crosses indicate a
doublet scalar, green squares a sneutrino and magenta asterisks a singlet scalar.

In the charged scalar sector, charged Higgs doublets mix with charged sleptons. The
charged slepton mixings with charged Higgses are all suppressed by h”, v, or A,. In our
model, the charged Higgs mass will always be above 1 TeV due to the large A-terms needed
for spontaneous RPV.

3.2 Constraints from flavor changing rare processes

In the model there are two sources for lepton flavor violation. On one hand, the neutrino
Yukawa couplings can be non-diagonal leading to lepton flavor violation. On the other
hand, when R-parity is spontaneously violated, in the fermionic sector charged leptons mix
with charginos, and neutrinos with neutralinos, and correspondingly in the scalar sector all
the neutral (charged) scalars, including sneutrinos (charged sleptons), mix with each other.
Thus, constraints from lepton flavor violating processes can be expected. The lepton flavor
violating muon decays p — ey and p — eee are experimentally very constrained, with
upper limits of BR(p — ey) < 5.7 x 10713 [72] and BR(y — eee) < 1.0 x 10712 [73].

Since in our model the right-handed neutrinos are at the TeV scale, they might no-
ticeably contribute to these reactions. The limits for neutrino Yukawa couplings in type-I
seesaw models are of the order of 1072 for right-handed neutrino masses of 100 GeV or
more [74, 75]. Since successful spontaneous R-parity violation requires smaller Yukawa
couplings by many orders of magnitude, the right-handed neutrinos will not contribute
measurably to the muon decays.
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Figure 6. Muon decay to two electrons and a positron in SRPV NMSSM.

The bounds on spontaneous R-parity violation parameters with the MSSM field con-
tent were analyzed in [16]. The bounds from p — ey and muon-electron conversion are the
most stringent ones. From the upper limits on branching ratios we deduce upper limits
for charged lepton-chargino mixing. As is found from the mass matrix (2.26) the charged
lepton-chargino mixing is always suppressed by either v, /v or h” and is therefore small.
This will suppress lepton flavor violating decays coming from spontaneous RPV. The max-
imum amount of lepton-chargino mixing in the muon or electron sector is 3.25 x 107° in
absolute value using the data set generated by the parameter scan. Hence any product
of mixing elements is bound by |V;;jUix| < 1.05 x 107%. Even after taking into account
that the experimental bound has been tightened by a factor of 20, this is three orders of
magnitude smaller than the bounds in [16] where it was assumed that m 7=100 GeV and
tan = 2. The lower bounds on sfermion masses in the R-parity violating case are around
100 GeV, but there may be enhancement for larger values of tan 3. However, all the data
points clearly satisfy BR(u — e7y) constraints.

In the model considered here, the leading tree-level contribution to pu — 3e is the
process shown in figure 6. The low-energy effective superpotential looks like explicit bilin-
ear RPV. The bilinear terms can be rotated away by defining new combinations of lepton
superfields and H,;. We then have effective trilinear RPV terms. The effective \;11 will
have a value hevy;/vg, where h, is the electron Yukawa coupling. The lepton-wino mixing
is essentially limited by neutrino masses. If we denote the mixing of the leptonic state
by cosy|[¢~) + sin~|W ™), we find from our scan that the value of sin-~y is less than 104
and typically somewhere around 107%. The intermediate particle is a left-handed sneu-
trino. Its mass can be determined from the vacuum condition and it varies significantly in
our data set. Typical values are around 1TeV, but the lightest values are slightly below
100 GeV. Taking the electrons massless and assuming this to be the dominant contribution
we estimate the branching ratio in the limit of large tan 3 to be

2 /. 2 4
o 10=30 Uy sin y 100 GeV 4
BR(p — eee) =3-1077" x <1 MeV) <10_4> ( e tan” 3. (3.1)

Although the branching ratio may be enhanced due to the tan 3 dependence, it will still
remain several orders of magnitude below the experimental limits, even for the proposed
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improvement to BR(u — eee) ~ O(10716) [76, 77]. The leptonic flavor constraints are
avoided essentially because the reactions forbidden in the SM are mediated by left-handed
sneutrinos, whose VEVs and thus also mixing is strongly constrained by the neutrino
masses. The singlet sneutrinos, whose VEVs may be large, do not have gauge interactions
and the Yukawa couplings are also small.

Constraints from B-decays depend strongly on the Higgs sector spectrum. The latest
average for the experimental result of b — sv is given by [78]

BR(b — s7) =343 +£21 +7-1075.

The branching ratio depends on the charged Higgs and chargino masses. In the charged
Higgs sector, charged doublets mix with charged sleptons, but the mixings are all sup-
pressed by hY, v, or A,. For all the scanned points, the charged Higgs mass will always
be above 1TeV due to the large A-terms needed for spontaneous RPV. The constraints
on the charged Higgs mass from flavor physics, especially from BR(b — sv), require
mpy+ > 316 GeV [79], which is clearly satisfied.

The LHCb and CMS have measured the branching ratio of the rare process [80]

BR(Bs — putp™) = (29+0.7) x 107°.

This is compatible with the Standard Model prediction (3.5640.18) x 1079 [81]. In R-parity
violating models there are several new sources for this reaction both at tree-level and at
one-loop level and the limits on R-parity violating couplings have been analyzed [82, 83].
The most stringent bounds on the products of two trilinear couplings are of the order of
3-1071 x m2

2, where the masses are given in GeV’s. Assuming m; > 100 GeV we get

bounds of the order of 10~ for the trilinear R-parity violating couplings.

In spontaneous R-parity violation the effective trilinear R-parity violating couplings
are Yukawa couplings multiplied by v, /v cos 3. Since v, is very constrained by neutrino
masses, the R-parity violating couplings are tiny. Taking the b-quark Yukawa coupling
and v, = 1 MeV we get M ~ 1077 x tan 3 in the limit of large tan 3. Hence the R-parity
violating couplings satisfy the bounds from By — uu but on the other hand cannot produce
a large deviation from the SM value, either.

The leading contribution to the reaction Bs — pu is by the neutral Higgs bosons [84].
Especially the contribution from the CP-odd doublet Higgs may be large. We estimated
the contribution of the CP-odd Higgs conservatively by choosing the state which is mostly
the imaginary part of Hy, assuming that it has the same couplings as in the MSSM, used
the large m4, tan 8 limit (see [84]) and assumed constructive interference with the SM
amplitude. In figure 7 we have shown the contribution from the CP-odd Higgs. When
the contributions of this and the SM are summed at the amplitude level and constructive
interference is assumed, the contribution to the branching ratio from the CP-odd Higgs
must be below 2 x 10710 for the total branching ratio to be below 4.3 x 1079, i.e. 20 over
the central value. In our data set, when the CP-odd Higgs is doublet dominated, its mass is
typically a few TeV’s which suppresses the branching ratio to unobservable values. We may
note that although typically the experimental constraints are satisfied, this contribution
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Figure 7. The contribution from the CP-odd Higgs to BR(Bs — pu) as a function of tan .
The dashed line gives the experimental 20 limit assuming constructive interference with the SM
amplitude. The color coding is same as in figure 2.

may lead to larger deviations from the SM prediction than the effective trilinear R-parity
violating couplings. When the CP-odd doublet Higgs is light and tan g is large we have a
few data points, where this contribution would be experimentally ruled out.

3.3 Higgs couplings and decays

The most important tree-level couplings of the SM-like Higgs are to the heavy third gen-
eration quarks and to the W/Z bosons. The former are essential both in the production
of Higgs through gluon-gluon fusion and in the decay to photons, while the couplings to
gauge bosons are especially important in the decays, both to photons via a W-loop, and
h — ZZ — charged leptons, which gives the most straightforward means to measure the
Higgs mass.

The couplings to the third generation quarks compared to the SM values are plotted in
figure 8. In the quark couplings we added leading one-loop SUSY-QCD corrections [86-89]
with Mgz = 1.5 TeV. Since the lightest pseudoscalar for majority of the points is heavy, due
to the decoupling effect the tree level couplings are mostly close to the Standard Model
values. However, the b-quark couplings with large tan § can have sizable SUSY-QCD
corrections, while corrections for the top quark couplings are not large [90]. Thus, even if
the coupling to bottoms is strongly enhanced, the coupling to the top-quarks is SM like.%

5This has been studied in the MSSM, when the CP-even Higgses are nearly degenerate in mass [85]. In
such a case the coupling to bottoms can be increased by a large amount.
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Universal suppression of the couplings due to the doublet-sneutrino mixing is clearly visible
for both b- and t-quark couplings.

If there is a lighter scalar than the 125 GeV particle the b-quark coupling cannot be
enhanced and a 10% suppression (due to SUSY-QCD corrections) is typical. This behaviour
can be understood as follows. Consider again the linear combinations h = sin 3H(+cos BHg
and H = cos BH?—sin ﬂHg. The first one has the same VEV and couplings as the SM Higgs
and the second one has zero VEV. The enhancement of the b-quark coupling is due to the
mixing of h and H. Look then at the mass matrix of eq. (2.20) and start by diagonalizing
the submatrix formed by H and N. Since the mass splitting of the eigenstates is always
larger than the difference of the diagonal elements, the one with the smaller diagonal
element becomes lighter and the one with the larger diagonal element becomes heavier.
If there is a light sneutrino-dominated state as in the lower plot of figure 8, the other
doublet state becomes heavier than the diagonal element and so it decouples and cannot
mix substantially with the SM-like Higgs. Thus there cannot be a large enhancement in the
b-quark coupling if we have a light sneutrino-like state. If the sneutrino-dominated state
is heavy, i.e. Ay and vy are large, the mixing between H and N forces the H-dominated
state to be relatively light. Hence it can mix with the SM-like Higgs state and a large
enhancement in the b-quark coupling is possible.

A similar effect happens also in the CP-odd mass matrix. The light doublet dominated
states at large values of A\ in figure 5 are due to a heavy CP-odd sneutrino and the mixing
term between the sneutrino and the doublet. In this case the light CP-odd doublet Higgs
may also enhance the branching ratio of By — upu. Hence we find a correlation between
a large deviation of BR(Bs — pp) from its SM value and a large enhancement in the
coupling between the Higgs and the b-quarks. Since in the charged Higgs mass matrix
such a mixing cannot happen, the charged Higgs may be significantly heavier than the
MSSM-type CP-odd and heavy CP-even Higgses.

In figure 9 a similar ratio for W-bosons and top quarks is shown. We see that the
couplings are strongly correlated. Deviations from the SM values are mostly due to the
doublet-sneutrino mixing because the relevant parameter space is close to the decoupling
limit as discussed earlier. All the points are slightly above the diagonal due to the SUSY-
QCD corrections to the top Yukawa couplings.

The most discussed deviation at the LHC from the SM Higgs prediction has been
the possible higher rate in the two-photon decay channel [3, 4, 91-94]. The SM contribu-
tion to this channel is dominated by the W-boson loop and with a subleading destructive
contribution from the top quark loop.

As we have seen, in the SRPV-NMSSM model the SM-like Higgs may have a substantial
sneutrino component. The decay mode of N to two photons via a charged Higgs loop is
not suppressed by mixing in the Higgs sector, or by tiny parameters. This contribution can
be either constructive or destructive depending on the relative signs of the components of
the corresponding eigenvector. However, in general, any scalar loop will give only a minor
contribution to the amplitude compared to vector loops. As discussed earlier, the charged
Higgs is heavier than 1 TeV for our data set so the loop will be suppressed for that reason
also. The modification from the sneutrino component on the branching ratio BR(h — ~7)
will be less than 1%. With the current experimental precision this is indistinguishable.
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Figure 8. The Higgs-bottom coupling ratio to the SM value as a function of the corresponding
Higgs-top coupling ratio if the SM-like Higgs is the lightest scalar (upper) or second lightest (lower).
The black line shows where the suppression of couplings is equal. The color coding is same as in
figure 2.

The important contributions that can alter the two-photon rate, are the coupling to
the top quark, which determines the gluon fusion production rate and the coupling to the
bottom quark, which gives the main component of the total decay width. If the ratio of the
top coupling to its SM value is larger than that of the bottom coupling, the two-photon rate
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Figure 9. The ratio of the coupling to W/Z compared to the SM as a function of the same ratio
of top couplings. The color coding is same as in figure 2.

may be enhanced. This corresponds to points which are below the black lines in figure 8.
The top coupling is typically very close to the SM value (or there is a universal suppression
due to the sneutrino component) but the bottom coupling has a larger deviation due to
SUSY-QCD corrections proportional to the top Yukawa coupling.

If the sneutrino is lighter than my /2, the total decay width is affected by the decay
of the SM-like Higgs to two sneutrinos. The coupling between the SM Higgs and a pure
sneutrino is %)\ gAnvsin 28 and is thus suppressed at high values of tan 8 but large in the
limit tan 3 — 1. The branching ratio BR(h — NN ), shown in figure 10, depends on
my, AN, Ag and tan 8 and it can vary over several orders of magnitude and even be the
dominant decay mode. This would lead to a large suppression of all other decay modes. At
large values of tan 3 the branching ratio can be less than 1073, Since the Higgs signals are
not largely suppressed, we can exclude the region tan 5 < 3 in the case of a light sneutrino.

The branching ratio of the two-photon channel compared to the SM-value is shown in
the upper plot of figure 11. We see that an enhancement is possible especially if there is
a lighter scalar between 80 and 120 GeV. However the gluon fusion or vector boson fusion
cross section is suppressed because of the doublet-sneutrino mixing. Hence the overall rates
are close to the Standard Model expectation as is shown in the lower plot of figure 11.

Another possible reason for an increased two-photon rate could be that the sneutrino
dominated scalar and the SM-like Higgs are almost degenerate in mass. Such a phenomenon
has been studied in the context of RPC NMSSM, see [95]. The sneutrino state will have
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Figure 10. The Higgs branching ratio to two sneutrinos as a function of tan § for the data points
with a sneutrino-dominated state lighter than 60 GeV.

a large branching fraction to two photons since there are not many final states that would
have a large coupling and be kinematically allowed. However, the sneutrino is not produced
at a rate comparable to the SM-like Higgs. The sneutrino has unsuppressed couplings only
to the singlet Higgs, doublet Higgses and the charged Higgs. For a mixed sneutrino-Higgs
state the production will be dominated by the Higgs component even though it were small.

In the case of a heavy sneutrino, the sneutrino-dominated state can be produced if
it mixes with the doublet Higgses, since it has unsuppressed couplings only to the singlet
and doublet Higgses. If the sneutrino is heavy enough, the decay N — hh is allowed on-
shell. If all of the Higgses are heavier than the sneutrino, it will decay mostly to a pair of
off-shell Higgs bosons, which then subsequently decay. If the sneutrino state mixes with
doublet Higgses the production will be determined by the doublet Higgs component but the
sneutrino decay modes may be competitive to the doublet Higgs component decay modes.

If the sneutrino is very light, say a few GeV’s, the most usual decay modes through
the Higgs bosons become kinematically forbidden. In that case the sneutrino could decay
to two almost collinear photons, which could be seen as one in the detector. This could
lead to a change in the observed two-photon rate also.

In order to better understand the consistency of our results with the current experi-
mental results, we study two subsets of our data, where the Higgs mass is enhanced. In one
subset we require m; < 900 GeV and in the other m; > 126 GeV, both having a sneutrino
dominated state between 80 and 120 GeV. The former one has 50 data points and the latter
112 data points. The diphoton rate in these samples is between 0.92 and 1.09 times the
Standard Model value. The combined early results of ATLAS and CMS, which are taken
into the PDG average [96] of 1.5875:27 times the Standard Model value leave this dataset
outside the 95% confidence level. The latest ATLAS and CMS results [5, 6], not included in
the PDG average, give signal strengths 1.1740.27 and 1.14J_r8:§g, respectively. Our datasets
are within the 68% confidence level of these results. In these datasets the top-quark cou-
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Figure 11. The branching ratio (upper) and the event rate (lower) to the two-photon final state
compared to the SM prediction as a function of the SM-like Higgs mass. An enhancement in the
branching ratio is possible in this model but the event rate is close to the SM prediction. These
plots are computed for production by vector boson fusion (or associated production). The color
coding is same as in figure 2.

pling is 0.85...0.98, the bottom-quark coupling is 0.76...0.97 and the coupling to vector
bosons 0.86...0.98 times the Standard Model value. The Higgs-sneutrino mixing leads to
a correlation in the suppressions. After the Higgs discovery a few model-independent fits
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on the Higgs couplings have been done [97, 98]. Our results mostly are within the 68%
confidence level of these fits. This is not surprising since the fermionic couplings still have
large uncertainties but they will be reduced in the next run of the LHC.

4 Conclusions

It is of interest to study consequences of the dynamical breaking of R-parity, contrary
to the explicit breaking, which is the only possibility in MSSM. MSSM is under pressure
because of the fine-tuning issues, since no supersymmetric partners have been found at the
LHC. In this work we have studied the scalar sector of a spontaneously R-parity violating
model, which is NMSSM extended by an explicitly lepton number violating term and a
term due to nonrenormalizable terms. NMSSM is the simplest extension of the minimal
supersymmetric standard model. Although spontaneously broken R-parity is not possible
in the MSSM, it can occur in the NMSSM with right-handed neutrinos and a tadpole term
which takes care of the cosmological domain wall problem.

We have concentrated on the properties of the SM-like Higgs when relevant constraints
have been taken into account. We have found that the lightest scalar in the model may be
a sneutrino, which helps to make the SM-like Higgs heavier that in the MSSM. Thus the
stop can be lighter than typically in MSSM and could be discovered in the 14 TeV phase of
the LHC. Interestingly, in SRPV-NMSSM, the A-terms are always large, since otherwise
the vacuum would be R-parity conserving.

The identity of the light scalars in various NMSSM-models differ. It is possible to have
a lighter than 125 GeV scalar also in the R-parity conserving NMSSM, but in that case it
is dominantly the other singlet of the model. In both cases it is also possible not to have
an additional light scalar.

We found that in the case of a light sneutrino-like state the Higgs coupling to b-quarks
cannot be enhanced compared to the SM. If the sneutrino is heavy, the mixing between the
sneutrino and the doublet Higgses may make both of the CP-even doublet Higgses light
and their mixing can enhance the b-quark coupling. In this case also the CP-odd doublet
state becomes light, wheras the charged Higgs is significantly heavier.

The Higgs decay rate to a photon pair may be enhanced or suppressed but in our
data set the differences to the SM Higgs are not large. The best possibilities to identify
the model may be through a light sneutrino dominated scalar, if the doublet component is
large enough for it to be produced in significant amounts. We will leave this study for a
future work.

We found that in the case where the Higgs-sneutrino mixing lifts the SM-like Higgs
mass the Higgs couplings are within the current uncertainties of model-independent Higgs
coupling fits. The next LHC run should reduce these uncertainties to a level where the
suppression of Higgs couplings due to a sneutrino component could be seen.
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A Minimization conditions and CP-odd scalar mass matrix

Minimizing the tree-level potential gives the following conditions:

ov 1 Uy
A0 = 5AHvdvq, + NG (Zm%{u + 2% (v3 4 v3) — m% cos 20)
vg (1 1
+ﬁ (2>‘H>‘NU]2V + 2>\H)\<I>U§>> =0, (Al)
ov 1 vy
THg = 5AHvuvq) + \ﬁ (2m%{d + 2% (v3 4 v2) + m% cos 2B)
2 (I 4 Se ) =0 (A.2)
NG HANVN T 5AHARVg | =0, .
ov 1 1 Vp
3% = 263 + 5ANU?V + Apgvyvg + iA(I)U‘% + 7 <2m(21, + 20?2 + 2303
1 1
+ Ao AF Uy + 5)@;)\]\[1}]2\7 + 2%@3}) =0, (A.3)
8V 'UN< 2 U(I) 2 92
— = — | 2m%y + 2AN—= + A\3v3 + ANAHUV,
ON V2 TN T TN g AN AN
1 1
+§)\?Vv]2\; + 2)\N>\<1>U<%) =0, (A.4)
oV Yy 2 2 v
— = — <2m~ + m? cos 2ﬁ) + hvpun (Anvy + )\Hvd)/\/§+A,,UuUN =0. (A.5)
o 2 L

We have assumed that h”, v, and A, are small and terms containing may be neglected
in sums which have also nonsuppressed terms. We use these relations to eliminate the soft
scalar masses. This leads to the following matrix elements for the tree-level CP-odd scalar
mass-squared matrix

m2, = —%(Apr IV 4+ A2V2) cot B, (A.6)
m2, = —%(AHUCD V3 4+ A2V tan B, (A7)
=3
m3y = _Uq>§\/§ - g @% - %)@)\NU?\] — AH AUy V4, (A.8)
m?M = —2AN% — %)\@)\NU% — AHAN VUG, (A.9)
m2, = —é(Aqu)/\/i+ A2V, (A.10)
m%?) = —;AH% + é)\H)\q)vdv(p, (A.11)
m%4 = %)\H)\Nvva, (A.12)
m§3 = —;AH\U/% + %)\H)\qﬂ)uv(p, (A.13)
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9 1

Moy = 5)\H/\NUU'UN7 (A.14)
1 v 1
2 N
= ——Ay—<+ = . Al
m3y > N\/§+ 2)\N)\<1>UNU<I> (A.15)

The notations v? = v + 03 = (246 GeV)?, A2V? = L(AgAnvy + ApAev3) and 33 =
£+ %ANUJQV + %Agvuvd have been used. All of the parameters have been assumed real
for simplicity.
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